
Optimality and Sustainability of Delayed Impulsive Harvesting

Jennifer Lawson and Elena Braverman
Dept. of Math & Stats, University of Calgary,

2500 University Dr. NW, Calgary, AB, Canada T2N1N4

Abstract

We consider a logistic differential equation subject to impulsive delayed harvesting, where the
deduction information is a function of the population size at the time of one of the previous
impulses. A close connection to the dynamics of high-order difference equations is used to conclude
that while the inclusion of a delay in the impulsive condition does not impact the optimality of
the yield, sustainability may be highly affected and is generally delay-dependent. Maximal and
other types of yields are explored, and sharp stability tests are obtained for the model, as well as
explicit sufficient conditions. It is also shown that persistence of the solution is not guaranteed
for all positive initial conditions, and extinction in finite time is possible, as is illustrated in the
simulations.

Keywords: Optimal harvesting; logistic equation; impulsive system; impulsive delayed har-
vesting; population dynamics
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1. Introduction

Optimal sustainable resource management is one of the most important modern problems, with
the dynamics of harvesting models being an essential facet [1]. Harvesting can be represented in
models either continuously or as only occurring during short-time periods. Continuous harvesting
can be described as a continuous deduction term appearing in an ordinary Differential Equation
(DE) determining population dynamics. It assumes that harvesting occurs without any interrup-
tions, whereas impulsive harvesting corresponds to part of the stock being removed at specific
moments in time, with the duration of the harvesting event being negligible compared to the pro-
cess time. Even though continuous harvesting may be preferable from the point of view of both
maximizing harvest and sustainability [2, 3], it is not always realistic or easily applicable. This is
why investigation of impulsive harvesting models is important.

Impulsive DEs incorporate two parts, the DE that describes the behaviour of the system during
times of continuous dynamics, and the conditions that govern the instantaneous change in the
system at the impulsive moments. Usually, this instantaneous change is a result of some external
effect on the system, which has a duration that is negligible compared to the overall time scale of the
process. Impulsive DEs have many practical applications such as pest control [4], pulse vaccination
strategies [5], and optimal harvesting in fisheries [6]. For more on the theory of impulsive DEs see
the monograph [7].

It is well known that including delays within a DE model of population dynamics can lead to
major changes to its behaviour, such as causing instability, oscillations, and extinction, which are
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not observed in a corresponding ordinary DE model [8]. The famous Hutchinson equation is one
such example. It can be compared to the logistic equation where the carrying capacity is always a
globally attractive equilibrium for all non-trivial positive solutions. The inclusion of a delay in the
Hutchinson equation can cause the carrying capacity equilibrium to become unstable for certain
values of a delay. Other examples specific to harvesting models can be seen in [9, 10], where delay
is incorporated into the continuous harvesting terms.

In an impulsive system, whenever control is involved, it is natural to assume that the informa-
tion available at the control implementation point is not up-to-date, leading to delayed impulsive
conditions. The incorporation of delays in impulses goes back to the 1990s [11] with the further
development of non-instantaneous impulse theory, some of which is summarized in the mono-
graphs [12, 13], and with recent progress reported in [14, 15, 16]. Delayed impulses in the context
of harvesting were explored in [17]. To the best of our knowledge, there still has been no investiga-
tion of the optimal harvesting policies and their sustainability for systems with delayed impulsive
harvesting in the literature, and we aim to fill this gap.

For logistic and other simple population models, such as Gompertz, incorporating stochastic
fluctuations or random differential equations created an additional challenge but reflected unpre-
dictable changes in the environment, see [18, 19, 20] and the references therein. Impulsive harvesting
of a stochastic Gompertz model was a focus of [19]. Though logistic-type equations are considered
in most studies on optimal control, the use of other growth rates can modify the preferred policies
[21]. The close connection of continuous models to difference equations has led to extensive study
of discrete population models [22] including harvesting [23]. The fact that species do not naturally
exist in isolation but coexist, compete or serve as prey for others, led to extensive literature on
harvesting of a single or multiple populations in a food chain, and on optimal yields for exploited
species [24, 25, 26, 27]. Incorporating harvesting in systems of differential or difference equations
includes the case of structured populations where selective harvesting is allowed [28, 29]. This
approach is quite useful in policy-making, for example, when only fish types within a certain size
range are eligible to take-home vs catch-and-release policies.

We consider the logistic equation with constant catch-per-unit effort impulsive harvesting that
is dependent upon delayed data. This assumes that the information used to determine hunting or
fishery quotas is based on data for the population size or structure which was collected during one
of the previous harvesting events.

The main object of the present paper is the delayed impulsive harvesting model, given for a
fixed k ∈ N as

dN
dt

= rN(t)

(
1− N(t)

Kc

)
, t 6= nT, n ∈ N

N(nT+) = max{N(nT )− EN((n− k)T ), 0}, t = nT, n ∈ N
N(0+) = N+

0 , N(0) = N0, ..., N(−(k − 1)T ) = N−(k−1)

(1)

with prescribed initial conditions

N+
0 , Ni ∈ (0,∞), i = −(k − 1), ..., 0.

In this model, the left-continuous N(t) represents a size or a biomass of the population as a function
of time, r > 0 is the intrinsic growth rate, Kc > 0 is a carrying capacity of the environment, T > 0
is the time between two consecutive harvesting events, E is a harvesting effort and is assumed to
be E ∈ (0, 1) to avoid immediate extinction. We assume both that restocking does not occur, and
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that the function N(t) is left continuous. We denote the size of the population after harvesting as
lim
h→0+

N(nT+h) = N(nT+), whereas the size of the population N(t) before harvesting is N(nT ), for

the left-continuous function N . Note that we do not require continuity at zero i.e. N(0+) = N(0),
nor do we assume anything about the size of the population between t = −iT and t = −(i− 1)T .
This makes room for the possibility that the first harvesting event occurs at t = 0, as might be
likely in a real-world setting, but does not require that this happens. We assume k ∈ N, though
references to the non-delay model with k = 0 will also be given.

The motivation of incorporating delay in the impulsive harvesting is two-fold:

1. Impulsive harvesting in general allows us to describe short duration harvesting events, the
effect of which makes it impossible for population growth to remain continuously at optimal
levels. It is a well developed topic, with multiple publications appearing in the literature
[2, 6, 17, 3, 30], but not for delayed impulsive conditions. Thus, delayed impulsive models
are of theoretical interest. While the consideration of delayed impulsive systems is not new
[11], recent developments in the theory of such dynamical systems [14, 15, 16] have made its
practical study feasible, as there are theoretical tools to investigate it.

2. Harvesting policies are dependent upon population data, and often the data which is used is
not up-to-date, leading to a delay in the harvesting term of models. It is therefore important
to be able to assess the impact of the delay, so that managers may determine what addi-
tional modifications must be made to the harvesting decisions. While non-delay harvesting
models depict gradual declines to extinction, they mostly failed to explain a frequently ob-
served phenomenon of instantaneous species disappearance due to over-exploitation. Unlike
traditional continuous or non-delayed impulsive harvesting, delayed impulsive harvesting can
describe immediate, not long-term collapse of harvested population. Truncated models where
the population or commodity size is chosen as a maximum of the computed value or zero,
are quite common in mathematical economics and discrete dynamical systems. We found it
natural to extend this method to population dynamics in order to describe possible extinction
in finite time.

Let us also dwell on the choice of the model. Our purpose was to explore and emphasize the
effect of the harvesting delay in the impulsive form, thus we consider the simplest autonomous
logistic equations. The results will outline the intrinsic effect of the delay in short-term harvesting.

Our goal is first, to consider the sustainability of (1) under harvesting, which corresponds to
the local asymptotic stability of a positive solution which will be described later, and second, to
explore the sustainable yield (SY) and the maximum sustainable yield (MSY) of (1). The paper
is structured to follow this purpose. After presenting relevant definitions and auxiliary results in
Section 2, we explore stability of (1) in Section 3. All the issues connected to SY and MSY, and
relevant solutions of (1), are postponed to Section 4. We show that, while optimality is unaffected
by the magnitude of delay, sustainability of the optimal solution is delay-dependent for k ≥ 2. The
analysis of the impact of the delay on local asymptotic stability of the positive solution is based on
the results obtained in Section 3. Finally, Section 5 includes examples, numerical simulations, as
well as discussion of the results of the paper and possible future directions.

2. Preliminaries and Auxiliary Results

A solution N∗(t) of impulsive system (1) is said to be stable if for any ε > 0 there exists a
δ = δ(ε) > 0 such that the inequalities |Nj −N∗(jT )| < δ, j = −k + 1, . . . , 0, |N+

0 −N∗(0+)| < δ
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imply |N(t) − N∗(t)| < ε for all t > 0. A solution of (1) is (locally) asymptotically stable if it
is stable and there exists η > 0 such that lim

t→∞
|N(t) − N∗(t)| = 0 for any |Nj − N∗(jT )| < η,

j = −k + 1, . . . , 0, |N+
0 − N∗(0+)| < η. A solution of (1) is globally asymptotically stable if it is

stable and lim
t→∞
|N(t)−N∗(t)| = 0 for any N+

0 > 0, N0, N−1..., N−k+1 ≥ 0.

A k-th order difference equation has the form

xn+1 = f(xn, xn−1, ..., xn−k), n ∈ N, n ≥ k (2)

with the initial conditions x0, ..., xk.
A solution xn ≡ x∗ of (2) is stable if for all ε > 0, there exists a δ > 0 such that max{|x0 −

x∗|, ..., |xk − x∗|} < δ implies |xn − x∗| < ε for any n ≥ k. A solution x∗ of (2) is (locally)
asymptotically stable if it is stable and there exists η > 0 such that max{|x0−x∗|, ..., |xk−x∗|} < η
implies lim

n→∞
|xn − x∗| = 0. A solution x∗ of (2) is globally asymptotically stable if it is stable and

lim
n→∞

|xn − x∗| = 0 for any x0, ..., xk.

If harvesting is restricted to only the surplus production of a population, then theoretically,
harvesting should be able to continue indefinitely without drastically altering the stock levels. The
idea behind the Maximum Yield (MY) is that it corresponds to an optimal solution of (1) such that
the yield will not be exceeded by any other solution, and that the optimal solution is T -periodic
leading to a constant yield over a time period. A Maximum Sustainable Yield (MSY) is a MY
where the optimal solution of (1) is (at least locally) asymptotically stable.

In [30], the authors considered an MSY for (1) with k = 0. The results are summarized in the
following.

Lemma 2.1. [30] Consider (1) for k = 0
dN

dt
= rN(t)

(
1− N(t)

Kc

)
, t 6= nT, n ∈ N

N(nT+) = max{(1− E)N(nT ), 0}, t = nT, n ∈ N
N(0) = N0.

(3)

Then the optimal harvesting effort is

Eopt = 1− e−rT/2, (4)

and the MSY is given by

MSY =
Kc(e

rT/2 − 1)

T (erT/2 + 1)
(5)

The optimal positive periodic solution N∗(t) of (3) corresponding to the MSY and Eopt satisfies

N∗(nT+) =
Kc

erT/2 + 1
(6)

and is globally asymptotically stable.

In [30] analysis of a non-delayed impulsive model (3) is reduced to a nonlinear difference equa-
tion of the first order. We also intensively exploit connection between difference and impulsive
equations. When a delay is incorporated in impulsive condition, the difference equation becomes
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higher order. We recall that for difference equations, the roots of the characteristic equation of an
associated linearized model should lie inside the unit circle for local asymptotic stability, in con-
trast to differential equations where the real parts of the roots have to be negative. Some auxiliary
results regarding difference equations are listed below.

Lemma 2.2 ([31]). The roots of the characteristic equation

p(λ) = λ2 − p0λ+ p1, p0 > 0, p1 > 0

lie inside the unit circle if and only if p0 − 1 < p1 < 1.

The result of [32, Theorem 1.1.1, Part f, P. 7] describes conditions when a root of a quadratic
equation lies on the boundary of the unit circle.

Lemma 2.3 ([32]). A necessary and sufficient condition for a root of the characteristic equation

λ2 − p0λ+ p1 = 0

with p0, p1 ∈ R to have a root satisfying |λ| = 1 is that either

|p0| = |1 + p1|

or
p1 = 1 and |p0| ≤ 2.

Lemma 2.4 is cited from [31, Theorem 5.10, P. 253].

Lemma 2.4 ([31]). If
k∑
i=0

|pi| < 1 then the zero solution of the difference equation

xn+k+1 + p0xn+k + p1xn+k−1 + ...+ pkxn = 0

is asymptotically stable.

The following result can be found in [31, Theorem 5.3, P. 249].

Lemma 2.5 ([31]). Let p0 > 0, pk ∈ R be arbitrary, and k ∈ N. The zero solution of the equation

xn+1 − p0xn + pkxn−k = 0 (7)

is asymptotically stable if and only if |p0| < (k + 1)/k and
(i) |p0| − 1 < pk < (p20 + 1− 2|p0| cos(θ∗))1/2 if k is odd
or
(ii) |pk − p0| < 1 and |pk| < (p20 + 1− 2|p0| cos(θ∗))1/2 if k is even,
where θ∗ is the solution of the equation

sin(kθ)

sin((k + 1)θ)
=

1

|p0|
, θ ∈

(
0,

π

k + 1

)
. (8)

However, we do not need the general form of Lemma 2.5, since in our model 0 < pk < p0. Then
the left inequality in both (i) and (ii) becomes p0 < pk + 1, the right inequalities coincide.

5



Corollary 2.5.1. Let 0 < pk < p0. Then (7) is asymptotically stable if and only if the following
two inequalities hold:

p0 < min

{
pk + 1,

k + 1

k

}
, pk <

√
p20 + 1− 2p0 cos(θ∗) , (9)

where θ∗ is the solution of (8).

Lemma 2.6 is cited from [31, Theorem 5.2, P. 248].

Lemma 2.6 ([31]). Let q ∈ (0, 2). The zero solution of the equation

xn+1 = xn − qxn−k

is asymptotically stable for k = 1. It is asymptotically stable for k ≥ 2 if and only if in addition

q < 2 cos

(
kπ

2k + 1

)
.

3. Stability with Delay Impulsive Harvesting

We start with reducing the dynamics of the differential equation with delayed impulsive har-
vesting to a difference equation.

Lemma 3.1. The solution of (1) on the interval t ∈ (nT, (n+ 1)T ), n = 0, 1, . . . is

N(t) =
Kce

r(t−nT )N(nT+)

Kc +N(nT+)(er(t−nT ) − 1)
. (10)

The solution of (1) with N(nT+) = xn at the points just after harvesting at t = nT satisfies the
difference equation

xn+1 = max

{
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−ke

rT

Kc + xn−k(erT − 1)
, 0

}
= max

{
f (xn, xn−k) , 0

}
, (11)

where n ≥ k. In addition x0 = N(0+), and x1, ..., xk satisfy the relation

xi+1 = max

{
Kcxie

rT

Kc + xi(erT − 1)
− EN((i− k + 1)T ), 0

}
(12)

where N((i− k + 1)T ) are given by the initial conditions for i = 0, ..., k − 1.

Proof. Let N(nT+) = xn be the size of the population after a harvesting event. For t ∈ (nT, (n+
1)T ), the impulsive model is non-delayed, and the solution of the differential equation exists, is
monotone on the interval and is given by

N(t) =
Kce

r(t−nT )N(nT+)

N(nT+)(er(t−nT ) − 1) +Kc
, t ∈ (nT, (n+ 1)T ).

The size of N(t) at the end of the n-th time period before harvesting is

N((n+ 1)T ) =
KcN(nT+)erT

Kc +N(nT+)(erT − 1)
.
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Using the value of N(t) before harvesting as a function of N(nT+), combined with the definition
of the impulsive condition in (1), leads to

N((n+ 1)T+) = max

{
KcN(nT+)erT

Kc +N(nT+)(erT − 1)
− EN((n+ 1− k)T ), 0

}
.

For n = 0, ..., k − 1, N((n + 1 − k)T ) are given by the initial conditions, leading to relation (12).
For n ≥ k we once again treat N((n+ 1− k)T ) as a function of N((n− k)T+) and obtain

N((n+ 1)T+) = max

{
KcN(nT+)erT

Kc +N(nT+)(erT − 1)
− E KcN((n− k)T+)erT

Kc +N((n− k)T+)(erT − 1)
, 0

}
.

Then, since xn = N(nT+) the difference equation (11) is obtained.

After the reduction to a difference equation, let us justify that stability of (1) can be deduced
from that of (11).

Lemma 3.2. The point x∗ is a locally asymptotically stable equilibrium of the difference equation
(11) if and only if the solution to (1) with N∗(nT+) = x∗ is locally asymptotically stable.

Proof. Evidently local asymptotic stability of the solution to (1) with N(nT+) = x∗ implies local
asymptotic stability of the equilibrium x∗ of (11).

Further, let us assume that the solution x∗ of (11) is stable. Note that the function

F (x, a) :=
Kcax

Kc + x(a− 1)
(13)

for a fixed a = ers > 1 and any non-negative x, has the derivative in x

∂F (x, ers)

∂x
=

K2
c e
rs

(Kc + x(ers − 1))2
> 0,

∣∣∣∣∂F (x, ers)

∂x

∣∣∣∣ ≤ ers ≤ erT .
If the equilibrium x∗ of (11) is stable, for any ε > 0 there exists δ > 0 such that, once all
|xj − x∗| < δ, j = 0, . . . , k, we get |xn − x∗| < εe−rT . The solution N∗ corresponding to x∗ on the
interval (nT, (n+ 1)T ) is N∗(nT+) = x∗ with

N∗(t) =
Kce

r(t−nT )x∗

x∗(er(t−nT ) − 1) +Kc
.

Following (10), we note that on (nT, (n+1)T ) there exist ζ between xn and x∗, s ∈ [0, T ] such that

|N(t)−N∗(t)| =

∣∣∣∣∣ Kce
r(t−nT )xn

xn(er(t−nT ) − 1) +Kc
− Kce

r(t−nT )x∗

x∗(er(t−nT ) − 1) +Kc

∣∣∣∣∣
=

∣∣∣∣∂F (ζ,rs )

∂x

∣∣∣∣ |xn − x∗| ≤ erT εe−rT = ε,

thus N∗ is stable.
If the solution x∗ of (11) be locally asymptotically stable, and n0 is such a number that |xn −

x∗| < εe−rT for n ≥ n0, as above,

|N(t)−N∗(t)| ≤ erT εe−rT = ε, t ≥ nT, n ≥ n0,

thus N∗ is both stable and attractive, and therefore is locally asymptotically stable, which concludes
the proof.
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Next, let us describe solution bounds for a harvested population.

Lemma 3.3. Let E ∈ (0, 1). Then for any non-negative initial values there exists n0 ≥ k such that
the solution xn to (11) is in [0,Kc] for n ≥ n0.

Proof. Let us note that if for some n ≥ k, xn ≤ Kc, we also have xn+1 ≤ Kc. Really, from
monotone increasing of F (x, a) defined in (13) in x and F (Kc, a) = Kc for any a > 1, we get
xn+1 ≤ F

(
xn, e

rT
)
≤ Kc. By induction, all xj ≤ Kc, j ≥ n. Also, F (x, a) > x for x ∈ (0,Kc) and

F (x, a) < x for x > Kc.
Thus, we only have to exclude the case xn > Kc for any n ≥ k. We have xn, xn−k > Kc,

F
(
xn, e

rT
)
< xn, F

(
xn−k, e

rT
)
> Kc and

xn+1 = F
(
xn, e

rT
)
− EF

(
xn−k, e

rT
)
< xn − EKc,

therefore xn+1 − xn < −EKc, and after j =

⌊
xn −Kc

EKc

⌋
+ 1 steps, where byc is the integer part of

y, we arrive at xn+j ≤ Kc, which concludes the proof.

Difference equation (11) has the trivial solution x∗ = 0, and when rT > − ln(1 − E) it has a
single positive equilibrium

x∗ =
((1− E)erT − 1)Kc

erT − 1
. (14)

If rT ≤ − ln(1−E) then only the trivial equilibrium exists, and as Lemma 3.4 states, all solutions
of (11), and hence of (1), will inevitably go to extinction.

Lemma 3.4. If
rT ≤ − ln(1− E), (15)

all solutions of (11) tend to zero.

Proof. By Lemma 3.3, we can consider xn ∈ [0,Kc] for n large enough. If for some n ≥ k, xn = 0,
we have xj = 0 for any j ≥ n in (11), so we restrict ourselves to only considering positive sequences
{xn}. Further, let {xn} be an eventually monotone sequence, then it has a limit d. If d = 0, the
sequence converges to zero; if d > 0, we let n→∞ in

xn+1 =
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−ke

rT

Kc + xn−k(erT − 1)

and get that d is a positive equilibrium solution of (11), which is a contradiction. Thus, we have
only to consider sequences {xn} that are neither eventually non-increasing nor eventually non-
decreasing.

Before we handle this case, let us recall that the function F (x, a) defined in (13) is strictly
increasing in both x and a for Kc > 0 and a > 1 (here a = erT > 1 for rT > 0).

Let k = 1, since we are only considering sequences that are not non-decreasing, this implies
that there exists some n such that xn < xn−1. Then,

xn+1 =
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−1e

rT

Kc + xn−1(erT − 1)
<

(1− E)Kcxne
rT

Kc + xn(erT − 1)

≤
(1− E)Kcxn

1
1−E

Kc + xn−k(
1

1−E − 1)
=

Kcxn

Kc + xn
E

1−E
< xn,
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and by induction we get that {xj} is a monotonically decreasing sequence starting with j = n, and
thus it converges to zero, as justified above.

Next, consider k ≥ 2. If there exists n such that xn = min{xn−k, xn−k+1, . . . , xn−1, xn}, then
since F (xn, e

rT ) ≤ F (xn−k, e
rT ) and by (15), we get

xn+1 =
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−ke

rT

Kc + xn−k(erT − 1)
≤ (1− E)Kcxne

rT

Kc + xn(erT − 1)

≤
(1− E)Kcxn

1
1−E

Kc + xn−k(
1

1−E − 1)
=

Kcxn

Kc + xn
E

1−E
< xn

as above. Thus xn+1 < xn and xn+1 = min{xn−k+1, xn−k+2, . . . , xn, xn+1}, which yields that
xn+2 < xn+1, and by induction {xn} is monotonically decreasing and thus converges to zero.

Let us, finally, consider the case when xn > min{xn−k, xn−k+1, . . . , xn−1} for any n ≥ n0 > k.
Then,

m := lim inf
n→∞

xn ≥ min{xn0−k, ..., xn0}. (16)

Introducing the functions H and h through F as defined in (13) and using inequality (15) leading

to erT ≤ 1

1− E
, we obtain

H(x) := x− (1− E)F
(
x, erT ,

)
≥ x− (1− E)F

(
x,

1

1− E

)
= x− Kcx

Kc + x E
1−E

=: h(x). (17)

Note that

h(x) = x

(
1− Kc

Kc + E
1−Ex

)
is monotone increasing for x ∈ [0,Kc] (as a product of two non-negative increasing functions) from
h(0) = 0 to h(Kc) = EKc > 0. Let us choose ε > 0 such that h(x) > ε for x ∈ [m2 ,Kc]. From (17)

we get H(x) > ε, x ∈ [m2 ,Kc] as well. Define a positive δ ∈
(

0,
ε

4

)
satisfying

δ < min
{m

2
,Kc −

m

2

}
such that for any x, y ∈ [0,Kc], the inequality |x− y| ≤ δ implies∣∣F (x, erT )− F (y, erT )∣∣ ≤ ε

2
.

Such δ > 0 exists, as F (x, erT ) defined in (13) is continuous and thus is uniformly continuous for
x ∈ [0,Kc].

By the definition of m in (16) for any δ > 0 there is n1 ≥ n0 + k such that xn > m− δ
2 for any

n ≥ n1 − k. By definition of lim inf, there is n > n1 such that xn < m+ δ
2 . Also, by the choice of
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n1, we have xn−k > m− δ
2 and thus |xn − xn−k| < δ. Further,

xn+1 = F
(
xn, e

rT
)
− EF

(
xn−k, e

rT
)

= F
(
xn, e

rT ,
)
− EF

(
xn, e

rT
)

+ E

[
F
(
xn, e

rT
)
− F

(
xn−k, e

rT
) ]

= xn −H(xn) + E

[
F
(
xn, e

rT
)
− F

(
xn−k, e

rT
) ]

≤ xn − h(xn) + E

∣∣∣∣F (erT , xn)− F (xn−k, erT ) ∣∣∣∣
< xn − ε+ E

ε

2
< xn − ε+

ε

2
= xn −

ε

2
< xn − 2δ ≤ m+ δ − 2δ = m− δ < m− δ

2
,

which contradicts to the assumption that xn > m − δ/2 for any n ≥ n1 − k. Thus the scenario
described by (16) is impossible, and the solution either coincides with zero, starting at some xj , or
tends to zero.

Theorem 3.5. If (15) holds, all solutions of (1) tend to zero.

Proof. By Lemma 3.4, if (15) holds then all solutions of the difference equation tend to zero. This
implies that N(nT+) → 0, and by (10) the solution of (1) N(t) on (nT, (n + 1)T ) also tends to
zero. Therefore all solutions of (1) tend to zero.

By Theorem 3.5, it is sufficient to consider only the case

E < 1− e−rT . (18)

If this condition is not satisfied, all solutions tend to zero. Everywhere below we assume that (18)
holds.

Next, let us focus on the behaviour of the difference equation when the harvesting is delayed
by a single time period k = 1. This will lead to the second-order difference equation, and allow us
to apply necessary and sufficient results such as Lemma 2.2 and 2.3 to obtain explicit conditions
for stability of the difference equation.

Lemma 3.6. Let k = 1. If E ∈ (0, 1/2] then there exists a positive equilibrium of (11) which is
locally asymptotically stable.

For E ∈ (1/2, 1), if

rT < − ln

(
(1− E)2

E

)
(19)

then the positive equilibrium of (11) is locally unstable, while if

rT > − ln

(
(1− E)2

E

)
, (20)

the positive equilibrium of (11) is locally asymptotically stable.

Proof. As (18) holds, there exists a unique positive equilibrium x∗.
Let k = 1, then (11) has the form xn+1 = max{f(xn, xn−1), 0}, and the linearized equation

around x∗ is
un+1 = p0un − p1un−1,

10



where

p0 =
∂f

∂xn
(x∗, x∗) =

K2erT

(K + xn(erT − 1))2

∣∣∣∣
(x∗,x∗)

=
e−rT

(1− E)2
,

p1 = − ∂f

∂xn−1
(x∗, x∗) = E

K2erT

(K + xn−1(erT − 1))2

∣∣∣∣
(x∗,x∗)

=
Ee−rT

(1− E)2
.

The characteristic equation of the linearized equation is λ2 − p0λ + p1 = 0. By Lemma 2.2, for
the roots of the characteristic equation to lie inside the unit disc, we only require p1 < 1 (the left
inequality p0 − 1 < p1 is automatically satisfied for all rT > − ln(1 − E)), the inequality has the
form

rT > − ln

(
(1− E)2

E

)
,

which coincides with (20).
If E ∈ (0, 1/2] then − ln((1 − E)2/E) ≤ − ln(1 − E), and therefore by (18), the positive

equilibrium x∗ is locally asymptotically stable, as (18) implies (20).
If E ∈ (1/2, 1), (20) implies that the positive equilibrium x∗ exists and is locally asymptotically

stable.
When E ∈ (1/2, 1), if − ln(1−E) < rT ≤ − ln((1−E)2/E), the positive equilibrium exists and

the roots of the characteristic equation satisfy max{|λ1|, |λ2|} ≥ 1. By Lemma 2.3, a root of the
characteristic equation satisfies |λ| = 1 if and only if rT = − ln((1−E)2/E) on this interval. Really,
in this case p1 = 1 and 0 < p0 = 1

E < 2. Therefore for − ln(1−E) < rT < − ln((1−E)2/E), which
corresponds to (19), we get max{|λ1|, |λ2|} > 1 and by linearization the equilibrium is unstable.

Lemmata 3.6 and 3.2 immediately imply

Theorem 3.7. Let k=1. If rT > − ln

(
(1−E)2

E

)
, then there exists a unique positive periodic

solution N∗(t) of (1) with

N∗(nT+) = x∗ =
((1− E)erT − 1)Kc

erT − 1
, (21)

and this solution is locally asymptotically stable.

While Theorem 3.7 is similar in many ways to the result of [30] cited in Lemma 2.1, here we
do not observe attractivity of the solution for all initial conditions, implying that the solution is
attractive but not globally attractive. Even if the equilibrium is locally asymptotically stable, there
are sets of initial values leading to its instability, as further numerical examples illustrate.

Remark 1. Even for k = 1 and any x0, there is a domain of initial values x1 guaranteeing
immediate extinction. Really, as F (x, erT ) defined in (13) is strictly increasing in x, F (0, erT ) = 0,
there are values of x1 < x0 such that

F
(
x1, e

rT
)

=
Kcx1e

rT

Kc + x1(erT − 1)
≤ EKcx0e

rT

Kc + x0(erT − 1)
= EF

(
x0, e

rT
)
,

leading to x2 = x3 = · · · = 0.
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The following results extends Lemma 3.6 to all k ∈ N, however, for a given k, we have implicit,
but easily verifiable conditions connecting rT with E.

Lemma 3.8. The positive equilibrium x∗ of difference equation (11) is asymptotically stable if and
only if both inequalities hold

e−rT

(1− E)2
<
k + 1

k
, cos(θ∗) <

e−rT (1 + E)

2(1− E)
+

(1− E)2erT

2
, (22)

where θ∗ is a solution of

sin(kθ)

sin((k + 1)θ)
= (1− E)2erT , θ ∈

(
0,

π

k + 1

)
. (23)

Proof. Linearizing the difference equation xn+1 = max{f(xn, xn−k), 0} around the positive equilib-
rium x∗ given in (14) with

f(xn, xn−k) =
Kcxne

rT

Kc + xn(erT − 1)
− E Kcxn−ke

rT

Kc + xn−k(erT − 1)
,

we get, similarly to the proof of Lemma 3.6,

un+1 = p0un − pkun−k, p0 =
e−rT

(1− E)2
, pk =

Ee−rT

(1− E)2
. (24)

By Corollary 2.5.1, the zero solution of the linearized equation is asymptotically stable if and only
if the inequalities in (9) hold, or equivalently,

e−rT

(1− E)2
<
k + 1

k
,

Ee−rT

(1− E)2
<

√
e−2rT

(1− E)4
+ 1− 2

e−rT

(1− E)2
cos(θ∗) .

Note that p0 < pk + 1, or e−rT < Ee−rT + (1−E)2 is equivalent to e−rT < 1−E, which is satisfied
due to (18). The first inequality is the same as in (22), while computing the squares in the second
one gives

E2e−2rT

(1− E)4
<

e−2rT

(1− E)4
+ 1− 2e−rT

(1− E)2
cos(θ∗).

After rearranging, the desired result is acquired.

Applied to (1), Lemmata 3.8 and 3.2 immediately imply a sharp local asymptotic stability
result.

Theorem 3.9. Let E ∈ (0, 1) and (18) be satisfied. Then there exists a unique positive periodic
solution N∗(t) of (1) given by (21) which is asymptotically stable if and only if both inequalities in
(22) hold, where θ∗ is a solution of (23).

The following stability condition is delay-independent; moreover, it applies if a constant k in
(11) is replaced with k = k(n). It is also only sufficient, meaning there may still exist values of
rT < ln(E + 1)− 2 ln(1− E) such that the equilibrium is locally asymptotically stable.
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Theorem 3.10. If
rT > ln(E + 1)− 2 ln(1− E) (25)

then the positive periodic solution N∗(t) of (1) exists and corresponds to (21), and this solution is
locally asymptotically stable.

Proof. If (25) holds, then so does (18), and the positive equilibrium exists. Reducing (1) to differ-
ence equation (11), we once again linearize (11) around x∗ and obtain (24), where by (25),

|p0|+ |pk| =
1 + E

(1− E)2
e−rT < 1.

By Lemma 2.4, the equilibrium x∗, and by Lemma 3.2 the positive periodic solution N∗(t) of
(1) is locally asymptotically stable, once (25) holds.

4. MSY with Delay Impulsive Harvesting

Next, we proceed with the analysis of a maximum yield (MY) and a maximum sustainable yield
(MSY). We recall that a yield is said to be sustainable if it corresponds to a solution that is at
least locally asymptotically stable.

Lemma 4.1. The yield of (1) is associated to the solution N∗(nT+) = x∗ of (11) and is given by

Y (E) =
KcE

(1− E)T

(
(1− E)erT − 1

erT − 1

)
. (26)

This yield is a function of the harvesting effort E, it is an increasing function for E ∈ (0, Eopt) and
is decreasing for E ∈ (Eopt, 1).

Proof. For an optimal T -periodic solution of (1), we get N∗(nT+) = N∗((n + 1)T+) = x∗, where
(21) holds. Then the associated yield is

Y (E) =
EN∗(nT )

T
=

E

1− E
· N
∗(nT+)

T
=

E

1− E
· Kc

T

(
(1− E)erT − 1

erT − 1

)
.

Its derivative in E,

Y ′(E) =
Kc

T (erT − 1)

d

dE

[
EerT + 1− 1

1− E

]
=

Kc

T (erT − 1)

[
erT − 1

(1− E)2

]
.

satisfies Y ′(E) > 0 for (1 − E)2 > e−rT , which is equivalent to E ∈ (0, Eopt), and Y ′(E) < 0 for
E ∈ (Eopt, 1).

Lemma 4.2. The maximum yield (MY) for delayed impulsive harvesting model (1) with k ∈ N is
equal to the MY for non-delayed model (3) with the optimal harvesting effort Eopt = 1−e−rT/2 and
MY associated to (6).

Proof. By Lemma 4.1, MY is attained at E = Eopt and has the value of yield per time

MYdelayed = Y (Eopt) =
Kc

T

(
erT/2 − 1

erT/2 + 1

)
= MYnon−delayed.

In addition, the periodic solution when E = Eopt becomes N∗(nT+) =
Kc

erT/2 + 1
, as in (6).
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Theorem 4.3. The solution corresponding to the MY of (1) satisfies (6) with E = Eopt. MY is a
MSY if and only if either k = 1 or k ≥ 2 and

rT < −2 ln

(
1− 2 cos

(
kπ

2k + 1

))
. (27)

Proof. By Lemma 3.1 the solutions to (1) satisfy (11). Linearizing the difference equation xn+1 =
f(xn, xn−k) around the positive equilibrium x∗ given in (14), we get (24).

By Lemma 4.2, the yield is maximal whenever E = Eopt = 1 − e−rT/2, and the linearized
difference equation becomes

un+1 = un − (1− e−rT/2)un−k
with equilibrium (6). Then by Lemma 2.6, for k = 1, as 1 − e−rT/2 ∈ (0, 1), the solution is
asymptotically stable for any E ∈ (0, 1). For k > 1, the zero solution of the linearized equation is
locally asymptotically stable if and only if

1− e−rT/2 < 2 cos

(
kπ

2k + 1

)
.

The condition is equivalent to (27), leading to local asymptotic stability for the positive equilibrium
x∗ = Kc/(e

rT/2 + 1) of (11). Finally, by Lemma 3.2, a solution of (1) satisfying (6) is locally
asymptotically stable, once (27) is satisfied. By definition, a unique positive periodic solution
N∗(t) with (6), for either k = 1 or both k ≥ 2 and rT satisfying (27), leads to MSY.

Unlike the non-delay case, there is a possibility that the maximum yield is not sustainable. To
avoid extinction, the choice of harvesting efforts should be among those leading to a sustainable
yield. The set of such efforts is non-empty, as the following statement guarantees.

Theorem 4.4. Let k ≥ 2 and

E∗ =
2 + e−rT −

√
e−rT (e−rT + 8)

2
. (28)

Then E∗ < Eopt, and for any E ∈ (0, E∗) the yield as given in (26) is sustainable.

Proof. Let us note that, first, E∗ defined in (28) is positive and, as 4e−rT/2 > 4e−rT , we have√
e−rT (e−rT + 8) > e−rT + 2e−rT/2

leading to E∗ < Eopt = 1− e−rT/2.
For a fixed E ∈ (0, 1), we get a solution with N∗(nT+) = x∗, corresponding to a yield as given

in (26). As justified earlier, Y (E) is an increasing function of E for E ∈ (0, Eopt).
By Theorem 3.10 and Lemma 3.2, the solution is locally asymptotically stable for any k if

erT >
E + 1

(1− E)2
, which is equivalent to E2− (2 + e−rT )E + 1− e−rT > 0. The quadratic inequality

is also satisfied if E ∈ (0, E∗), meaning that for any E ∈ (0, E∗) the yield is sustainable, which
concludes the proof.

Lemma 4.5. If for some choice of Es ∈ (0, Eopt] the associated yield is sustainable, then for any
E ∈ (0, Es] the yield associated with E is also sustainable.
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Proof. If the yield associated with Es is sustainable, the associated solution with N∗(nT+) = x∗ is
locally asymptotically stable. By Lemma 3.8, both inequalities in (22) must hold for Es, where θ∗

is a root of (23).
Since for any E ≤ Eopt,

e−rT

(1− E)2
≤ e−rT

(1− Eopt)2
= 1 <

k + 1

k
,

it is clear that the first inequality in (22) is satisfied for any E ∈ (0, Eopt]. Thus we can turn our
attention to the second inequality, denote its right-hand side for a fixed rT as h1,

h1(E) :=
(1 + E)e−rT

2(1− E)
+

(1− E)2erT

2
, (29)

and the left-hand side in (23) as

h2(θ(E)) =
sin(kθ(E))

sin((k + 1)θ(E))
, θ ∈ I = (0, π/(k + 1)). (30)

We have from (23),

h′2(θ(E))
dθ

dE
=

dθ

dE

[
(1− E)2erT

]
= −2(1− E)erT < 0.

Also,

h′2(θ) =
k cos(kθ) sin((k + 1)θ)− (k + 1) cos((k + 1)θ) sin(kθ)

sin2((k + 1)θ)

= k
sin((k + 1)θ) cos(kθ)− sin(kθ) cos((k + 1)θ)

sin2((k + 1)θ)
− cos((k + 1)θ) sin(kθ)

sin2((k + 1)θ)

= k
sin(θ)

sin2((k + 1)θ)
− cos((k + 1)θ) sin(kθ)

sin2((k + 1)θ)

=
sin(θ)

sin2((k + 1)θ)

(
k − cos((k + 1)θ) sin(kθ)

sin(θ)

)
Now, sin(θ)/ sin((k + 1)θ)2 > 0 ∀θ ∈ I, and we will show that k sin(θ) − cos((k + 1)θ) sin(kθ) > 0
leading to h′2(θ) > 0. Since cos((k + 1)θ) ≤ 1,

k sin(θ)− cos((k + 1)θ) sin(kθ) > k sin(θ)− sin(kθ) =: H1(θ),

where H1(0) = 0 and H ′1(θ) = k(cos(θ) − cos(kθ)) > 0 since cos(θ) is decreasing for all θ ∈ (0, π)
and for θ ∈ I, both θ and kθ are in (0, π). Thus H1(θ) > 0 for θ ∈ I.

Since h′2(θ) > 0, the inequality h′2(θ(E))
dθ

dE
< 0 implies

dθ

dE
< 0. Thus θ(E) decreases, and

cos(θ(E)) increases in E as well. Further,

h′1(E) =
e−rT

(1− E)2
− (1− E)erT < 0

for E < 1−e−2rT/3. By our assumption, E ≤ Eopt = 1−e−rT/2 < 1−e−2rT/3, therefore h′1(E) < 0,
and h1(E) decreases in E.
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Since the yield associated with Es is sustainable, we have

cos(θ(Es)) < h1(Es).

Since cos(θ(E)) decreases, and h1(E) increases for decreasing E, then for any E ≤ Es

cos(θ(E)) < h1(E),

and the second inequality in (22) is satisfied.
Since both inequalities in (22) are satisfied for E ≤ Es, the solution associated with E with

N∗(nT+) = x∗ is locally asymptotically stable, and the yield associated with E is sustainable.

Corollary 4.5.1. Let k = 1, then for any E ∈ (0, Eopt] the yield is sustainable.

The statement follows immediately from Lemma 4.5 and Theorem 4.3, while Lemma 4.5 and
Theorem 4.3 imply

Corollary 4.5.2. Let k ≥ 2, and rT < −2 ln

(
1− 2 cos

(
kπ

2k+1

))
. Then for any E ∈ (0, Eopt] the

yield is sustainable.

Theorem 4.6 determines the maximum bound for a sustainable yield.

Theorem 4.6. Let k ≥ 2, and rT ≥ −2 ln

(
1 − 2 cos

(
kπ

2k+1

))
. Then there exist E∗∗ ∈ (0, Eopt]

and θ∗ ∈
(

0, π
k+1

)
such that (E∗∗, θ∗) is a unique solution of

cos(θ) =
(1 + E)e−rT

2(1− E)
+

(1− E)2erT

2
,

sin(kθ)

sin((k + 1)θ)
= (1− E)2erT , θ ∈

(
0,

π

k + 1

)
. (31)

For any E ∈ (0, E∗∗), the yield is sustainable, while for E ∈ [E∗∗, Eopt] the yield is not sustainable.

Proof. Let us prove that E∗∗ exists and is unique. By Theorem 4.3, when k ≥ 2, rT ≥ −2 ln

(
1−

2 cos

(
kπ

2k+1

))
and E = Eopt, the associated solution is unstable and cos(θ(Eopt)) ≥ h1(Eopt). On

the other hand, when E → 0+ we get in (22), cos(θ(0+)) =
e−rT

2
+
erT

2
< cosh(rT ) = h1(0

+).

As h2(θ(E)) defined in (30) is continuous and monotone decreasing in E, E(θ) is continuous
and monotone for θ ∈ I = (0, π/(k+ 1)), and even on [0, π/(k+ 1)), if we define h1(0) = k/(k+ 1).
The inverse function is also monotone and continuous for E ∈ [0, Eopt], as well as cos(θ(E)). When
E → 0+, cos(θ(0+)) < h1(0

+) and by assumption at the optimal harvesting effort cos(θ(Eopt)) ≥
h1(Eopt). By the continuity of cos(θ(E)) and the Intermediate Value Theorem, there exists a
solution (θ(E∗∗), E∗∗) of (31) with E∗∗ ∈ (0, Eopt]. Moreover, by monotonicity this value is unique.

Since by Lemma 4.1 the yield Y (E) is increasing for E ∈ (0, Eopt], the value of Y (E∗∗) is an
upper bound, it does not satisfy (22) and thus is not sustainable.

However for E = (E∗∗)− = limE→(E∗∗)− E, by the argument that as E decreases, cos(θ(E))
decreases and h1(E) increases, (E∗∗)− will satisfy the conditions in (22), and the associated yield
is sustainable. Then by Lemma 4.5, for any E ∈ (0, E∗∗) the associated yield is sustainable.
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Figure 1: Solutions to (1) with k = 2, Kc = 500, and E = Eopt = 1−e−rT/2. The figure on the left shows the optimal
solution to (1) (red), and the solution to (1) with r = 1, T = 1 and initial conditions N(−T ) = 120, N(0) = 140,
N(0+) = 100 (black). Since 0 < rT < 1.9248 the optimal solution is locally asymptotically stable. The figure on
the right shows the optimal solution to (1) (red), and the solution to (1) with r = 2.1, T = 1 and initial conditions
N(−T ) = 120, N(0) = 140, N(0+) = 100 (black). Since rT > 1.9248 the optimal solution is unstable.

5. Numerical Simulations and Discussion

Let us illustrate sustainability of the optimal yield with simulations.
In Fig. 1, stable and unstable solutions of (1) corresponding to the optimal yield are compared.

We assume that the delay is two impulsive periods corresponding to k = 2. To investigate stability,
solutions were computed until one of the following became true: the relative error of |N((n +
1)T+) − N(nT+)|/N(nT+) was consistently less than 10−4, t = 100T , or the population went to
extinction, i.e. N(nT+) = 0. The carrying capacity was chosen as Kc = 500, and the harvesting
effort was chosen to be E = Eopt = 1 − e−rT/2. Since k = 2 > 1, Theorem 4.3 states that the
optimal solution is locally asymptotically stable if and only if 0 < rT < 1.9248. In both cases the
optimal solution is plotted with a dashed red line, while a solution with initial conditions which
are different than the optimal solution is shown via a black solid line.

In Fig. 1, left, r = 1, T = 1 and the initial conditions are N(−T ) = 120, N(0) = 140,
N(0+) = 100. Since 0 < rT = 1 < 1.9248, by Theorem 4.3 the optimal solution is locally
asymptotically stable. Thus we observe a quick convergence to the optimal solution, indicating
that the population survives. In Fig. 1, right, r = 2.1, T = 1 and the initial conditions are
N(−T ) = 120, N(0) = 140, N(0+) = 100. As rT = 2.1 > 1.9248, by Theorem 4.3 the optimal
solution is unstable. Although our solution begins close to the optimal solution due to the imposed
initial conditions, we observe the population oscillating slightly before going to extinction at t = 7.

One thing that we wish to highlight is that local stability of the positive periodic solution does
not guarantee population survival for all possible positive initial conditions, as Fig. 2 illustrates. In
this figure, each dot represents a solution to (1) (k = 1) with a set of initial values N(0) and N(0+).
The parameters are k = 1, r = 1.3747, T = 1, Kc = 307.1609, E = Eopt = 1−e−(1.3747)(1)/2 = 0.4971
and thus by Theorem 4.3 (see also Theorem 3.7) the positive periodic solution with N∗(nT+) ≈
102.7816 is locally asymptotically stable. Fig. 2 tested the global stability of the positive periodic
solution by investigating whether or not different combinations of initial conditions would result in
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Figure 2: When k = 1, r = 1.3747, T = 1, Kc = 307.1609, E = 1 − e−(1.3747)(1)/2 = 0.4971 the positive equilibrium
solution with N∗(nT+) ≈ 102.7816 is locally asymptotically stable. The dots in this figure show whether or not the
population survives or goes extinct with the given initial conditions.

survival of the population. For each solution, both N(0) and N(0+) were chosen from a uniform
distribution of numbers in [0, 2Kc] = [0, 614.3218]. If after 10500 iterations the solution N(nT+)
stayed positive (in fact, within [N∗(nT+) − 10, N∗(nT+) + 10]), then we say that the population
has survived and the population is depicted by a green dot on Fig. 2. If at any point within the
10500 iterations the size of the population after harvesting was less than 10−3 then the population
was said to have gone to extinction, and the population was depicted by a black dot.

Since the optimal positive periodic solution with N∗(nT+) ≈ 102.7816 is locally asymptotically
stable, it is natural that we observe the population surviving for wide ranges of initial values.
However, if N(0) is much larger than N(0+) or if N(0) is just generally very large, the population
does not survive and goes to extinction. This highlights the lack of global attractivity of the optimal
solution which is locally asymptotically stable for all rT > 0.

We proved that asymptotic stability of the difference equation which corresponds to the optimal
solution of impulsive model (1) is k-dependent. In fact, we can show that as k →∞, the range of
possible rT values that allow a locally asymptotically stable equilibrium shrinks.

Fig. 3 illustrates that as the delay k increases, the range of possible rT values which allow for
optimal sustainable harvesting becomes smaller. In the figure, the upper bound on sustainable rT
values

f(k) = −2 ln

(
1− 2 cos

(
πk

2k + 1

))
,

is plotted and it is easy to see that as k increases, f(k)→ 0. This parallels the theory of continuous
delayed harvesting where a growing delay exhibits a destabilizing effect on the model.

The results of the paper can be summarized as follows:

1. With delayed impulsive harvesting, we cannot guarantee positivity of a solution with non-
negative and non-trivial initial conditions, moreover, extinction in finite time is possible.

2. The delay does not influence the maximum yield but can significantly influence its sustain-
ability.

18



0 1 2 3 4 5 6 7 8 9 10

k

0

1

2

3

4

5

6

7

f(
k)

f(k) - Upper stability bound on rT

Figure 3: This function (5) is monotonically decreasing since f ′(k) < 0 for k > 1, and lim
k→∞

f(k) = 0.

3. With sharp local stability conditions, the optimal solution associated with the maximum yield
is locally asymptotically stable in both non-delay [30] and one-step-delay cases. For longer
delays, there are bounds on rT to attain MSY: the longer the delay is, the more frequent
impulses should be.

For the choice of optimal harvesting, the increasing value of the intrinsic growth rate has negative
influence on sustainability (see Figs. 1 and 3). This is well aligned with the enrichment paradox
when increased productivity can lead to higher extinction risks.

Let us discuss time delays in the impulsive system. The real delay in information is kT corre-
sponding to k cycles with T -time duration of each cycle. Assuming r = 1 and applying the bound
for rT = T in (27), we evaluate the delay kT . We get using L’Hôspital’s rule,

lim
k→+∞

[
− 2k ln

(
1− 2 cos

(
πk

2k + 1

))]
= π.

Since kf(k), with f plotted in Fig. 3, is monotone decreasing with the lower bound of π, the delay
kT not exceeding π (generally, π/r) will lead to MSY for any k. Note that rT < π, where T is the
delay, is a sharp stability constant in the autonomous continuous delay case.

This research extends the classical continuous harvesting models of Clark [1] as well as impulsive
harvesting models with no delay [2, 30] which were generalized to impulsive harvesting with delay,
outlining new instability effects. The models closest to those considered in the present paper were
explored in [15, 17, 30] and to some extent [2]. In particular, optimal harvesting was discussed
in [2, 30], with the same MSY being derived as in the present paper, however in the absence of
the delay in the impulsive part, the MSY was unconditional. Delayed impulsive harvesting for the
logistic equation and asymptotic stability of its positive periodic solutions was explored in [15, 17].
Compared to the previous work, the main points of similarity and difference can be outlined as
follows.

1. We use the method of reducing an impulsive model to a difference equation, which was
extensively applied in [2, 30] and also used in [15]. However, the paper [15] avoids high order
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difference equations by instead reducing an equation with delayed impulses to a non-delay
system. The main technique applied to study impulsive models is Lyapunov-Razumikhin,
leading to various global stability results. But the system considered in this paper is non-
smooth (truncated) in the sense that the solution is assumed to be identically zero, once
N(t) = 0 for some t, and we are not aware of this method applied to such models.

2. In both [15, 17], the impulse delay is within one-cycle period i.e. less than or equal to T−. If
the equation is non-delayed, and we use as a reference value the same T -period, this value at
t = (jT )− can be expressed as β(r, τ)x((jT )−), where β is explicitly computed and dependent
on the delay τ , the intrinsic growth rate r and, generally, on the growth law (logistic here).
Then the situation is to some extent reduced to non-delayed impulses when local and global
stability coincide. If the delay is equal to the impulse period T = T+, collapse after a
harvesting event is possible when the positive periodic solution is locally stable, see Fig. 2.
To the best of our knowledge, the present paper is the first to report extinction in finite time
and discrepancy between local and global stability for impulsively harvested equations. For
applied models, this could possibly explain population collapses. On the other hand, [15]
explored subtler properties, such as cycles and bifurcations.

Let us dwell on the extension of this research, its modifications and generalizations. It would
be advantageous to get sufficient conditions on the initial values guaranteeing existence of a posi-
tive solution and to describe global asymptotic stability for such initial conditions. Note that this
problem cannot be solved with modifying the per capita growth rate in the equation. Even for the
Gompertz growth model which is sustainable for any level of harvesting, delayed impulsive harvest-
ing can cause immediate extinction, once the stock decays quickly and is significantly overestimated
during the harvesting event.

The approach of [2] where a certain deduction is incorporated in each harvesting event, not
contributing to the yield, can also be combined with delayed impulsive harvesting. It is expected
that the maximum yield in this case will not change when impulses are delayed, but investigating
its local or global attractivity is still an open question. The current research can be placed in the
context of T -periodic or almost periodic T (s).

Another minor extension will be including delays in the continuous part, for example, switching
from the logistic to the Hutchinson equation

dN

dt
= rN(t)

(
1− N(t− jT )

Kc

)
for some j ∈ N, with the same impulsive conditions. Here again, the maximum yield will not
change, but an additional delay is expected also to contribute to instability of the model.

Including a delay within impulsive harvesting allowed us to observe quite realistic effects, such
as population collapse even when the model parameters predicted local stability of the unique
positive periodic solution.

Certainly incorporating impulsive delayed harvesting in non-autonomous or structured popula-
tion models will lead to richer dynamics, in particular, considering

• non-autonomous models with variable parameters, in particular, considering periodic and al-
most periodic solutions (similarly to [33]), stability, bifurcations, as well as optimal harvesting
policies and their sustainability;
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• predator-prey systems where either one of the species or both are subject to harvesting,
structured and Lotka-Volterra models which - without delay in impulsive harvesting or an
impulsive system with continuous harvesting - are well-studied areas, see, for example, [9, 34,
35, 36, 37, 38, 39, 40, 41, 42];

• fractional derivative models and spatially distributed populations, as well as systems within
fractional settings to describe spatial interactions.
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