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Abstract
We study a random version of the population-market model proposed

by Arlot, Marmi and Papini in Arlot et al. (2019). The latter model is
based on the Yoccoz–Birkeland integral equation and describes a time
evolution of livestock commodities prices which exhibits endogenous de-
terministic stochastic behaviour. We introduce a stochastic component
inspired from the Black-Scholes market model into the price equation and
we prove the existence of a random attractor and of a random invariant
measure. We compute numerically the fractal dimension and the entropy
of the random attractor and we show its convergence to the determinis-
tic one as the volatility in the market equation tends to zero. We also
investigate in detail the dependence of the attractor on the choice of the
time-discretization parameter. We implement several statistical distances
to quantify the similarity between the attractors of the discretized systems
and the original one. In particular, following a work by Cuturi Cuturi
(2013), we use the Sinkhorn distance. This is a discrete and penalized
version of the Optimal Transport Distance between two measures, given
a transport cost matrix.

Keywords: population dynamics, delays dynamical systems, strange attractor, chaotic
livestock commodities cycles, Sinkhorn distance, statistical distances
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1 Introduction
One of the most outstanding phenomena in ecology is given by the statisti-
cally cyclical variations of small Arctic rodents (see, e.g., Hanski et al. (1993);
Andreassen et al. (2021)). The amplitude of these cycles varies widely and seem-
ingly chaotically. In 1998, Yoccoz and Birkeland (Yoccoz and Birkeland (1998))
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proposed a model for the evolution of the population of Microtus epiroticus
(the sibling vole) on the Svalbard Islands in the Arctic Ocean. This species
presents a high fertility rate that has a strong dependence on seasonal factors
and on the population density. The peculiarity of this model is that it exhibits
an endogenous chaotic behaviour: it tries to explain the strong annual oscil-
lations presented by the Microtus epiroticus population only by exploiting the
biological characteristics of the species and its interaction with the environment.
Remarkably, these oscillations are determined neither from the lack of food nor
from the presence of significant predators, the main one being seagulls.

In Arlot (2012), the authors studied the Yoccoz-Birkeland model via a math-
ematical analysis and some simulation experiments. Their main are the fol-
lowing: the Yoccoz-Birkeland model is able to reproduce a complex dynamics
with a high sensitivity to initial conditions, only by the combination of density-
dependent fertility, the lag due to the maturation age and a periodic seasonality.
Nieto et al. (2012), instead, proved the existence of periodic points for the dis-
crete version of the model and performed numerical simulations with a special
emphasis to some values for the model parameters.

Persistent approximately periodic fluctuations are also a feature of time-
series of livestock commodities prices (Rosen et al. (1994)). Cobweb models show
that non-linearities (Chiarella (1988); Hommes (1994)) and simple expectation
rules (Hommes (2013)) may lead to chaotic deterministic price fluctuations. In
Arlot et al. (2019), the authors coupled the Yoccoz-Birkeland model with a
deterministic equation modelling the price dynamics of a livestock commodity
market. The main idea of this model is the following. A cattle population is
split at the birth into reproducing females and cattle for butchery. The split-
ting “strategy” is determined by very simple naive expectations of the breeder,
namely by the spot price of the meat, whereas the logarithmic derivative of the
price is driven by the unbalance between the demand and supply of the meat.
As in Arlot (2012), the model for the population dynamics accounts explicitly
for seasons (or artificial synchronization of births) and maturation lags.
The major outcomes of their study are the following. First, the model gives rise
to a chaotic time evolution of price by simply connecting the percentage of re-
producing females with the price equation. Second, they show global existence
and uniqueness for initial value problems together with some useful estimates
on the solutions. Third, they give simple sufficient conditions that ensure the
existence of a global attractor containing at least a non-trivial periodic solution.
Finally, they perform some numerical experiments in which they show that the
attractor has sensitive dependence on initial conditions and non-integer dimen-
sion, and that the influence of the market on the model is a crucial factor for
the dynamics.

In this paper, we extend the model of Arlot et al. (2019): in particular,
the price dynamics of the livestock commodity market is now described by a
Stochastic Differential Equation (SDE, henceforth), in a Black-Scholes-like fash-
ion (Bachelier (1900) and Bhattacharya and Majumdar (2007)), instead of a
deterministic one. The aim is that of proving also in the new framework the
asymptotic results produced in Arlot et al. (2019), in particular the existence of
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a global attractor. Thanks to the bounded dependence of the population func-
tion with respect to the price, we manage to prove that the population size is
bounded and Lipschitz. Nonetheless, the presence of the stochastic component
on the price dynamics compromises the usage of the theorem employed in Arlot
et al. (2019) to prove the existence of a bounded attractor. Here, instead, we
use the concepts of Random Dynamical System (RDS, henceforth) and Random
Attractor, which are based on the so-called pull-back approach (see, e.g., Crauel
(2002) and Crauel and Flandoli (1994)), to prove the existence of a random at-
tractor on the population component of the phase space. In addition, to prove
a more powerful asymptotic result on the population-price dynamical system,
we use the concept of Random (Invariant) Measure and a version of the Pro-
horov Theorem for Random Measures (Crauel (2002)) to prove the existence of
an invariant random measure. Moreover, we complement the numerical experi-
ments in Arlot et al. (2019): the aim is that of simplifying, i.e., reducing as far
as possible the dimension of the phase space of the dynamical system obtained
by discretizing the model proposed by Arlot et al. (2019) with the intention of
preserving as much as possible the chaotic behaviour observed in the previous
study. Toward this end, we allow also for a non-integer number of integration
steps. We show graphically the effects of reducing the number of integration
steps per year, which appears to be smoothing and simplifying the attractor
of the dynamical system. Due to this simplification, we introduce a new set
of parameters, such that the plot for a smaller number of integration steps per
year changes the least possible. In addition, we employ the concept of Opti-
mal Transport Distance and of Sinkhorn Distance, referring to Cuturi (2013).
Thanks to these distances, we are able to formalize and compute explicitly the
geometrical difference between the attractors. A plot of this distance, together
with the entropy and the fractal dimension, as a function of the number of in-
tegration steps per year, is then shown.

The paper is organized in the following way. In Section 2, we recall the
Yoccoz-Birkeland model coupled with deterministic price dynamics developed
in Arlot et al. (2019). Section 3 describes the random model obtained by adding
a diffusion term to the price dynamics and some preliminary estimates on the
time evolution of the system are derived in Section 4. The existence of a global
random attractor is established in Section 5. Section 6 is devoted to the nu-
merical study of the discretizaton of the deterministic model and the sensitivity
of the attractor on the choice of integration step, whereas Section 7 contains
the numerical study of the random attractor. The two appendices contain the
fundamental notions on RDS needed and the application to the logistic map
of the numerical methodologies used in Appendix B to quantify the distance
between attractors.
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2 The Yoccoz-Birkeland model and the coupling
with price dynamics

This section summarises the model introduced in Arlot et al. (2019) for the time
evolution of livestock commodities prices; it hinges on the Yoccoz-Birkeland
integral equation Yoccoz and Birkeland (1998) (see Equation (1) below) and on
the subsequent analysis in Arlot (2012); Nieto et al. (2012).
A cattle population is divided into two parts: the first one comprises females for
reproduction whereas the second one the cattle for butchery (i.e., all the males
plus some of the females). Then, the mechanism governing the time evolution
of the livestock population and of the meat price is the following:

(1) At the birth of some babies, part of the newborn females are put in the re-
production line, and the remaining newborn females are put in the butch-
ery line together with all newborn males. The fraction R of newborn
females that will reproduce is chosen by the breeder, and is only deter-
mined by the price of meat at birth time; the breeder can choose either a
short-term strategy or a long-term strategy. Below the dependence upon
the price P is denoted by R(P ).

(2) In the reproducing line, females between ages A0 and A1 have children.
Their fertility can be affected by seasons, or because births are synchro-
nized by the breeder (through a function mρ(t)). Reproducing females
older than A1 (hence, non fertile) are not taken into account anywhere in
the model - in particular, they are not butchered.

(3) In the butchery line, cattle can be butchered between ages Ω0 and Ω1. So,
only the (alive) butchery population between ages Ω0 and Ω1 can count
as a “supply” for the market.

(4) The price evolution is a simple function of the supply (which comes from
the butchery line population dynamics) and the demand (which depends
only on the price).

Before describing the model, for the reader’s convenience, we sum up in the next
subsection the notation and the terminology which will be used throughout this
paper. For the sake of clarity and possibility of comparison, we use the notation
as in Arlot et al. (2019).

2.1 Terminology and notations
(N1) t is the time measured in years.

(N2) Nr(t) is the total population ofmature females that are in the reproducing
line and can give birth to pups at time t.

(N3) Nb(t) is the total population of cattle that is suitable for butchery at time t
(both males and non-reproducing females, old enough and in the butchery
line).
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(N4) R(P ) is the fraction of newborn females that are put in the reproducing
line when the price of meat is P when they are born.

(N5) A0 is the age from which females can have children (i.e., the age of sexual
maturity plus the length of the first gestation).

(N6) A1 is the maximal age at which females can give birth to children (i.e.,
the age of sexual infertility plus the length of the last gestation).

(N7) Ω0 is the minimal age at which the cattle (male or female) can be butchered.

(N8) Ω1 is the maximal age at which the cattle (male or female) can be butchered.

(N9) m(N) is the average annual female (resp. male) fertility of each mature
female when the total population is N , i.e., the average number of female
(resp. male) babies per year for a single mature female. Typically it is a
decreasing function; see Equation (2.3) in Arlot et al. (2019) for a concrete
example. We assume a sex ratio equal to 1/2, i.e. the average number
of male babies is equal to the average number of female babies. Hence,
m(N) is half of the average annual fertility.

(N10) mρ(t) is the 1-periodic step function (with
∫ 1

0
mρ(t) dt = 1) that accounts

for a possible modulation of fertility during each year (e.g., births syn-
chronization or seasonal effects).

(N11) P (t) is the market price of meat at time t.

(N12) D(P ) is the demand of the market (per time unit) when the price of meat
is P (typically a decreasing function of P ).

(N13) S(t) is the supply to the market (per time unit) at time t (typically pro-
portional to Nb(t)).

(N14) λ is a “temperature” parameter of the meat market: higher values of λ cor-
respond to bigger price variations in response to the same demand/supply
imbalance.

(N15) F (D,S) is the function of demand and supply that rules the meat price
dynamics.

(N16) Bf (t) is the density of newborn female cattle at time t (i.e., Bf (t)dt females
are born between t and t+ dt).

(N17) Bm(t) is the density of newborn male cattle at time t.

(N18) Br(t) is the density of newborn (female) cattle that are put in the repro-
ducing line at time t.

(N19) Bb(t) is the density of newborn cattle that are put in the butchery line at
time t.
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2.2 Deterministic population and price dynamics
The above assumptions on the coupling between the cattle population evolution
and the deterministic market model made in Arlot et al. (2019) (see Arlot et al.
(2019), Subsections 3.2, 3.3 for a detailed derivation) give rise to the following
set of equations for the time evolution of the reproducing females population
Nr, of the price P and of the meat supply S:

Nr(t) =

∫ A1

A0

mρ(t− a)m(Nr(t− a))Nr(t− a)R(P (t− a)) da (1)

P
′
(t)

P (t)
= λF (D(P (t)), S(t)) (2)

S(t) =
1

∆Ω

∫ Ω1

Ω0

mρ(t− a)m(Nr(t− a))Nr(t− a) [2−R(P (t− a))] da (3)

with F (D,S) = (D−S)
(D+S) , m : [0,+∞) → [0,+∞), mρ : R → [0,+∞), R :

[0,+∞) → [0, 1], D : [0,+∞) → [0,+∞), A1 > A0 > 0, Ω1 > Ω0 > 0,
∆Ω = Ω1 − Ω0 and λ > 0.

Notice that the integral evolution Equation (1), which is a standalone equa-
tion in the Yoccoz-Birkeland model, is coupled with the differential equation in
Equation (2) describing the price of a livestock commodity; the latter is driven
by the unbalance between its demand and supply.

Under reasonable assumptions on mρ, m, R and D (see Arlot et al. (2019),
beginning of Section 4, and Equations (4.7)–(4.9)), the authors show that a
unique solution to Equations (1)–(3) exists, is globally defined and satisfies
some (uniform with respect to the initial condition) estimates: Nr and S are
globally bounded and the component Nr is Lipschitz continuous on [t0,+∞)
for some t0. Moreover, they prove the existence of a global attractor and of
a non-trivial periodic solution (see Arlot et al. (2019), Theorem A and The-
orem B, respectively). Finally, via a numerical investigation, they show that
the global attractor is indeed a strange attractor: it has a fractal dimension of
≈ 1.53 and the Kolmogorov-Sinai entropy is positive. Moreover, they showed
that the attractor is persistent but its chaotic behaviour depends also on the
time evolution of the price in an essential way, a feature which was completely
absent in the original Yoccoz-Birkeland model. In particular, they show that if
the price dynamic is constant, then the resulting orbit becomes quasi-periodic.
Figure 1 displays an example of attractor for the model of Arlot et al. (2019).

3 The Yoccoz-Birkeland model and the coupling
with random price dynamics

The model we propose is obtained from Equations (1)–(3) by adding a stochas-
tic Brownian component with a constant volatility σ > 0 to price dynamics
(Equation (2)). The constancy of the volatility is consistent with two popular
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Figure 1: Three dimensional plot of (Nr(t), Nr(t + 1), Nr(t + 2)) with ρ = 0.30, γ =
8.25, A0 = 0.18 and m0 = 50.

models used in the financial literature, i.e., the Bachelier and the Black and
Scholes (see Bachelier (1900) and Bhattacharya and Majumdar (2007), respec-
tively). Precisely, the price is described by the following Stochastic Differential
Equation (SDE):

dP (t) = P (t)λF (D(P (t)), S(t)) dt+ P (t)σ dWt, (4)

or, equivalently, in its logarithmic form:

dQ(t) =

(
F (D(P (t)), S(t))− σ2

2

)
dt+ σ dWt. (5)

Therefore, the model we are going to study is the following:

Nr(t) =

∫ A1

A0

mρ(t− a)m(Nr(t− a))Nr(t− a)R(P (t− a)) da (6)

dP (t) = P (t)λF (D(P (t)), S(t)) dt+ σP (t) dWt (7)

S(t) =
1

∆Ω

∫ Ω1

Ω0

mρ(t− a)m(Nr(t− a))Nr(t− a) [2−R(P (t− a))] da, (8)

where (Wt)t≥0 is a standard Brownian motion.

In order to analyse the effect of the noise on the attractor of a deterministic
dynamical system, we will use the pull-back approach (see, e.g., Chekroun et al.
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(2011)). To this end, we introduce the two-sided Wiener measure before pro-
ceeding with the mathematical analysis of the model. Precisely, on some prob-
ability space, we take two independent copies of the Brownian motion (Wt)t≥0,
say (W

(i)
t )t≥0 with i = 1, 2, and we define the two-sided Brownian motion:

Wt = W
(1)
t for t ≥ 0, Wt = W

(2)
−t for t ≤ 0.

We call P its law on Borel sets of the space of real-valued continuous functions
on R that are null at zero, i.e. the space C0(R;R). This is the two-sided Wiener
measure. Now, consider the canonical space Ω = C0(R;R) with Borel σ-field and
two-sided Wiener measure P. On (Ω,F ,P) we consider the canonical two-sided
Brownian motion defined as

Wt(ω) = ω(t) ω ∈ C0(R;R)

and we interpret the stochastic Equation (7) on the canonical space.
In the next section, we prove some rigorous preliminary results on the

Yoccoz-Birkeland model coupled with random price dynamics described by
Equations (6)–(8). We will closely follow Section 4 of Arlot et al. (2019), but at
the same time account for the stochastic nature of the price dynamics.

4 A first analysis of the model
Following Arlot et al. (2019), we impose the following assumptions on the sea-
sonality mρ, the fertility m, the fraction R of newborn females put in the re-
producing line and the demand function D:

(A1) mρ : R → R is a non-negative, bounded, 1-periodic function such that∫ 1

0
mρ(t) dt = 1 and we let mρ(t) ≤ µmax and

0 < c0 ≤
∫ A1

A0

mρ(t− a) da ≤ c1 ∀t.

(A2) m : [0,+∞)→ R is a continuous function that satisfies

m0

2
min{1, N−γ} ≤ m(N) ≤ m0 min{1, N−γ} ∀N > 0

with m0 > 0 and γ ≥ 1.

(A3) R : [0,+∞)→ R is a continuous function such that R0 ≤ R(P ) ≤ R1 for
all P ≥ 0 and some constants R1, R0 > 0 with R1 ≤ 1.

(A4) D : [0,+∞)→ R is a strictly decreasing and locally Lipschitz continuous
function such that D(+∞) = 0, and we set D0 = D(0).
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We can now define the phase-space of the dynamical system and the notion of
solution of Equations (6)–(8).

We let T0 := min{A0,Ω0}, T1 := max{A1,Ω1} and we set:

X := X1 ×X2 := C0
int([−T1, 0]; [0,+∞))× C0([−T1, 0]; [0,+∞)), (9)

where C0
int([−T1, 0]; [0,+∞)) is the space of the positive-valued continuous func-

tions on [−T1, 0] such that:

Nr(0) =

∫ A1

A0

mρ(−a)m(Nr(−a))Nr(−a)R(P (−a)) da. (10)

The space X is a complete metric space with respect to the distance induced by
the norm:

‖(N,P )‖X := ‖N‖∞ + ‖P‖∞ := esssups∈[−T1,0]|N(s)|+ sup
s∈[−T1,0]

|P (s)|.

Definition 4.1. Let (N0
r , P

0) ∈ X , and t0, T ∈ R with t0 < T . A solu-
tion of Equations (6)–(8) with initial data (N0

r , P
0) is a couple (Nr, P ) : Ω ×

[t0 − T1, T )→ R2 such that Nr(ω)|[t0,T ) is continuous, P (ω)|[t0,T ) is continuous,
Nr and P satisfy Equations (6)–(8) for t ∈ [t0, T ), while Nr(ω, t0+a) = N0

r (ω, a)
and P (ω, t0 + a) = P 0(ω, a) for a ∈ [−T1, 0).

The assumptions (A1)-(A4) guarantee that the model has a unique globally
defined solution:

Proposition 4.2 (cfr. Arlot et al. (2019), Proposition 4.2). Let (N0
r , P

0) ∈ X
and t0 ∈ R be given. Then there exists a unique solution pair (Nr, P ) : Ω ×
[−T1 + t0,+∞) → R2 of Equations (6)–(8) with initial data (N0

r , P
0). More-

over, Nr, P are non-negative and P-a.s. it holds that:

0 ≤ Nr(t) ≤ Nmax ∀t ≥ t0∣∣Nr(t)−Nr(s)∣∣ ≤ L1|t− s| ∀t, s ≥ t0
0 ≤ S(t) ≤ Smax ∀t ≥ t0,

where:
Nmax := m0R1c1, L1 := 2m0R1µmax

Smax := m0
2−R0

∆Ω
sup
s∈[0,1]

∫ Ω1

Ω0

mρ(s− a) da.
(11)

Proof. It’s a simple adaptation of the proof of the analogous statement given in
Arlot et al. (2019), the main difference being that we have to determine P on
[t0, t0 + T0) once Nr and S are extended on [t0 − T1, t0 + T0) in a unique and
continuous way. This follows from the stochastic version of the Cauchy-Lipschitz
(or Picard-Lindelöf) theorem.
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Remark 4.3. Equation (6) prescribes the value Nr(t0) which may be different
from N0

r (t−0 ). Therefore, the solution component Nr may have a jump discon-
tinuity at t0 even if the initial condition N0

r is continuous; this despite the fact
that the solution is going to be Lipschitz continuous on [t0,∞). This justifies
the additional condition we imposed on N0

r (0) (Equation (10)) while defining the
space X . Should this condition not be imposed, we would have that the shifted
solution has a discontinuity at one point. Notice also that if N0

r (t) > 0 for all
t ∈ [−T1, 0), then Nr(t) is going to be positive for all t ∈ [t0,∞).

The following proposition establishes lower bounds for Nr and S which, together
with the estimates in Proposition 4.2, will allow us to define for the determin-
istic model a compact subset K of X to which all the solutions belong after a
sufficiently big period of time. However, notice that differently from the upper
bounds, the time of first entry for the lower bounds is not uniform in the ini-
tial data. This will be important when discussing the existence of a random
attractor.

Proposition 4.4 (see. Arlot et al. (2019), Proposition 4.4). Let (Nr, P ) be the
solution of Equations (6)–(8) with initial data (N0

r , P
0) ∈ X at time t0.

1. If Nr(t) ≤ Nmax for a.a. t ∈ [t̂−A1, t̂] for some t̂ ≥ t0, then

Nr(t) ≥
m0R0c0

2
min

{
inf

[t̂−A1,t̂]
Nr, N

1−γ
max

}
∀t ∈

[
t̂, t̂+A0

]
,

In particular this inequality holds for all t ≥ t0 +A1 by Proposition 4.2.

2. If m0R0c0 > 2 and inf [t̂−A1,t̂]
Nr ≥ N1−γ

max for some t̂ ≥ t0 +A1, then

Nr(t) ≥ Nmin and S(t) ≥ Smin ∀t ≥ t̂,

where:

Nmin :=
m0R0c0

2
N1−γ

max and Smin := m0
2−R1

2∆Ω
N1−γ

max inf
s∈[0,1]

∫ Ω1

Ω0

mρ(s−a) da.

(12)

3. If m0R0c0 > 2 and N0(a) > 0 for almost all a ∈ [−A1, 0], then there exists
t∗ ≥ t0 such that Nr(t) ≥ Nmin and S(t) ≥ Smin for all t ≥ t∗.

The fact that there exists a time t∗ after which Nr(t) belongs to a compact set
K enabled Arlot et al. (2019) to show that a similar property holds also for
the price P (t); cfr. Proposition 4.5 and Corollary 4.6 in that paper. However,
because of the stochastic nature of our price dynamics, in our case this is no
longer true. In particular, this does not allow us to use the same techniques
employed in Arlot et al. (2019) for the study of the attractors of the model.
For this reason, we need to introduce the concept of Random Dynamical System
(RDS, henceforth), of random attractors and of random invariant measure; see
Appendix A. In addition, we make the following remark.
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Remark 4.5. From here on, the theoretical exposition will be made using t0 = 0.
It can be observed that this does not entail any loss in generality, since we can
translate a general solution (Nr(t), P (t)) at time t0 to a solution (N ′r(t), P

′(t)) =
(Nr(t+ t0), P (t+ t0)) at time 0, which follows the same model with the seasonal
periodic function mρ “shifted” by t0. Consequently, the result of the next two
sections are true for every t0 ∈ R.

5 Existence of a global random attractor
In this section, we prove the existence of a random attractor and of random
invariant measure; we refer to Appendix A for a brief review of the relevant
concepts. The traditional approach employed to analyse the effect of the noise
on the attractor of a deterministic dynamical system is that of finding stationary
solutions of the Fokker-Planck equation. Indeed, numerically it is often easier to
integrate the system forward in time; see Lasota and Mackey (1998). However,
the perturbation of a deterministic system by noise is such that the support of
the (numerically) obtained probability density function corresponds to a neigh-
borhood of the deterministic attractor. Whence, it is possible to get statistical
information only, without any link with the geometry of the attractor; see Fig-
ure 2 for a graphical display of the this claim. We will thus employ the so-called
RDS approach: instead of integrating the system forward in time, we will run
it from a distant point s in the past until the current time t where the system
will be frozen. This approach is also called pullback approach. First, we define

Figure 2: Three dimensional plot of (Nr(t), Nr(t + 1), Nr(t + 2)) both for the deter-
ministic (left panel) and the stochastic (right panel) case.

the RDS object of our study (cfr. Definition A.3). The set of times is T = R+

and the phase-space X has been defined in Equation (9). The Borel σ-algebra
of the phase-space is denoted by B. The operator θt(ω)(s) = ω(t+ s)− ω(t) is
the time shift of the Brownian motion, defined ∀ t ∈ R. Therefore, the operator
ϕ(t, ω) acts on an element (Nr, P ) ∈ X in the following way:

ϕ(t, ω)(Nr, P ) = (N t
r , P

t) where N t
r(s) = Nr(t+ s) and P t(s) = P (t+ s).
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The dependence on the parameter ω of the variables on the r. h. s is omitted.
By abuse of notation, we will also write ϕ(t, ω)Nr = N t

r and ϕ(t, ω)P = N t
r .

We now state and prove the following lemma.

Lemma 5.1. The RDS ϕ(t, ω) : X → X given by the stochastic coupled
Birkeland-Yoccoz model in Equations (6)-(8) is continuous.

Proof. We prove the continuity of the RDS by induction. On the interval
[0, T0] the continuity of the P component is a straightforward consequence of
the continuous dependence on the initial condition for the SDE, whereas the
continuity of the Nr component is a consequence of the continuity of the inte-
gral operator. Inductively, we can suppose that if (N0

r , P
0) is arbitrarily close

to (N̂0
r , P̂

0) in X , then ϕ(t, ω)(N0
r , P

0) is arbitrarily close to ϕ(t, ω)(N̂0
r , P̂

0)
for t ∈ [(k − 1)T0, kT0]. The base case can be thus straightforwardly ap-
plied to ϕ(t, ω)(N0

r , P
0) and ϕ(t, ω)(N̂0

r , P̂
0) to obtain continuity also for t ∈

[kT0, (k + 1)T0].

In order to find a global attractor for ϕ, one could be tempted to use The-
orem A of Appendix A. However, it cannot be applied directly to our RDS
because the price function P (t) is not ω-wise bounded; instead, Nr belongs to
the interval [0, Nmax]∀ t ≥ t0. For this reason, we aim at finding a random at-
tractor A(ω) defined similarly to that in Definition A.6 but with the difference
that A(ω) = D(ω)×X2, where D(ω) ⊂ X1 a compact set on the first component
of the space X . Precisely, we have the following definition:

Definition 5.2 (Globally attracting set). Let ϕ be a RDS such that there exists
a random set A(ω) := D(ω)×X2, for some random compact set D(ω), satisfying
to the following conditions:

1. ϕ(t, ω)A(ω) = A(θtω)∀ t > 0;

2. A attracts every bounded deterministic set B ⊂ X .
Then A is said to be a universally or globally attracting set for ϕ onto the first
component od the phase-space X .
Notice that that asking that A(ω) attracts every bounded set B ⊂ X is equiv-
alent to asking that D(ω) attracts every bounded set B ⊂ X1. We give the
following

Definition 5.3. Given B ⊂ X1, we define Ω1
B(ω) as the projection onto X1 of

the set ΩB×X2
(ω).

In particular, the following proposition holds true.

Proposition 5.4. Let ϕ be a RDS on the Polish space X . Suppose there exists a
compact set K1(ω) such that K1×X2 absorbs the product between every bounded
non-random set B ⊂ X1 and X2. Then the set

A(ω) =
⋃

B⊂X1

Ω1
B(ω)×X2

is a global attractor for ϕ in the sense of the Definition 5.2.
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Proof. See the proof of Theorem 3.11 in Crauel and Flandoli (1994).

Thus, we can now define the set

K1 :=
{
N0
r ∈ X1 : 0 ≤ N0

r (t) ≤ Nmax for all t ∈ [−T1, 0], and

N0
r is 2m0R1µmax-Lipschitz-continuous

}
;

(13)

see Proposition 4.2. In particular, we have that:

Proposition 5.5. The set K1 is a compact set and it satisfies the assumptions
of Proposition 5.4. As a consequence, there exists a global attractor A(ω) onto
the first component of the space X .

Proof. The set K1 is compact thanks to Ascoli-Arzelà’s Theorem. In addition,
thanks to Proposition 4.2 the set K1 × X2 absorbs the product between every
bounded nonrandom set B ⊂ X1 and X2. Indeed, for every (N0

r , P
0) ∈ X and for

all ω ∈ Ω it holds that ϕ(t, ω)(N0
r , P

0) belongs to K1×X2 for every t ≥ T1.

Notice that the notion of random attractor is global and there is no a definition
of basin of attraction in the random framework (in the deterministic setup,
the attractor’s basin of attraction is given by the set of functions Nr that are
positive on the interval [−T1, 0); see Arlot et al. (2019), Section 4).

For this reason, we follow an averaging procedure described in detail in
Subsection A.1.2 on invariant measures on random sets. In particular, we want
to apply Theorem A.16. To this end, we have to define a suitable probability
distribution ν for the initial values (N0

r , P
0) ∈ X . We define it component-wise

as the conditional product of a measure ν1(N0
r |P 0) on X1 and of a measure

ν2(P 0) on X2. Notice that there is no a standard recipe to construct such
measures: in this work, we define them via the Brownian motion’s law. For
ν2 we can choose any probability measure on the set of continuous functions:
we pick the law of the absolute value of a two-sided Brownian motion starting
at t = −T1. In order to define ν1, we have to remember that for a fixed
P 0 ∈ X2 every function N0

r ∈ X1 satisfies Equation (10), which does not allow
for discontinuities at t = 0. Thus, we introduce the stochastic process (N0

r (t))
and we set it equal to the absolute value of a two-sided Brownian motion starting
at t = −T1 for t ∈ [−T1,−T0] and to a linear interpolant between the point N−T0

and the point

N0
r (0) =

∫ A1

A0

mρ(−a)m(N0
r (−a))N0

r (−a)R(P 0(−a)) ds

on [−T0, 0]. We define ν1( · |P 0) as the law of such a process on X1 and we
construct ν in the following way:

ν(A) :=

∫
X1

∫
X2

IA(N0
r , P

0) dν1(N0
r |P 0) dν2(P 0) ∀A ∈ B.

13



At this point, our aim is to show that ∀ε > 0 we can construct a compact
set Cε such that Θtν(Ω × Cε) > 1 − ε. We define Cε := K1 × Kε

2 , where
K1 ⊂ X1 and Kε

2 ⊂ X2 are two suitable compact sets. The set K1 is the set
defined in Equation (13); in particular, Propositions 4.2 and 4.4 ensure that
ϕ(t, ω)N0

r ∈ K1 ∀t ≥ T1 and ∀ω ∈ Ω. Therefore, we only have to find the set
Kε

2 . Toward this aim, we recall the following two results, which are valid for the
deterministic model in Equation (1)-(3).

Proposition 5.6 (cfr. Arlot et al. (2019), Proposition 4.5). Let (Nr, P ) be a
solution of (1)-(3) and assume that some t∗ ≥ t0 exists such that 0 < Smin ≤
S(t) ≤ Smax for all t ≥ t∗, where we recall that Smin is defined in Proposition 4.4
and Smax is defined in Proposition 4.2.

1. Let P ∗ ≥ 0 be such that D(P ∗) < Smin. If P (t̂) > P ∗ for some t̂ ≥ t∗,
then we have

P (t) < P ∗ ∀t > t̂+
P (t̂)− P ∗

λP ∗
· D0 + Smax

Smin −D(P ∗)
.

2. Let P∗ ≥ 0 be such that D(P∗) > Smax. If 0 < P (t̂) < P∗ for some t̂ ≥ t∗,
then we have

P (t) > P∗ ∀t > t̂+
P∗ − P (t̂)

λP (t̂)
· D0 + Smax

D(P∗)− Smax
.

Corollary 5.7 (cfr. Arlot et al. (2019), Corollary 4.6). Assume that m0R0c0 >
2, D0 > Smax and Smin > 0 and let C > 1 and Pmin, Pmax be such that
[Pmin, Pmax] = D−1([Smin, Smax]).

1. If S(t) ≥ Smin for all t ≥ t∗ and P (t̂) ∈ [Pmin/C,CPmax]) for some t̂ ≥ t∗,
then P (t) ∈ [Pmin/C,CPmax]) for all t ≥ t̂.

2. In any case, for every non trivial solution (Nr, P ) of (1)-(3) there exists
t̂ such that P (t) ∈ [Pmin/C,CPmax]) for all t ≥ t̂.

3. Moreover, as long as P (t) stays in [Pmin/C,CPmax]), we have that |P ′(t)| ≤
CλPmax.

The previous results guarantee that there exists a P ∗ such that F (P (t), S(t)) < 0
whenever P (t) > P ∗. We define Kε

2 as the set

Kε
2 := {P 0 ∈ X2 : sup

t∈[−T1,0]

P 0(t) ≤ P ∗ for someP ∗}

Without loss of generality, we can assume P ∗ big enough in order to have that
ν(Kε

2) > 1 − ε. In particular, because of the mean-reversion behaviour of the
stochastic price process, it is not difficult to prove the following

Proposition 5.8. Let P (0) < P ∗. Then, ∀ε > 0 there exists an M > 0 such
that ∀t > T1 we have that P(P (t) > M) < ε.
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Proof. We firstly recall that the drift term is smaller than 0 (more precisely,
it’s smaller than a < 0) for P (t) > P ∗. We introduce two sequences of stopping
times to control the behaviour of the stochastic process P (t):

τ0 := 0;

σ1 := inf{t ≥ 0 : P (t) ≥ P ∗};
τn := inf{t ≥ σn : P (t) ≥ P ∗ + 1};

σn+1 := inf{t ≥ τn : P (t) ≤ P ∗};

which are nothing but the “up-crossings” at the levels P ∗ and P ∗ + 1.
We also define the index N(t) := inf{k : τk > t} − 1, and the stopping time
τt = τN(t).
We thus have the following inequalities, for any M > P ∗ + 1:

P[P (t) > M ] = P[P (t) > M, τt = 0]︸ ︷︷ ︸
= 0

+P[P (t) > M, τt 6= 0, P (t) < P ∗ + 1]︸ ︷︷ ︸
= 0

+

+ P[P (t) > M, τt 6= 0, P (t) > P ∗ + 1]

≤ P[P (t)− P (τt) > M − P ∗ − 1, τt 6= 0]

≤ P[a(t− τt) +Wt −Wτt > M − P ∗ + 1, τt 6= 0]

≤ P[a(t− τt) +Wt −Wτt > M − P ∗ + 1]

and the last term is smaller than ε for all t > 0 if we pick M big enough. The
first inequality above is due to the fact that P (τt) is equal to P ∗ + 1, since τt is
not zero. The second inequality is due to the fact that P remains always above
P ∗ between τt and t: if it got below P ∗ we would have another up-crossing,
being P (t) above P ∗+ 1, which would collide with the definition of N(t). Since
when P (t) > P ∗ we have P (t)−P (τt) < a(t− τt) +Wt−Wτt , we thus conclude
the proof.

In particular, ∀ t ≥ T1 we have that:

Θtν
(
Ω× (K1 ×Kε

2)
)
≥ 1− ε, (14)

which is translated into a bound on µt(Ω×Cε), being the latter the average of
Θtν(Ω× Cε). The following corollary immediately follows.

Corollary 5.9. Given the bound in Equation (14), the family (µt)t≥T1
is tight.

As a consequence, there exists an invariant random measure µ which is the limit
in the weak topology of a sub-sequence of (µt)t∈T for the model in Equations (6)-
(8).

Proof. The existence follows from TheoremA.16, whereas the invariance from
PropositionA.14.

In addition, we can show the following proposition.
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Proposition 5.10. It holds that µ
(
Ω× (Cmin ×X2)

)
= 0, where

Cmin :=

{
N ∈ X1 : min

t∈[−T1,0]
N(t) < Nmin

}
.

Proof. Since µ
(
Ω× (Cmin×X2)

)
is the limit of (a subsequence of) the averages

of Θtν
(
Ω × (Cmin × X2)

)
, it is sufficient to show that these quantities tend to

zero as t goes to +∞.. Thanks to Proposition 4.4, if m0R0c0 > 2 we have that

ϕ(t, ω)−1(Cmin) ⊂
{
N0
r ∈ X1 : min

t∈[−T1,0]
N(t) < η(t)

}
,

for some η(t) decreasing function converging to 0 as t goes to infinity. In
particular, the measure ν of this set converges to zero; indeed, by definition,
ν-almost surely the functions N0

r are positive almost everywhere on [−T1, 0].
Thus, Θtν

(
Ω × (Cmin × X2)

)
→ 0 as t → ∞. Thus, we can conclude that

µ
(
Ω × (Cmin × X2)

)
= 0 by approximating the indicator function of the set

Ω× (Cmin ×X2) with bounded continuous functions f .

Proposition 5.11. It holds that µ
(
Ω× (Cmin ×X2)

)
= 0, where

Cmin :=

{
N ∈ X1 : min

t∈[−T1,0]
N(t) < Nmin

}
.

Proof. Since µ
(
Ω× (Cmin×X2)

)
is the limit of (a subsequence of) the averages

of Θtν
(
Ω × (Cmin × X2)

)
, it is sufficient to show that these quantities tend to

zero as t goes to +∞.. Thanks to Proposition 4.4, if m0R0c0 > 2 we have that

ϕ(t, ω)−1(Cmin) ⊂
{
N0
r ∈ X1 : min

t∈[−T1,0]
N(t) < η(t)

}
,

for some η(t) decreasing function converging to 0 as t goes to infinity. In
particular, the measure ν of this set converges to zero; indeed, by definition,
ν-almost surely the functions N0

r are positive almost everywhere on [−T1, 0].
Thus, Θtν

(
Ω × (Cmin × X2)

)
→ 0 as t → ∞. Thus, we can conclude that

µ
(
Ω × (Cmin × X2)

)
= 0 by approximating the indicator function of the set

Ω× (Cmin ×X2) with bounded continuous functions f .

6 Numerical study of the deterministic model and
of its dependence on the integration step

In this section, we extend and complement the numerical study of the determin-
istic model given by Equations (1)–(3) performed in Arlot et al. (2019). First,
we describe the discretization of the model. We will partition the time interval
∆t = 1, which corresponds to one year, with both an integer and a non-integer
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number of steps q1; see Subsection 6.1. Second, we describe how we set both the
initial conditions and the parameters of the model; see Subsections 6.2 and 6.3,
respectively. Third, in Subsection 6.4 we focus on our main objective for this
Section and we investigate the dependence of the attractor on the number of
integration steps per time unit for two different sets of experimental parameters.
The main result of this study is that the chaotic attractor is persistent under the
dimensionality reduction process associated to choosing longer and longer inte-
gration time steps. In order to make this claim more precise and less qualitative,
in Subsection 6.5 we introduce several statistical notions of distance between at-
tractors and we numerically compute them for quantifying the distance of the
"asymptotic" attractor (i.e. corresponding to the continuous time system, ap-
proximated by a very short integration time) and the one corresponding to the
choice of a relatively large integration step.

6.1 Discretization of the model
The phase-space of the original model is infinite dimensional. Here we describe
how to numerically integrate it by using an integer number of steps q. The time
parameter t ∈ [0,+∞) is replaced by indices i ∈ N \ {0}; roughly, i ≥ 1 replaces
the interval

(
i−1
q , iq

]
. We now explain the notation we are going to use; notice

that the discretized values of the different functions at index i do not correspond
to their values on t = i

q but, instead, to their integral or their average on the

interval
(
i−1
q , iq

]
.

(D1) Nr,i approximates the average ofNr(t) over t ∈
(
i−1
q , iq

]
: Nr,i ≈ q

∫ i
q
i−1
q

Nr(t) dt.

Similarly, Nb,i, mρ,i, Si and Pi are constructed from Nb(t), mρ(t), S(t)

and P (t) as their average over the interval t ∈
(
i−1
q , iq

]
.

(D2) Br,i approximates the number of newborn females put in the reproducing

line in the interval t ∈
(
i−1
q , iq

]
: Br,i ≈

∫ i
q
i−1
q

Br(t) dt. The fact that this

quantity is not divided by q - differently from Nr(t) - is because Br(t)
is a density (number per unit of time), whereas Nr(t) is the number of
individuals.

(D3) The quantities Bb,i, Bf,i, Bm,i are defined in the same fashion, respectively
from Bb(t), Bf (t), Bm(t).

We construct the discretized model at any step k ≥ 1 by computing

Zk := (Nr,k ; Nb,k ; Sk ; Pk ; Br,k ; Bb,k) (15)
1In the first case, we will obtain a deterministic dynamical system in a phase-space of

dimension 2× (T1×q+1). In the second case, instead, the dimension will be 2× (T1×dqe+1)
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from its past values
(Zi )k−max{kA1

,kΩ1}≤i≤k−1 ,

in the following order:

Nr,k =

kA1∑
j=kA0

Br,k−j , (16)

Nb,k =

kΩ1∑
j=kΩ0

Bb,k−j , (17)

Sk =
qNb,k

kΩ1
− kΩ0

+ 1
, (18)

Pk = max

{
0, Pk−1 +

λPk−1F
(
D(Pk−1), Sk

)
q

}
, (19)

Br,k =
m0

q
mρ,km(Nr,k)R(Pk), (20)

Bb,k =
m0

q
mρ,km(Nr,k)

(
2−R(Pk)

)
. (21)

Notice that the Equations (16)-(17) and (18) depend on the parameters kA0
, kA1

, kΩ0
, kΩ1

:
these are the discretized version of the parameters A0, A1,Ω0,Ω1 of the original
dynamical system, but with some minor technical modifications needed to en-
sure the convergence of the numerical scheme (and that the discretization leads
to a finite-dimensional dynamical system). Namely, we define:

1. kA0
= max{1, [qA0 ]}, where [x ] is the closest integer to x. Notice that

the max{1, ·} is because we want kA0
> 0 so that Nr,k only depends on the

past of Br in Equation (16), otherwise we would have a circular definition.

2. kA1 = max{kA0 , [qA1 ]− 1}. We take [qA1 ]− 1 instead of [qA1 ] because
animals are supposed to die exactly at age A1, so individuals of age A1

at time k/q (counted in Br,k−[ qA1 ]) do not count in Nr,k. At the same
time, we want kA1

≥ kA0
in order to make the sums defining Nr,k and

Nb,k non-empty when A0 is really close to A1.

3. kΩ0 = max{1, [qΩ0 ]} is defined similarly to kA0 .

4. kΩ1
= max{kΩ0

, [qΩ1 ]− 1} is defined similarly to kA1
.

Non-integer number of steps When q /∈ N, we partition in dqe parts each
interval [n, n + 1] for n ∈ N. The first bqc parts are long 1

q , whereas the last

one is long {q}q , where {q} denotes the fractional part of the number q. An
example of this kind of partition for q = 5.5 is shown in the following picture:

18



i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

t = 0 t = 1
5.5 t = 2

5.5 t = 3
5.5 t = 4

5.5 t = 5
5.5 t = 1

· · · · · ·

Also, it is necessary to modify the discretization of the functions Nr, Nb, S, P
and mρ in (D1). Indeed, for i 6= 0 mod dqe the quantity Nr,i –and analogously
Nb,i, Si, Pi,mρ,i– is defined as the approximation of the following quantity:

Nr,i ≈ q
∫ ti

ti− 1
q

Nr(t) dt, ti :=

⌊
i

dqe

⌋
+

(
i−
⌊
i

dqe

⌋)
· 1

q
.

Instead, i = 0 mod dqe the quantity Nri approximates the following integral:

Nr,i ≈
q

{q}

∫ ti

ti− {q}q
Nr(t) dt, ti :=

⌊
i

dqe

⌋
.

Finally, in order to satisfy this approximation requirement, we re-weight the
components of Zk in Equation (15) dividing them by {q}) whenever k is a
multiple of dqe.

6.2 Initial conditions
The initial conditions are given by the values of the number of newborns (Br,i
and Bb,i) for time steps i = 1, . . . , kA1

before the start of the simulation, since
the discretized model in Subsection 6.1 only needs the past values of Br and Bb
to compute the future dynamics of the model. For each parameter set, we choose
an initial condition randomly as follows: Br,1, . . . , Br,kA1

, Bb,1, . . . , Bb,kA1
are

chosen independently with common distribution U
([

0, 2
kA1
−kA0

+1

])
. The rea-

son for this choice is that kA1
−kA0

+1 is the number of time steps corresponding
to reproducing ages of females. So, for instance, the reproducing female popu-
lation at time kA1 + 1 is the average of random variables uniform over [0, 2], so
it should be close to 1, the threshold value for density-dependence to apply.

6.3 Parameters of the model
We follow Arlot et al. (2019), and we fix the functions m,mρ, D and R in such
a way that they have to satisfy the requirements of Section 4. In particular in
our experiments we make the following choices:

(F1) The fertility function. We take:

m(N) = m0

(
max{N, 1}

)−γ
,

where γ and m0 are parameters of the model to be chosen.
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(F2) Seasonality. We let

mρ(t) =
1

1− ρ
1{t−btc∈[0,1−ρ)}.

In this way, we model the fact that the births are synchronized and con-
centrated in one specific period of the year.

(F3) Demand function. We choose the following demand function

D(P ) = Dexp(P ) := D0e
−αDP

for some parameters D0, αD > 0.

(F4) Breeder strategy: We assume that the breeder follows a counter-cyclical
policy and takes R close to 1 when the price is high. In the numerical
experiments we choose

R(P ) = Rlogistic(P ) := R0 + (R1 −R0)fd(P/P0) (22)

where

fd(x) =

{
xd

2 if x ∈ [0, 1)
1

1+exp(−2d(x−1) ) otherwise

and R0, R1 ∈ [0, 1] and P0, d > 0 have to be chosen. This is a sigmoid
function between 0 and +∞.

Finally, for the sake of simplicity, we took the parameters Ω0 and Ω1 in the
supply function to be equal to A0 and A1, respectively. The normalization of
the supply is ∆Ω = Ω1 − Ω0 = A1 −A0.

6.4 Dependence of the attractor on the discretization time
step q

The aim of this section is to study the dimensionality reduction of the dynamical
system in Equations (1)–(3) as a function of the number q of steps per year. In
order to do so, we visualize attractor of the deterministic model by plotting in
R3 the set C(t) := (Nr(t), Nr(t − 1), Nr(t − 2), t ∈ N, for different values of q.
The goal will be to see how much the geometric characteristics of the attractor
will change by passing from, e.g., q = 100 to, e.g., q = 2. Should the chaotic
dynamics be maintained, this would be a remarkable result. Indeed we would
pass from a dynamical system with a dimension of the phase-space equal to
200 to a dynamical system with a dimension of the phase-space equal to 8 and,
following Yoccoz and Birkeland (1998), for t ∈ [290000, 300000]. We define the
first set of experimental parameters, say H1, in the following way:

(S.1.1) Population dynamics: A0 = 0.18, A2 = 2.0, m0 = 5.0, γ = 8.25 and
ρ = 0.79.

20



(S.1.2) Market dynamics: λ = 1 and the demand function is D = Dexp with
D0 = 5 and αD = 1.

(S.1.3) Interaction between population and market: Ω0 = 0.18, Ω1 = 2,
and R = Rlogistic with R0 = 0 (minimal value), R1 = 1 (maximal value),
P0 = 1 (price threshold) and d = 4 (degree of R(P ) for small P ).

This set is called SP in Arlot et al. (2019) and is close to the main setting
for the Birkeland-Yoccoz model numerically solved in Arlot (2012). The left
(resp. right) panel of Figure 3 displays the dynamics of the set C(t) associated
to q = 100 (resp. to q = 2) steps per year. Interestingly, several skeleton
of the attractor and some of its structure survives. On the other hand, the
geometric structure of the set C(t) is undoubtedly simplified with respect to
the set depicted on the left-panel of the same figure. Also, it presents some –a
priori unexplained– stronger accumulation towards the value of zero.

some of the geometrical features are preserved; indeed, even with q = 2 there
are still some of the spikes and of the edges of the three dimensional projection
with q = 100.

Figure 3: Three dimensional plot of C(t) = (Nr(t), Nr(t+ 1), Nr(t+ 2)) of the deter-
ministic dynamical system in Equations (1)–(3). Setting H1. Left Panel: q = 100.
Right Panel: q = 2.

Actually, the dimension of the dynamical system’s phase-space with q = 2
can be lowered to 5; indeed, the following lemma holds true.

Lemma 6.1. The discretized dynamics that arise by choosing q = 2 with the
set of experimental parameters H1 below can be modeled through a dynamical
system whose phase-space dimension is equal to 5.

Proof. First, we notice that mρ,k consists of a sequence of 2’s for k even and of
zeros for k odd. Also, we point out that the values of kA0

and kΩ0
are 1 and

the values of kA1 and kΩ1 are 3. As a consequence, in the summations defining
Nr,k and Sk (see Equations (16) ans (18)) the terms Nr,i and Pi for i odd do
not matter, since they are multiplied by mρ,i which is zero for k odd. Also, Pk
in Equation (19) depends only on Pk−1 and on Sk, which in turn depends on
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the values of Nr,i and Pi for even i. Therefore, for q = 2, we can construct a
dynamical system consisting only of the couple (Nr,k, Nr,k−2) and of the prices
(Pk, Pk−1, Pk−2) whose evolution is given by(

Nr,k−2, Nr,k
Pk−2, Pk−1, Pk

)
7→
(

Nr,k,
m0

q mρ,km
(
Nr,kR(Pk)

)
Pk, 0 ∨ Pk + 1

q

(
λPkF (F (Pk), Sk+1)

)
, Pk+2

)
.

Notice that in the previous equation we pointed out that Sk+1 can be obtained
from Nr,k, Nr,k−2, Pk and Pk−2, and that Pk+2 can be obtained from the value
of

Pk+1 = 0 ∨ Pk−1 +
1

q

(
λPk−1F (D(Pk−1), Sk)

)
and from that of Sk+2, which can be computed from Nr,k and Pk.

A more interesting phenomenon is shown in Figure 4. The left panel displays
the dynamics of the set C(t) associated to q = 10 steps per year: as expected, the
geometry of the set stands between the one with q = 2 and q = 100. However,
the right panel shows the possibility that C(t) exhibits, for some values of q, only
a low-complexity seemingly non-chaotic orbit, very close to being periodic and
totally different also from the original Yoccoz-Birkeland attractor. In particular,
the bifurcation diagram of Nr(t), 290000 ≤ t ≤ 300000, as a function of the
time discretization parameter q ∈ [1, 40] in Figure 5 shows that the presence of
a quasi-periodic orbit is more frequent for small values of q.

Figure 4: Three dimensional plot of C(t) = (Nr(t), Nr(t + 1), Nr(t + 2)) of the de-
terministic dynamical system in Equations (1)–(3). Setting H1. Left Panel: q = 10.
Right Panel: q = 20.

6.4.1 Comparison with setting H1: small values of q with a chaotic
dynamics

We tune the set of experimental parametersH1 until the three-dimensional plots
of (Nr(t), Nr(t+1), Nr(t+2)) for small and high values of q look very similar. In
particular, we name H2 this set of new experimental parameters. With respect
to H1, we modify the following parameters :
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Figure 5: Bifurcation diagram for Nr(t), 290000 ≤ t ≤ 300000, as a function of the
parameter q ∈ [1, 40]. Setting H1.

(S.2.1) A0 = Ω0 = 0.8, which corresponds to a longer period of growth of the
cattle before they reach fertility.

(S.2.2) m0 = 10.

(S.2.3) γ = 7.

(S.2.4) The degree d of the Rlogistic function is set equal to 2.

(S.2.5) The coefficient αD of the D function is set equal to 2.

The left (resp. right) panel of Figure 6 displays the dynamics of the set C(t)
associated to q = 3 (resp. to q = 100) steps per year in the set of experimental
parameters H2. We make the following considerations. First, the accumulation
towards the value of zero is preserved for small values of q. Second, even for
such a values there exists a non trivial geometric structure that is similar to
the one observed for q = 100. Also, we find that for only a few values of q the
set C(t) exhibits an orbit very close to being periodic; see Figure 7, left panel,
for a graphical representation of this statement. As an example, Figure 7, right
panel, displays the quasi-periodic orbit when q = 10.5.

6.5 Measuring distances between attractors
By comparing Figure 3 with Figure 6, it is visually clear that the reduction
in the number of integration steps q distorts less the geometry of C(t) in the
case of the set of experimental parameters H2. In order to make this statement
more rigorous, we use a number of Statistical Distances proposed in the liter-
ature, i.e. a number of distances between measures defined on a metric space
(X, δ). In particular, each distance is approximated by the distance between two
histograms (i.e. between two vectors of the same length with positive entries
that sum-up to one) constructed from the corresponding attractors. Precisely,
we construct the histograms by measuring the density of the points constitut-
ing the plot of the attractors over a three dimensional grid X of dimension
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Figure 6: Three dimensional plot of C(t) = (Nr(t), Nr(t+ 1), Nr(t+ 2)) of the deter-
ministic dynamical system in Equations (1)–(3). Setting H2. Left Panel: q = 2. Right
Panel: q = 100.

Figure 7: Left Panel: Bifurcation diagram for Nr(t), 290000 ≤ t ≤ 300000, as a
function of the parameter q ∈ [1, 40]. Setting H2. Right Panel: Three dimensional plot
of (Nr(t), Nr(t+1), Nr(t+2)) of the deterministic dynamical system in Equations (1)–
(3). Setting H2 and q = 10.5.

ng × ng × ng : for computational reasons, we used ng = 23. Henceforth, we
denote by r the histogram associated to the attractor obtained with q = 100
and we call this attractor asymptotic attractor, and by ci, i = 1, . . . , 100, the
histograms associated to the attractors obtained with q ∈ [2, 100], on a pseudo-
logarithmic scale. We use the following statistical distances between two given
histograms P and Q:

(D1) Kullback-Leibler divergence (Kullback and Leibler (1951)). It is defined
as

DKL(P ||Q) :=
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
.
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(D2) Jensen-Shannon distance (Wong and You (1985)). It is defined as the
smoothed and symmetrized version of the Kullback-Leibler, i.e.:

DJS(P ||Q) :=
1

2
(DKL(P ||M) +DKL(Q||M)) with M =

1

2
(P +Q) .

(D3) The Wasserstein distance (Ambrosio et al. (2005)). It is defined as:

W (P,Q) :=

(
inf

γ∈Γ(P,Q)

∫
X×X

δ(x, y)2 dγ(x, y)

)1/2

,

where Γ(P,Q) denotes the collection of all measures on X × X with
marginal distributions P and Q on the first and second factors respec-
tively.

(D4) A regularized version of the Sinkhorn distance proposed by Cuturi (2013).
It is defined in the following way. Let r and c be two given histograms in
the simplex Σd := {x ∈ Rd+ : xT 1d = 1}. Let U(r, c) be the transportation
polytope of r and c, namely the polyhedral set of d× d matrices

U(r, c) := {P ∈ Rd×d+ | P1d = r, PT 1d = c},

where 1d is the d dimensional vector of ones. Given a d × d cost matrix
M , the cost of mapping r to c using a transportation matrix P can be
quantified as 〈P,M〉, := Tr (PTM) the Frobenius product between P and
M . The following minimization problem:

DM (r, c) := min
P∈U(r,c)

〈P,M〉

is called the optimal transportation problem between r and c, given the
cost M , whereas

Dλ
M (r, c) := min

P∈U(r,c)
〈P,M〉 − 1

λ
h(P )

is an approximated version of the problem above, where h is the Shannon
entropy, and Dλ

M (r, c) is called Sinkhorn distance. Both DM and Dλ
M

are distances between two histograms; see Cuturi (2013). Last but not
least, Cuturi (2013) proposes a computationally efficient algorithm –called
Sinkhorn-Knopp Algorithm– to compute the distance Dλ

M between a given
histogram r and a set of histograms {ci}i∈I , as well as a lower bound on
the real optimal transport distance.

We discuss now the results. Figure 8, left (resp. right) panel, plots the distances
just presented for the set of experimental parameters H1 (resp. H2). For both
settings, we notice that the distance is a decreasing function of q, correspond-
ingly to the qualitative assessment that for higher values of q we obtain figures
that are more and more similar to the asymptotic one. However, we sometimes
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observe some spikes; they correspond to the values of q for which the orbit is
quasi-periodic. In addition, notice that these spikes are more sporadic in the
setting H2, thus confirming what we observed in Section 6.4. Moreover, the
Sinkhorn distance (i.e. the transportation cost) for low values of q is much
higher for the setting H1 than for the setting H2. This confirms the visual
insight that the latter setting is much more stable than H1 for small values of
q, i.e. it leads to attractors which have a more gentle dependence on q. These
considerations are also corroborated by Figure 9, which reports, as function of
q, the entropy and the fractal dimension computed following the same method-
ology as in Arlot et al. (2019): we postpone the discussion of these quantities to
Section 7.1. Finally, we remark that we also test the reliability of the previous
methodology on the logistic map; see Appendix B.

7 Numerical study of the random model
In this section, we will consider the random model given by Equations (6)–(8)
and we perform some numerical experiments on it. In Section 7.1 we investigate
the chaotic nature of the attractor of the random dynamical system by comput-
ing the entropy and its fractal dimension. In Section 7.2 we show some plots of
the random attractors as in Definition A.6.

In order to numerically solve equations (6)–(8) we need to follow a dis-
cretization scheme different from the one described in Subsection 6.1 and used
for the deterministic model (1)–(3). Indeed we need to discretize differently the
dynamics of the price (P (t)): in particular, we use the finite-difference Euler-
Maruyama method (Maruyama (1954)) for the numerical solution of the SDE
in Equation (7).

7.1 Entropy and fractal dimension
In this section, we investigate how the metric entropy and the fractal dimen-
sion of the attractor change as the volatility σ varies when the parameters of
the deterministic dynamical system are fixed as both in H1 and H2; see Sub-
section 6.4. For the sake of clarity, we briefly describe how the entropy and
the fractal dimension are computed; cfr. Arlot et al. (2019), Appendix A.3 and
Appendix A.4.

In order to compute the entropy, we start from the “continuous” time series
of Nr(t) –the reasoning can be replicated also for the price– for t > Tmax−10000,
where Tmax is the total length of the simulation experiment i.e., Tmax = 300000.
Then, we compute the empirical auto-correlation function of Nr with lags τ ∈
[0, 100] (τ is expressed in years). We get its first “zero” τ? as the first point
where the empirical auto-correlation crosses zero, and we then check that the
value of the empirical auto-correlation at τ = τ? is smaller than an arbitrary
threshold (here, 10−2). After that, we consider the sequence Y (t) only at times
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t equal to an integer multiple of τ?, and compute the returns

log10

(
Y
(
(i+ 1)τ?

)
Y (iτ?)

)

and their respective signs εi ∈ {−1, 1}. From this (finite) sequence of signs, we
compute forK = 1, . . . , 12 the combinatorial entropyHK(τ?) of ((εi)k−K+1≤i≤k)k∈N:

HK(τ?) := −
∑

x∈{−1,1}K
px log2(px) where px = P

(
(εi)k−K+1≤i≤k = x

)
the latter probability being with respect to k. Finally, we plot HK(τ?) as
a function of K and perform a standard robust linear regression in order to
estimate its slope: the slope will be eventually the estimate on the entropy of
the system.

Instead, in order to compute the fractal dimension of the attractors, we start
from their three-dimensional visualization over 200000 years, that is, for Nr for
instance:

K =
{(
Nr(t), Nr(t+ 1), Nr(t+ 2)

)
, 100 000 ≤ t ≤ 300 000

}
.

Then, for various values of ε > 0, we compute the number Ñε(K) of cubes

Ci,j,k = [iε; (i+ 1)ε]× [jε; (j + 1)ε]× [kε; (k + 1)ε]

that contain at least one point of K. Theoretically, the fractal dimension is the
opposite of the slope of this graph at infinity. Here, since K is finite, Ñε(K) is
constant equal to Card(K) for small ε. So, we estimated the slope of the graph
only for a limited set of values of ε.Because of the numerous approximations
made during this estimation, the precise value of the fractal dimension should
not be taken into account too seriously, but its order of magnitude should be
correct.

Figure ? displays the results. The plots of the entropy, as expected, confirm
that the randomization of the system brings more chaos and also fuzziness and,
therefore, an higher dimension. However, the behaviour of the plot for the
fractal dimension is not monotone as much as that of the entropy. This can
be linked to the lack of precision in the computation of the fractal dimension,
or simply to the fact that too much “fuzziness” leads to having many isolated
points that do not contribute to a substantial increase in the fractal dimension.

7.2 Plotting the random attractor
In this subsection, we display some plots of the globally attracting set as defined
in Definition 5.2. Notice that in Proposition 5.5 we prove the existence of such
set, which is random and it is constructed by fixing a realization ω of the Brow-
nian motion and then measuring the value ϕ(t, ω)(N0

r , P
0) for many different

initial values (N0
r , P

0). In practice, we fix a large enough time, say t = 10000,
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we generate a huge amount of random initial values, say 20 000, and we move
the system forward in time by 10000 years, while using the same seed for the
generation of the Brownian Motion. Because the attractor is high-dimensional,
we display in Figure 11 its two-dimensional projection. More precisely, we plot
the points

(
Nr(t), Nr(t+1)

)
for t = 10000+i/50 with i = 0, 1, . . . , 5: we observe

actually a gradual evolution of the shape. Similarly, Figure 12 shows, instead,
the same two-dimensional projection for t = 10 000 + i with i = 0, 1, 2, 3, i.e. for
integer values of t. Now, we make the following remarks.

Remark 7.1. Because of the definition of random attractor, should both the
initial states and the path of the Brownian motion be random, we would have
obtained the same plot for all the values of t.

Remark 7.2. Figures 11 and 12 show not only the two-dimensional projection
of the attractor as function of the random parameter ω, but also the projection
of the random measure, whose existence has been proved in Corollary 5.9. In
particular, the areas with higher density are shown in yellow, while the areas of
lower density are shown in blue.

Finally, we observe that by fixing the seed of the Brownian motion and by letting
t vary, we can show every possible instance of the attractors A(ω) thanks to the
following lemma.

Lemma 7.3. The dynamical system (Ω,F , (θ(t))t∈R,P) is ergodic.

Proof. It is a consequence of Kolmogorov’s zero-one law. Consider the two-
parameter filtration {F ts}s≤t generated by the Brownian motion, and define the
σ-algebra

T ∞ =
⋂
t∈R
F∞t .

The independence of the σ-algebras Fus and Fzt for all s < u ≤ t < z allows to
apply Kolmogorov’s dichotomy and deduce that the σ-algebra T ∞ is degenerate,
i.e. P(A) ∈ {0, 1} for all A ∈ T ∞. The conclusion follows by observing that
every θ(t)-invariant set is contained in T ∞.
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A Appendix A: Random Dynamical Systems, Ran-
dom Attractors and Random Measures

niversal approximation theorem for continuous functions between Euclidean
spaces In this appendix, we remind some fundamental notions and tools from
the theory of random dynamical systems we have used in our analysis of the
model. We refer the reader to Crauel and Flandoli (1994); Flandoli and Tonello
(2021) (which we closely follow) and ? for further information and more details.

Definition A.1 (Non-Autonomous Dynamical Systems (NADS)). Let T be
either the set of real numbers R or the set of integer number Z. Let X be defined
as in (9). A NADS with time T is a family of continuous maps ϕ(s, t) : X → X
indexed by two times s ≤ t with s, t ∈ T satisfying to the following rules:

1. ϕ(s, s) = IdX ∀ s ∈ T .

2. ϕ(r, t) ◦ ϕ(s, r) = ϕ(s, t)∀ s ≤ r ≤ t.

Notice that in the autonomous case a one-parameter family of continuous map
would be sufficient to entirely determine the evolution of the system because
in this case the evolution is invariant with respect to translation in time, i.e.
ϕ(s, t)x = ϕ(t−s)x. Instead, in the non-autonomous case the time at which the
initial data are prescribed is crucial; as a consequence, it is natural to expect
that the “fixed points” of the system depend upon the second variable t by
letting s → −∞. We now give the notion of attractors in the non-autonomous
set-up:

Definition A.2 (Pullback attractor). A family of objects A(t) in a complete
metric phase-space (X , δ) is a pullback attractor for the NADS ϕ if it satisfies
the following two conditions:

1. For all t, A(t) is a compact subset of X and is invariant with respect to
the dynamics, namely, ϕ(s, t)A(s) = A(t)∀ s ≤ t.

2. For all bounded sets B, ∀ ε > 0 there exists s0 < 0 such that ∀s < s0 we
have ϕ(s, t)(B) ⊂ Uε(A(t)); Uε(A(t)) denotes the neighbourhood of radius
ε around the set A(t), namely:

Uε(A(t)) = {x ∈ X : inf
y∈A(t)

δ(x, y) < ε} (23)

We remark that the previous definition can be given also by means of the non-
symmetric Hausdorff-like distance δh between sets. In this case, point 2. be-
comes: “for all bounded sets B it holds that lims→−∞ δh(ϕ(s, t)(B), A(t)) = 0".
Because of the fact that NADS and RDS are closely related, the notion of
stochastic attractor will be based on the latter definition.
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A.1 Random Dynamical Systems
We recall that a measurable dynamical system is a tuple ((Ω,F ,P), (θt)t∈T )
where (Ω,F ,P) is a probability space and {θt : Ω → Ω}t∈T is a family of
measure preserving transformations of the probability space (Ω,F ,P) such that
(t, ω)→ θtω is measurable, θ0 = Id and θt+s = θt ◦ θs ∀t, s ∈ T .

Definition A.3 (RDS). Let T = R,R+,Z or N. A RDS with time T on a
metric, complete and separable space (X , δ) with Borel σ-algebra B over (θt)t∈T
on (Ω,F ,P) is a measurable map

ϕ : T ×X × Ω→ X
(t, x, ω)→ ϕ(t, ω)x

such that ϕ(0, ω) = idX and

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) (24)

∀t, s ∈ T and ∀ω ∈ Ω. A family of maps ϕ(t, ω) satisfying (24) is called a
cocycle and (24) is the cocycle property.

A RDS is said to be continuous or differentiable if ϕ(t, ω) : X → X is continuous
or differentiable, respectively, ∀t ∈ T outside a P-nullset. In addition, ϕ(t, ω) is
automatically invertible if T = R or Z; indeed, in this case, we have ϕ(t, ω)−1 =
ϕ(−t, θtω) for t ∈ T .
The notion of skew product collects all the ω′s in order to define a (measurable)
dynamical system on the product space (Ω×X ,F ⊗ B):

Definition A.4 (Skew product). The measurable map

Θ : T × Ω×X → Ω×X
(t, ω, x)→ (θ(t)ω, ϕ(t, ω)x),

is called the skew product flow of the dynamical system ((Ω,F ,P), (θt)t∈T ) and
of the co-cycle ϕ.

In particular, the family of mapping Θt = Θ(t, · , · ) with t ∈ T is the measurable
dynamical system on (Ω×X ,F ⊗B) we were referring to. In addition, it holds
that Θ0 = IdΩ×X and Θt+s(ω, x) = Θt ◦Θs(ω, x)∀ t, s ∈ T, ω ∈ Ω andx ∈ X .

A.1.1 Attraction and absorption

We here define the notions of attraction and absorption.

Definition A.5. A random set A is said to attract another random set B if
P-almost surely

lim
t→∞

δh(ϕ(t, θ−tω)B(θ−tω), A(ω)) = 0.
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Moreover, we have that a random set K(ω) is said to be (strictly) ϕ-forward
invariant if

ϕ(t, ω)K(ω) ⊂ K(θtω) (ϕ(t, ω)K(ω) = K(θtω)) ∀t > 0.

In addition, the following definitions hold.

Definition A.6 (Globally attracting set). Suppose ϕ is a RDS such that there
exists a random compact set A(ω) which satisfies the following conditions:

1. ϕ(t, ω)A(ω) = A(θtω)∀ t > 0.

2. A attracts every bounded deterministic set B ⊂ X .

Tnen, A is said to be a universally or globally attracting set for ϕ.

Definition A.7 (Absorption time). If K and B are random sets such that for
P-almost all ω there exists a time tB(ω) such that for all t ≥ tB(ω) we have

ϕ(t, θ−tω)B(θ−tω) ⊂ K(ω),

then K is said to absorb B and tB(ω) is called the absorption time.

Definition A.8 (Ω-limit set). Given a random set K, the set

Ω(K,ω) = ΩK(ω) =
⋂
T≥0

⋂
t≥T

ϕ(t, θ−tω)K(θ−tω)

is said to be the Ω-limit set of K. By definition, ΩK(ω) is closed.

In particular, it is possible to identify ΩK(ω) with

ΩK(ω) = {y ∈ X : ∃ tn →∞, xn ∈ K(θ−tnω) : ϕ(tn, θ−tnω)xn → y}.

With this identification, the θ-shift of an Ω-limit set is given by:

ΩK(·) ◦ θt = Ω(K, θtω) = {y ∈ X : ∃tn →∞,
∃xn ∈ K(θ−tn+tω) such that ϕ(tn, θ−tn+tω)xn → y}.

Also, the following theorem holds:

Theorem A (cfr. Crauel and Flandoli (1994), Theorem 3.11). Suppose ϕ is an
RDS on the Polish space X and suppose that there exists a compact set K(ω)
absorbing every bounded non-random set B ⊂ X . Then the set

A(ω) =
⋃
B⊂X

ΩB(ω)

is a global attractor for ϕ.
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A.1.2 Invariant measures on random sets

First, we introduce the concept of random (probability) measure on X .

Definition A.9 (Random (probability) measure). A map µ : B × Ω → [0, 1],
(B,ω)→ µω(B) satisfying the following two conditions

1. for every B ∈ B, ω → µω(B) is measurable,

2. for P-almost every ω ∈ Ω, B → µω(B) is a Borel probability measure,

is said to be a random (probability) measure on X .

Hereafter, we will denote by PΩ(X ) the set of random measures on X and by
P(X ) the set of canonical probability measures.

Definition A.10 (Invariant measure). A random (probability) measure µ =
(µω)ω∈Ω is said to be invariant for the RDS ϕ if ∀t ∈ T and for P-almost every
ω ∈ Ω we have

ϕ(t, ω)µω = µθ(t)ω.

In this work, we will aim at finding an invariant measure via an averaging
procedure applied to the initial distribution of the data. To this end, let λµ be
the measure of which µ is the factorization, i.e., the measure defined ∀A ∈ F⊗B
as

λµ(A) =

∫
Ω

(∫
X
IA(ω, x)µω( dx)

)
P( dx). (25)

The concept of invariance for a random (probability) measure µ is related to the
invariance of the measure λµ with respect to the skew product; the following
proposition holds:

Proposition A.11 (cfr. Flandoli and Tonello (2021), Proposition 72). The
random (probability) measure µ = (µω)ω∈Ω is invariant for the RDS ϕ if and
only if the measure λµ on (Ω × X ,F ⊗ B) is invariant for the skew product
associated to ϕ.

Hereafter, we will denote by PP(Ω × X ) the set of probability measures on
(Ω × X ,F ⊗ B) of the form (25) for some random (probability) measure µ.
In particular, Θt maps PP(Ω × X ) into itself. Also, it can be shown that all
the probability measures on (Ω × X ) with marginal P on Ω have a unique
random (probability) measure satisfying Equation (25). This leads to a one-to-
one correspondence between PP(Ω×X ) and PΩ(X ). In addition, we denote by
IP(ϕ) ⊂ PP(Ω × X ) the set of measures λµ for which the associated random
measure µ is invariant. We give now the following definition.

Definition A.12 (cfr. Flandoli and Tonello (2021), Page 51). We define L1
P(ω, Cb(X ))

as the space of those functions f : Ω → Cb(X ) such that the map (ω, x) →
f(ω)(x) = f(ω, x) is measurable and the integral

‖f‖1,∞ :=

∫
Ω

sup
x∈X
|f(ω, x)|dP(ω)

is finite.
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In particular, we identify two functions f and g if P(f( · , ω) 6= g( · , ω)) = 0; the
equivalence class of f will be identified with f .
The space PP(Ω × X ) is endowed with the topology of the weak convergence,
which is the smallest topology on PΩ(X ) such that the maps

µ→ µ(f) =

∫
Ω

∫
X
f(ω, x) dµω(x) dP(ω) =

∫
Ω×X

f(ω, x) dλµ(ω, c)

are continuous for each f ∈ L1
P(ω, Cb(X )). At this point, we consider the action

of the skew product (see Definition A.4) on functions f ∈ L1
P(ω, Cb(X )) given

by Θtf = f ◦Θt; in particular, such a product belongs to L1
P(ω, Cb(X )) too.

Proposition A.13 (cfr. Flandoli and Tonello (2021), Proposition 73). If ϕ is
a continuous RDS on a Polish space X , the map µ → Θtµ on PP(Ω × X ) is
affine and continuous. Moreover, the set IP(ϕ) is convex and closed.

We have now all the theoretical instruments to introduce the averaging process
mentioned before, which enables us to state the existence of measures in IP(ϕ).

Proposition A.14 (cfr. Flandoli and Tonello (2021), Proposition 74). Let ϕ
be a continuous RDS on a Polish space X with continuous time T . Let ν be in
PP(Ω×X ). For each t ∈ T , t > 0, let µt be the measure defined as

µt(A) :=
1

t

∫ t

0

(Θsν)(A) ds, ∀A ∈ F ⊗ B. (26)

Then, every limit point of (µt)t for t→∞, in the topology of the weak conver-
gence, is in IP(ϕ).

Finally, the existence of limit points for the sequence (26), and then of random
invariant measures for ϕ, can be established through an analogous of Prohorov
theorem for random measures.

Definition A.15. A set of measures Γ ⊂ PP(Ω × X ) is said to be tight if for
every ε > 0 there exists a compact set Cε ⊂ X such that, for each λ ∈ Γ it holds
that λ(Ω×Cε) ≥ 1− ε. In other words, we must have

∫
Ω
µω(Cε)P(dω) ≥ 1− ε,

where µω is the factorization of λµ.

Theorem A.16 (Prohorov theorem for Random Measures, cfr. Crauel (2002),
Theorem 4.4). If Γ ⊂ PP(Ω × X ) is tight, then every sequence (µn)n∈N ⊂ Γ
admits a convergent sub-sequence.

B Appendix B: Measuring distances between at-
tractors: the logistic map case

We show the reliability of the methodology employed in Subsection 6.5 to quan-
tify the distance between two attractors by applying it to the logistic map, i.e.
the map T (t) = rt(1− t), with r ∈ [3.5, 4] and #r = 3000. For each parameter
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r, we let the system evolves for 50000 steps forward, and we record the posi-
tion of the system in 3000 histograms with 500 bins. We then apply the four
presented distances to all of the histograms on the first argument, and to the
penultimate histogram on the right argument. The choice of the penultimate
histogram is due to the fact that the dynamics when the logistic parameter
r = 4 is somewhat simpler, being conjugated to the tent map. Thus, we picked
the histogram of the more “chaotic” logistic map as a second argument. All
the plots have a rather uniform shape, with some spikes corresponding to the
stable windows in the bifurcation diagram of the logistic map, and the distance
gradually decreasing as the parameter approaches the value of 4.
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Figure 8: From top to bottom, left panel: distances between the attractors as a function
of q ∈ [2, 100] on a pseudo-logarithmic scale for the set of experimental parameters
H1. From top to bottom, right panel: the same quantities for the set of experimental
parameters H2. The distances are, in order: the Kullback-Leibler divergence, the
Jensen-Shannon distance, the Wasserstein distance and the Sinkhorn distance.
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Figure 9: Estimated fractal dimension (left panel) and entropy (right panel) for dif-
ferent values of q ∈ [2, 100], on a pseudo-logarithmic scale.

(a) Entropy as function of σ for H1 (b) Fractal Dimension in terms of σ for H1

(c) Entropy as function of σ for H2 (d) Fractal Dimension in terms of σ for H2

Figure 10: Estimated fractal dimension and estimated entropy as a function of the
parameter σ when the parameters of the deterministic dynamical system are fixed as
both in H1 (top panel) and in H2 (bottom panel)
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(a) t = 10 000 (b) t = 10 000 + 1
50

(c) t = 10 000 + 2
50

(d) t = 10 000 + 3
50

(e) t = 10 000 + 4
50

(f) t = 10 000 + 5
50

Figure 11: Two dimensional projection of the random attractor.
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(a) t = 10 000 (b) t = 10 001

(c) t = 10 002 (d) t = 10 003

Figure 12: Two dimensional projection of the random attractor (in the case of consec-
utive integer values of t).
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Figure 13: From top to bottom, left panel: distances between the attractors as a
function of r ∈ [3.5, 4] for the logistic map. The distances are, in order: the Kullback-
Leibler divergence, the Wasserstein, the Jensen-Shannon distance and the Sinkhorn
distance.

41


	1 Introduction
	2 The Yoccoz-Birkeland model and the coupling with price dynamics
	2.1 Terminology and notations
	2.2 Deterministic population and price dynamics

	3 The Yoccoz-Birkeland model and the coupling with random price dynamics
	4 A first analysis of the model
	5 Existence of a global random attractor
	6 Numerical study of the deterministic model and of its dependence on the integration step
	6.1 Discretization of the model
	6.2 Initial conditions
	6.3 Parameters of the model
	6.4 Dependence of the attractor on the discretization time step q
	6.4.1 Comparison with setting H1: small values of q with a chaotic dynamics

	6.5 Measuring distances between attractors

	7 Numerical study of the random model
	7.1 Entropy and fractal dimension
	7.2 Plotting the random attractor

	A Appendix A: Random Dynamical Systems, Random Attractors and Random Measures
	A.1 Random Dynamical Systems
	A.1.1 Attraction and absorption
	A.1.2 Invariant measures on random sets


	B Appendix B: Measuring distances between attractors: the logistic map case

