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Abstract

In this article we continue to develop the theory of generating symmetries for

integrable equations. A technique for computation of generating symmetries using

Maple is presented. The technique is based on the standard symmetry method. By

using it we find generating symmetries for the KdV, Camassa-Holm, mKdV, sine-

Gordon, Boussinesq, associated Degasperis-Procesi and associated Novikov equa-

tions.

1 Introduction

The study of symmetries of differential equations goes back to Sophus Lie. The technique
for computing the point symmetry group is well described in [22, 13, 4]. At first, sym-
metry analysis was applied to the particular PDEs in order to understand the geometry
of equations and to generate group-invariant solutions [10]. With the development of
computer algebra more complicated tasks became reachable. Among them are the classi-
fication of point symmetry groups for classes of PDEs [24, 15, 37], symmetry analysis of
difference equations [32, 14] and the derivation of high-order and non-local symmetries
[3, 38].

Integrable differential equations typically display substantially more symmetry prop-
erties than their non-integrable counterparts (with the exception of linear systems, which
also may be regarded as integrable). It was found that many integrable equations have
infinite hierarchies of local and non-local symmetries [18, 11]. These hierarchies can be
obtained via recursion operators [21, 22, 25], master-symmetries [9], generating symme-
tries [26] and so on. The implementation of known techniques for particular equations is
usually an art rather then routine computing.

In [26] we introduced generating symmetries (GSs). This kind of symmetry is an
infinitesimal transformation which depends upon the solution of the equation and the
function appearing in a Bäcklund transformation or in a Lax pair. The characteristic
of the GS is a generating function for the entire hierarchy of infinitesimal symmetries
of the corresponding PDE. That is, when expanded in a suitable series of powers of the
spectral parameter, all the components are symmetries. In [26] GSs were found for KdV,
associated Camassa-Holm and sine-Gordon equations and later this result was extended
for other equations [28, 27, 29, 30]. A major advance in the research of GSs was achieved
in [31]. All the symmetries of KdV were expressed there using four GSs. This was done by
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introducing a new GS, which gives a hierarchy of symmetries with explicit dependence
upon x and t. The commutation relations of GSs which describe the algebras of all
symmetries, including non-local ones, were given in [31], as well.

Apart from generating infinite hierarchies of symmetries, GSs can also be used to
obtain new solutions. Since GSs depend on functions that appear in a Bäcklund trans-
formation or Lax pair, they are nonlocal, and there are few existing results on the use
of nonlocal symmetries to generate solutions. An exception, though, is in the papers
[12, 17]. There the authors use some of the GSs of the KdV equation to generate a vari-
ety of interesting solutions, for example solitons and dark solitons residing on a cnoidal
wave background (formulas (44),(47) in [12]). Two methods are used in [12, 17]: find-
ing finite transformations associated with the GSs, and a generalization of the standard
similarity reduction technique. The first is possible as some GSs are infinitesimal forms
of superpositions of Bäcklund transformations [26, 28, 27, 29, 30]. The second requires
finding the action of GSs on the functions that appear in the Bäcklund transformation
or Lax pair. This is discussed at length in [31].

The generating symmetries in [26, 28, 27, 29, 30] were obtained via a limit process
from a superposition principle. This approach has the following disadvantages: a) it
is necessary to know the superposition principle (if it exists); b) not all superposition
principles allow this procedure; c) not all GSs can be found. These difficulties motivated
us to find better approach to compute GSs.

In this article we propose a direct method for computation of GSs. This method
is an upgrade of the standard symmetry method described in [22, 23]. We will call it
the generating symmetry method (GSM). GSM requires the existence of a Lax pair or
a Bäcklund transformations for the corresponding equation. This requirement is fulfilled
for integrable equations, since this is one of the main integrability properties. The main
advantages of GSM are the possibility of application to a vast class of equations and a
very simple implementation, which can be done via computer algebra.

The structure of this paper is as follows: In section 2, GSM is presented. In section
3, GSM is applied to equations with a second order Lax pair. In section 4, GSM is
applied to equations with a third order Lax pair. Section 5 contains some concluding
comments and questions for further study. In the Appendix we show the Maple program
for computation of GSs.

2 The generating symmetry method

The idea of the method is presented here for a scalar partial differential equation for a
single function of two independent variables, u = u(x, t). It can be extended for a system
of equations with many variables.

By a scalar PDE we mean

F (u, ux, ut, uxx, utx, utt, ...) = 0, (1)

where ux, ut, ... are derivatives of u. The infinitesimal generator for a symmetry of (1) is
a vector field

X = η
∂

∂u
.

Here η satisfies the linearisation of (1)

ηFu + ηxFux + ηtFut + ηxxFuxx + ... = 0. (2)
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η is called the characteristic of X and it depends upon x, t, u and the derivatives of u.
Let us assume that (1) has a Lax pair. A Lax pair is a system of linear differential

equations of the form

Lψ = λψ, (3)

ψt = Pψ, (4)

where L, P are differential operators and λ is the spectral parameter. Solutions of the
Lax pair are called eigenfunctions. A Lax pair has several (depending upon the order of
the equation (3)) linearly independent solutions

ψ(1), ψ(2), .... (5)

Often a Lax pair can be transformed by the substitution

v =
ψx

ψ
(6)

to the system which defines a Bäcklund transformation.
GSs were introduced in [26, 28, 27]. In these articles the characteristics η of the GSs

depend upon solutions of Bäcklund transformations and their derivatives with respect to
x

v(1), v(2), v(1)x , v(2)x . (7)

In [31] we show a GS which also depends upon the derivative of solutions of Bäcklund
transformations with respect to the spectral parameter

v
(1)
λ , v

(2)
λ . (8)

So, in order to find general GSs the variables (7,8) have to be included in η. Equivalently,
the solutions of the Lax pair can be used. In this case η should depend on

ψ(1), ψ(2), ψ(1)
x , ψ(2)

x , ψ
(1)
λ , ψ

(2)
λ , ....

Definition 1. A vector field (2) is a generating symmetry of equation (1), if η depends
upon the variables of a Lax pair or a Bäcklund transformation and if (2) holds on solutions
of (1) and solutions of the Lax pair or the Bäcklund transformation.

The GSM is based on the standard symmetry method. Namely, (2) should be satisfied
on solutions of (1,3,4). The technical details of the method can be found in the Appendix
where we present the Maple program for computation of GSs for the potential KdV
equation.

3 Generating symmetries for equations with a sec-

ond order Lax pair

The general form of (3) in the second order Lax pair is

ψxx = F1ψx + F2ψ. (9)

Here F1, F2 are functions which depend upon the parameter λ, variables t, x, u (see [36]
for an example of the Lax pair with explicit dependence upon t and x) and the derivatives
of u.
Notes:
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1. The second order Lax pair has two linearly independent solutions: ψ(1) and ψ(2).

2. The two solutions ψ(1), ψ(2) satisfy

W (ψ(1), ψ(2)) = ψ(1)ψ(2)
x − ψ(1)

x ψ(2) = ce
∫
F1dx, (10)

where W is the Wronskian and c is a constant of integration independent of x. The
dependence of c upon t can be determined from the consistency of (10) and the Lax
pair. We assume that

∫

F1dx is local.

In order to find generating symmetries for an equation with a second order Lax pair we
take η in the following form

η = η(x, t, u, ux, ut, ψ
(1), ψ(2), ψ(1)

x , ψ
(1)
λ , ψ

(2)
λ ). (11)

η doesn’t depend upon ψ
(2)
x , since it can be eliminated with the help of (10). η depends

upon λ, but we don’t include it in (11), since it can be considered as a constant.

3.1 The KdV equation

The KdV equation is
φt − 3φφx −

1
4
φxxx = 0 . (12)

It is connected to the potential KdV equation (pKdV) via φ = ux

ut −
3
2
u2x −

1
4
uxxx = 0 . (13)

The Lax pair for KdV and pKdV [5] is

ψxx = (λ− 2ux)ψ, (14)

ψt = (λ+ ux)ψx −
1
2
uxxψ. (15)

The coefficient of ψx is zero, therefore from (10) we get

ψ(2)
x =

ψ
(1)
x ψ(2) + c

ψ(1)
. (16)

By checking the consistency with (14,15) we obtain that c does not depend upon t. An
infinitesimal symmetry characteristic for pKdV has to satisfy the following equation

ηt − 3uxηx −
1
4
ηxxx = 0. (17)

The solution of (17) for η in the form (11) contains the following characteristics

η1 = 1, η7 = (ψ(2))2,

η2 = ux, η8 = ψ(1)ψ(2),

η3 = ut, η9 = ψ(1)ψ
(1)
λ , (18)

η4 = x+ 3tux, η10 = ψ(2)ψ
(2)
λ ,

η5 = xux + 3tut + u, η11 = ψ(1)ψ
(2)
λ + ψ(2)ψ

(1)
λ ,

η6 = (ψ(1))2, η12 = ψ(1)ψ
(2)
λ − ψ(2)ψ

(1)
λ − 3

2
ct.

Notes:
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1. The characteristics η1−5 correspond to the standard point symmetries of pKdV.

2. η6−12 are GS characteristics.

3. η6−8 are square eigenfunctions. These symmetries were found in [8, 17, 20] and
described as GSs in [26] in terms of the variable v = ψx

ψ
. The characteristic η12 was

presented in [31] in terms of the variable z = ln
(

ψ(1)

ψ(2)

)

.

4. The characteristics η9−11 are the derivatives of η6−8 with respect to λ, so they don’t
generate a new hierarchy of symmetries.

5. The GS characteristics for KdV can be obtained by differentiation of (18) with
respect to x.

3.2 The Camassa-Holm equation

The Camassa-Holm equation (CH) [6] is

mt + 2uxm+ umx = 0, m = u− uxx, (19)

or equivalently
ut − utxx + 3uux − uuxxx − 2uxuxx = 0. (20)

Writing u = vx and integrating once, we obtain the potential Camassa-Holm equation
(pCH)

vt − vtxx +
3

2
v2x − vxvxxx −

1

2
v2xx = 0 . (21)

The Lax pair for CH and pCH is

ψxx =

(

1

4
−

1

2λ
m

)

ψ, (22)

ψt = −(λ+ vx)ψx +
1

2
vxxψ, (23)

The coefficient of ψx in (22) is zero, therefore formula (16) is also true for pCH. From the
consistency of (16) with (22,23) we obtain that c does not depend upon t. An infinitesimal
symmetry characteristic for pCH has to satisfy the following equation

ηt − ηtxx + 3uxηx − vxxxηx − vxηxxx − vxxηxx = 0. (24)

The solution of (24) for η in the form (11) contains the following linearly independent
characteristics:

η1 = 1, η7 = (ψ(2))2,

η2 = vx, η8 = ψ(1)ψ
(1)
λ ,

η3 = vt, η9 = ψ(2)ψ
(2)
λ , (25)

η4 = tvt + v, η10 = ψ(1)ψ
(2)
λ + ψ(2)ψ

(1)
λ ,

η5 = ψ(1)ψ(2), η11 = λ(ψ(1)ψ
(2)
λ − ψ(2)ψ

(1)
λ ) + ct(λ + vx).

η6 = (ψ(1))2,

Notes:
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1. The characteristics η1−4 correspond to the standard point symmetries of pCH.

2. η5−11 are GS characteristics.

3. η5 was found in [28] in terms of the variable s = ψx

ψ
. η5−7 are the square eigenfunc-

tions.

4. The characteristics η8−10 are derivatives of η5−7 with respect to λ, so they don’t
generate a new hierarchy of symmetries.

5. The generating symmetry characteristics for CH can be obtained by differentiation
of (25) with respect to x.

3.3 The modified KdV equation

The defocusing modified KdV equation (mKdV) is

ut − 6u2ux + uxxx = 0 . (26)

The Lax pair for mKdV [5, 33] is

ψxx =
ux

u
ψx +

(

u2 + λ
ux

u
+ λ2

)

ψ, (27)

ψt =

(

2λux − uxx

u
+ 2u2 − 4λ2

)

ψx −
λuxx − 2λ2ux

u
ψ. (28)

The coefficient of ψx is ux
u
, therefore from (10) we get

ψ(2)
x =

ψ
(1)
x ψ(2) + cu

ψ(1)
. (29)

By checking the consistency with (27,28) we obtain that c does not depend upon t. An
infinitesimal symmetry characteristic for mKdV has to satisfy the following equation

ηt − 6u2ηx − 12uuxη + ηxxx = 0. (30)

The solution of (30) for η in the form (11) contains the following linearly independent
characteristics (the result was simplified with the help of (29)):

η1 = ux, η4 =
(λψ(1) + ψ

(1)
x )2

u2
+ (ψ(1))2,

η2 = ut, η5 =
(λψ(2) + ψ

(2)
x )2

u2
+ (ψ(2))2, (31)

η3 = xux + 3tut + u, η6 =
(λψ(1) + ψ

(1)
x )(λψ(2) + ψ

(2)
x )

u2
+ ψ(1)ψ(2).

Notes:

1. The characteristics η1−3 correspond to the standard point symmetries of mKdV.

2. η4−6 are generating symmetry characteristics.
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3. In order to find additional GSs we need to include more variables in (11). Compu-
tational difficulties don’t allow us do this at this stage. However, with the help of
intuition we managed to find a fourth GS

η7 =
(λψ

(1)
λ + ψ(1) + ψ

(1)
λx )(λψ

(2) + ψ
(2)
x )

u2
+ ψ

(1)
λ ψ(2) + 6ctux.

There is another Lax pair for mKdV [35, 7]:

φxx =
(

u2 + ux + λ2
)

φ, (32)

φt = 3(u2 + ux − λ2)φx − φxxx, (33)

This Lax pair is connected to (27,28) via substitutions

φ =
ψx + (u+ λ)ψ

u
, ψ =

1

2λ
((u+ λ)φ− φx). (34)

These substitutions can be derived from a zero curvature representation of mKdV [35].
With the help of (34) all GSs characteristics η4−7 can be expressed via the variable φ.

3.4 The sine-Gordon equation

The sine-Gordon equation (SG) is

utx = sin(u). (35)

The Lax pair for SG [2, 16] is

ψxx =
uxx

ux
ψx +

(

λ2 − λ
uxx

ux
−
u2x
4

)

ψ, (36)

ψt = −
sin u

2λux
ψx +

(

cosu

4λ
+

sin u

2ux

)

ψ. (37)

The coefficient of ψx in (36) is uxx
ux

, therefore from (10) we get

ψ(2)
x =

ψ
(1)
x ψ(2) + cux

ψ(1)
. (38)

By checking the consistency with (36,37) we obtain that c does not depend upon t. An
infinitesimal symmetry characteristic for SG has to satisfy the following equation

ηtx − cos(u)η = 0. (39)

The solution of (39) for η in the form (11) contains the following linearly independent
characteristics (the result was simplified with the help of (38)):

η1 = ux, η4 =
4(λψ(1) − ψ

(1)
x )2

u2x
+ (ψ(1))2,

η2 = ut, η5 =
4(λψ(2) − ψ

(2)
x )2

u2x
+ (ψ(2))2, (40)

η3 = xux − tut, η6 =
4(λψ(1) − ψ

(1)
x )(λψ(2) − ψ

(2)
x )

u2x
+ ψ(1)ψ(2).

Notes:
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1. The characteristics η1−3 correspond to the standard point symmetries of SG.

2. η4−6 are GS characteristics.

3. In order to find additional GSs we need to include more variables in (11). Compu-
tational difficulties don’t allow us do this at this stage. However, with the help of
intuition we managed to find a fourth GS

η7 =
4(λψ

(1)
λ + ψ(1) − ψ

(1)
λx )(λψ

(2) − ψ
(2)
x )

u2
+ ψ

(1)
λ ψ(2) +

c

λ
tut.

4. Remarkably, all GSs for SG are very similar to GSs for mKdV.

There is another Lax pair for SG [19]:

φxx = −iuφx + λ2φ, (41)

φt =
eiu

4λ2
φx −

i

2
utφ, (42)

This Lax pair is connected to (36,37) via substitutions

φ =
(2ψx + (iux − 2λ)ψ)

2uxe
iu

2

, ψ = −
i

λ
(φx + λφ)e

iu

2 . (43)

With the help of (43) all GSs characteristics η4−7 can be expressed via variable φ.
The SG equation can be brought to rational form by the transformation u = 2i ln(z):

zztx − zxzt =
1
4
(z4 − 1). (44)

The Lax pair (41,42) transforms to

φxx = 2
zx

z
φx + λ2φ, (45)

φt =
φx

4λ2z2
+
zt

z
φ. (46)

The coefficient of φx in (45) is 2zx
z
, therefore from (10) we get

φ(2)
x =

φ
(1)
x φ(2) + cz2

φ(1)
. (47)

By checking the consistency with (45,46) we obtain that c does not depend upon t. An
infinitesimal symmetry characteristic for (44) has to satisfy the following equation

zηtx + ηztx − ηxzt − zxηt = z3η. (48)

The equation (44) admits the following particularly simple GS characteristics:

η1 = zx, η5 =
φ(2)φ

(2)
x

z
,

η2 = zt, η6 =
φ(1)φ

(2)
x + φ(2)φ

(1)
x

z
,

η3 = xzx − tzt, η7 =
φ
(1)
λ φ

(2)
x + φ

(1)
λxφ

(2)

z
+
c

λ

(z

2
+ tzt

)

.

η4 =
φ(1)φ

(1)
x

z
,

Notes:
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1. The characteristics η1−3 correspond to the standard point symmetries.

2. η4−7 are GS characteristics.

3. These symmetries can also be obtained from (40) via (43) and u = 2i ln(z).

4. η5 was found in [26] in terms of the variables z(1) = φ
(1)
x

φ(1)
and z(2) = φ

(2)
x

φ(2)
.

4 Generating symmetries for equations with a third

order Lax pair

The general form of (3) in the third order Lax pair is

ψxxx = F1ψxx + F2ψx + F3ψ. (49)

Here F1, F2, F3 are functions, which depend upon the parameter λ, variables t, x, u and
derivatives of u.
Notes:

1. The third order Lax pair has three linearly independent solutions: ψ(1), ψ(2) and
ψ(3).

2. The three solutions ψ(1), ψ(2), ψ(3) satisfy

W (ψ(1), ψ(2), ψ(3)) = (ψ(1)ψ(2)
x − ψ(1)

x ψ(2))ψ(3)
xx−

(ψ(1)ψ(3)
x − ψ(1)

x ψ(3))ψ(2)
xx + (ψ(2)ψ(3)

x − ψ(2)
x ψ(3))ψ(1)

xx = ce
∫
F1dx, (50)

where W is the Wronskian and c is a constant of integration independent of x. The
dependence of c upon t can be determined from the consistency of (50) and the Lax
pair. We ssume that

∫

F1dx is local.

4.1 The Boussinesq equation

The Boussinesq equation is

ut = (−2v − ux)x ,

vt =
(

vx +
2
3
uxx − u2

)

x
.

This is the two component form. By eliminating v we obtain the scalar form of the
Boussinesq equation:

utt = −1
3
uxxxx + (2u2)xx .

The Boussinesq equation is connected to the potential Boussinesq equation (pBE) via
u = fx, v = wx

ft = (−2w − fx)x , (51)

wt = wxx +
2
3
fxxx − f 2

x . (52)

By eliminating w from (51,52) we obtain the scalar form of pBE:

ftt = −1
3
fxxxx + 4fxfxx . (53)
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The Lax pair for Boussinesq and potential Boussinesq equations [1] is

ψxxx = 3fxψx + (λ− 3wx)ψ, (54)

ψt = ψxx − 2fxψ. (55)

The coefficient of ψxx is zero, therefore from (50) we get

ψ(3)
xx =

(ψ(1)ψ
(3)
x − ψ

(1)
x ψ(3))ψ

(2)
xx − (ψ(2)ψ

(3)
x − ψ

(2)
x ψ(3))ψ

(1)
xx + c

ψ(1)ψ
(2)
x − ψ

(1)
x ψ(2)

. (56)

By checking the consistency with (54,55) we obtain, that c does not depend upon t. An
infinitesimal symmetry characteristic for pBE has to satisfy the following equation

ηtt − 4fxηxx − 4fxxηx +
1
3
ηxxxx = 0. (57)

In order to find generating symmetries for pBE we take

η = η(x, t, f, fx, ft, ψ
(1), ψ(2), ψ(3), ψ(1)

x , ψ(2)
x , ψ(3)

x , ψ
(1)
λ , ψ

(2)
λ , ψ

(3)
λ ). (58)

The solution of (57) for η in the form (58) gives the following linearly independent char-
acteristics:

η1 = 1, η9 = ψ(2)(ψ(2)ψ(3)
x − ψ(2)

x ψ(3)),

η2 = t, η10 = ψ(3)(ψ(1)ψ(3)
x − ψ(1)

x ψ(3)),

η3 = fx, η11 = ψ(3)(ψ(2)ψ(3)
x − ψ(2)

x ψ(3)),

η4 = ft, η12 = ψ(1)(ψ(2)ψ(1)
x − ψ(2)

x ψ(1)), (59)

η5 = xfx + 2tft + f, η13 = ψ(2)(ψ(1)ψ(2)
x − ψ(1)

x ψ(2)),

η6 = ψ(2)(ψ(1)ψ(3)
x − ψ(1)

x ψ(3)), η14 = ψ
(3)
λ (ψ(1)ψ(2)

x − ψ(1)
x ψ(2))

η7 = ψ(1)(ψ(2)ψ(3)
x − ψ(2)

x ψ(3)), + ψ
(2)
λ (ψ(3)ψ(1)

x − ψ(3)
x ψ(1))

η8 = ψ(1)(ψ(1)ψ(3)
x − ψ(1)

x ψ(3)), + ψ
(1)
λ (ψ(2)ψ(3)

x − ψ(2)
x ψ(3)).

Notes:

1. The characteristics η1−5 correspond to the standard point symmetries of pBE.

2. η6−14 are GS characteristics.

3. η6−7 were found in [27] in terms of the variable s = ψx

ψ
.

4. The characteristics η8−13 can be obtained from η6−7 by taking ψ(i) = ψ(j) for some
i 6= j. This fact was also noted in [27].

5. It would be good to add ψ
(1)
xx , ψ

(2)
xx and ψ

(3)
xx in η in order to find more GSs. Compu-

tational difficulties don’t allow us do this at this stage.

6. The GS characteristics for the Boussinesq equation can be obtained by differentia-
tion of (59) with respect to x.
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4.2 The associated Degasperis-Procesi equation

The associated Degasperis-Procesi equation (aDP) is

fxxt −
3
4

f2
xt

ft
+ 3(1− fxft) = 0 . (60)

The integrability properties of this equation were presented in [29]. The Lax pair was
presented there, as well:

ψxxx = 3fxψx +

(

3

2
fxx + θ

)

ψ , (61)

ψt =
1

θ

(

ftψxx −
1

2
ftxψx +

(

1

8

f 2
xt

ft
−

3

2
fxft

)

ψ

)

. (62)

The coefficient of ψxx is zero, therefore (56) is also true. From the consistency of (56)

with (61,62) we obtain that c = c1e
3t
2λ where c1 does not depend on t. An infinitesimal

symmetry characteristic for aDP has to satisfy the following equation

ηxxt −
3

2
ηxt

fxt

ft
+

3

4
ηt
f 2
xt

f 2
t

− 3ftηx − 3ηtfx = 0. (63)

In order to find generating symmetries for aDP we take

η = η(x, t, f, fx, ft, ψ
(1), ψ(2), ψ(3), ψ(1)

x , ψ(2)
x , ψ(3)

x ). (64)

We did not take η in the form (58), because of the computational difficulties. After

removing variables ψ
(1)
λ , ψ

(2)
λ , ψ

(3)
λ calculations have been completed. The solution of (63)

for η in the form (64) gives the following linearly independent characteristics:

η1 = 1, η7 = ψ(2)(ψ(2)ψ(3)
x − ψ(2)

x ψ(3)),

η2 = fx, η8 = ψ(3)(ψ(2)ψ(3)
x − ψ(2)

x ψ(3)),

η3 = ft, η9 = ψ(1)(ψ(2)ψ(1)
x − ψ(2)

x ψ(1)), (65)

η4 = xfx − 3tft + f, η10 = ψ(2)(ψ(1)ψ(2)
x − ψ(1)

x ψ(2)),

η5 = ψ(2)(ψ(1)ψ(3)
x − ψ(1)

x ψ(3)), η11 = ψ(1)(ψ(1)ψ(3)
x − ψ(1)

x ψ(3)),

η6 = ψ(1)(ψ(2)ψ(3)
x − ψ(2)

x ψ(3)), η12 = ψ(3)(ψ(1)ψ(3)
x − ψ(1)

x ψ(3)).

Notes:

1. η5−12 are GS characteristics.

2. η5−6 were found in [29] in terms of the variable s = ψx

ψ
.

3. The characteristics η7−12 can be obtained from η5−6 by taking ψ(i) = ψ(j) for some
i 6= j.

4. In order to find additional GSs we need to include more variables in (64). Compu-
tational difficulties don’t allow us to do it at this stage. However, with the help of
intuition we manage to find one more GS

η13 =
(

ψ
(3)
λ (ψ(1)ψ(2)

x − ψ(1)
x ψ(2)) + ψ

(2)
λ (ψ(3)ψ(1)

x − ψ(3)
x ψ(1))

+ψ
(1)
λ (ψ(2)ψ(3)

x − ψ(2)
x ψ(3))

)

e−
3t
2λ +

c1t

λ2
ft. (66)
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4.3 The associated Novikov equation

The associated Novikov equation (aN) is

fxxt − 3(fxft − 1) = 0 . (67)

The integrability properties of this equation were presented in [30]. The point symmetries
were found there, as well:

η1 = 1 ,

η2 = fx , (68)

η3 = ft ,

η4 = xfx − 3tft + f .

The Lax pair for aN is

ψxxx = 3fxψx + λψ, (69)

ψt =
1

λ
(ftψxx − fxtψx). (70)

The coefficient of ψxx is zero, therefore (56) is also true. From the consistency of (56)

with (69,70) we obtain that c = c1e
6t
λ where c1 does not depend on t. An infinitesimal

symmetry characteristic for aN has to satisfy the following equation

ηxxt − 3fxηt − 3ftηx = 0. (71)

In order to find GSs for aN we take

η = η(t, ψ(1), ψ(2), ψ(3), ψ(1)
x , ψ(2)

x , ψ(3)
x , ψ(1)

xx , ψ
(2)
xx ). (72)

The η doesn’t depend upon ψ
(3)
xx , since it can be eliminated with the help of (56). This is

the only form in which we could find GSs. Any additional variable causes incompletable
calculations. The solution of (71) for η in the form (72) gives the following linearly
independent characteristics (the result was simplified with the help of (56)):

η1 = 1 ,

η5 =
(

λψ(1)(ψ(2)ψ(3)
x − ψ(2)

x ψ(3)) + ψ(1)
x (ψ(2)

x ψ(3)
xx − ψ(2)

xxψ
(3)
x )

)

e−
6t
λ ,

η6 =
(

λψ(3)(ψ(1)ψ(2)
x − ψ(1)

x ψ(2)) + ψ(3)
x (ψ(1)

x ψ(2)
xx − ψ(1)

xxψ
(2)
x )

)

e−
6t
λ ,

η7 =
(

λψ(3)(ψ(2)ψ(3)
x − ψ(2)

x ψ(3)) + ψ(3)
x (ψ(2)

x ψ(3)
xx − ψ(2)

xxψ
(3)
x )

)

e−
6t
λ ,

η8 =
(

λψ(3)(ψ(1)ψ(3)
x − ψ(1)

x ψ(3)) + ψ(3)
x (ψ(1)

x ψ(3)
xx − ψ(1)

xxψ
(3)
x )

)

e−
6t
λ ,

η9 =
(

λψ(2)(ψ(2)ψ(3)
x − ψ(2)

x ψ(3)) + ψ(2)
x (ψ(2)

x ψ(3)
xx − ψ(2)

xxψ
(3)
x )

)

e−
6t
λ ,

η10 =
(

λψ(1)(ψ(1)ψ(3)
x − ψ(1)

x ψ(3)) + ψ(1)
x (ψ(1)

x ψ(3)
xx − ψ(1)

xxψ
(3)
x )

)

e−
6t
λ ,

η11 =
(

λψ(2)(ψ(1)ψ(2)
x − ψ(1)

x ψ(2)) + ψ(2)
x (ψ(1)

x ψ(2)
xx − ψ(1)

xxψ
(2)
x )

)

e−
6t
λ ,

η12 =
(

λψ(1)(ψ(1)ψ(2)
x − ψ(1)

x ψ(2)) + ψ(1)
x (ψ(1)

x ψ(2)
xx − ψ(1)

xxψ
(2)
x )

)

e−
6t
λ .

Notes:
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1. η1 is the point symmetry shown in (68). Other point symmetries can not be obtained
from η in the form (72), that is why they are not listed here.

2. η5−12 are GS characteristics.

3. η5−6 were found in [30] in terms of the variable v = ψx

ψ
.

4. The characteristics η7−12 can be obtained from η5−6 by taking ψ(i) = ψ(j) for some
i 6= j.

5. In order to find additional GSs we need to include more variables in (72). Compu-
tational difficulties don’t allow us to do it at this stage. However, with the help of
intuition we manage to find one more GS

η13 =
(

λψ
(1)
λ (ψ(2)ψ(3)

x − ψ(2)
x ψ(3)) + ψ

(1)
λx (ψ

(2)
x ψ(3)

xx − ψ(2)
xxψ

(3)
x )

)

e−
6t
λ

+
(

λψ
(3)
λ (ψ(1)ψ(2)

x − ψ(1)
x ψ(2)) + ψ

(3)
λx (ψ

(1)
x ψ(2)

xx − ψ(1)
xxψ

(2)
x )

)

e−
6t
λ

+
(

λψ
(2)
λ (ψ(3)ψ(1)

x − ψ(3)
x ψ(1)) + ψ

(2)
λx (ψ

(3)
x ψ(1)

xx − ψ(3)
xxψ

(1)
x )

)

e−
6t
λ +

2c1
λ
tft.

5 Conclusion

In this paper we present the method for computation of GSs. On the one hand, it is a
simple upgrade of the standard symmetry method. On the other hand, inclusion of ψ and
λ seems to refine symmetry analysis to a finite problem. The detailed implementation
of GSM is described in the Maple program. As one can see, the idea of the method is
very simple, but effective. The main obstacle of GSM is computational difficulties, which
involve the solution of large systems of PDEs.

GSM was applied to seven integrable equations: KdV, CH, mKdV, sine-Gordon,
Boussinesq, associated Degasperis-Procesi and associated Novikov. All of them are inte-
grable and admit a Lax pair. It is remarkable, that for all the equations GSs are found.
In the case of equations with the second order Lax pair four essential GSs were found.
From the results of [31] it follows that this is, probably, a complete list of GSs. In the
case of equations with the third order Lax pair nine essential GSs were found.

Directions for further research:

• Discovering GSs for more equations, including higher dimensional equations, for
example KP and the Calogero–Bogoyavlensky–Schiff equation [34].

• Expansion of obtained GSs into hierarchies of symmetries. Especially to find ex-
pansions of GSs which give scaling symmetries for Camassa-Holm and associated
Degasperis-Procesi equations.

• Using GSs to find new solutions of the equations considered in this paper.

• Determining the commutator relations of found GSs. For this we need to compute
the action of GSs on ψ. At this moment it is not clear how to do it systematically.

• Understanding the connection between the number of GSs and the order of a Lax
pair.
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• Classification for different types of GSs.

• Classification of equations with respect to GSs.
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6 Appendix

Here we present the Maple program, which computes the generating symmetries for
pKdV. We use the following notations:

• Q denotes a symmetry characteristic.

• pKdV has a second order Lax pair, which admits two linearly independent solutions.
We denote them w(t, x, λ) and v(t, x, λ).

> with(DEtools):

> with(StringTools):

First, we introduce the following notation:
> tru:=seq(seq(ifelse(i+j=0,u(t, x),diff(u(t,x),x$i,t$j))=convert(Join

(["u",Repeat("t",j),Repeat("x",i)],""),name),i=0..4),j=0..2);

> trv:=seq(seq(seq(ifelse(i+j+k=0,v(t,x,lambda),diff(v(t,x,lambda),x$i

,t$j,lambda$k))=convert(Join(["v",Repeat("l",k),Repeat("t",j),Repeat("x",i

)],""),name),i=0..4),j=0..1),k=0..1):

> trw:=seq(seq(seq(ifelse(i+j+k=0,w(t,x,lambda),diff(w(t,x,lambda),x$i

,t$j,lambda$k))=convert(Join(["w",Repeat("l",k),Repeat("t",j),Repeat("x",i

)],""),name),i=0..4),j=0..1),k=0..1):

> tr:={tru,trv,trw,C(lambda)=c,diff(C(lambda),lambda)=cl}:

Here vx, vt, vl denote the derivatives of v with respect to x, t, λ. We use the same

notation for variables u, w. Let us define the infinitesimal generator with prolongations:
> eta:=Q(t,x,u(t,x),diff(u(t,x),x),diff(u(t,x),t),v(t,x,lambda),diff(v

(t,x,lambda),x),w(t,x,lambda),diff(v(t,x,lambda),lambda),diff(w(t,x,lambda

),lambda)):

> X:=(A)->eta*diff(A,u)+diff(eta,x)*diff(A,ux)+diff(eta,t)*diff(A,ut)+

diff(eta,x,x)*diff(A,uxx)+diff(eta,x,x,x)*diff(A,uxxx):

The determining equation obtained by the action of the infinitesimal generator on

pKdV is:
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> R:=X(ut-1/4*uxxx-3/2*ux^2):

> R1:=(subs(tr,R)):

We express the higher derivatives of the Lax pair, KdV and condition (16) in order

to simplify the determining equation:
> LPV1:=diff(v(t,x,lambda),x,x)=(lambda-2*diff(u(t,x),x))*v(t,x,lambda):

> LPV2:=diff(v(t,x,lambda),t)=(lambda+diff(u(t,x),x))*diff(v(t,x,lambda

),x)-1/2*diff(u(t,x),x,x)*v(t,x,lambda):

> LPW1:=subs(v=w,LPV1):

> LPW2:=subs(v=w,LPV2):

> eq:=diff(u(t,x),x,x,x)=-6*diff(u(t,x),x)^2+4*diff(u(t,x),t):

> W:=diff(w(t,x,lambda),x)=(diff(v(t,x,lambda),x)*w(t,x,lambda)+C(lambd

a))/v(t,x,lambda):

> tr1:=subs(tr,eq,diff(eq,x),diff(eq,t),LPV1,diff(LPV1,x),diff(LPV1,x,

x),diff(LPV1,lambda),diff(LPV1,lambda,x),LPV2,diff(LPV2,x),diff(LPV2,lambd

a),LPW1,diff(LPW1,x),diff(LPW1,x,x),diff(LPW1,lambda),diff(LPW1,lambda,x),

LPW2,diff(LPW2,x),diff(LPW2,lambda),W,diff(W,lambda)):

> R2:=numer(factor(subs(tr1,subs(tr1,subs(tr1,R1))))):

The splitting of the determining equation into system is:

> sys:=coeffs(R2,uxx,utx,utxx,utt,vlx):

The solution of the obtained system gives symmetry characteristics:
> sol:=rifsimp(convert(sys, diff));

> pdsolve(sol[’Solved’]);
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