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Abstract

We present a simple and constructive method to find N -soliton solutions of
the equation suggested by Davydova and Lashkin to describe the dynamics
of nonlinear ion-cyclotron waves in a plasma and subsequently known (in a
more general form and as applied to nonlinear optics) as the Fokas–Lenells
equation. Using the classical inverse scattering transform approach, we find
bright N -soliton solutions, rational N -soliton solutions, and N -soliton solutions
in the form of a mixture of exponential and rational functions. Explicit breather
solutions are presented as examples. Unlike purely algebraic constructions of the
Hirota or Darboux type, we also give a general expression for arbitrary initial
data decaying at infinity, which contains the contribution of the continuous
spectrum (radiation).

Keywords: N -soliton solution, Fokas–Lenells equation, exponential-rational
solution, inverse scattering transform, continuous spectrum, ion-cyclotron
waves

1. Introduction

Equations integrable by the inverse scattering transform (IST) method,
which arise in real physical situations and are important for practical applica-
tions, are of particular interest in nonlinear science [1]. Generally speaking, the
number of such equations is very limited and not too large. In plasma physics,
classical examples of completely integrable equations are the Korteweg-de Vries
(KdV) equation (and the modified KdV equation) for the nonlinear ion-acoustic
waves, the nonlinear Schrödinger (NLS) equation for the Langmuir waves (both
of these equations are also derived for the cases of other branches of plasma
oscillations using the reductive perturbation technique), the derivative nonlin-
ear Schrödinger (DNLS) equation describing nonlinear Alfvén waves, and the
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two-dimensional Kadomtsev-Petviashvili equation, which is a two-dimensional
generalization of the KdV equation [2, 3]. Slightly less known integrable models
(in plasmas) are the Boussinesq equation for the beam instabilities [4] and the
nonlinear string equation (elliptic Boussinesq) describing a nonlinear stage of
the two-stream instability in quantum plasmas [5], and also the Yajima-Oikawa
equations describing the interaction of Langmuir waves with ion-acoustic waves
propagating in one direction [6].

Davydova and Lashkin [7] suggested a nonlinear equation governing the
dynamics of short-wavelength ion-cyclotron waves in plasmas (the Bernstein
modes) [8, 9], which in the one-dimensional case in dimensionless variables has
the form

uxt − u− iσ|u|2ux = 0, (1)

where u(x, t) is the slowly varying complex envelope of the electrostatic potential
at the ion-cyclotron frequency, and σ = ±1. Authors of [7] found the bright
one-soliton solution of (1), and then the same authors (co-authored with A. I.
Fishchuck) presented solutions of this equation in the form of bright algebraic
soliton, dark and anti-dark solitons corresponding the nonvanishing boundary
conditions, as well as solutions in the form of nonlinear periodic waves in elliptic
Jacobi functions [10]. Later on, Fokas and Lenells showed [11, 12] that (1) is
completely integrable and corresponds to the first negative flow of the Kaup–
Newell hierarchy of the DNLS equation [13], and, therefore, can be solved by
the IST [14]. Note that the original version of the equation considered in [11,
12] differs from (1) and has been derived as an integrable generalization of
the NLS equation using bi-Hamiltonian methods [11], and then as a model for
nonlinear pulse propagation in monomode optical fibers when certain higher-
order nonlinear effects are taken into account [15]. Under this, the corresponding
equation in dimensionless variables is

iut − νuxt + γuxx + σ|u|2(u+ iνux) = 0, (2)

where ν and γ are real constants, σ = ±1, and by gauge transformation and
a change of variables can be reduced to equation (1) suggested in [7]. Lenells
rediscovered [15] the bright one-soliton solution of [7] without using the IST.
Bright N -soliton solutions of (2) were obtained by Lenells in [16] with the dress-
ing method, and for (1) by the Hirota bilinear method in [17]. Dark N -soliton
solutions, which contain dark and anti-dark soliton solutions of [10], were found
by the bilinearization method in [18, 19]. The N -order rogue wave solution of
equations (1) and (2) were obtained using the N -fold Darboux transformation
in [20, 21]. In what follows, we will refer to (1) as the Davydova-Lashkin-Fokas-
Lenells (DLFL) equation. The DLFL equation (1) is universal in the sense that
it contains only three terms of the second of which corresponds to weak dis-
persion (ω ∼ 1/k ≪ 1) and the third to weak (cubic) nonlinearity. Here, ω
and k are the frequency and wave number respectively, where in the linear part
u ∼ exp(iωt− ikx). The same situation holds for the NLS and DNLS equations
with the weak dispersion ω ∼ k2 ≪ 1 (and cubic nonlinearity), and the KdV
equation with ω ∼ k3 ≪ 1 (and quadratic nonlinearity). Note that the weak
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dispersion and nonlinearity in all these cases follow from the physical derivation
of the corresponding equations [2].

Unlike equation (2) derived for a very special case of pulse propagation in
nonlinear optics, the DLFL equation (1) describes nonlinear one-dimensional
short-wavelength ion-cyclotron waves in plasmas. The importance of the theo-
retical study of nonlinear ion-cyclotron waves, in particular solitons, is due, first
of all, to reliable experimental data on their observation in the Earth’s magne-
tosphere [22, 23, 24]. In particular, the profile of the measured electric field is
definitely a chain of several solitons [24].

The aim of this paper is to obtain the N -soliton solutions of the DLFL
equation using the classical method of the IST in which it is possible to take into
account the continuous spectrum of the spectral problem (radiation). Note that
purely algebraic methods for finding theN -soliton solutions such as the Darboux
transformation or the Hirota bilinear method are not suitable for this purpose
by definition. Note that in practical situations, the initial perturbation almost
never corresponds to a purely solitonic (reflectionless potential) and can be
either quite close or very different from it. In any case, then taking into account
the continuous spectrum and using IST (in one form or another) is necessary.
From a physical point of view, the spectral parameter of the continuous spectrum
λ in the IST for the DLFL equation is related to the wave number of emitted
quasilinear ion-cyclotron waves k by a simple relation [25]. We use the IST in its
classical form, but all results can be easily reformulated and reproduced using
the Riemann-Hilbert problem.

The paper is organized as follows. In section 2 we review some results on
the IST for the DLFL equation, and then present the general formal solution as
the sum of the soliton and nonsoliton parts expressed in terms of the scattering
data and Jost solutions corresponding to the discrete and continuous spectrum,
respectively. In section 3 we find the N -soliton solutions and, in particular,
algebraic N -soliton solutions and solutions in the form of a mixture of rational
and exponential functions. The asymptotics of the N -soliton solution is con-
sidered in section 4. The conclusion is made in section 5. In the Appendix,
we give a brief outline of the derivation of a two-dimensional nonlinear equa-
tion describing the dynamics of ion-cyclotron waves in plasmas, which in the
one-dimensional case reduces to the DLFL equation (1).

2. Spectral problem for the DLFL equation

At the beginning of this section we will give a brief overview on the IST for
the DLFL equation following [25]. The DLFL equation (1) can be written as
the compatibility condition

Ut −Vx + [U,V] = 0, (3)

of two linear matrix equations [12, 25]

Mx = UM, (4)

Mt = VM, (5)
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where

U = −iλ2σ3 + λQx, Q =

(

0 u
σu∗ 0

)

(6)

V =
i

4λ2
σ3 −

i

2λ
σ3Q+

i

2
σ3Q

2, (7)

and where M(x, t, λ) is a 2× 2 matrix-valued function, λ is a complex spectral
parameter and σ3 is the Pauli matrix. The Jost solutions M±(x, t, λ) of (4) for
real λ2 and for some fixed t (t-dependence will be omitted for now) are defined
by the boundary conditions

M±(x, λ) → exp(−iλ2σ3x) (8)

as x→ ±∞. The matrix Jost solutions M± are presented in the form

M+(x, λ) =

(

ψ̃1(x, λ) ψ1(x, λ)

ψ̃2(x, λ) ψ2(x, λ)

)

, M−(x, λ) =

(

ϕ1(x, λ) −ϕ̃1(x, λ)
ϕ2(x, λ) −ϕ̃2(x, λ)

)

.

(9)
The scattering matrix S

S(λ) =

(

a(λ) −b̃(λ)
b(λ) ã(λ)

)

(10)

with aã+ bb̃ = 1 relates the two fundamental solutions M− and M+

M−(x, λ) = M+(x, λ)S(λ), (11)

so that

ϕ = aψ̃ + bψ, (12)

ϕ̃ = −ãψ + b̃ψ̃. (13)

Further we set σ = −1 without loss of generality. It follows from (4) and (11)
that matrices M± and S have the parity symmetry properties,

M±(x, λ) = σ3M
±(x,−λ)σ3, S(λ) = σ3S(−λ)σ3, (14)

and the conjugation symmetry properties

M±(x, λ) = σ2M
±∗(x, λ∗)σ2, (15)

ã(λ) = a∗(λ∗), b̃(λ) = b∗(λ∗), (16)

where σ2 and σ3 are Pauli matrices. The coefficients a(λ) and b(λ) are

a(λ) = det (ϕ, ψ), b(λ) = det (ψ̃, ϕ). (17)

The zeros λ2j (j = 1 . . .N) of the function a(λ) in the region of its analiticity

Imλ2 > 0 (correspondingly, the zeros λ∗2j of the function ã(λ) in the region

4



Imλ2 < 0 ) give the discrete spectrum of the linear problem (4) and correspond
to solitons. The zeros λj (j = 1 . . . 2N) appear in pairs and one can choose
λj (j = 1 . . .N) in the first quadrant and λj+N = −λj in the third quadrant.
Then, as it follows from (12) and (13), the functions ϕ(x, λj) and ψ(x, λj) are
linearly dependent

ϕ(x, λj) = bj(λj)ψ(x, λj), ϕ̃(x, λ∗j ) = b∗j (λ
∗
j )ψ̃(x, λ

∗
j ). (18)

The coefficient a(λ) can be expressed in terms of its zeros and the values of b(λ)
on the contour Γ = (+∞, 0)

⋃

(−∞, 0)
⋃

(+i∞, 0)
⋃

(−i∞, 0) [25],

a(λ) =

N
∏

j=1

λ∗2j
λ2j

(λ2 − λ2j )

(λ2 − λ∗2j )
exp

{

1

2πi

∫

Γ

λ2 ln(1 + σ sgnµ2| b(µ)| 2)
µ(µ2 − λ2)

dµ

}

. (19)

An important particular case is that of the solitonic (”reflectionless”) potentials
u(x) when b(λ, t) = 0 as a function of λ for some fixed t. It then follows from
(19) that

a(λ) =

N
∏

j=1

λ∗2j
λ2j

(λ2 − λ2j )

(λ2 − λ∗2j )
. (20)

The time evolution of the scattering data, as usual in the IST, turns out to be
trivial,

λj(t) = λj(0), (21)

bj(t) = bj(0) exp[−i/(2λ2j)t], (22)

b(λ, t) = b(λ, 0) exp[−i/(2λ2)t]. (23)

and in the following we denote λj(t) ≡ λj , bj(t) ≡ bj and b(λ, t) ≡ b(λ). Taking
into account the boundary conditions (8), the corresponding integral equations
for M+ can be obtained from (4):

ψ1(x, λ) = −λ
∫ ∞

x

e−iλ2(x−y)uyψ2(y, λ) dy, (24)

ψ2(x, λ) = eiλ
2x + λ

∫ ∞

x

eiλ
2(x−y)u∗yψ1(y, λ) dy, (25)

ψ̃1(x, λ) = e−iλ2x − λ

∫ ∞

x

e−iλ2(x−y)uyψ̃2(y, λ) dy, (26)

ψ̃2(x, λ) = λ

∫ ∞

x

eiλ
2(x−y)u∗yψ̃1(y, λ) dy. (27)

Then, from (24)-(27) one can find the corresponding asymptotics at λ→ 0,

ψ1(x, λ) = λu+O(λ2), (28)

ψ2(x, λ) = 1 +O(λ2), (29)

ψ̃1(x, λ) = 1 +O(λ2), (30)

ψ̃2(x, λ) = −λu∗ +O(λ2). (31)
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Note that equation (4), that is the x part of the Lax pair (4)-(5) of the DLFL
equation, is simply related to the x part of the Lax pair of the DNLS equation
by the replacement u → ux. The revised Zakharov equations for the Jost
functions ψ and ψ̃ of the DNLS equation were obtained in [26] and coincide
with the corresponding equations of the DLFL equation, except that the time
dependences of the coefficients bj(t) and b(λ, t) are determined by equations
(22) and (23) respectively. Following [26] and using this analogy, we can write
the equations for ψ̃1,2 in the form

ψ̃1(x, λ) = e−iλ2x +

2N
∑

k=1

λ2

λ2k(λ− λk)

bk(λk)

ȧ(λk)
ψ1(x, λk)e

i(λ2

k−λ2)x

+
1

2πi

∫

Γ

λ2

λ′2(λ′ − λ)

b(λ
′

)

a(λ′)
ψ1(x, λ

′

)ei(λ
′
2−λ2)x dλ

′

, (32)

ψ̃2(x, λ) =

2N
∑

k=1

λ

λk(λ− λk)

bk(λk)

ȧ(λk)
ψ2(x, λk)e

i(λ2

k−λ2)x

+
1

2πi

∫

Γ

λ

λ′(λ′ − λ)

b(λ
′

)

a(λ′)
ψ2(x, λ

′

)ei(λ
′
2−λ2)x dλ

′

. (33)

Then from (31) and (33) we have

u∗ = − lim
λ→0

ψ̃2(x, λ)

λ
= u∗s + u∗rad, (34)

where u∗s corresponds to the discrete part of the spectrum (solitons),

u∗s =

N
∑

k=1

2

λ2k

bk(λk)

ȧ(λk)
ψ2(x, λk)e

iλ2

kx, (35)

and we have taken into account the reduction properties (14) and (15), using
which the sum over 2N terms in (33) is replaced by the sum over N . The term
u∗rad corresponds to the continuous spectrum (radiation field),

u∗rad =
1

2πi

∫

Γ

ψ2(x, λ)

λ2
b(λ)

a(λ)
eiλ

2x dλ. (36)

In the general case, as in other integrable models such as the NLS equation,
KdV equation, etc., an arbitrary initial perturbation vanishing at infinity rapidly
enough decays over time into dispersive quasilinear waves corresponding to urad
and solitons corresponding to us (if any - depending on the initial conditions,
the solitons may not occur at all). In contrast to the work of Matsuno [17],
where the purely algebraic Hirota bilinear method was used to find N -soliton
solutions, as well as the work of Lenells [16] using the dressing method, the ex-
pression (34) also contains the nonsoliton part urad associated with the nonzero
coefficient b(λ) (or, equivalently, to r(λ) = b(λ)/a(λ) sometimes called the re-
flection coefficient in the IST). The initial conditions corresponding to purely
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N -soliton solutions, as is known, correspond to b(λ) = 0 (the so-called reflec-
tionless potentials). As was shown in [25], considering the radiative component
as a superposition of free waves governed by the linearized equation (1) with
the dispersion law ω = 1/k, one can conclude that the spectral parameter λ is
connected to the wave number of the emitted quasilinear waves k by the relation

k = 2λ2. (37)

In the general case, when b(λ) 6= 0, as is known, the solution cannot be writ-
ten in an explicit analytical form, however, if b(λ) is not equal to zero, but
small enough, b(λ) ≪ 1, one can use the perturbation theory. Under this,
the coefficient a(λ) and the Jost function ψ2(x, λ) can be taken purely soliton
(the calculation of the purely N -soliton ψ2(x, λ) is described in the next sec-
tion). Continuous spectrum effects, in particular, the spectral distribution of
ion-cyclotron wave radiation within the framework of the DLFL equation (1),
were considered in [25]. An example of calculating of the radiation field urad in
the physical space for the DNLS equation is given in [27].

3. N-soliton solutions

In the pure soliton case b(λ) = 0, using the parity and conjugation properties
(14) and (15) in equations (32) and (33), we have for the Jost solutions ψ̃1(x, λ)
and ψ̃2,

ψ̃1(x, λ) = e−iλ2x +

N
∑

k=1

2λ2

λk(λ2 − λ2k)

bk(λk)

ȧ(λk)
ψ1(x, λk)e

i(λ2

k−λ2)x (38)

ψ̃2(x, λ) =

N
∑

k=1

2λ

(λ2 − λ2k)

bk(λk)

ȧ(λk)
ψ2(x, λk)e

i(λ2

k−λ2)x. (39)

Evaluating (38) and (39) at λ∗j and taking into account the conjugation prop-
erties (15), one can obtain

ψ∗
2(x, λj) = e−iλ∗2

j x +

N
∑

k=1

2λ∗2j
λk(λ∗2j − λ2k)

bk(λk)

ȧ(λk)
ψ1(x, λk)e

i(λ2

k−λ∗2

j )x (40)

ψ∗
1(x, λj) = −

N
∑

k=1

2λ∗j
(λ∗2j − λ2k)

bk(λk)

ȧ(λk)
ψ2(x, λk)e

i(λ2

k−λ∗2

j )x. (41)

Equations (40) (after its complex conjugation) and (41) are a system of 2N
linear algebraic equations for the vector functions ψ∗

1(x, λj) and ψ2(x, λj). This
system can be solved in a standard way, and after obtaining ψ2(x, λj) and using
(35) one can find a solution u∗ through the corresponding determinants. A
similar procedure was used to obtain N -soliton solutions of the DNLS equation
[26]. Here, however, we present a simple alternative way of finding ψ2(x, λj),
which leads to a much more compact formula for the N -soliton solution of
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equation (1). An analogue of equation (38) for the function ϕ1(x, λ) can be
written in the form

ϕ1(x, λ) = e−iλ2x +

N
∑

k=1

2λ2

λ∗k(λ
2 − λ∗2k )

bk(λ
∗
k)

˙̃a(λ∗k)
ϕ̃1(x, λ

∗
k)e

i(λ∗2

k −λ2)x. (42)

Evaluating this at λj we have

ϕ1(x, λj) = e−iλ2

jx +

N
∑

k=1

2λ2j
λ∗k(λ

2
j − λ∗2k )

bk(λ
∗
k)

˙̃a(λ∗k)
ϕ̃1(x, λ

∗
k)e

i(λ∗2

k −λ2

j)x. (43)

Using ˙̃a(λ∗k) = ȧ∗(λk) and bk(λ
∗
k)b

∗
k(λk) = 1 we find

bj(λj)ψ1(x, λj) = e−iλ2

jx +

N
∑

k=1

2λ2j
λ∗k(λ

2
j − λ∗2k )

1

ȧ∗(λk)
ψ∗
2(x, λk)e

i(λ∗2

k −λ2

j)x. (44)

On the other hand, taking complex conjugate of (41) and then multiplying it
by bj(λj) we have

bj(λj)ψ1(x, λj) = −
N
∑

k=1

2λjbj(λj)

(λ2j − λ∗2k )

b∗k(λk)

ȧ∗(λk)
ψ∗
2(x, λk)e

−i(λ∗2

k −λ2

j )x. (45)

Subtracting (45) from (44), one can readily get

1 +

N
∑

k=1

(λ2jλ
∗
k + λjλ

∗2
k cjc

∗
k)

(λ2j − λ∗2k )
Fk = 0, (46)

where

Fk =
2ψ∗

2(λk)

λ∗2k ȧ
∗(λk)

eiλ
∗2

k x, (47)

and the time dependence of bj in (22) is explicitly taken into account, so that

cj = bj exp
(

2iλ2jx− i/(2λ2j)t
)

. (48)

Using the expression for the N -soliton solution (35) and taking into account
(47) we have for u

u =

N
∑

k=1

c∗kFk. (49)

From (46) and (49) one can obtain the N -soliton solution u in a compact form

u =
N
∑

k,j=1

c∗k(K
−1)kj , (50)
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where the elements of the N ×N matrix K are

Kjk =
λjλ

∗
k

λ∗2k − λ2j
(λj + λ∗kcjc

∗
k). (51)

Equations (50) and (51) were previously obtained by Lenells [16] using the
dressing method, but the solution u was not expressed in the determinant form.
Note also that in [16], a more general equation than (1) was considered. Using
(50) and the identity

AT
1 A

−1A2 =
det(A+A2A

T
1 )

det(A)
− 1, (52)

where A is an arbitrary N×N matrix, A1 and A2 are arbitrary N×1 matrices
respectively, we can write the N -soliton solution of equation (1) as

u =
det(K̃)− det(K)

det(K)
, (53)

where the elements of the matrix K̃ are

K̃jk = Kjk + c∗k. (54)

In what follows, we parameterize the complex numbers λj and bj in terms of
four real parameters ∆j > 0, 0 < γj < π, x0j (the initial position of the soliton)
and φ0j (the initial phase) as

λ2j = ∆2
j(cos γj + i sin γj), (55)

bj = exp(2x0j∆
2
j sin γj + iφ0j). (56)

With this parametrization λj and −λj lie in the 1-st and 3-rd quadrants respec-
tively of the complex plane (±λ∗j – in the 2-st and 4-th quadrants respectively).
Then cj determined by (48) can be written as

cj = exp(−zj + iΦj), (57)

where
zj = 2∆2

j (x− x0j + vjt) sin γj , (58)

with vj = 1/(4∆4
j), and

Φj = 2∆2
j (x− vjt) cos γj + φ0j . (59)

Using this parametrization and (51), for the elements Kjk of the matrix K one
can obtain

Kjk =
∆j∆k

[

∆je
i(γj−γk/2) +∆ke

i(γj/2−γk)e−zj−zk+i(Φj−Φk)
]

∆2
ke

−iγk −∆2
je

iγj
. (60)

In particular, for Kjj we have

Kjj =
i∆je

−zj cosh(zj + iγj/2)

sin γj
. (61)
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3.1. N-soliton solutions: rational and a mixture of exponential and rational

solutions

Equation (53) with matrix elements Kjk and cj determined by (60) and
(57) respectively is the N -soliton solution in exponential functions that decays
exponentially at infinity. It is essential that for these solutions γj < π and
γk < π in (60). However, the apparent singularity γj = π for Kjj in (61) is
fictitious and it is easy to show that in the limit γj → π the elements Kjj

become rational functions of x. In the limit γj → π and γk → π, for the values
c∗j in (57) and Kjj in (61) one can obtain

c∗j = exp
[

2i∆2
j (x− vjt)− iφ0j

]

, (62)

and

Kjj =
1

2

[

i∆j − 4∆3
j (x− x0j + vjt)

]

, (63)

and for j 6= k

Kjk =
i∆j∆k

∆2
k −∆2

j

{

∆k exp

[

2i
(

∆2
k −∆2

j

)

(

x+
t

4∆2
j∆

2
k

)]

−∆j

}

. (64)

Equation (53) with cj and the matrix elements Kjk determined by (62) and
(63), (64) respectively is the rational N -soliton solution decaying in power law
at infinity.

An interesting situation arises if γj → π with j = 1 . . .M , where M < N
and γk 6= π with k =M + 1 . . .N . Then from (60) one can find

Kjk =
∆j∆k

∆2
k +∆2

je
iγk

(

i∆ke
−zk+iΨjk −∆je

iγk/2
)

, (65)

where

Ψjk = −2(∆2
j +∆2

k cos γk)x+

(

1

∆2
j

+
cos γk
∆2

k

)

t

2
. (66)

Similarly, if γk → π and γj 6= π (note that the matrix Kjk is not symmetric)
we have

Kjk =
∆j∆k

∆2
ke

−iγj +∆2
j

(

i∆j +∆ke
−iγj/2e−zj+iΨjk

)

, (67)

where

Ψjk = 2(∆2
k +∆2

j cos γj)x−
(

1

∆2
k

+
cos γj
∆2

j

)

t

2
. (68)

Equation (53) with the coefficients cj and ck determined by (48) and (62) re-
spectively, and the matrix elements determined by (60) and (65), is an N -soliton
solution consisting of a mixture ofM rational and N−M exponential functions.
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3.2. One-soliton solutions: exponential and rational

The case N = 1 corresponds to the one-soliton solution of equation (1).
Then from (51) and (54) we have

K11 =
|λ1|2(λ1 + λ∗1|c1|2)

λ∗21 − λ21
, K̃11 = K11 + c∗1, (69)

and from (53) one can readily get

u1 =
c∗1
K11

=
c∗1(λ

∗2
1 − λ21)

|λ|2(λ1 + λ∗1|c1|2)
. (70)

Using the parametrization (55) and (56) this solution takes the form

u1 =
sin γ1 exp(−iΦ1)

i∆1 cosh(z1 + iγ1/2)
. (71)

An explicit expression for u1 in terms of the soliton amplitude and phase is

u1 =
sin γ1 exp{−iΦ1 − i arctan[tanh z1 tan(γ1/2)]}

i∆1

√

cosh2 z1 − sin2(γ1/2)
. (72)

Earlier this solution was obtained by Davydova and Lashkin [7, 10] without
using the IST. The soliton velocity (in the negative direction of x-axis) v1,
amplitude A and the characteristic halfwidth of the soliton w are

v1 =
1

4∆4
1

, A =
sin γ1
∆1

, w =
1

2∆2
1 sin γ1

. (73)

It is seen that the soliton can not be motionless, and it moves only in the
negative direction of x-axis. In the limit γ1 → π, from (71) (or, directly from
(62), (63) and (70) ) one can obtain the soliton with algebraic decay at infinity,

u1 =
2 exp(−iΦ1)

∆1(i − 2y)
, (74)

where y = 2∆1(x − x0 + v1t) and Φ1 = −2∆2
1(x − v1t) + φ01. In terms of the

amplitude and phase, the expression (74) takes the form

u1 =
2 exp[−iΦ1 + i arccot (4∆2

1y)]

∆1

√

1 + 16∆4
1y

2
. (75)

This algebraic soliton solution of the DLFL equation (1) was first obtained in
[10] and then rediscovered in [12].
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3.3. Two-soliton solutions

In the case N = 2 the corresponding matrix elements in (51) and (54) have
the form

K12 =
λ1λ

∗
2(λ1 + λ∗2c1c

∗
2)

λ∗22 − λ21
, K̃12 = K12 + c∗2, (76)

K21 =
λ2λ

∗
1(λ2 + λ∗1c2c

∗
1)

λ∗21 − λ22
, K̃21 = K21 + c∗1, (77)

K22 =
|λ2|2(λ2 + λ∗2|c2|2)

λ∗22 − λ22
, K̃22 = K22 + c∗2, (78)

and K11 is determined by (69). Then, as one can see from (53), the correspond-
ing general two-soliton solution is

u2 =
c∗1(K22 −K12) + c∗2(K11 −K21)

K11K22 −K12K21
, (79)

where c∗1 and c∗2 are determined by (57).
In the particular case, when the eigenvalues λ21,2 are purely imaginary (this

corresponds to γ1,2 = π/2), we have

c1 = e−y1 , c2 = e−y2 , (80)

K11 = i∆1e
−y1 cosh(y1 + iπ/4), K22 = i∆2e

−y2 cosh(y2 + iπ/4), (81)

K12 = i
∆1∆2

∆2
1 +∆2

2

(

∆1e
iπ/4 +∆2e

−iπ/4e−y1−y2

)

, (82)

K21 = i
∆1∆2

∆2
1 +∆2

2

(

∆2e
iπ/4 +∆1e

−iπ/4e−y1−y2

)

, (83)

where j = 1, 2 and yj = 2∆2
j(x − x0j + vjt), and the corresponding two-soliton

solution (79) has the simple form

u =
i(∆2

2 −∆2
1)[∆1 cosh y

+
1 −∆2 cosh y

+
2 ]

(∆2
1 +∆2

2){∆1∆2[cosh y
+
1 cosh y+2 + 2i sinh(y1 + y2)] + ∆2

1 +∆2
2}
, (84)

where y+j = yj + iπ/4.
As another particular example, consider the two-soliton rational-exponential

bound state. If the velocities v1 and v2 of the components in a two-soliton
solution are equal, then the solution represents a bound state. Consider such
a solution when one of the components is an algebraic soliton. Let γ1 → π
and γ2 ≡ γ < π, and v1 = v2 ≡ v, x01 = x02 = 0, φ01 = φ02 = 0. Then the
corresponding coefficients c∗1 and c∗2 are

c∗1 = exp[2i∆2(x− vt)], c∗2 = exp[−y sin γ − 2i∆2(x− vt) cos γ], (85)

where y = 2∆2(x+ vt). From (63) and (61) we have

K11 =
∆

2
(i− 2y), K22 =

i∆e−y sin γ cosh(y sin γ + iγ/2)

sin γ
, (86)
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and from (65) one can obtain

K12 =
∆
(

ie−y sin γ+iΨ−iγ/2 − 1
)

2 cos(γ/2)
, K21 =

∆
(

ieiγ/2 + e−y sin γ−iΨ
)

2 cos(γ/2)
, (87)

where Ψ = qx−Ωt with Ω = cos2(γ/2)/∆2 and q = Ω/v. The solution (79) with
such coefficients and matrix elements pulsates with two independent frequencies
Ω and 1/(2∆2). Note that, despite the presence of an exponential component,
the solution decays at infinity by a power law ∼ 1/|y|. In particular, for γ = π/2
(this corresponds to the largest amplitude of the exponential component), the
solution simplified to

u =
ieiΨ cosh y+ − y + (3/2)i

∆[2i(i− 2y) coshy+ − cosh y− + cosΨ]
, (88)

where y± = y ± iπ/4. This solution is a breather (there is one independent
frequency) and oscillates with a period T = 4π∆2.

4. The asymptotic behavior of the N-soliton solution

Consider the time asymptotics of the two-soliton solution (79), assuming that
the velocities of the two soliton components v1 and v2 are different. Assume
v1 > v2 and let z1 be fixed. Then at t→ −∞ we have z2 → ∞ and |c1| is finite
while |c2| → 0. Evaluating the corresponding Kjk from (69) and (76)-(78) and
inserting into (79) one can obtain the leading term as

u2 ∼ c∗1(λ
∗2
2 − λ1)(λ

∗2
1 − λ2)[|λ2|2λ2(λ∗22 − λ21)− λ21λ

∗
2(λ

∗2
2 − λ22)]

λ2|λ1|2|λ2|2[(λ∗22 − λ1)(λ∗21 − λ2)(λ1 + λ1|c1|2)− λ1(λ∗21 − λ1)(λ∗22 − λ2)]
,

(89)
that can be written in the form

u2 ∼ c̃∗1(λ
∗2
1 − λ21)

|λ|2(λ1 + λ∗1|c̃1|2)
, (90)

where

c̃1 = c1 exp

[

− ln
λ22(λ

∗2
2 − λ21)

λ∗22 (λ22 − λ21)

]

. (91)

One can see that the asymptotic of u2 determined by (90) has the same form
as the one-soliton solution (70) except the phase shifts, so that we have

u2 ∼ u1(z1 +∆z−1 ,Φ1 +∆Φ−
1 ), (92)

where

∆z−1 = ln

∣

∣

∣

∣

λ∗22 − λ21
λ22 − λ21

∣

∣

∣

∣

, ∆Φ−
1 = − arg

λ∗22 − λ21
λ22 − λ21

− arg
λ22
λ∗22

+ π. (93)
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Similarly, if t → +∞ we have z2 → −∞ and then |c1| is finite while |c2| → ∞.
The leading term in that case is

u2 ∼ c∗1λ
∗2
2 (λ∗21 − λ21)(λ

2
2 − λ21)(λ

∗2
1 − λ22)

λ22|λ1|2[λ1(λ21 − λ∗22 )(λ∗21 − λ∗22 ) + λ∗1(λ
2
1 − λ∗22 )(λ∗21 − λ21)|c1|2]

, (94)

and it can be written as (90), where

c̃1 = c1 exp

[

ln
λ22(λ

∗2
2 − λ21)

λ∗22 (λ22 − λ21)

]

. (95)

And
u2 ∼ u1(z1 +∆z+1 ,Φ1 +∆Φ+

1 ), (96)

where

∆z+1 = − ln

∣

∣

∣

∣

λ∗22 − λ21
λ22 − λ21

∣

∣

∣

∣

, ∆Φ+
1 = arg

λ∗22 − λ21
λ22 − λ21

+ arg
λ22
λ∗22

+ π. (97)

The total shifts are determined by ∆z1 = ∆z+1 −∆z−1 and ∆Φ1 = ∆Φ+
1 −∆Φ−

1 .
Then, taking into account (58), (93) and (97), we have for the position shift of
the soliton j = 1,

∆x1 =
2i

λ21 − λ∗21
ln

∣

∣

∣

∣

λ∗22 − λ21
λ22 − λ21

∣

∣

∣

∣

(98)

and for the corresponding phase shift,

∆Φ1 = 2 arg
λ∗22 − λ21
λ22 − λ21

+ 2 arg
λ22
λ∗22

. (99)

If we now fix z2 (as before v1 > v2), then after similar calculations one can
obtain

∆x2 = − 2i

λ22 − λ∗22
ln

∣

∣

∣

∣

λ∗21 − λ22
λ21 − λ22

∣

∣

∣

∣

, (100)

and for the corresponding phase shift,

∆Φ2 = −2 arg
λ∗21 − λ22
λ21 − λ22

− 2 arg
λ21
λ∗21

. (101)

Generalization to the N -soliton solution can be performed straightforwardly
following the two-soliton case. Soliton velocities are assumed to be ordered
as v1 > v2 > · · · > vN . As in the two-soliton case, we consider the limits
t→ −∞ and t→ ∞ and assume that zn is fixed. Then in the first case we have
|cj | → ∞ for j < n and |cj | → 0 for n < j, and in the second |cj | → 0 for j < n
and |cj | → ∞ for n < j. In both cases, the leading-order asymptotics of the

matrices K̃ and K are Cauchy matrices [28] and the corresponding determinants
in (53) are factorized (that is, they are Cauchy determinants). Omitting the
calculations, we present only the final results. The asymptotic form of the
N -soliton solution is

uN ∼ u1(zn +∆z−n ,Φn +∆Φ−
n ), (102)
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as t→ −∞, and
uN ∼ u1(zn +∆z+n ,Φn +∆Φ+

n ), (103)

as t→ ∞ with ∆z+n = −∆z−n and ∆Φ+
n = −∆Φ−

n +2πN . The total phase shifts
of the n-th soliton

∆xn =
2i

λ2n − λ∗2n





N
∑

j=n+1

ln

∣

∣

∣

∣

∣

λ∗2j − λ2n
λ2j − λ2n

∣

∣

∣

∣

∣

−
n−1
∑

j=1

ln

∣

∣

∣

∣

∣

λ∗2j − λ2n
λ2j − λ2n

∣

∣

∣

∣

∣



 , (104)

∆Φn = 2
N
∑

j=n+1

[

arg

(

λ∗2j − λ2n
λ2j − λ2n

)

+ arg

(

λ2j
λ∗2j

)]

−2

n−1
∑

j=1

[

arg

(

λ∗2j − λ2n
λ2j − λ2n

)

+ arg

(

λ2j
λ∗2j

)]

. (105)

In the general case, the asymptotic N -soliton solution is a superposition of
N separate one-soliton solutions with the corresponding parameters ∆j and γj
where j = 1 . . .N . Note that, for a rational soliton (γn → π) we have λ2n = −∆2

n

and, using L’Hôpital’s rule, we can obtain ∆xn = 0, so that the position shift
of the of this soliton upon interaction with other solitons is equal to zero.

5. Conclusion

In this paper, we have presented a simple and constructive method for find-
ing N -soliton solutions of the DLFL equation (1) to describe the dynamics of
nonlinear ion-cyclotron waves in a plasma. The proposed method is based on
the classical formulation of the IST and differs from the Hirota bilinear method
used in [17] as well as the dressing method in [16] primarily in that it allows
one to take into account the contribution of the continuous spectrum that is,
the radiation field. The resulting general expression for arbitrary initial data
decaying at infinity is written in terms of discrete and continuous scattering
data and the corresponding Jost solutions and consists of soliton and nonsoli-
ton (radiative) parts. The first of them corresponds to the discrete spectrum of
the spectral problem (4) and the second part does to the continuous spectrum.
The radiation part is represented as an integral over the spectral parameter, and
depends on one of the Jost solutions and the reflection coefficient. Thus, the ra-
diative part corresponding to quasilinear ion-cyclotron waves can, in principle,
be determined explicitly if the corresponding Jost solution and the reflection
coefficient are known. For example, under certain conditions, that is, using per-
turbation theory, the Jost solution and coefficient a(λ) can be taken as purely
soliton ones.

We have found two new types of N -soliton solutions the DLFL equation (1):
an algebraic N -soliton solution in rational functions, and a solution in the form
of a mixture of M rational and N −M exponential functions. Both solutions
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are presented in determinant form. As an example, we write out two two-
soliton solutions explicitly. The first of them corresponds to purely imaginary
eigenvalues, and the second represents a solution in the form of a bound state
of the usual bright soliton and the algebraic soliton, which pulsates with two
independent frequencies.
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9. Appendix

In this appendix we give a short outline of the derivation of the two-dimensional
nonlinear equation describing the dynamics of ion-cyclotron waves in plasmas,
first suggested by Davydova and Lashkin in [7] (see also [10]), which in the
one-dimensional case reduces to the DLFL equation (1). For a plasma in an
uniform external magnetic field H0 = H0ẑ oriented along the z-axis, the lin-
ear dispersion relation for the electrostatic ion-cyclotron waves (the Bernstein
modes) in the short-wavelength limit k⊥ρi ≫ 1 under the conditions k⊥ρe ≪ 1
and ω ≪ kzvTe is,

ω(k) = nΩi

[

1 +
1√

2π(1 + Ti/Te)k⊥ρi

]

≡ nΩi[1 +R(k⊥)], (106)

where R(k⊥) ≪ 1 [9]. Here ω and k are the frequency and wave vector

respectively,k⊥ =
√

k2x + k2y, Ωi is the ion-cyclotron frequency, ρα, vTα and

Tα are the Larmor radius, thermal velocity and temperature of particle species
α (e for electrons and i for ions) respectively, n = 1, 2, . . . . Next, we consider
the case of only the lowest harmonic n = 1. The Maxwell equation ∇ · D = 0
for the electrical displacement D(ω,k) = ε(ω,k)E(ω,k), where ε and E are the
dielectric function and electric field in the Fourier space respectively, can be
written in the physical two-dimensional space as

∇⊥ · (ε̂∇⊥ϕ) = 0, (107)
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where ε̂ is considered as a differential operator with ω → i∂/∂t and k →
−i∇⊥ ≡ −i(∂/∂x, ∂/∂y). The principal nonlinear effect for ion-cyclotron waves
is the perturbation of the magnetic field δHz [7, 10]. In this case, the nonlinear
correction to the ion-cyclotron frequency in the expression for ε̂ is taken into
account, so that Ωi → Ωi(1+ h), where the relative nonlinear perturbation h of
the magnetic field H0 is

h =
δHz

H0
= −

ω2
pem|Φ|2
4H2

0Te
, (108)

where Φ is the envelope of the electrostatic potential Φ̃ at the ion-cyclotron
frequency,

Φ̃ =
1

2
[Φ exp(−iΩit) + c. c], (109)

and ωpe is the electron plasma frequency, m is the electron mass. In [7, 10], the
anisotropy of electron temperatures was also taken into account, and then for
the electron temperature Te in (108) it would be Te → T 2

e,‖/Te,⊥, where Te,‖
(i.e., along the z-axis) and Te,⊥ are parallel and transverse electron temperatures
respectively. Expanding ε(ω,k) near the eigenfrequency ωk determined by (106)
with the nonlinear correction (108) yields

ε(ω,k) = ε(ωk,k) + ε′(ωk,k)(ω − ωk), (110)

where ε′(ωk) ≡ ∂ε(ω)/∂ω |ω=ωk
. Substituting (110) into (107) along with (106)

and (108), one can obtain the nonlinear equation [7, 10] in the form

∆⊥

(

i

Ωi

∂Φ

∂t
− R̂Φ

)

= ∇⊥ · (h∇Φ), (111)

where ∆⊥ = ∂2/∂x2 + ∂2/∂y2 and the operator R̂ is defined by

R̂Φ(r, t) =

∫

R(k⊥)Φ̂(k⊥, t) exp(ik⊥ · r) dk⊥. (112)

In the one-dimensional case, and in the dimensionless variables

x→ x√
2π(1 + Ti/Te)ρi

, u→ Φ
ωpe

2H0

√

m

Te
, (113)

equation (111) reduces to the DLFL equation (1), where the signs σ = ±1
correspond to Φ∗ and Φ respectively.
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