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Abstract

The two-dimensional shallow water equations in Eulerian and Lagrangain coordinates are
considered. Lagrangian and Hamiltonian formalism of the equations is given. The transforma-
tions mapping the two-dimensional shallow water equations with a circular or plane bottom into
the gas dynamics equations of a polytropic gas with polytropic exponent γ = 2 is represented.

Group properties of the equations are considered, and the group classification for the case
of the elliptic paraboloid bottom topography is performed.

The properties of the two-dimensional shallow water equations in Lagrangian coordinates
are discussed from the discretization point of view. New invariant conservative finite-difference
schemes for the equations and their one-dimensional reductions are constructed. The schemes
are derived either by extending the known one-dimensional schemes or by direct algebraic
construction based on some assumptions on the form of the energy conservation law. Among
the proposed schemes there are schemes possessing conservation laws of mass and energy.

Keywords: shallow water, Lagrangian coordinates, Lie point symmetries, numerical scheme

1. Introduction

Shallow water equations are widely used to describe various physical phenomena, for ex-
ample, to study large-scale atmospheric and ocean currents, to describe currents in the coastal
zones of the seas and oceans, to simulate tsunamis, the propagation of breakthrough waves and
tidal bores in rivers, the distribution of heavy gases and impurities in the Earth’s atmosphere.

One of the approaches of the analysis of nonlinear wave fluid motions in rotating basins
of various shapes is carried out in the framework of the theory of shallow water [1]. The
rotating shallow water model is a well-known nonlinear approximation used to describe large-
scale atmospheric and ocean currents. These equations make it possible to provide important
qualitative properties of the currents. It should be mention here that there are many different
approaches for deriving shallow water equations.
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1.1. The shallow water equations in Eulerian and Lagrangian coordinates

The hyperbolic shallow water equations were derived as the first-order approximation with
respect to the depth of the equations obtained from the averaged inviscid incompressible fluid
dynamics equations. This approximation allows one to describe incompressible heavy fluid flow
with a free surface. These equations have the following form

ut + uux + vuy + hx = Hx, (1)

vt + uvx + vvy + hy = Hy, (2)

ht + (uh)x + (vh)y = 0, (3)

where H is the height of the lower surface (the bottom topography), h = η + H is the total
fluid thickness, η is the height of the upper free surface, (u, v) is the velocity, t is time, (x, y)
are the Eulerian coordinates.

H

h

Figure 1: The notation in Eulerian coordinates

Introducing Lagrangian coordinates (t, ã, b̃), where the labels ã and b̃ denote initial coordi-
nates of a particle, the variables x and y become dependent

x = φ1(t, ã, b̃), y = φ2(t, ã, b̃),

and the relations between the Lagrangian (t, ã, b̃) and Eulerian (t, x, y) coordinates are defined
by the equations

φ1
t (t, ã, b̃) = u(t, φ1(t, ã, b̃), φ2(t, ã, b̃)), φ2

t (t, ã, b̃) = v(t, φ1(t, ã, b̃), φ2(t, ã, b̃)). (4)

The conservation law of mass (3) provides the relation [2]

h = h0/J̃, (5)

where h0(ã, b̃) > 0 is the function of integration, and

J̃ = φ1
ãφ

2
b̃
− φ1

b̃
φ2
ã 6= 0. (6)

Applying the change
a = f 1(ã, b̃), b = f 2(ã, b̃), (7)

one finds that
J̃ = (f 1

ãf
2
b̃
− f 1

b̃
f 2
ã )J. (8)

where
J = φ1

aφ
2
b − φ1

bφ
2
a 6= 0. (9)
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Hence, choosing f 1(ã, b̃) and f 2(ã, b̃) such that

f 1
ãf

2
b̃
− f 1

b̃
f 2
ã = 2h0, (10)

one derives that
h(t, a, b) = H + η = 2J−1(t, a, b). (11)

Following the one-dimensional case, the coordinates (t, a, b) are called the mass Lagrangian
coordinates. As there is no ambiguity, the sign ˜ is further omitted.

Finally, we rewrite (1) and (2) in Lagrangian coordinates as

xtt + 2J−3(xayaybb − (ybxa + xbya)yab + xbyaayb − xaay2
b + 2xabyayb − xbby2

a) = Hx,

ytt + 2J−3(xbybxaa − (xayb + xbya)xab + xayaxbb − x2
byaa + 2xaxbyab − x2

aybb) = Hy.
(12)

1.2. Commutativity of Eulerian and Lagrangian derivatives

The Lagrangian derivatives Da, Db and DL
t can be defined through the Eulerian ones DE

t ,
Dx and Dy as follows [3]

Dt = DE
t + uDx + vDy, Da = φ1

aDx + φ2
aDy, Db = φ1

bDx + φ2
bDy, (13)

where the total derivatives in Eulerian coordinates are defined as follows

DE
t =

∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ uty

∂

∂uy
+ . . . ,

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ uxy

∂

∂uy
+ . . . ,

Dy =
∂

∂y
+ uy

∂

∂u
+ uty

∂

∂ut
+ uxy

∂

∂ux
+ uyy

∂

∂uy
+ . . . .

From the latter relations it follows that the Eulerian derivatives with respect to x and y are

Dx =
φ2
bDa − φ2

aDb

J
, Dy =

φ1
aDb − φ1

bDa

J
, (14)

where J is given by equation (9).
Here and further on for the sake of brevity we write φ1 ≡ x and φ2 ≡ y keeping in mind that

x and y are the coordinates of a Lagrangian particle. Also we denote Lagrangian derivatives of
a quantity f as ft, fa and fb, and its Eulerian derivatives as fEt , fx and fy.

Notice that the Lagrangian derivative DL
t does not commute with the Eulerian derivatives

Dx and Dy:

[DL
t , Dx] = DxD

L
t −DL

t Dx = uxDx + vxDy 6= 0,

[DL
t , Dy] = DyD

L
t −DL

t Dy = uyDx + vyDy 6= 0.
(15)

We now show that the Lagrangian derivatives (13) do commute in any order.
First,

[Da, Db] = [(xb)yya + (xb)xxa − (xa)xxb − (xa)yyb]Dx
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− [(ya)xxb + (ya)yyb − (yb)xxa − (yb)yya]Dy. (16)

By means of (14),

(xb)yya + (xb)xxa − (xa)xxb − (xa)yyb =
1

J
[(xaxbb − xbxab)ya + (xabyb − xbbya)xa

− (xaayb − xabya)xb − (xaxab − xbxaa)yb] = 0. (17)

The similar way one shows that

(ya)xxb + (ya)yyb − (yb)xxa − (yb)yya = 0.

Thus, the operators Da and Db commute on smooth enough solutions of the considered equa-
tions.

Next,

[DL
t , Da] = (xaux+yauy−u(xa)x−v(xa)y−(xa)

E
t )Dx+(xavx+yavy−u(ya)x−v(ya)y−(ya)

E
t )Dy

= (xa(xt)x + ya(xt)y − xat)Dx + (xa(yt)x + ya(yt)y − yat)Dy

=

[
1

J
(xa(xtayb − xtbya) + ya(xaxtb − xbxta))− xat

]
Dx

+

[
1

J
(xa(ytayb − ytbya) + ya(xaytb − xbyta))− yat

]
Dy

=

[
1

J
xta(xayb − xbya)− xat

]
Dx +

[
1

J
yta(xayb − xbya)− yat

]
Dy

= (xta − xat)Dx + (yta − yat)Dy = 0. (18)

The similar way one shows that [Dt, Db] = 0.
Thus, it was shown that the operators DL

t , Da and Db commute on smooth enough solutions
of the system.

1.3. The group analysis of the shallow water equations (1)–(3)

Group analysis of the one-dimensional shallow water equations has been applied in numerous
papers. A comprehensive review of these results can be found in [4]1. Among these, we mention
the papers [4, 5], where variable bottom topography was considered. In [5] the study was
performed in Eulerian coordinates. The conservation laws were derived by the direct method,
which had been applied earlier to the gas dynamics equations [6, 7]. On the other hand, in [4]
the shallow water equations were studied in Lagrangian coordinates.

The group analysis method has been applied to the two-dimensional shallow water equations
in [8–16].

In [13–15] group classification and conservation laws of the two-dimensional shallow-water
equations over an uneven bottom in the absence of a Coriolis force (f = 0) were studied. For
finding conservation laws the authors of [13–15] used the same approach as in [5].

In the papers [8–12] the Coriolis parameter was assumed to be constant, f = const, whereas
in [16] f = f0 + βy (β 6= 0). The authors of [8] studied group properties of the shallow water

1See also literature therein.
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equations with the elliptic paraboloid

H = Ax2 +By2, (A > 0, B > 0),

and it was shown that if A 6= B, then the admitted Lie algebra is six-dimensional, while if
the bottom is a circular paraboloid, then it is nine-dimensional. It was noted in [12] that for
a circular bottom the admitted Lie algebra is isomorphic to the Lie algebra admitted by the
classical shallow water equations with flat bottom H = const. This allowed to guess and then
to prove that there is a change of the dependent and independent variables such that these
two systems of equations are locally equivalent. For the particular (f 6= 0) case A = B = 0,
this property had been proven by the same author earlier in [10, 11]. In [8, 10–12], the study
was performed in Eulerian coordinates, whereas in [9, 16], the two-dimensional shallow water
equations were considered in Lagrangian coordinates. In [9], group properties of the two-
dimensional shallow water equations over a flat bottom (H = const) were studied. Using a
Lagrangian of the form presented in [17], the authors of [9] constructed conservation laws by
applying Noether’s theorem. According to [10, 11] the shallow water equations (H = const)
analysed in [9] are equivalent to the gas dynamics equations of an isentropic flow of a polytropic
gas for the exponent γ = 2. The group properties and conservation laws of the two-dimensional
gas dynamics equations in Lagrangian coordinates were studied in [18].

One advantage of choosing Lagragian coordinates for the study of the shallow water equa-
tions is that equations (1)–(3) have a variational structure: choosing the Lagrangian2

L =
1

2
(x2

t + y2
t )− (J−1 −H), (19)

the shallow water equations (1)–(3) turn to be the Euler-Lagrange equations
δL
δx

= 0 and

δL
δy

= 0, where
δ

δx
and

δ

δy
are variational derivatives. This variational structure allowed the

authors of [9, 18] to apply Noether’s theorem [19] for deriving conservation laws.
Application of the Hamiltonian principle to fluid dynamics in Eulerian coordinates can be

found in [20, 21].
The group classification of the shallow water equations with constant Coriolis parameter

and a variable bottom topography was studied in [22].
The group classification of the shallow water equations without Coriolis force in Eulerian

coordinates and variable bottom topography was studied in [23].

This paper is organized as follows. Lagrangian and Hamiltonian formalism of equations
(1)–(3) is given in the next section. Preliminary analysis of equations (1)–(3) is presented in
Section 3, where the transformations mapping the two-dimensional shallow water equations
with a circular or plane bottom into the gas dynamics equations of a polytropic gas with
polytropic exponent γ = 2 (equations (1)–(3)) with H = const) are found. Group properties of
equations (1)–(3) are described in Section 4.

The shallow water equations in Lagrangian coordinates (12) are discussed from the dis-
cretization point of view in Section 5. Their symmetry properties are considered in more detail
and some conservation laws of the equations are provided. It is also shown that equations (12)

2The authors of [9] used a different Lagrangian [17].
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can be rewritten in conservative form. In Section 6, invariant finite-difference schemes for the
two-dimensional shallow water equations in Lagrangian coordinates and their reductions are
constructed. Two different approaches for construction of such schemes are proposed: 1) con-
struction by extending the known one-dimensional schemes, and 2) direct algebraic construction
assuming the general form of the conservation law of energy is known. The results are summa-
rized in Conclusion.

2. Lagrangian and Hamiltonian formalism of equations (1)–(3)

The Lagrangian (19) has the form

L(xt, yt, x, y, xa, xb, ya, yb) =
1

2
(x2

t + y2
t ) + g(x, y, xa, xb, ya, yb). (20)

The Euler-Lagrange equations are

xtt =
δg

δx
, ytt =

δg

δy
. (21)

Introducing the variables
c1 = xt, c2 = yt,

the Lagrangian L becomes

L(c1, c2, x, y, xa, xb, ya, yb) =
1

2
(c2

1 + c2
2) + g(x, y, xa, xb, ya, yb).

The Euler-Lagrange equations (22) in the Lagrangian formalism can be rewritten in the form

(a1)t =
δL
δx
, (a2)t =

δL
δy
, xt = c1, yt = c2, (22)

where c1 and c2 are found from the equations

a1 =
δL
δc1

= c1, a2 =
δL
δc2

= c2.

As the Lagrangian (20) is nonsingular [24], then one can derive the Hamiltonian form as
follows [25].

Using the Legendre transformation

H = xtLxt + ytLyt − L =
1

2
(x2

t + y2
t )− g,

the Hamiltonian becomes

H(a1, a2, x, y, xa, xb, ya, yb) = 1
2
(a2

1 + a2
2)− g(x, y, xa, xb, ya, yb). (23)

The Hamiltonian equations are

xt =
δH

δa1

, yt =
δH

δa2

, (a1)t = −δH
δx

, (a2)t = −δH
δy
. (24)
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Substituting the Hamiltonian (23) into (24), the Hamiltonian equations become

xt = a1, yt = a2, (a1)t =
δg

δx
, (a2)t =

δg

δy
.

Hence,
a1 = xt, a2 = yt,

and one notes that equations (24) coincide with (21).

3. Preliminary consideration

As the gas dynamics equations have been extensively studied, before proceeding to the
group classification, we show that for particular bottoms the shallow water equations (1)–(3)
can be reduced to the gas dynamics equations (f = 0, H = const) of a polytropic gas with the
exponent γ = 2. In [22]3 it was found transformations mapping the shallow water equations
(1)–(3) with H = p(x2 + y2) and H = q1x+ q2y into equations (1)–(3) with horizontal bottom
H = 0.

Remark 3.1. Particular case of transformations found in [22] is the change

f t = t−1, fx = 2t−1(x+ y), f y = 2t−1(x− y),

fh = 8ht2, fu = −2t(u+ v) + 2(x+ y), f v = 2t(−u+ v) + 2(x− y),

which leaves equations (1)–(3) invariant.

4. Group classification

There is vast literature dedicated to the group classification of classes of differential equa-
tions. A comprehensive review can be found, for example, in [26, 27]4. In the present paper we
use the classical approaches [28].

Equations (1)–(3) contain the arbitrary function H(x, y). The first step in group clas-
sification is to find transformations that change the arbitrary elements while preserving the
differential structure of the equations themselves. Such transformations are called equivalence
transformations. The group classification is considered with respect to equivalence transforma-
tions.

4.1. Equivalence group

A generator of an equivalence Lie group [28] is assumed to be in the form [29]

Xe = ζ∂t + ζa∂a + ζb∂b + ζx∂x + ζy∂y + ζf0∂f0 + ζβ∂β + ζH∂H

where all coefficients of the generator depend on (t, a, b, x, y, f,H). Applying the prolonged
generator to the system consisting of equation (1)–(3) and the equations

Ht = 0, Ha = 0, Hb = 0,

3In [22], the author considered the shallow water equations with a constant Coriolis parameter f 6= 0.
However, one can check that the found there transformations are also valid and for equations with f = 0.

4See also literature therein.
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and splitting them with respect to the parametric derivatives, one obtains an overdetermined
system of partial differential equations. Solving this system, one finds the equivalence group.
The equivalence group corresponds to the generators:

Xe
1 = ∂x, X

e
2 = ∂y, X

e
3 = y∂x − x∂y, Xe

ψ = ψb∂a − ψa∂b,

Xe
4 = ∂t, X

e
5 = 2a∂a + t∂t + x∂x + y∂y,

Xe
6 = ∂H , X

e
7 = 2t∂t + x∂x + y∂y − 2H∂H .

There are also two involutions

E1 : t→ −t;
E2 : x→ −x, y → −y;

4.2. Classification of Admitted Lie groups

An admitted generator is sought in the form

X = ζ∂t + ζa∂a + ζb∂b + ζx∂x + ζy∂y,

where all coefficients depend on (t, a, b, x, y).
Applying the prolonged generator to equations (1)–(3), the determining equations are re-

duced to the study of the classifying equation

(αx+ βy + γ1)Hx + (−βx+ αy + γ2)Hy = 2γH + q(x2 + y2) + q1x+ q2y + q0. (25)

where

α = ζ ′ + 2k1, β = 2k4, γ = 2(ζ ′ − 2k1), q = −1

2
ζ ′′′,

γ1 = 2ζ1, γ2 = 2ζ2, q1 = −2ζ ′′1 , q2 = −2ζ ′′2 , q0 = g,

ζa = −ψb + 4k1a, ζ
b = ψa,

ζx =
1

2
ζ ′x+ k1x+ k4y + ζ1, ζ

y =
1

2
ζ ′y + k1y − k4x+ ζ2,

and the functions ζ(t), ζ1(t), ζ2(t), g(t) and ψ = ψ(a, b) are arbitrary functions of their argu-
ments.

The kernel of admitted Lie algebras, which is admitted for all cases of the function H(x, y),
consists of the generators

X1 = ∂t, X2 = −ψb∂a + ψa∂b. (26)

Extensions of the kernel occur for specific functions H(x, y). Consideration of these cases leads
to the analysis similar to applied in [22]5.

We restrict ourselves in this paper with the case H = px2 + 2cxy + by2 + q1x+ q2y + q0.
Using an orthogonal transformation one can reduce the function H(x, y) to the canonical

form:
H(x, y) = λ1x

2 + λ2y
2 + q1x+ q2y + q0. (27)

Notice that for λ1 6= 0, by virtue of the equivalence transformations corresponding to the

5In Eulerian coordinates group classification of equations (1)–(3) was done in [23].
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shifts of x and H, one can assume that q1 = 0. Similar, one can assume that q2 = 0 if λ2 6= 0.
Using the shift H, one can assume that q0 = 0. By virtue of the preliminary study, this allows
us to state the following theorem.

Theorem 4.1. If the bottom has the form

H(x, y) = p(x2 + y2) + q1x+ q2y + q0, (28)

where p and qi (i = 0, 1, 2) are constant, then system of the shallow water equations (1)–(3)
can be reduced to the gas dynamics equations6 of a polytropic gas with the exponent γ = 2.

Thus, the group classification of equations (1)–(3) with the bottom (27) is restricted to the
following cases

a) λ1 6= λ2;

b) λ1 = λ2 = q1 = q2 = q0 = 0.

Calculations in the first case are straight forward and the classification results are listed
in Table 1. In the first column of the table different forms of the function H are given. The
corresponding extensions of the kernel (31) and constraints on the constants and arbitrary
functions are presented in the second and the third columns of the table.

Table 1: Classification results H(x, y)

# H Extension Conditions

1. λ1x
2 + λ2y

2
x∂x + y∂y + 4a∂a,

ζ1(t)∂x + ζ2(t)∂y

λ1λ2(λ1 − λ2) 6= 0,

ζ ′′1 = 2λ1ζ1,

ζ ′′2 = 2λ2ζ2

2. λ1x
2 + q2y

4x∂x + 16a∂a + (2y − q2t
2)∂y,

t∂y, ∂y, ζ(t)∂x,

λ1 6= 0,

ζ ′′1 = 2λ1ζ1

5. Preliminary analysis of the shallow water equations for constructing finite-
difference schemes

5.1. The general case H = H(x, y)

For the further discretization of equations (12) it is more useful to consider them in the
following form

F1 = Dt(xt) +Da

(
ybJ

−2
)
−Db

(
yaJ

−2
)
−Hx = 0, (29)

6Equations (1)–(3) with f = 0 and H = const.
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F2 = Dt(yt)−Da

(
xbJ

−2
)

+Db

(
xaJ

−2
)
−Hy = 0. (30)

Recall that x and y denote the coordinates of a Lagrangian particle.

As it was shown above, the kernel of admitted Lie algebras, which is admitted by equa-
tions (29) and (30) for all cases of the function H(x, y), consists of the generators

X1 =
∂

∂t
, X2 = ψb

∂

∂a
− ψa

∂

∂b
, (31)

where ψ(a, b) is an arbitrary function corresponding to relabelling of Lagrangian variables.
Notice that there are shifts ∂

∂a
and ∂

∂b
, inhomogeneous scaling a ∂

∂a
−b ∂

∂b
and rotation b ∂

∂a
−a ∂

∂b

among the particular forms of the generator X2.

Equations (29), (30) possess the local conservation laws of mass, energy and momentum.
By means of equations (4) and (11) one can write the Eulerian conservation law of mass (3)

in Lagrangian coordinates as

Dt(J) = Dt(xayb − xbya) = Da(xtyb − ytxb) +Db(ytxa − xtya). (32)

The conservation law of energy which corresponds to the generator X1 = ∂
∂t

can be obtained
with the help of Noether’s theorem [19, 30]

xt
[
Dt(xt) +Da

(
ybJ

−2
)
−Db

(
yaJ

−2
)
−Hx

]
+ yt

[
Dt(yt)−Da

(
xbJ

−2
)

+Db

(
xaJ

−2
)
−Hy

]
= Dt

[
1

2
(xt

2 + yt
2) + J−1 −H

]
+Da

[
(xtyb − ytxb)J−2

]
+Db

[
(ytxa − xtya)J−2

]
= 0. (33)

The conservation law of momentum which corresponds to the generators ∂
∂a

and ∂
∂b

is

(xa + xb)
[
Dt(xt) +Da

(
ybJ

−2
)
−Db

(
yaJ

−2
)
−Hx

]
+ (ya + yb)

[
Dt(yt)−Da

(
xbJ

−2
)

+Db

(
xaJ

−2
)
−Hy

]
= Dt [(xa + xb)xt + (ya + yb)yt]+Da

[
2J−1 − x2

t + y2
t

2
−H

]
+Db

[
2J−1 − x2

t + y2
t

2
−H

]
= 0.

(34)

Remark 5.1. Equations (29)–(30) can be reduced to the one-dimensional shallow water equa-
tion

xtt −
2xaa
x3
a

− H̃ ′(x) = 0, (35)

by means of the relations x(t, a, b) = x(t, a), y(t, a, b) ≡ b.
The identity (32) becomes

Dt(xa)−Da(xt) = 0, (36)

and the Jacobian J is just reduced to xa in this case.

5.2. The case of a horizontal bottom H = const

For the further discretization purposes, here we consider the case of a horizontal bottom
topography (H = const) in more detail.
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In case H = const, the shallow water equations in Lagrangian coordinates are

F 0
1 = xtt +Da

(
ybJ

−2
)
−Db

(
yaJ

−2
)

= 0, (37)

F 0
2 = ytt −Da

(
xbJ

−2
)

+Db

(
xaJ

−2
)

= 0, (38)

and the admitted Lie algebra is the same as for the two-dimensional gas isentropic flows for
the polytropic constant γ = 2 [30, 31], i.e., the extension of the kernel (31) is

Y1 =
∂

∂x
, Y2 =

∂

∂y
, Y3 = t

∂

∂x
, Y4 = t

∂

∂y
,

Y5 = y
∂

∂x
− x ∂

∂y
, Y6 = t2

∂

∂t
+ tx

∂

∂x
+ ty

∂

∂y
,

Y7 = 2t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
, Y8 = 2a

∂

∂a
+ 2b

∂

∂b
+ x

∂

∂x
+ y

∂

∂y
.

(39)

Equations (37), (38) are “weak-invariant” with respect to the generators Y5–Y8, i.e., they
satisfy the infinitesimal criterion on solutions only:

Yk(F
0
j )|F 0

1 =0, F 0
2 =0 = 0, j = 1, 2, k = 5, 6, . . . , 8.

Remark 5.2. Jacobian (9) is a differential invariant of the generators X1, X2, Y1–Y5.

The conservation laws for the case H = const are listed in [4]. Among them there is the
center-of-mass law

Dt(t(xt + yt)− x− y) +Da

(
t(yb − xb)J−2

)
+Db

(
t(xa − ya)J−2

)
= 0. (40)

6. Discretization of the shallow water equations in Lagrangian coordinates

It is often more suitable to construct invariant finite-difference schemes for equations of
continuum mechanics in Lagrangian coordinates then in Eulerian ones [32], as the generators
admitted by the equations in Lagrangian coordinates typically preserve uniformness and or-
thogonality of the corresponding finite difference meshes. Such invariant conservative schemes
have been successfully constructed by the authors in [33–35].

6.1. Notation

Following this approach, we consider discretizations in Lagrangian coordinates in 3 + 3 +
3 + 27 + 27 = 63 variables on 27-point stencil (see Figure 2), i.e.,

tn+i ≡ tn+i
m+j,s+k, am+j ≡ an+i

m+j,s+k, bs+k ≡ bn+i
m+j,s+k, (41)

xn+i
m+j,s+k, yn+i

m+j,s+k, i, j, k = −1, 0, 1,

or, in alternative notation,

ť, t, t̂, a−, a, a+,
−b, b, +b,

−x̌−, x̌−, x̌, x̌+,
+x̌, . . . , +x̂+,

−y̌−, y̌−, y̌, y̌+,
+y̌, . . . , +ŷ+,

(42)
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m,sx
n

Figure 2: The 27-point stencil, Lagrangian coordinates

where

ẑ = zn+1
m,s , ž = zn−1

m,s , z± = znm±1,s,
±z = znm,s±1 for z ∈ {t, a, b, x, y}.

The standard finite-difference shift operators are defined as follows

S
±t
k(f(tn, am, bs, x

n
m,s, y

n
m,s)) = f(tn±k, am, bs, x

n±k
m,s , y

n±k
m,s ),

S
±a

k(f(tn, am, bs, x
n
m,s, y

n
m,s)) = f(tn, am±k, bs, x

n
m±k,s, y

n
m±k,s),

S
±b
k(f(tn, am, bs, x

n
m,s, y

n
m,s)) = f(tn, am, bs±k, x

n
m,s±k, y

n
m,s±k).

(43)

The total differentiation operators are defined through the shifts as

D
+τ

=
S
+τ
−1

tn+1 − tn
, D

−τ
=

1− S
−τ

tn − tn−1

,

D
+a

=
S
+a
−1

am+1 − am
, D
−a

=
1− S

−a

am − am−1

, D
+b

=
S
+b
−1

bs+1 − bs
, D
−b

=

1− S
−b

bs − bs−1

,

(44)

and the following notation is used for difference derivatives

xt = D
+τ

(x), x̌t = D
−τ

(x), xtť = D
−τ
D
+τ

(x), xa = D
+a

(x), x̌a = D
−a

(x), xaā = D
−a
D
+a

(x), etc.

6.2. Invariance of uniform orthogonal meshes

Notice that all the shift and differentiation operators commute in any order on uniform
orthogonal mesh

t̂− t = t− ť = τ, a+ − a = a− a− = ha, +b− b = b− −b = hb, (45)

where τ > 0, ha > 0 and hb > 0 are small enough constant values.

In the finite-difference case, in order to preserve uniform orthogonal meshes the genera-
tor X = ξt ∂

∂t
+ ξa ∂

∂a
+ ξb ∂

∂b
must satisfy the following criteria [32, 36]

D
+τ
D
−τ

(ξt) = 0, D
+a
D
−a

(ξa) = 0, D
+b
D
−b

(ξb) = 0, (46)

12



D
±b

(ξa) = −D
±a

(ξb), D
±τ

(ξa) = −D
±a

(ξt), D
±τ

(ξb) = −D
±b

(ξt), (47)

The transformation corresponding to X2 is related to the freedom of the Lagrangian coordi-
nates parametrization [4] which should be restricted in the difference case due to (46) and (47).

One can check that the generator X2 in its general form which depend on an arbitrary
function ψ does not satisfy (46), (47). As a particular example, consider

ψ(a, b) = a2 − b2.

From (31) it follows that ξa = −2b and ξb = −2a in this case, and the orthogonality condi-
tion (47) does not hold

D
+b

(ξa) + D
+a

(ξb) = D
+b

(−2b) + D
+a

(−2a) = −4 6= 0. (48)

For simplicity, we restrict our consideration to generators with coefficients of the form

ξt = 0, ξa = α1a+β1b+γ1, ξb = α2a+β2b+γ2, αi, βi, γi = const, i = 1, 2, (49)

which satisfy the uniformness conditions (46). Substituting ξa and ξb into the orthogonality
condition (47), one obtains β1 = −α2, i.e.,

ξa = α1a− α2b+ γ1, ξb = α2a+ β2b+ γ2. (50)

According to (31), one has the following restrictions on the function ψ

ξa = α1a− α2b+ γ1 = ψb, ξb = α2a+ β2b+ γ2 = −ψa. (51)

Integrating the latter equations, one gets

ψ(a, b) = α1ab−
1

2
α2b

2 + γ1b+ χ1(a) = −β2ab−
1

2
α2a

2 − γ2a+ χ2(b), (52)

where χ1 and χ2 are some functions of their arguments. Comparing the latter expressions for
the function ψ, one obtains that β2 = −α1, and the function ψ corresponding to the chosen
particular solution is the following

ψ(a, b) = α1ab−
α2

2
(a2 + b2)− γ2a+ γ1b+ δ, δ = const. (53)

Substituting (53) into (31), one obtains the following particular form of the generator X2

X0
2 = (α1a− α2b+ γ1)

∂

∂a
+ (α2a− α1b+ γ2)

∂

∂b
,

which results in the following set of shifting, inhomogeneous scaling and rotation generators

X1
2 =

∂

∂a
, X2

2 =
∂

∂b
, X3

2 = a
∂

∂a
− b ∂

∂b
, X4

2 = b
∂

∂a
− a ∂

∂b
. (54)

The generators X3
2 and X4

2 form Lie algebras with the generators X1, X1
2 , X

2
2 , Y1–Y8, but their
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commutator

[X3
2 , X

4
2 ] = 2b

∂

∂a
+ 2a

∂

∂b

does not satisfy orthogonality conditions (47). One has to choose either the generator X3
2 or

the generator X4
2 . Further we prefer the generator X3

2 , and we restrict ourselves to the Lie
algebra X1, X1

2 —X3
2 , Y1–Y8.

The generators X1, X1
2 –X3

2 , Y1–Y5, Y7 and Y8 satisfy conditions (46) and (47), and the
uniform orthogonal mesh (45) is invariant with respect to these generators.

6.3. Jacobian invariance and mass conservation

While construction of conservative schemes, it is important to preserve a finite-difference
analogue of the conservation of mass identity (32). Considering approximations for (32) on the
8-point stencil7 on a uniform orthogonal mesh in the form

D
+τ

(S
+b

i1(xa)S
+a

i2(yb)− S
+a

i3(xb)S
+b

i4(ya))− D
+a

(S
+b

i5(xt)S
+τ

i6(yb)− S
+τ

i7(xb)S
+b

i8(yt))

−D
+b

(S
+τ

i9(xa)S
+a

i10(yt)− S
+a

i11(xt)S
+τ

i12(ya)) = 0, (55)

where i1, ..., i12 ∈ {0, 1} are unknown indices, one states by direct computation that there are
only two possible difference analogues of equation (32) that identically hold, namely

D
+τ

(+xayb − x+
b ya)− D

+a
(+xtyb − x̂byt)−D

+b
(x̂ayt − x+

t ya) = 0, (56)

and

D
+τ

(xay
+
b −

+yaxb)− D
+a

(xtyb − +ytx̂b)−D
+b

(x̂ay
+
t − xtya) = 0. (57)

We consider linear combinations

θ(+xayb − x+
b ya) + (1− θ)(xay+

b −
+yaxb), 0 6 θ 6 1 (58)

as approximations for Jacobian (9). In order to choose the value of θ we notice that Jacobian (9)
is invariant with respect to the generators X1, X2, Y1–Y5 (see Remark 5.2). Jacobian (9) is
a fundamental generating differential invariant of the particle relabelling symmetry [? ], and
in the finite-difference case we would like to hold as much its geometric properties as possible.
Recall that in the previous sections we posed restrictions on the generator X2 due to the mesh
uniformness and orthogonality conditions, so the chosen particle relabelling symmetries of our
interest are X1

2 , X2
2 and X3

2 . Applying the generators X1, X1
2 –X3

2 and Y1–Y5 to (58), one finds
that the only value of θ that preserves invariance with respect to all the considered symmetries
is θ = 1/2. Thus, we prefer the following approximation for Jacobian (9)

J
h

=
1

2

(
xay

+
b + +xayb − yax+

b −
+yaxb

)
. (59)

7Approximations on the chosen 8-point stencil can be then shifted to the left by the operators D
−τ

, D
−a

and D
−b

.
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In this case, the conservation law of mass is the following identity

D
+τ

(+xayb+xay
+
b −x

+
b ya−

+yaxb)−D
+a

(+xtyb−x̂byt+xtyb−+ytx̂b)−D
+b

(x̂ayt−x+
t ya+x̂ay

+
t −xtya) = 0,

(60)
or

D
+τ

(+xayb+xay
+
b −x

+
b ya−

+yaxb)−D
+a

((xt+
+xt)yb−x̂b(yt++yt)x̂b)−D

+b
(x̂a(yt+y

+
t )−ya(xt+x+

t )) = 0.

(61)

6.4. Approximations for the derivatives of the function H(x, y)

Before proceeding any further, we consider the problem of approximating the differential
derivatives Hx and Hy. No finite-difference derivatives by the dependant variables x and y have
been defined yet. Generalizing the approach introduced by the authors in [33], we notice that
from the obvious differential relations

Ha = Hxxa +Hyya, Hb = Hxxb +Hyyb, Ht = Hxxt +Hyyt (62)

it follows that

Hx =
Hbyt −Htyb
xbyt − xtyb

=
Hayt −Htya
xayt − xtya

, Hy =
Htxb −Hbxt
xbyt − xtyb

=
Htxa −Haxt
xayt − xtya

. (63)

Further we consider some approximation Θ for the function H. For definiteness, we choose

Θ =
1

2
(H + Ȟ). (64)

According to (63), it seems natural to define approximations Θx and Θy for the continuous
derivatives Hx and Hy through the known finite-difference derivatives Θt and Θa. We choose
the following approximations for the derivatives of (64)

Θx =
Θa(yt + y̌t)− 2Θtya

xa(yt + y̌t)− (xt + x̌t)ya
=

Θb(yt + y̌t)− 2Θtyb
xb(yt + y̌t)− (xt + x̌t)yb

,

Θy =
2Θtxa −Θa(xt + x̌t)

xa(yt + y̌t)− (xt + x̌t)ya
=

2Θtxb −Θb(xt + x̌t)

xb(yt + y̌t)− (xt + x̌t)yb
.

(65)

Notice that from the latter relations one derives that

D
+τ

(Θ) = Θt =
xt + x̌t

2
Θx +

yt + y̌t
2

Θy. (66)

Below we consider two approaches to the construction of invariant conservative schemes for
the two-dimensional shallow water equations.

6.5. Approach 1: Construction of two-dimensional schemes by extending the known one-dimensional
scheme

Recall that the case of an arbitrary bottom topography H = H(x, y) is considered.
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In case the bottom is arbitrary, the only generators that should be admitted by invariant
schemes are X1 = ∂

∂t
and X1

2 –X3
2 which is given by (54). Such a poor set of generators

makes the method of differential invariants [32] barely applicable as almost any arbitrary given
discretization would be an invariant one. As an alternative approach, it seems natural to choose
schemes that reduce to the invariant conservative scheme

xtť + D
−a

(
1

x̂ax̌a

)
− 2

xt + x̌t
Θt = 0, (67)

τ = const, ha = const,

previously constructed by the authors in [33] for the one-dimensional shallow water equa-
tions (35). Here Θ is given by (64).

There still a broad class of such schemes, and as an example one can choose the following
one

F1 = D
−τ

(xt) + D
−a

 yb̄
−J̌
h

−Ĵ
h

−D
−b

 yā

Ĵ
h

−
J̌
h

−

−Θx = 0, (68)

F2 = D
−τ

(yt)− D
−a

 xb̄
−J̌
h

−Ĵ
h

+ D
−b

 xā

Ĵ
h

−
J̌
h

−

−Θy = 0, (69)

where J
h

is given by equation (59), and Θx and Θy are given by (65).

The sum of equations (68) and (69) is a inhomogenious (see e.g. [37]) conservation law

D
−τ

(xt + yt) + D
−a

yb̄ − xb̄
−J̌
h

−Ĵ
h

+ D
−b

xā − yā
Ĵ
h

−
J̌
h

−

−Θx −Θy = 0 (70)

which becomes a homogenious one in case H = const, namely

D
−τ

(xt + yt) + D
−a

yb̄ − xb̄
−J̌
h

−Ĵ
h

+ D
−b

xā − yā
Ĵ
h

−
J̌
h

−

 = 0. (71)

In addition, in case H = const, the following finite-difference analogue of the center of mass
conservation (40) is possessed by system (68), (69)

D
−τ

(t(xt + yt)− x− y) + D
−a

t yb̄ − xb̄
−J̌
h

−Ĵ
h

+ D
−b

t xā − yā
Ĵ
h

−
J̌
h

−

 = 0. (72)

6.6. Approach 2: Direct algebraic construction of conservative schemes

An alternative approach is to consider the conservation law of energy in some divergent
form, e.g.

D
+τ

(
x̌2
t + y̌2

t

2
+ J−1

0 −Θ

)
+ D

+a

(
A S
−a

(NA(J0Ĵ0)−1)

)
+ D

+b

(
B S
−b

(NB(J0Ĵ0)−1)

)
= 0, (73)
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where

A =
xt + x̌t

2
ỹb −

yt + y̌t
2

x̃b, B = −xt + x̌t
2

ỹa +
yt + y̌t

2
x̃a, (74)

x̃a, x̃b, ỹa, ỹb are some approximations for the corresponding partial derivatives, J0 is some
approximation for Jacobian (9).

In order to approximate the conservation law of energy (33) there should be NA → 1 and
NB → 1. The exact form of the finite-difference terms NA and NB will be stated later.

Notice that there is a reason for choosing approximations precisely of the form (74). It was
mentioned by the authors [33, 38] that conservation law multipliers corresponding to energy
conservation laws of schemes for one-dimensional equations often have the form 1

2
(xt+ x̌t), and,

thus, in the two-dimensional case we assume them to be

xt + x̌t
2

and
yt + y̌t

2
. (75)

As it is shown below, by means of the finite-difference Leibniz rule (see e.g. [32]) equation (73)
can be brought in such a form where the terms (75) of the approximations (74) become con-
servation law multipliers.

By applying the finite-difference Leibniz rule, one rewrites (73) in the following form

D
+τ

(
x̌2
t + y̌2

t

2
+ J−1

0 −Θ

)
+

(
xt + x̌t

2
ỹb −

yt + y̌t
2

x̃b

)
D
−a

(NA(J0Ĵ0)−1) + (J0Ĵ0)−1NA
D
+a

(A)

+

(
−xt + x̌t

2
ỹa +

yt + y̌t
2

x̃a

)
D
−b

(NB(J0Ĵ0)−1) + (J0Ĵ0)−1NB
D
+b

(B) = 0. (76)

Expanding the first term D
+τ

(· · · ) of the latter equation, one gets

(xt + x̌t)(xt − x̌t)
2τ

+
(yt + y̌t)(yt − y̌t)

2τ
− D

+τ
(J0)(J0Ĵ0)−1 −Θt

+

(
xt + x̌t

2
ỹb −

yt + y̌t
2

x̃b

)
D
−a

(NA(J0Ĵ0)−1) + (J0Ĵ0)−1NA
D
+a

(A)

+

(
−xt + x̌t

2
ỹa +

yt + y̌t
2

x̃a

)
D
−b

(NB(J0Ĵ0)−1) + (J0Ĵ0)−1NB
D
+b

(B) = 0. (77)

Taking (66) into account and collecting the terms with respect to (xt + x̌t) and (yt + y̌t), one
derives the following equation

xt + x̌t
2

[
xtť + ỹb D

−a
(NA(J0Ĵ0)−1)− ỹaD

−b
(NB(J0Ĵ0)−1)−Θx

]
+
yt + y̌t

2

[
ytť − x̃b D

−a
(NA(J0Ĵ0)−1) + x̃aD

−b
(NB(J0Ĵ0)−1)−Θy

]
+

(
D
+τ
J0 −NA

D
+a
A−NB

D
+b
B

)
(J0Ĵ0)−1 = 0. (78)

To eliminate the term

D
+τ
J0 −NA

D
+a
A−NB

D
+b
B, (79)
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one can put

NA =
D
+a
A0

D
+a
A
→ 1, NB =

D
+a
B0

D
+a
B
→ 1, (80)

where A0 6= 0 and B0 6= 0 are some approximations alternative to A and B. Thus, one
brings (79) to the divergent form

D
+τ
J0 − D

+a
A0 −D

+b
B0. (81)

The latter expression approximates the conservation law of mass and vanishes in the continuous
limit. Thus, the final step is to choose some specific approximations J0, A0 and B0 to make
identically hold the equation

D
+τ
J0 − D

+a
A0 −D

+b
B0 = 0. (82)

We choose, for example, the invariant approximation (59) as J0, and, according to (61), the
following approximations as A0 and B0

A0 =
1

2

(
(xt + +xt)yb − (yt + +yt)x̂b

)
, B0 =

1

2

(
(yt + y+

t )x̂a − (xt + x+
t )ya

)
. (83)

Substituting the latter approximations into (78), one obtains the scheme

F1 = xtť + ỹb D
−a

 1

J0Ĵ0

D
+a

((xt + +xt)yb − (yt + +yt)x̂b)

D
+a

((xt + x̌t)ỹb − (yt + y̌t)x̃b)


−ỹaD

−b

 1

J0Ĵ0

D
+b

((yt + y+
t )x̂a − (xt + x+

t )ya)

D
+b

((yt + y̌t)x̃a − (xt + x̌t)ỹa)

−Θx = 0,

F2 = ytť − x̃b D
−a

 1

J0Ĵ0

D
+a

((xt + +xt)yb − (yt + +yt)x̂b)

D
+a

((xt + x̌t)ỹb − (yt + y̌t)x̃b)


+x̃aD

−b

 1

J0Ĵ0

D
+b

((yt + y+
t )x̂a − (xt + x+

t )ya)

D
+b

((yt + y̌t)x̃a − (xt + x̌t)ỹa)

−Θy = 0,

(84)

on uniform orthogonal mesh (45), where

J0 = J
h

=
1

2

(
xay

+
b + +xayb − yax+

b −
+yaxb

)
, (85)

and Θx, Θy are given by equations (65).

The conservation law of energy for scheme (84) is

xt + x̌t
2

F1 +
yt + y̌t

2
F2 = D

+τ

(
x̌2
t + y̌2

t

2
+ J−1

0 −Θ

)

+
1

2
D
+a

((xt + x̌t)ỹb − (yt + y̌t)x̃b)
D
−a

((xt + +xt)yb − (yt + +yt)x̂b)

D
−a

((xt + x̌t)ỹb − (yt + y̌t)x̃b)
S
−a

((J0Ĵ0)−1)
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+
1

2
D
+b

((yt + y̌t)x̃a − (xt + x̌t)ỹa)
D
−b

((yt + y+
t )x̂a − (xt + x+

t )ya)

D
−b

((yt + y̌t)x̃a − (xt + x̌t)ỹa)
S
−b

((J0Ĵ0)−1)

 = 0, (86)

and the conservation law of mass is just an identity

D
+τ
J0 −

1

2
D
+a

((xt + +xt)yb − (yt + +yt)x̂b)−
1

2
D
+b

((yt + y+
t )x̂a − (xt + x+

t )ya) = 0. (87)

Thus, we have the conservation laws of mass and energy by construction.

6.7. Reductions of scheme (84) to the one-dimensional case

In the present section we consider one-dimensional reductions for scheme (84) and its mod-
ifications.

In the one-dimensional case, Jacobian (85) becomes J0 = xa. From equations (65) and the
condition Hy = 0 (or Θy = 0) it follows that

Θt =
xt + x̌t

2

Θa

xa
. (88)

Taking the latter and conditions (80) into account, one reduces scheme (84) to the form

F = xtť + D
−a

(
2xta

xax̂a(xta + x̌ta)

)
−Θx = 0. (89)

The conservation law of energy (86) possesses the following form

xt + x̌t
2

F = D
+τ

(
x̌2
t

2
+

1

xa
−Θ

)
+ D

+a

(
(xt + x̌t)

xtā
xāx̂ā(xtā + x̌tā)

)
= 0, (90)

and the conservation law of mass (87) is

D
+τ

(xa)− D
+a

(xt) = 0. (91)

Notice that the reduction (89) depend on the third difference derivatives xtaā and x̌taā.
The one-dimensional schemes constructed by the authors in [32] are defined on 9-point finite-
difference stencil, and the higher difference derivatives they depend on are of the second order.
To obtain a better reduction, we modify scheme (84) as follows.

By shifting Jacobian (85) along the time axis, we consider its modified version on the
extended stencil

J1 =
1

2

(
+xay̌b + x̌ay

+
b − y̌ax

+
b −

+yax̌b
)
. (92)

One can check that J1 admits all the generators X1, X1
2 –X3

2 and Y1–Y5.
According to the latter changes, the conservation law of mass (87) becomes

D
+τ
J1 −

1

2
D
+a

(x̌tyb + +xty̌b − y̌tx̂b − +ytxb)−
1

2
D
+b

(y̌tx̂a + y+
t xa − x̌tya − x+

t y̌a) = 0, (93)
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and scheme (84) possesses the form

F1 = xtť + ỹb D
−a

 1

J1Ĵ1

D
+a

(x̌tyb + +xty̌b − y̌tx̂b − +ytxb)

D
+a

((xt + x̌t)ỹb − (yt + y̌t)x̃b)


−ỹaD

−b

 1

J1Ĵ1

D
+b

(y̌tx̂a + y+
t xa − x̌tya − x+

t y̌a)

D
+b

((yt + y̌t)x̃a − (xt + x̌t)ỹa)

−Θx = 0,

F2 = ytť − x̃b D
−a

 1

J1Ĵ1

D
+a

(x̌tyb + +xty̌b − y̌tx̂b − +ytxb)

D
+a

((xt + x̌t)ỹb − (yt + y̌t)x̃b)


+x̃aD

−b

 1

J1Ĵ1

D
+b

(y̌tx̂a + y+
t xa − x̌tya − x+

t y̌a)

D
+b

((yt + y̌t)x̃a − (xt + x̌t)ỹa)

−Θy = 0.

(94)

The conservation law of energy (86) becomes

D
+τ

(
x̌2
t + y̌2

t

2
+ J−1

1 −Θ

)

+
1

2
D
+a

((xt + x̌t)ỹb − (yt + y̌t)x̃b)
D
−a

(x̌tyb + +xty̌b − y̌tx̂b − +ytxb)

D
−a

((xt + x̌t)ỹb − (yt + y̌t)x̃b)
S
−a

((J1Ĵ1)−1)


+

1

2
D
+b

((yt + y̌t)x̃a − (xt + x̌t)ỹa)
D
−b

(y̌tx̂a + y+
t xa − x̌tya − x+

t y̌a)

D
−b

((yt + y̌t)x̃a − (xt + x̌t)ỹa)
S
−b

((J1Ĵ1)−1)

 = 0. (95)

Finally, the reduced one-dimensional scheme is

F = xtť + D
−a

(
4

(xa + x̌a)(xa + x̂a)

)
−Θx = 0, (96)

ha = const, τ = const,

and the corresponding conservation laws of mass and energy have the following forms

D
+τ

(xa + x̌a)− D
+a

(xt + x̌t) = 0, (97)

D
+τ

(
x̌2
t

2
+

2

xa + x̌a
−Θ

)
+ D

+a

(
2(xt + x̌t)

(xā + x̌ā)(xā + x̂ā)

)
= 0. (98)

In [32], with the help of the finite-difference analogue of the direct method [39], the authors
have obtained a family of invariant conservative schemes for the one-dimensional shallow water
equations. As a simplest example of such a scheme, the authors considered scheme (67).
One can check that scheme (96) is found among the obtained family of the one-dimensional
conservative schemes as well.
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7. Conclusion

The group classification of the two-dimensional shallow water equations with variable bot-
tom topography H = px2 + 2cxy + by2 + q1x + q2y + q0 in mass Lagrangian coordinates is
performed. The advantage of studying the shallow water equations in Lagrangian coordinates
is that in Lagrangian coordinates they have a variational structure. This variational represen-
tation allows one to apply Noether’s theorem for constructing conservation laws. The classifi-
cation results of the considered case are presented in Table 1 and formulated in Theorem 4.1.
If the function H(x, y) is either of the form H(x, y) = p(x2 + y2) (corresponding to a circular
paraboloid bottom) or H(x, y) = const (corresponding to a plane bottom), then system of the
shallow water equations (1)–(3) can be reduced to the gas dynamics equations of a polytropic
gas with the exponent γ = 2 [22].

Notice that the admitted Lie algebra of the original two-dimensional shallow water equa-
tions contains infinite algebra of relabelling operators. We restrict this algebra to preserve a
difference mesh orthogonality and uniformness, and keep all the rest symmetry of the equations.
New invariant schemes for the two-dimensional shallow water equations with arbitrary bottom
topography H(x, y) in Lagrangian coordinates on uniform orthogonal meshes are proposed. The
schemes are constructed either by extending the known one-dimensional schemes or by direct
algebraic construction. As it was mentioned, in case the bottom is arbitrary, such schemes can
be constructed on uniform orthogonal meshes. At the same time, there is a rather complicated
problem of approximation of the derivatives Hx and Hy of the arbitrary bottom H(x, y) for
which there are no obvious representations of difference differentiation operators. This problem
is discussed in a separate section of the paper.

Among the proposed schemes there are schemes possessing the conservation laws of mass and
energy. In case of a horizontal bottom H(x, y) = const, some of the schemes have conservative
form and possess conservation laws of momentum and the center-of-mass law.

Finally, it is shown that the proposed schemes can be reduced to the known one-dimensional
schemes previously constructed by the authors in [33].
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