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Abstract

This paper mainly considers three iterations based on charge-conservative finite element approx-
imation in Lipschitz domain for the stationary thermally coupled inductionless MHD equations.
Based on the hybrid finite element method, the unknowns of hydrodynamic are discretized
by the stable velocity-pressure finite element pair, and the current density along with electric
potential are similarly discretized by the comforming finite element pair in H(div, Q) X L*(Q).
And on account of the strong nonlinearity of the equations, we present three coupled iterative
methods, namely, the Stokes, Newton and Oseen iteration and the convergence and stability
under different uniqueness conditions are analyzed strictly. It is proved especially that the error
estimates of velocity, current density, temperature and pressure do not depend on potential. The
theoretical analysis is validated by the given numerical results, and for the proposed methods,

the applicability and effectiveness are demonstrated.

1. Introduction

The inductionless magneto-hydrodynamics, referred to as IMHD, is the theory that simulates
the interaction between electromagnetic field and conductive fluid as the magnetic Reynolds

number is small. IMHD model plays a very much important role in wide engineering applications,

*Corresponding author: shymath@xju.edu.cn (H. Su)
Email address: shymath@xju.edu.cn (H. Su), cmd@stu.xju.edu.cn (S. Dong) (Haiyan Su)

Preprint submitted to Elsevier September 27, 2022



such as aluminum electrolysis, liquid metal magnetic pumps, and fusion reactor blankets among
others [2, [19} 23]]. It is worth noting that the influence of temperature on the fluid cannot be
ignored in practical applications. Thermal effects often plays a significant role in industrial
MHD flows (i.e. metal hardening, semiconductor manufacturing, etc) [6, 8, [14} (16} [18] 24]].
Thus, it is necessary to study the thermally coupled stationary IMHD problem.

The divergence-free condition for current density, namely V-J=0, means conservation of
charge for the IMHD equations. It is an important physical law of electromagnetics which
takes an greatly important part in maintaining the computational accuracy of simulation of
magnetohydrodynamic system. How to design a numerical method that can guarantee V-J,=0
has attracted much attention [10} [12} [13} 15, 25]. The charge-conservative and consistent finite
volume schemes for IMHD equations with unstructured and structured meshes based on post-
processing have been proposed in [21, 22]. The charge-conservative played a key role in
forming closed loops for the streamlines from the conservative scheme was shown in [20]. In
addition, numerical experiments conducted therein showed that streamlines with non-conserved
charge schemes fail to form closed loops at corners. A charge-conservative finite element
method that yields an exactly divergence-free current density directly was proposed in [3] to
solve the IMHD equations. Recently the charge-conservative finite element approximation and
three classic coupled iterations for stationary IMHD equations was proposed in [235].

Compared with the conservation scheme of IMHD, the work on conservation scheme for
thermally coupled IMHD models is relatively few. A new family of recursive block LU precondi-
tioners was designed and tested for solving the thermally coupled IMHD equations in [4]. For
the time- dependent IMHD model coupled thermal problem, a charge conservative fully discrete
finite element scheme was proposed and analyzed in [17]].

Different from [17], we mainly consider the iterative methods based on charge-conservative
for the stationary thermally coupled IMHD equations in the Lipschitz domain in this paper.
The core concept of the paper is to design effective iterative methods which can deal with
the conservation of charge and the strong nonlinear characteristics of the thermally coupled
IMHD equations. Our specific ideas are as follows: First, for the spatial discretization, we use

H(div, Q)-conforming face element and L?(Q)-conforming volume element to discrete separately



current density J and potential ¢, so as to generate directly the exact divergence-free current
density. Second, due to the strong nonlinearity of the equations, three iterative methods are
proposed and the strong uniqueness conditions: 0 < o < i (Stokes iterative method), 0 < o < %

(Newton iterative method), the uniqueness condition: 0 < o < 1 (Oseen iterative method),

A2IL]l.
C2

min

LAdy | dgdy
c? +

min

N + Aénql* < 1. Third, the optimal

Chnin min

respectively, are obtained, where o :=
error estimates with respect to iteration number n and mesh size 4 for the three methods are
presented. Finally, numerical examples verify our theoretical results and show the uniqueness
range of the three iterative methods.

The structure of this paper is as below: In the second section, some symbols of Sobolev
space are introduced, and a weak form is proposed, and then the well posedness of the continuous
problem is further proved. In the third section, using the hybrid finite element method, we
give the well posed and the optimal error estimates for the discrete problem. In the fourth
section, the three iteration methods of the equations are introduced, and then stabilities
and convergence for them are further analyzed theoretically below the conditions differently. In
the fifth section, through some numerical experiments we test and verify the performance of the

numerical scheme.

2. Preliminaries

In the paper, we consider the stationary thermally coupled inductionless MHD equations as

follows:

PrAu + (u -Vyu + PrVp —«J X B — PrRabi = f, inQ,
J+Vop—uxB=g, inQ,

(2.1)
-A0+u-VO=¢p, inQ,

V-u=0,V-J=0, inQ,

where Q is a bounded domain in RY, d = 2,3 whose boundary Q is Lipschitz-continuous, u
the fluid velocity, p the hydrodynamic pressure, J the current density, ¢ the electric potential,
0 the temperature, the Rayleigh number Ra, i the unit basis vector, k the coupling number, f

and g are given external force terms, ¢ a given a given heat source, B is a hypothetical given



applied magnetic field. The system of the equations is supplemented by homogeneous boundary

conditions:

u=0, J-n=0, 6=0, ondQ. (2.2)

We rewrite those 2D variables using 3D fashion for the sake of studying 2D and 3D model
simultaneously. Hence, the 2D variables ¥} are described by & = (9,(x), ¥,(x),0), ? = u, J, f, g.
On the contrary, the applied magnetic field is B = (0, 0, B3(x)).

We introduce some Sobolev spaces used in this article. Let L”(€2) be p-th integrable function
space, whose normal is capable of being defined by || - [|,. Inner product and norm of L*(Q) can

be described as :
(V) = f wdx,  Wlo = Il := (v, )?.
Q

The standard Sobolev space H™ has its corresponding seminorm and norm defined by | - |,,.0
and || - ||..q, respectively. For convenience’s sake, throughout the paper, vector is represented
by bold-type letter and scalar by roman alphabet, while we introduce the following function

spaces:
X:=H)Q), E:=L}Q), Y:=Hydiv,Q), S:=L}XQ), Z:=H)Q),
and product spaces X X Y and E x S with the energy norms denoted as

low, K)lly = (IVwI, IIKIZ)7, 11, ¥llo = (lgli2 + 1112)2.

Here, the div-norm is defined by ||K]|s, = (||IK II% +||V-K IIZ)%. Further, we define the norm of the

source term by

<f,V> 2 2 2.1 <90a r>
flls = sup L2220 LI = (AP, + €lglPE, A = gl = su .
L e Vvl ! ¢ S AT

In order to make the weak form of equations (2.1)-(2.2) clearer, we define the following bilinear

forms: forVw,v,u e X,gec E,F, K€Y,y €S and6,r € Z

a,v,w) =R, (Vv,Vw), a,(F,K)=«k(F,K), byq,v)=-Pr(qg,V-v),

e0,r) = (VO,Vr), d(K,v)=—«(KXB,v), b, F)=—-xW,V-F),
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and trilinear forms:
1 1 1 1
clu,v,w) = 5((u -V, w) — 5((u -Vw,v), hu,0,r)= 5((u -V)o,r) — 5((u -V)r, 6).

For the convenience of our analysis and proof below, we use a more compact way to express

the weak form of (2.1) as follows: find (u, J, p,¢,0) € X X Y X E X S X Z such that

Ao, J), v, K)) + A ((u, ), @, J), (v, K))

+ B((p,¥), v, K)) + QO, (v, K)) = (L, (v, K)),
B((q,¥), @, ) =0,

e(0,r)+ H((u, J),0,r) =¥(r),

(2.3)

for Vv, K, p,y,r) € X XY X E XS X Z, where

Ao((u, J),v,K)) = a,m,v) +a,(J,K)+d(J,v)—dK,u), Q@,,K)) =—-PrRai(0,v),
A(w, M), , J),(v,K)) = cow,u,v), B((q,¥),v,K)) = byq,v) + b.(¢, K),
H((u,J),0,r) = ho(u,0,r), (L,(v,K))={(f,v)+«(g K), ) ={gr).

Furthermore, the kernel space is defined
T={wv,M)e X XY :8B((q,¢),v,M))=0, V(q,¥) e EXS}=VxU,
where
V={eX:biqv)=0,VgeE}, U={KeY:b,(y,K)=0, VyeS}
and the following inequalities frequently used in our proof are valid in general Lipschitz polyhedra,
Wlzsy < AillVVllo,  Wllzsey < AlVVIG, (vl < CallV¥lle Vv € X,

A - 5 A
Irllzs@ < AllVAlo, Il < NVHlG,  lirllo < CallVrllo,  Vre Z,

where A;= max(1;, 1), A= max(,, 1,) and Co= max(Cq, Cq), the positive constants A;, A,

A1, b, Cq, Cq, only depend on Q.



Lemma 2.1. The following estimates for bilinear and trilinear terms hold:
(1). The bilinear form Ay((:, ), (,-)) is bounded on (X X Y) X (X X Y) and coercive on (X x U) X
(X x U), namely,

|Ao((we, J), v, K))| < Crnaxl I, DIl (v, K1, (2.4)

Ao, J), @, J)) = Coinll(wt, DI, (2.5)

where Cr = 2max{Pr, k, kAi||Bl|3)}, Cmin = min{Pr, «}.
(2). The continuous property of the bilinear form B((-,-), (-,-)), nambly, for any (u,q, J,¥) €
(XX E)yx (Y xS),

1B((q, ¥), v, K))| < max{Pr, k}||(v, K)llilI(g, ¥)llo- (2.6)
(3). The continuous property of the bilinear form Q(-, (-, -)), for any (0,v,K) e Zx X X Y,
1Q(O, (v, K))I < 4,[I(v, K)II1IVEllo, (2.7)

where A, = PrRaCé.

(4). The continuous property of the bilinear form e(-,-) is also bounded and coercive on Z,

e(8,r) < |IVOllolIVrlo, (2.8)

e(6,0) > ||IV[5. (2.9)

(5). The trilinear form A,((-,),(,"), (") and H((, "), (), (") are skew-symmetric with
respect to their last two arguments and bounded on (X XY)X(XXY)X(XXY) and (XXY)XZXZ

respectively,
A((w, M), (u, J),(u,J)) =0, (2.10)
(A (w, M), (u, J), (v, K))| < Al(w, M)I[1]| (e, )]l1[I(v, K, (2.11)
H((u,J),6,6) =0, (2.12)
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[H((u, J), 0,0 < ll(, DILIIVOlolVrlo- (2.13)

Proof. The estimates can be easily derived by Holder inequalities, we will not prove them

here. O

Lemma 2.2. There exists a constant 3* > 0 only depending on Q such that

B((q.¥), (v, K))

0.0z Kexxy (v, Kl

> B*ll(g, ¥llo, V(g,¥) € EXS. (2.14)
Proof. For the proof of this lemma, please refer to [25]. O
Furthermore, we prove the existence and uniqueness of the solution of problem (2.3).

Theorem 2.3. For f € H'(Q), g € L>(Q), ¢ € H'(Q), assume that

o = L. Adgdy N Adgdy L Al

1, 2.15
Crznin Crznin Cmin Cmin ( )
then is well-posed and the following estimates hold,
IL|l. + A2y
@, )l < . IVOllo < Ay. (2.16)

Proof. The train of thought in this proof is similar to that in [25] but has its characteristics. Here
we propose it completely. Firstly, the existence of solutions will be proved by the Banach fixed
point theorem.

Given (w, M) € Y, we consider the following equation:
e(0,r) + H((w, M), 0, r) =¥(r). (2.17)

Then, by (2.8)), (2.9), (2.12), (2.13]) and applying Lax-Milgram Theory [7], the problem (2.17))
has unique solution 6 € Z. With the result that the map # can be defined by #(w, M) = 6,

where (w, M) € X x Y and 6 € Z. Setting r = 6, by (2.8), (2.9) and (2.12)), we have

IV(F w, M)llo = [[VEllo < Ay. (2.18)



Next, we consider the saddle point problem as follow: find (u, p,J,$,0) € X X EXY XS XZ
such that for V(v,q, K, ¥,r) e X X EXY X § X Z,

Ao, J), v, K)) + A(w, M), (u, J), (v, K))
+B((p,9), v, K)) = (L, (v, K)) - QF (w, M), (v, K)), (2.19)

B((q,¥), (u, J)) = 0.
Applying the saddle theory in [9]], the problem (2.19) has a unique solution (u, p, J, ¢) € X X
E XY x S. Taking (v, q, K, ¥) = (u, p, J, $), by 2.10), (2.5), and (2.9) leads to
LIl + A4y
Coin
Inspired by the above discussion, setting By = {(v,K) € T : ||[(v,K)|} < Co},Co = (||L]|. +

I, DIl < (2.20)

AgAy)/Cin, We establish the mapping:
G : Br— Bgr, W, M) (u,J).

Let w;,M;) € Bg,j = 1,2, Gw;, M;) = (u;, J ;). By definition, there exists (p;, ¢;) € M X N
such that (u;, J ;, p;, ¢;) satisfy the following equations: for V(v,q, K,y) € X X EXY x §
Ao, J ), v, K)) + AW, M), (. J ;), (v, K))
+ B((pj, ), w,K)) =(L,(v,K)) - QF (w;, M), (v, K)), 2.21)

Similarly, through the definition of mapping ¥, we can also conclude that

e(Fwi, Mp),r)+H(w;, M), F(w;, M), r) ="¥(). (2.22)
Subtracting (2.21) as j = 2 from 2.2T)as j = 1,setv = u;—u,, K = M\ —M,, g = p1—p>, ¥ =
#1 — ¢, and (2.10), we arrive at
Aoy —uz, J1 = J2), Wy —ua, J1 — J2)) = =Ai((w1 —wo, My — M), (w2, J2), (uy —uz, J1 — J2))
- QF (Wi, My) = F (wo, M), (uy —uz, J1 — J2)).

Combining (2.5), (2.7) and (2.11)), we derive further

ll(wy — wo, My — M)I1lI(u2, Tl + AIV(F (w1, My) = F (w2, M2))llo
Cmin .

ey —us, J1 — Tl <
(2.23)



Analogously subtract (2.22) as j = 2 from (2.22) as j = 1, take r = ¥ (wy, My) — F (w2, M>)
and by (2.9), (2.12), (2.13) and (2.18)), it is further concluded that:

IV(F (w1, My) = F (wa, Mo))llo < A,ll(wy —wa, My — M>)||;. (2.24)

Substitute (2.24)) into (2.23) and apply (2.20), we can obtain

/12||L”* + /12/lq/lzp + Cmin/IZ/lq/lw
C2

min

@, —uy, J1 — Il <

(Wi —wo, My — M>)l;. (2.25)

Then we have,

G, J1) = Gua, Jo)ll = |y —ua, Jy = Tl

< ollwy —wa, My — M)y = all(wi, My) — (wa, Mp)l|;.
By virtue of (2.15)), G is a contraction mapping on Bg — Bg. Hence applying the Banach fixed
point theorem, it can be deduced that G has a fixed point in Bg, which is the solution of equations
(2.19). Due to the definition of mapping, the problem exists solutionon X X EX Y X § X Z.

Next, the uniqueness of the solutions will be proved in the following work. Suppose

Wi, pi, Jis 9i,0;) € XXEXY XS XZ,i = 1,2 satisfy the equations as follow: for V(v,q, K, ¥, r) €
XXEXYXSXZ

Ao, J:), v, K)) + A (i, Jo), (ui, J), (v, K))
+ B((Pl’ ¢i)’ (V9 K)) + Q(eh (V’ K)) = <L’ (V, K)>’

B(q,¥), (u;, J)) =0,
e(0;,r)+H((u;, J,),0;,r) =P(r).

(2.26)

Subtract (2.26) as i = 2 from (2.26)) as i = 1, we arrive further at

Aoy —uz, J1 = J2), v, K)) + A (w1, J1), (w1, J1), (v, K))

- A2, J2), (U2, J2), v, K)) + B((p1 — p2. ¢1 — ¢2), (v, K))

+ Q6 - 6,,(v,K)) =0, (2.27)
B((q,¥), Wy —uz, Jy — J»)) =0,

e(0; — 6y, 1) + H((wy, J1), 01, 7) — H((ua, J»), 62, 7) = 0.




Simplify, setting (v, K) = (uy —uy, J1 — J2), (q,¥) = (p1 — p2, ¢1 — ¢2), r = 6; — 6>, we can get
Aoy —uz, J1 = J2), ) —us, Jy = J2)) = —Q0, — 6, (wy —uz, J1 — J»))
- Ay —ua, J1 = J2), (w2, J2), (wy —uz, Ji — J2)), (2.28)
e(0) — 02,61 — 6y) = ~H(w, —ua, J1 — J2), 6,0, — 0).

Combining (2.5)), (2.7), (2.9), 2.T1) and (2.13), we can get the following two inequalities easily

that
IV(O:1 — )llo < Ayll(uy —ua, J1 — )i, (2.29)
and
ey —up, Jy — Jz)”% <ol —uy, Ji - Jz)”%- (2.30)
Because of (2.15]) and (2.30), we directly see

uy=uy, Ji=Jy 6 =06, (2.31)
Substituting (2.31)) into (2.27), and combining the inf-sup condition (2.14) lead to p; = p», ¢; =
¢>.

This completes the proof. O

3. Finite element approximation

The finite element approximation of the stationary thermally coupled inductionless MHD,
in this section, is considered. Set 7, is a shape-regular and quasi-uniform triangular for d = 2
or tetrahedral for d = 3 mesh of Q. We introduce generally the local mesh size h, = diam(e)
and the global mesh size h := Iel‘é?_z( h.. Pi(I) be the space of polynomials of degree k on element
e and define Py(e) = P;(e)? where k is any integer and k > 0.

Here we choose conforming finite element spaces X, € X,E, C E, Y, CY,S,CS,Z,CZ
to discrete velocity u, pressure p, current density J, electric potential ¢ and temperature 6 ,

respectively. Moreover, we need the assumptions as follow.

Assumption 3.1. (inf-sup condition) There are respectively the following conclusions on X, X
E,and Y, X Sy,

b((py, ) b ((dn,
inf  sup by {pn i) > B inf  sup on(Gn, 1)) > Bun- (3.1)
0£Ph€En 0zwyex, [[(VWhy D)l 0#1ESh 0 J,e¥;, IV s di)lli
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where [, and 3, , only depend on €.

Assumption 3.2. (Approximation property) There exist two integers k and | such that the

following standard approximation properties hold for y and T,

: in{y,l : in{y,l
inf [lu —willio < CH™™ Nl 0, inf |Ip = qullia < CH™™|pl|, g,
wreXp, qn€Ep

. H o) . i k
inf 110 = ralli < CH™" el inf 116 =il < CA™llo,
h<Oh

ez

inf |IJ = Kyl o < CE™™ ™ (] |leq + ldiv] ll-q)-

K€Yy,
There are several stable finite element pairs which satisfy these assumptions [ 9]. With
the discrete spaces, the finite element approximation of problem (2.3) reads as follows: find

@n, Jns Ph> Ons O) € Xy XY X Eyy X S, X Zy, such that VY (v, Ky, pp, Wi, 1) € Xy XY, X Ep XSy X Z,

Ao(@n, Jn), Wy Kp)) + A (@, Jn), @y Jn), Vs Ki))
+ B((pn> Y1), Wi, Ki)) + QOn, Wi, Kp)) = (L, vy, Kp)),
B((qn ¥n), wn, J1)) = 0,

e, rn) + H((up, Jp), 0, 1) = P(1).

(3.2)

Proposition 1. Suppose (wy, J i, pu, dn, On) is the solution of (3.2)), with the result that the scheme

is charge-conservative, namely, V - J = 0.

Proof. It note that V¢ € S),, W,V -J,) =0and V- J, € S). Set ¢, = V - J,,, we further have
V-J,=0. O

On the basis of continuous space, we define discrete kernel space

Ty ={Wn, Jn) € Xo X Y}, - BUGn, Y1), Wi, 1) = 0,¥(q,¥) € E;, X Sy} = V), X Uy,

where
Vi =1{vy, € X}, : by(qn,vi) = 0,Yq), € Ej},
U,={K, €Y, :b,(Yy, K) =0,V € S;} = {K), € X : divK,, = 0}.

What deserves our special attention is: V,, ¢ Vbut U, Cc U.

11



Lemma 3.1. The following estimates for bilinear and trilinear terms hold:
(1). The bilinear form Ay((:,-),(,-)) is bounded on (X, X Y,) X (X, X Y,) and coercive on
(X, x Uy) x (X, x Uy), namely,

\Ao(@n, Jn), Was Kn))l < Crnaxll@n, TNl (va, Ki)ll1, 3.3)

Ao(@n, J1), @iy J1)) = Coninll@n, TN, (3.4)

where Ciax = 2max{Pr, k, kA||B||13)}, Cmin = min{Pr, k}.
(2). The continuous property of the bilinear form B((-,-), (-,-)), namely, for Yy, qn, Jn, Y1) €
(Xn X Ep) X (Y5 X Sp),

1B((gn> ¥n)s Wi, Ki))| < max{Pr, «}||(v, K)|l11|(q, ¥)llo (3.5
(3). The continuous property of the bilinear form Q(-, (-, -)), for V0,v,, K},) € Z;, X X, X Y},
|Q(6h, Vi, Ki)l < Al1wp, K111V ORlo, (3.6)

where A, = PrRaCé.

(4). The continuous property of the bilinear form e(-, ) is also bounded and coercive on Z,

(O, ) < [[VEllolIVrallo, (3.7)

€61, 61) = 1IVO,l5. (3.8)

(5). The trilinear form A((-,-), ("), (-, ) and H((,"),(,),(-,-)) are skew-symmetric with
respect to their last two arguments and bounded on (X, X Y;) X (X;, X Y,) X (X, X Y},) and

(X, x Y)) X Z, X Z;, respectively,

A (Wi, M), (wy, J 1), (wn, Jn) = 0, (3.9)

[A((Wp, My), @n, i), Wi, Kp)l < ll(wi, M| @en, vi)lli |0, Ki)lli, (3.10)
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H((un, J 1), 0, 6,) =0,

[H (@, T 1), On, i)l < Doll@p, T)ILIVOllolIVallo-

Lemma 3.2. There exists a constant 3* > 0 only depending on € such that

B((gn, Y1), i, K3))

sup > B(gn, ¥)llos Y (qn Y1) € Efp X S

(0.0)£(v. KX XY l(wr, Ki)lly
Theorem 3.3. For f € H'(Q), g € L*(Q), p € H'(Q), assume
o LI A22,4y N gy N AL -
C2 C2 Cmin Cmin

min min

L,

then problem is well-posed and the estimates hold as follow,

LIl + 4,4,
l@n, vl < ————,  [IVbillo < 4.

min

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Theorem 3.4. Assume the conditions of Theorems 2.3, 3.3 hold, the solutions of continuous

problem (2.3) and discrete problem are respectively (u, J, p, ¢,0) and (uy,, Jn, pr, On, 01).

Suppose that the exact solution (u, J, p, ¢, 0) satisfy
uc ''(Q), peH(Q), JecH(Q), ¢cH(Q), 6cH(Q),

for a regularity exponent y,t > 1/2, then we can get the following estimates:

1 —wp, J — Tl + 116 =)l + [lp = pallo

<C(C inf  |l(w—v,,J - Kyl + inf ||[p—gpllo+ inf [|0 — s;ll))
Wi, Kn)e(XpXYp) qn€Ey P—4 Sh€Zp

in(y.lk,
< CH™™ M ()l 4y 0 + 1T call + 1Pl + 16114.0),

lp — @nllo < C(  inf (e —vp, J — Kplli + inf ||p — gullo + inf [|¢ — yllo)
qn€E, UneS s,

Wi Kp)e(XyXY))

in(y.Lk,
< CR™ M0 (lully 0 + ol + Iplly.a + 6ll0)-

13
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Proof. We begin to handle the error in 6. Setting (v, g, K, ¢, 0) = (vy,, g, K;, Y1, 65,), subtracting
from (2.3)), we have

Ao = up, J = 1), Wi, Kp)) + A ((w = wp, J = Jp), @, J), v, Kp))

+ Ai(@n, Jn), @ — vy, J = Jn), Vh, Ki)) + BU(p — prs & = $n), (Vh, Ki))

+ Q6 = 6y, (vi, Ki)) = 0, (3.17)
B((gn> Yu), (w —up, J = J1) =0,

e(0 =6y, 1) + H(u —up, J — J3),0,1r4) + H((un, J1), 0 — 0, 1) = 0.

For (w;,, M) € U1, (qn, Y1) € Ejy X Sy, 55 € Zy,, setting
u—up=@—-wp)+W,—up), p—py=Q—qn)+q@n—pn), 0—0,=(0—s,)+(sn—6h),
J-Jn=U-M)+My—Jn), ¢—¢n=—Yn)+ n—dn).
Substituting the above formula into and taking r;, = 6, — s;, we can further obtain
eOn = s> O — sp) + H((wn, J1), O = s, 0 — s1) = H(@w —wy, J = My,), 0,6, — i) (3.18)
+e(0 = s, O — sn) + H (@, Jn), 0 = su, O — sn) — H(@p, — wi, Jr, — M), 0,6, — s1).

By applying (3.12), (2.8)), (2.13)), (2.11)), the second inequality of (2.16) and (3.13]), we arrive at

Conin + Aoptl|LIL. + 22,2
TV = sillo + LAyl — wi, J — M),
Conin (3.19)

+ LAyl —wi, I — M)l

2
V(& - Gp)llo <

Since (3.17), the following equation holds:

Ao(@p = Wi, I = M), Wi, Kp)) + Ay — wi, Jn — M), (u, J), vy, K))
+ A (Wn, Jn), W — Wy Jn — My), Wi, Ki)) + BU(pr — qn, $n — ¥n), Vi, K))
= Ao((u —wp, J — My), w1, Ki)) + BUp = Gn, @ = ¥n), Wi, Kp)) — QO — O, (v, Kin))
+ A (wp, Jn), @ = wp, J = My), Wi, Kp)) + Ai((w —wp, J — My), u, J), vy, Kp)).
Choosing (v, K;,) = (, — wy, J,, — M),) € T, and combining (3.9), (3-4), and (2.16), we

obtain

(3.20)

AL, + 24,4,

L.H.S > (Cpin —
( Cmin

M@ = w, Jn = M. (3.21)
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Analogously by (2.4), (2.6)), (2.11)) and (2.7), we can further obtain

R.HS < ||, —wp, J — M)I(C| —wp, J — M)l + (P — gn)llo) + A1V (O = 6)llo),
(3.22)

which combines (3.21) to lead to

D|IL|. + Ap4,4
— Ny = wis i — Ml
min (323)

< Cll(w = wp, J = Mp)lly + (P = gwllo) + A4lIV(E = O4)llo.
Substituting (3.19) into (3.23)), the inequality holds as follow:

(Cmin -

Crin(1 = @y, —wy, Jn — M)y
< Clm—=wp, J — Ml +1I(p = gullo + IV(O = spllo)-

On account of (3.14)), we can easily conclude that 1 — o~ > 0. Consequently, we have

N —wi, Jn = Mplly < C(l(@ = wp, J = Mp)lli + I(p = gi)llo + 1IV(6 = su)llo)-

Therefore, by the triangle inequality and taking infimum, we get

@ —up, J = JI)lh <CC inf @ —wy, J =Myl + inf llp = qullo + inf 116 — sull1),

(Wn,Mp)EY), qn€Ey Sh€Zp

V(O = O)llo < CUIVO = sillo + I = wp, J = Ml + |lp = gallo)-
Applying the inf-sup condition (2.14]), the discrete inf-sup condition (3.13)) and Lemmal.l in
Part II of [9], we get

inf N@w—wp,J—-Mplh <C° inf |-y J - Kplh,

Wi, Mp)eYy Wi, Kn)e(XpXYp)

where C* = 1 + max{Pr, «}/B*. Therefore, we can further obtain the following estimates

e —wp, J = Il <CC inf | —vp, J = Kplli + inf |lp — gullo + inf |0 = sall1),

Wi, Kn)E(XpXY)) qn€Ey Sh€Zp
-6l <CC  inf  |(@—vy,J =Kl + inf [lp—aqullo + inf |6 — spll1).
Wi, Kn)e(XpXYy) qn€Ey Sh€Zp

Next, let’s continue to arrive at the error estimate of (p, ¢). For all (g, ¥y,) € Ey X Sy, Wi, Kp) €

X, X Y, we have

B(pn = qn, &n — Y1), Wi, Kp) = Ao((w —wpp, J — J1), 03, Kp)) + A —wp, J — J1), (W, J), (v, Kp))
+ A (Wp, Jn), (= wp, J = Jn), Vi, Kp)) + BU(p = g, & — Y1), Wi, Kp) + QO — 6, (v, Kp)).
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To get more detailed results, we rewrite the above compact form to the original form, as follows:

by(pn = qnsvi) = as((w —up),vy) + d(J — Jp,vi) + co((u —up), u,vp)
+ co(mp,  —uy),vy) + bs(p = g, vi) + Q6 — Oy, (v, Kp))
and
bu(Pn — Yn, Kn) = an((J — J1n), Kp) — d(Ky, u — up) + byu(d — Y, Kp).
Therefore, using (2.2), (2.6), (2.7), we deduce further that

by(pr — qn,vi) < IV@ — up)llollVvrllo + LklIBl T = T)llaillVvallo + 20V @ — wp)llolIVallol[Vvillo

+ IV @ = wp)llolVarllolIVallo + Pril(p — gwllolVvllo + AglIV(6 = O)llol[VVallo

and

b — Y, Ki) < kll(J = T)llaisl| Knllaiv + 21k Bll 311V (@ = wp)llol| Knllaw + «11(& = Yi)llol| Killaiv
< C(l( —wp, J = Tt + |l = willo) [ Killaiv-
With the help of the discrete inf-sup condition (3.13), the triangle inequality and taking infimum
over E;, and S, respectively, we get

lp = pallo < ClI(@ —up, J = Tl + IV = O)llo + [P = gallo)

<CC inf  Nw—=vp,J =Kyl + inf |lp = gallo + inf 16 = sll),

Vi, Kn)E(XpXYp) qn€Ey Sh€Zp
and
g — vullo < CCinf (¢ — ¥illo + lI(w —up, J — Il
Un€S
<C(Cinf @ —vnlo+  inf @@=y, J = K)ll+ inf |lp — qullo).
Un€S Wn.Kn)e(XpXYp) qn€Ey
This completes the proof. O

4. Iterative methods

In this section, we introduce three classical iterative methods, namely Stokes, Newton and

Oseen iterative methods, for hybrid finite element problem (3.2)). For simplicity, we consider

D:=XxY, G:=MXxN,
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and for any (u, J), (v,K) € D, and (p, ¢),(q,¥) € G,

=wJ), &=(p¢, ®=0K, x=@¥), zz=4-¢, {=n¢0.
The initial value 1]2 € Y, 0° € Z, of three iterations is obtained by the following equations:
Aoy, @1) + BE), By) + Q6 @) = (L, @),
Bl ) =0, (4.1)
e(®)), r) = (),
for V(®y, xn, 1) € Dy, X Gy, X Z,.
Method I (Stokes Iteration)
Given 17}~ € Y, and 6/"! € Z,, find (1}, &7, 0)) € Dy X G, X Z,, satisfies the equations that for
V(D@ xn, 1h) € Dy X Gy X Z,
Aoy, ®p) + Ay~ L, @) + BE, @) + QG @) = (L, ),
Blen ) = O, (4.2)
e@, )+ Hm ", 07" r) = P(ry).
Method II (Newton Iteration)
Given n}' € Y, and 0] € Z,, find (1], &},6}) € D, x G, X Z,, satisfies the equations that for
Y(®u, xn, 1h) € Dy X Gy X Z,
Ao, ®p) + A (g ), @) + Ay @) — A @)
+ B(&), Py) + QO),, ®y) = (L, Py),
B(xn 1) =0
e(@, r) + HGpy™ O, ra) + Hy 6, ry) — Hpy ™ 0,7 ) = B ()

4.3)

Method III (Oseen Iteration)
Given I]Z_l € Ty, find (0}, &, 6,) € D, X G, X Z,, satisfies the equations that for Y(®, x4, ;) €
D, x G, X Z,
Aoy, @1) + A (1, 1, ©) + BEL @) + QO ®y) = (L, By),
Blyn 1)) =0, (4.4)
e(G, ra) + Hap ™", 6, i) = (1)
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Lemma 4.1. Under the conditions of Theorem 2.3, Assumptions 3.1 and 3.2 , the initial values

are well-defined as well as the following estimates hold:

% Cmax
IV6yllo < Ay, Iyl < . BUIEN < (LN + 244,)(1 + C ), (4.5)

C‘min min
and also satisfy the following boundedness

Cmin

0 0
IVzgllo < oy, Izl <
n
Cmin

a, ﬁ*”Zg”O < (Cmax + Cmin)( )O- (46)

Proof. Setting (®y, x5, 1) = (), €7, 6)),

Aoy, 1) + BELmy) + Q6 m) = (L,n),
B, ;) =0,
e(8,6)) = P(6).

Combining (3.8), (3.4) and (3.6), we can have

LIl + 244
IV&llo < Ay, Iyl < C—M 4.7)
Now, let’s consider the following equation:
B(&p, @) = (L, @y)) = A(1y, D1) — QE, D).
Using the discrete inf-sup condition (3.13)), (3.3) and (3.6), we can further obtain
w11 <0 Cmax
BlIgIl < (LI + AgA)(1 + ——). (4.8)
Subtracting (4.1 from 1) and setting (@, x5, 1) = (z?,,zg,zg) yield
Ao(Z> ) + P (s 1y 29) + B(2g, 2) + Rz, 2) = 0,
Bz, 7)) = 0,
e(Zg, Zg) + 7~{(']/1’ Hha Z(g)) = 0
By (3.8), (3.12) and (3.15)), we have
IVzgllo < Ay (4.9)
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Applying @.9), (3.4), (3.9) and (3.6), the following inequality is drawn:

LIl + A4
1200 < ——=—"*0. (4.10)
Cmin
Using the discrete inf-sup condition (3.13)), @.10), (3.3), (3.10) and gives that
. L]l + A4
Blzglly < (Coss + Coin)(—— )0 (4.11)
The proof is completed. O

Theorem 4.2. (Stokes Iteration) Under the conditions of Theorem 2.3, Assumptions 3.1 and
3.2, provided

O<o< i (4.12)

for ¥n > 0. The Methold I is stable, the numerical solution (n;,&,,0,) defined by equations

satisfies:

9
Cmin

Moreover, the iterative errors zZ, zg and z; satisfy

Il <2 16411 < 24,. (4.13)

LIl + 444, LIl + 2,4y

llzyll < Bor)'( ), IVzZgllo < 30)" Ay, Izllo < (O)30)'(

Cmin min

) (4.14)
where C = Cax + 2Cmin-

Proof. We will use mathematical induction to obtain the desired results. As can be seen from

Lemma 4.1, (.13)) and @.14) hold for n = 0. If equations (#.13)), and (@.14)) are valid forn — 1,
we will show that they also hold for n. Taking (®, 1, 1) = (1}, &), 6;), we have

Ao ) + Ay g ) + BEL D + QL)) = (L)),
B(&n, 1) =0,
OO + Hap 07,6 = W@y).

Applying (3.7) and (3.12)), we further obtain

”VGh”O < /L/,(l + 4/12(C—)) < 2/1¢

min
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And using (3.3), and (3.6), it holds

0 LI A Ay "
gl < c + Cmin”nh "1+ CminHV@hHo
L. + 4,4 L. + 4,4, AL, AxA,4 A A,4
S(” | qw)+4(” I atey 2||2|| N 22q v Lty
Chin Chin Cmin Cmin Chnin
< 2||L||* + ﬂq/llp.
Cmin

As a consequence, we prove that inequalities (4.13) hold for n > 0. Subtracting (4.2) from (3.2)),
the following result holds:

Ao(Zy @p) + Ar(Zy i, @) + Ay 27 @) + B2, @) + Qlzg, @) = 0,
Blxn, zy) = 0, (4.15)
e(zy, rn) + ﬂ(Zf,_l, On, ) + H@ 257 ) = 0.

Setting r, = z;, we have easily
ey, 2p) + H& O ) + Hpy ' 257" 7)) = 0.

By (3.7), (3.12), (4.13) and the second inequality of (3.15]), we can get

1V25llo < Aallzy 141196410 + Aallag; 1ol V251l
Al | Ay

AL Ay
Cmin Cmin

< 2,30y}
W( O-) ( Cmin Cmin

) +22,(30)"(

) (4.16)

< A,(Bo)".
Similarly choosing (®;, ;) = (z’,’,, z’;), we have
Ao, ) + Ay ) + An(y 2 2 + B 2 + 0. 2) = 0,
Bz, 7)) = 0.

Using (3.4), (3.10), (3.6), (3.15) and @.13) leads to

n /12 n—1 42 n—1 n—1 /lq "
gl < 2y il + 22 iy -+ 292
Ay LI + A4y . A LIl + 2,4, |
y i+ 2 , 4.17
< Cmin( - iz~ 1 Cmin( . Mz, Il (4.17)
L. + 4,4
< (30‘)"(””6‘—‘1‘”)'
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In term of {.13), we arrive at
B(zE, ®p) = = Aoy, @n) — Ay 1 @) = A(gyy L2 @) — QG ).

By combining the discrete inf-sup condition (3.13) with (3.3)), (3.10) and (3.7), the following

estimation can be obtained:

-1 -1 -1
Blizgllo < Craxllzyll + Aallmgallillzy ™ I + Al llillzy ™ 1l + 2411V Zgllo

. ILIL + 2,4, (4.18)
< (OB (——F—).
Cmin
As a consequence, we complete the proof. O

Theorem 4.3. (Newton Iteration) Under the conditions of Theorem 2.3, Assumptions 3.1 and
3.2. Provided

O0<o< % (4.19)

foralln > 0. The Methold 11 is stable, and the numerical solution (1}, &, 0;) defined by equation

(.3) satisfies:

. 4Ll + 2,4, . 4
7,1l < ngq, VG0 < g(/lw). (4.20)
Moreover, the iterative errors zZ, zg and zy, satisfy
. ~ 9 . |ILlls + 4,4
llzgllo < (C)(gd)2 1(C—_w), 4.21)
; ~ 9 . |ILlls + 4,4
llzgllo < (C)(gv)2 I(TW), 4.22)

where C = Cpax + %Cmm.

Proof. In the proof of this theorem, the mathematical thought we use is consistent with that of

the previous theorem. By Lemma 4.1, (4.20)-(4.22) hold for n = 0. Assume (4.20)-(4.22)) are

valid for n — 1, we should show that they also hold for n.

Aoy, @) + A2, 1y @) + Ay 2 By + AN By
+ B(zg, ®y) + Olzy, ®y) = 0,
B(Xh’ Z'];) = 0’

-1 -1 -1 _n-1
e(zg rn) + H(zy, 6, r) + Hpy ™ zg,r) + H(zy o zg 5 ra) = 0.

(4.23)
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Setting (@, x5, 1) = (zf], zg, 7y), we directly obtain
Aoz 7p) + Pz 1y 2g) + PGy 2, 2) + A2y oz 7)) + Bl 7y) + Q2. 2) =
B(zgz) =0
e(zp, 2p) + H(z,, 0, L+ HE )+ 7-((z,, L) =0

From and (3.12)), we deduce that

42,1 ) .

192510 < =5~ llepll + Aallzy™ 111V ll- (4.24)

Analogously, applying (3.3), (3.10) and (3.6), we have

n 9 m_1 ||L||* + ﬁq/l(//
llzyll < (50') (T). (4.25)
Then,
n 4/1 n—1
IVzgllo < ||Z Il + i~ 111V, o
4/12@ 9 L, LI + 2,0, RN 17 1 P

< 7z — " Y+ (= (= A 4.26
<3 (50') ( - ) 2(50') ( o )(50') y  (4.20)

9
< (50-)2 l/lw
With the help of (4.23)), we arrive at
Bz, @n) = ~Ao(Zy, Pn) = Ay 11, @p) = AL 25, ) = ATy 2y By) — Q2 Byy).
Then, by (3.3)), (3.10) and (3.6), the discrete inf-sup condition (3.13), we derive

-1 —12
Bl < ConanllZll + A1V Z3llo + 2l g~ + Aol

LIl + A4y

9 n 9 n
< Cmax(go-)2 _1( ) + /lq(§0')2 _1/11//

Cmin
4.27)
9 Ll + Ay 4 IILIL + 2,2 9 iy Il + Ay,

21 (202! q T q (202 q 2
+ 20500 (3 )+ G )

a9 o LI + 244y
< (CY 2! q '
< OGN — )

Next, it follows from (4.3) and (4.1) with n = 1 that

Ao(my, — 15, ®) + A (1)), 175, ©1) + Ay, 5, P) — A (7, 7, D),
+ B~ &, @) + Q6, — 6, D)) = 0

Bxn 1y, — 1) = 0

&6, = 6 i) + H(y 63, ra) + H (g 65, ri) = H(n,. 65, 7n) =

(4.28)
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Setting (@, xn, 1) = (' —°, &, — &), 6, — 6), and using (3.8), (3.12) and (3.11) lead to

V6, = &Dllo < Al 1 IIVE)lo- (4.29)

Useing (3.4), (3.9), (3.10) and (3.6), the following inequality holds:

1 A
oz = w3l < = ol IVl + =gy gl
- min (4.30)

1
< alimglh.

Taking n = 1 in equation (4.3) and setting (®y, x;, ) = (11;, &, 6,) give that

ﬂ()(nflla ’]]i) + ﬂl(’]g, ’]}11’ 77;11) + ﬂl(”}lz’ 772, 77;11) - ﬂl(”g» 772, 77/11) + B(é‘:}l” ’]/11) + Q(919 n}ll) = <L9 n[11>’
B, ;) =0,
e(0),60)) + Hp, 05, 6)) + H(ny, 62, 64) — Hpd, 62, 61) = P(6)).

We can get

OIILIL + 4,4,
8 len ’
Setting (@, xn, 1) = (171, €, 07,) in equations with n > 2 leads to

91
llagplly < IVl < T‘” (4.31)

Ao, 1) + A ) + A ) — A ) + BEL ) + QL) = (L.,
B&.my) =0,
e(6) ) + H(p ™ 6. 6,) + Hn, 6,7, ) = H(py™, 6,7, 6)) = (6}
By (3.8), and (3.12), we deduce
IV8llo < Ay + Aalligy — 1 L 1IV65 ™" = 6o

< Ay + ol = 27 IV = 29)llo (4.32)
< 4/1
_ 3 w.
Applying (3.4), (3.9), (3.10) and (3.6), we have
" 175 P—
<—r 4 1
”nhlll - Cmin Cmin

Cmin
<V (2P (2 4.33
<o ( +3((5) +(5))) (4.33)

_ 41+ Ay
-3 Cmin .

The proof is completed. O

A2

V&1l + —— i — 7|1
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Theorem 4.4. (Oseen Iteration) Under the conditions of Theorem 2.3, Assumptions 3.1 and
3.2, the Methold 11l is unconditional stable. and satisfies the following estimates

IVGllo < Ay, gl < Y
min
and satisfy the following bounds

1L + 444,
Cmin

LIl + 244y

llzzll < o*(
g C‘min

), IVZgllo < ™Ay, BlIZENN < (Conax + 3Comin)( )

Proof. Considering model (#.4) and setting (@, x4, ) = (17);, &}, 6;), we can arrive at

Aoy ) + Ay~ ) + BEL ) + QO ) = (L. ap)),
B(&,.m,) =0,
e(@r, 0 + Hag ™, 61, 07) = P@.

By (3.8)) and (3.T1), we obtain easily

IV llo < Ay. (4.34)

Similarly in terms of (4.34)), while applying (3.4), (3.9) and (3.6), we can also get

LIl + Ay A4

4.35
Cmin ( )

Il <

In the next step, we give the estimation of the error bounds. Subtracting (4.4) from (3.2), we

deduce the following result

Aoz, ®p) + Ar(zy s 1y @) + A1y, 2y Bi) + Bz, @) + Qzg, @) = 0,
B(Xh’ ZZ) = O’
ey ) + H@ ", O ) + Hg ' 25, ry) = 0.

Setting r;, = z, it holds:

e(Z.2p) + HEZ ', 0. 7) = 0.
Using (3.7), (3.12) and the second inequality of (2.16)) yields
IVzgllo < 2,11V23 lo- (4.36)
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Choosing (®;, x1) = (zf], zg’), we have

R 2) + P e Z) + Ay 220 + B Z) + Q) = O,

B(zg,z) = 0.
Combining (3.4), (3.9), (3.10) and (3.6)), we arrive at
CrinllZplli < Aallzy ™ Nillmalli + 2glIVZ5llo-
By the first inequality of and (4.36), we can obtain
llzylh < 0'"||Z§),||1- (4.37)

Using (4.6), (4.37) and (4.36) can yield

LIl + A4y
Cmin

lizglli < "™*( ), IVZgllo < a1y, (4.38)

By the equation
B, @) = A2y, @p) = A&y @p) = A 25, @) — QG Py,

and using (3.3), (3.10), (3.6) and (3.13)), we further have

BIIZE < (Coa + 3Crmin)o™ (=

The proof is completed. O

Remark 4.1. Under the condition 0 < o < }‘, Methods I-111 are stable. Under the 0 < o < %,
Methods Il and Il are stable. And only Method Il is unconditionally stable under the condition

0 < o0 < 1. Hence, among our proposed methods, method 11l has the best stability.

Remark 4.2. The convergence rates of Method I and Method Il respectively are : |zl <
L.+, L.+, . . :
(30')"(””5—_"'”) and ||zylly < O'"H(H”g—_qw) which are linear convergent. Besides, the convergence
. n L. +4,4, . . .
rate of Method Il is ||zl < (%O')2 _1(”HCM) which is quadratic convergent. Therefore, among

our proposed methods, Method II converges fastest.
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5. Numerical experiments

In this section, we evaluate the performance of the algorithms given in this paper through
four numerical examples. In the first numerical example, we consider 2D/3D exact solution
problem to verify the convergence rate of the iterative algorithms. The second one is the 2D
singular solution problem to verify the convergence performance in a non-convex L-shaped
domain. The thermal driven cavity problem is presented in the third numerical example. In the
last example, we consider a Benard convection problem.

For the spatial finite element discretizations , the velocity u and pressure p are approximated
by the Mini-elements, while we choose the lowest-order Raviart-Thomas element combined
with the discontinuous and piecewise constant P, element to approximate current density J and

electric potential ¢.

5.1. Problems with smooth solutions

The purpose of this example is to verify the convergence rate of the finite element solutions
inQ = (0,1)4d = 2,3. The parameters Ra, Pr, k are simply set to 1 and B = (0,0,1)". The

right-hand terms f, g, ¢ can be given by the following exact solution : for d = 2

u, = 2n(sin(zrx))? cos(ny) sin(ny),  u, = —2n(sin(nry))? cos(zx) sin(mx),
J1 = —1/20x sin(zx) cos(mry) cos(nz), J, = 1/10m cos(mrx) sin(ry) cos(nz),

p = cos(my)cos(mx), ¢d=x-1/2, O0=u + u,.

and for d = 3
uy = —1/207(sin(rx))? sin(rry) cos(rry) sin(z) cos(rz),
ur = —1/107 sin(zrx) cos(rx)(sin(my))? sin(zz) cos(nz),
u3 = —1/207 sin(7rx) cos(x) sin(zry) cos(rry)(sin(z))?,

p = 1/10cos(mx) cos(nmy) cos(nz), ¢ = 1/10sin(;rx) sin(ry) sin(nz),

J1 = —1/20x sin(zrx) cos(mry) cos(nz), J» = 1/10m cos(mrx) sin(ry) cos(nz)

J3 = —1/20m cos(nrx) cos(my) sin(nz), 6 = uy + uy + us.
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Table 1: Numerical results in 2D for Method 1
h IV — Vayllo llp = pullo I = Jllai Il — nllo V6 =V8illo 1IV-Jllo CPU(s)

/16  2.12(--)  639%-1(--)  692e-2(--)  1.62e-2(--) 139(--)  2.0de-11  1.74
132 1.06(1.00)  2.11e-1(1.60) 3.47e-2(1.00) 7.56e-3(1.10) 6.96e-1(1.00) 2.04e-11  8.96
1/64  5.28e-1(1.00) 7.27e-2(1.54) 1.74e-2(1.00) 3.71e-3(1.03) 3.48¢-1(1.00) 2.04e-11  39.71
1/128 2.64e-1(1.00) 2.54e-2(1.52) 8.68e-3(1.00) 1.84e-3(1.01) 1.74e-1(1.00) 2.13e-11 174.37

Table 2: Numerical results in 2D for Method II
h IV — Vayllo llp = pullo I = Jnllai Il — dnllo IV6=VGullo 1IV-Jllo CPU(s)

/16  2.12(--)  639%-1(--)  692e-2(--)  1.62e-2(--) 139(--)  2.0de-11 094
132 1.06(1.00)  2.11e-1(1.60) 3.47e-2(1.00) 7.56e-3(1.10) 6.96e-1(1.00) 2.0de-11  4.40
1/64 5.28e-1(1.00) 7.27e-2(1.54) 1.74e-2(1.00) 3.71e-3(1.03) 3.48¢-1(1.00) 2.04e-11  19.90
1/128  2.64e-1(1.00) 2.54e-2(1.52) 8.68e-3(1.00) 1.84e-3(1.01) 1.74e-1(1.00) 2.13e-11  86.31

Here the j-th components of u and J are given by u; and J; , respectively. The numerical results
are given in Tables 1-3 for 2D and Tables 4-6 for 3D. From the numerical result, we have the
following points to explain:

First, we can further observe that the corresponding error of all variables is O(h). This
means that the optimal convergence rates of all variables reaches the optimum, which justify
our theoretical analysis well.

Second, among the three iterative methods, Method I is obviously the fastest and Method II
is the slowest and the errors of the three different iterative methods are the same almost.

Third, according to Proposition 7, the discrete current density has exactly no divergence
at all, but we can see that the approximate solution yields ||V - J4|o in the order of 107! with
almost no divergence from the tables. The numerical integration error and rounding error cause
IV - Jillo not to be exactly 0.

Finally, we can see from Figure 1 that Method I is applicable to small Rayleigh numbers.
Moreover, Method II can handle some medium Rayleigh numbers and Method III can solve the

steady thermally coupled inductionless MHD equation with large Rayleigh number.
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Table 3: Numerical results in 2D for Method II1

h{[Vu =Vl

lp = pallo T = Jnllaiv

¢ = dullo IVO — VBl

IV - Jllo

CPU(s)

/16 2.12(--)
132 1.06(1.00)

164 5.28e-1(1.00) 7.27e-2(1.54)

6.39%-1(--)  6.92e-2(- -)

2.11e-1(1.60) 3.47e-2(1.00) 7.56e-3(1.10) 6.96e-1(1.00)
1.74e-2(1.00)  3.71e-3(1.03) 3.48e-1(1.00)

1/128  2.64e-1(1.00) 2.54e-2(1.52) 8.68e-3(1.00)

1.62e-2(- -) 1.39(- -)

1.84e-3(1.01)  1.74e-1(1.00)

2.04e-11
2.04e-11
2.04e-11
2.14e-11

0.86

4.24

19.87
85.52

Table 4: Numerical results in 3D for Method 1

h [V =Vl

lp = pallo I = Jnllaiv

ll¢ = pnllo IVO = V6,llo

IV - Jllo

CPU(s)

1/8  1.20e-1(--)
1/12  8.16e-2(0.94)
1/16 6.17e-2(0.97)
120 4.95¢-2(0.98)

8.29e-2(--)  2.19e-2(--)
4.30e-2(1.62) 1.46e-2(1.00)
2.73e-2(1.58) 1.10e-2(1.00)
1.92e-2(1.58)  8.77e-3(1.00)

490e-3(--)  1.07e-1(--)
3.27e-3(1.00) 7.27¢-2(0.95)
2.45¢-3(1.00) 5.50e-2(0.97)
1.96e-3(1.00) 4.41e-2(0.98)

1.37e-12
1.38e-12
1.39e-12
1.39e-12

9.88
38.7
105.54
244.97

Table 5: Numerical results in 3D for Method 11

hIVu =Vl

lp = pallo [1J = Jnllai

ll¢ = pallo VO — V6,llo

IV - Jllo

CPU(s)

/8  1.20e-1(--)
1/12  8.16e-2(0.94)
1/16  6.17e-2(0.97)
120 4.95¢-2(0.98)

8.29e2(--)  2.19e-2(--)
4.30e-2(1.62) 1.46e-2(1.00)

4.90e-3(--)  1.07e-1(--)
3.27e-3(1.00)  7.27e-2(0.95)

2.73e-2(1.58) 1.10e-2(1.00) 2.45e-3(1.00) 5.50e-2(0.97)

1.92e-2(1.58)  8.88e-3(0.94)

1.96e-3(1.00) 4.41e-2(0.98)

1.37e-12
1.38e-12
1.39e-12
1.39e-12

14.124
56.59
148.86

281.99

Table 6: Numerical results in 3D for Method II1

hIVu = Vuyl

lp = pallo 1J = Jnllaiv

ll¢ = pnllo VO — V6,llo

IV - Jllo

CPU(s)

1/8  1.20e-1(--)
1/12  8.16e-2(0.94)
1/16 6.17e-2(0.97)
120 4.95¢-2(0.98)

8.29e-2(- -) 2.19e-2(- -)

4.90e-3(- -) 1.07(- -)

4.30e-2(1.62) 1.46e-2(1.00) 3.27e-3(1.00) 7.27e-2(0.95)
2.73e-2(1.58) 1.10e-2(1.00) 2.45e-3(1.00) 5.50e-2(0.97)

1.92e-2(1.58)  8.77e-3(1.00)

1.96e-3(1.00) 4.41e-2(0.98)

1.37e-12
1.38e-12
1.39e-12
1.39e-12

8.74
32.45
95.60

222.70
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5.2. Problems with singular solutions

In order to verify the ability of this method to capture singularities, we consider the thermally
coupled MHD problem in a non-convex L-shaped domain Q = (=0.5,0.5)?/([0, 0.5)x(-0.5, 0]).
As a result of the re-entrant corner presented in the domain, the exact solutions have strong
singularities at this corner, namely the origin of coordinates. We set k = Pr = Ra = 1 and
B = [0,0,1]". And the force term and boundary conditions are selected so that the analytical
solution is as follows. Let (r*,8%) be the polar coordinate and a = 37” The minimum positive
solution of this equation y sin(@) + sin(ua@) = 0 is given to the parameter ¢ as well as the exact

solutions are of defined by

cos(ua)

1+pu

cos(ua)
l—u

w (r*,0%) = (FY((1 + p) sin(@)RG") + cos(@)R (), J(r*,6°) = V((r*)* sin(2/36")),

R(6%) = sin((1 + w)8") cos((1 + w)@*) — sin((1 — w)6") + cos(67(1 — w)6"),
w(r*, %) = (FY(—(1 + p) cos(@")R(G) + sin(@)R'(6)), ¢(r*,6%) =0,

p(r, 0 = =Y A +w*R @)+ RO/ —p), 607,60 = uy + us.

In fact, we can get (u, p) € H'**(Q) x H*(Q) along with J € H?*(Q). The conductive boundary
is considered in the example instead of the insulating boundary condition. This means the
electric potential ¢ = 0 on Q.

The numerical results of Methods I-III under several different grid sizes showed in Tables
7-9. From the numerical results in Tables 7-9, it is shown that the optimal numerical convergence
orders O(h%?) of these methods are consistent with that predicted by the theoretical analysis in
the foregoing. Besides, different from the first example, Method 1I takes the least CPU time
for the reason maybe that the fast convergence speed saves CPU time greatly. Ultimately, the
streamline of numerical solution velocity and current density and the contour of their components
are shown respectively in Figures 2-3. Therefore, the methods proposed can effectively deal

with the non convex region problems.

5.3. Thermal driven cavity problem

Next, a classic benchmark test, namely the thermal driven cavity problem is considered. We

consider a square cavity with differential thermal vertical walls in Q = [0, 1]?, in which the left
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Table 7: Numerical results with L-shaped domain in 2D for Method I

h Ve =Vullo  [Ip = pallo N = Jnllaiv ll¢ = ullo IVO =Vl IV - Jllo

CPU(s)

/16 5.09%-1(--)  5.99%-1(--)  4.82e-2(--)  5.17e-4(--)  553e-1(--) 5.27e-14
132 3.49e-1(0.54) 3.99e-1(0.59) 3.07e-2(0.65) 2.09e-4(1.30) 3.81e-1(0.54) 7.26e-14
1/64  2.39e-1(0.54) 2.71e-1(0.56) 1.95¢-2(0.66) 8.63e-5(1.28) 2.62e-1(0.54) 1.55¢-13
1/128  1.64e-1(0.54) 1.85e-1(0.55) 1.23e-2(0.66) 3.67e-5(1.24) 1.80e-1(0.54) 3.19e-13

15.76
73.15
267.18
1117.29

Table 8: Numerical results with L-shaped domain in 2D for Method 11

h IV — Vaylo lp = pallo lJ = Jnllaiv i — dullo V6 —=Vbiullo  IIV-Jllo

CPU(s)

1/16  5.09-1(--)  599e-1(--)  4.82e-2(--)  5.17e-4(--)  553e-1(--) 5.10e-14
1/32 3.49e-1(0.54) 3.99¢-1(0.59) 3.07e-2(0.65) 2.09e-4(1.30) 3.81e-1(0.54) 7.00e-14
1/64 2.39e-1(0.54) 2.71e-1(0.56) 1.95e-2(0.66) 8.63e-5(1.28) 2.62e-1(0.54) 1.59%-13
1/128  1.64e-1(0.54) 1.85e-1(0.55) 1.23e-2(0.66) 3.67e-5(1.24) 1.80e-1(0.54) 3.18e-13

7.89
32.01
137.45
566.89

Table 9: Numerical results with L-shaped domain in 2D for Method I1I

h IV — Vugllo lp = pallo IJ = Jnllaiv llp — nllo IV6—=Vbullo IV -Jllo

CPU(s)

1/16  5.09e-1(--) 5.99%-1(- -) 4.82e-2(- -) 5.17e-4(- -) 5.53(--) 5.17e-14
1/32 3.49e-1(0.54) 3.99e-1(0.59) 3.07e-2(0.65) 2.09e-4(1.30)  3.81(0.54)  6.85e-14
1/64  2.39e-1(0.54) 2.71e-1(0.56) 1.95e-2(0.66) 8.63e-5(1.28) 2.62e-1(0.54) 1.56e-13
1/128  1.64e-1(0.54) 1.85e-1(0.55) 1.23e-2(0.66) 3.67e-5(1.24) 1.80e-1(0.54) 3.22e-13

7.94
3343
149.73
635.81
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and right walls are separately kept at 6, and 6, with 6, > 6,. Setting 6, = 1 and 6, = 0 and
the rest of the walls are insulated. In order to greatly verify the effectiveness of the iterative
methods, the fluid in the cavity is treated as air in our model and we take Pr=0.71, xk = 1, Ra
varies within the range [10°-10°], f = g = 0 and ¢/ = 0. We use the Newton iterative method
for momentum equation and temperature equation to improve appropriately the accuracy while
consider no-slip boundary for the velocity, namely u = 0 on Q.

We present the vertical/horizontal velocity at mid-height for various Ra in Figure 4. Then,
we further study the change of the forms of various variables with Ra = 10%, 10*, 10°. Firstly,
Figure 5 shows the streamlines of velocity, we can easily observe that the streamline of velocity
changes from one large vortex to two large vortices, and then and moved to both sides. Secondly,
the change in the streamlines pattern of the current density from curves to straight lines can be
observed in Figure 6. Thirdly, Figure 7 shows that as the change of Ra the proportion of large
value of potential in the whole region is getting higher and higher. Finally, we can see in Figure

8 that the temperature distribution becomes more disordered.

5.4. Bénard convection problem

Finally, we consider a Bénard convection problem in domain Q = [0, 5] X [0, 1] to consider
its effectiveness in more detail. Setting u = 0 on 0Q, the bottom and the top walls are enforced
by 6= 1(or sin(x/5)) and 6= 0, the right (x=5) and left (x= 0) walls are adiabatic, respectively.
Here we only consider the Oseen iterative method with Pr= 1,«= 1 while the source f= g =0
and ¢= 0.

Figures 9-12 report the velocity streamlines, current density streamlines, potential isolines
along with isotherms for various kinds Ra = 3 x 103, 10° with homogeneous heating 6 = 1
on the bottom wall. It can be clearly observed that the vortexes become more inclined and
the value becomes larger with the increase of Ra in Figure 9. And then the value of current
density increases slowly, and the distribution radian of streamline on the upper and lower sides
gradually increases, showed in Figure 10. Ultimately, as can be seen from Figures 11-12, with
the increase of Ra, the value of the potential becomes larger and performance of the temperature

gets also more and more complicated.
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The numerical results of non-uniform heating 6= sin(x/5) on the bottom wall with Ra =
10,5 x 10* are shown in the Figures 13-16. In Figure 13, we can clearly observe that evolved
into a large right vortex. Furthermore, the changes in current density and the temperature field
are consistent with those under uniform heating conditions, we can see from Figures 14 and
16. Last, Figure 15 shows that the isoline distribution of the potential changes greatly, and the
value also decreases. From the above discussion, we know that the used method can simulate

the Benard convection problem for large Rayleigh number very well.

Ra=10 Ra=10° Ra=10°
10° 1040 10%
® —&— Method I —8— Method | —&— Method T
\, —#— Method I +— Method Il —#— Method 11
10° Method ITI 10% Method Il 10%0 Method IIT
= = =
5= 102 %= 102 % 102
ES o= o
3 a a s
&g 107 £ 10" £ 10"
c'e \ c'c e A N S
10°® \ 10° 10°
10® 100 1010
0 2 4 6 8 10 12 5 10 15 0 10 20 30 40
Iteration number Iteration number Iteration number
(a) (b) (©
. . . . . _ 3 6
Figure 1: The iteration convergence errors with Ra= 10, 10° and 10°.
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Figure 2: (a) Numerical approximations of u, (b) contours of u;, (c) contours of u,.
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Figure 3: (a) Numerical approximations of J, (b) contours of Ji, (c) contours of J;.
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Figure 4: (a) Vertical velocity at mid-height (x=0.5), (b) horizontal velocity at mid-width (y=0.5).
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Figure 6: Current density streamline: (a) Ra=
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Figure 7: Isoline of electric potential: (a) Ra=
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Figure 8: Isotherms: (a) Ra= 103, (b) Ra= 10%, (c) Ra= 10°.
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Figure 9: Velocity streamlines with homogeneous heating: (a) Ra= 3 x 103,(b) Ra=10°.
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Figure 10: Current density streamline with homogeneous heating: (a) Ra= 3 x 103, (b) Ra=10°.
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Figure 11: Isoline of electric potential with homogeneous heating: (a) Ra= 3 x 103, (b) Ra=10°.
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Figure 12: Isotherms with homogeneous heating: (a) Ra= 3 x 103, (b) Ra=10°.
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Figure 13: Velocity streamlines with non-uniform heating: (a) Ra= 10, (b) Ra=5 x 10*.
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Figure 14: Current density streamline with non-uniform heating: (a) Ra= 10°, (b) Ra=5 x 10*.
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Figure 15: Isoline of electric potential with non-uniform heating: (a) Ra= 10, (b) Ra=5 x 10*.
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Figure 16: Isotherms with non-uniform heating: (a) Ra= 10?, (b) Ra=5 x 10%.

6. Conclusion

In this paper, three iterative methods for steady-state thermally coupled inductionless MHD
problems are theoretically analyzed. In the finite element discretization, we solve simultaneously
the current density and potential, and use respectively conforming face elements in H(div, Q)
along with conforming volume elements in L>(Q) to discretize them. This results in an accurate
divergence-free for the discrete current density. Under the assumption of weak regularity, we
give further the optimal error estimates, where the error bounds of velocity, pressure, charge
density and temperature are independent of potential. After that, we propose and analyze three
coupling iterations of the scheme. Finally, through numerical experiments, we verify the results
of our theoretical analysis and prove the effectiveness of our proposed iterative method. In
our following research, a two-level iterative method for thermally coupled inductionless MHD

equations will be considered.
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