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Qualitative study of ballistic capture at Mars via Lagrangian descriptors
A. Quinci, G. Merisio, F. Topputo

• Lagrangian descriptors highlight regions with different dynamical behavior.
• Geometrical singularities are extracted with Roberts’ edge detection method.
• Dynamics separatrices are inspected against the weak stability boundary.
• Insight about the ballistic capture problem in the proximity of Mars is provided.
• Lagrangian descriptors are convenient for designing ballistic capture orbits.
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A B S T R A C T
Lagrangian descriptors reveal the dynamical skeleton governing transport mechanisms of a
generic flow. In doing so, they unveil geometrical structures in the phase space that separate
regions with different qualitative behavior. This work investigates to what extent Lagrangian de-
scriptors provide information about non-Keplerian motion in Mars proximity, which is modeled
under the planar elliptic restricted three-body problem. We propose a novel technique to reveal
ballistic capture orbits extracting separatrices of the phase space highlighted by Lagrangian
descriptor scalar fields. The Roberts’ operator to approximate the gradient is used to detect
the edges in the fields. Results demonstrate the chaos indicator ability to distinguish sets of
initial conditions exhibiting different dynamics, including ballistic capture ones. Separatrices
are validated against reference weak stability boundary derived on similar integration intervals.
Compared to other techniques, Lagrangian descriptors provide dynamics insight bypassing the
propagation of the variational equations.

1. Introduction
Ballistic capture (BC) orbits are low-energy transfers that allow temporary capture about a planet exploiting the

natural dynamics, thus without requiring maneuvers [33]. Compared to Keplerian solutions, they are cheaper and more
versatile from the operational perspective at the expense of longer transfer times. BC orbits are bounded by the weak
stability boundary (WSB) [3, 6, 11, 33]. After being initially conceived as a fuzzy boundary region in the Sun–Earth–
Moon system [1, 5], the WSB was algorithmically defined in [2]. The definition was later extended in [15, 31, 32]. A
formal definition and a technique for its derivation were proposed in [19].

Approaches currently known for designing BC orbits are: i) the technique stemmed from invariant manifolds
[4, 13, 34], ii) the method based on stable sets manipulation [19, 22, 23, 32], iii) the Hamiltonian approach taking
advantage of canonical transformations [10], and iv) the multiple shooting technique to solve a sequence of three-
point boundary value problems [26]. The first methodology gives insights into the dynamics but it is only applicable
to autonomous systems (e. g., the circular restricted three-body problem), while the others can be applied to more
representative, non-autonomous models. Lately, the variational theory for Lagrangian coherent structures (LCSs)
[17, 18], and the Taylor differential algebra [37] were applied to derive BC orbits and the WSB more efficiently
[8, 25, 35]. Alternatively, Lagrangian descriptors (LDs) can be exploited. They reveal separatrices, so providing a
qualitative description of the dynamics and highlighting the geometrical template of phase space structures even for
systems with generic time dependence [7, 20, 21, 24, 28].

The goal of the paper is to study to what extent LDs inform about the BC mechanism and aid in the design of BC
orbits. We provide a characterization of the dynamics in the Mars proximity modeled under the planar elliptic restricted
three-body problem (ER3BP). The geometrical structures featured by LD scalar fields are extracted through an edge
detection algorithm based on the Roberts’ method [14]. Specifically, Roberts’ operator is used to approximate the
gradient of the field [30]. The separatrices are inspected against the WSB derived on similar integration intervals. For
a coherent comparison, the particle stability definition is modified to relax the geometrical constraint on the number
of completed revolutions [19, 23]. Results show a strong correlation between extracted separatrices and the WSB,
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Table 1
Sun–Mars physical parameters.
Parameter Unit Value Description Reference

𝜇 - 3.226 201 × 10−7 Mass parameter
[19]𝑎𝑝 AU 1.523 688 Primaries semi-major axis

𝑒𝑝 - 0.093 418 Primaries eccentricity
𝑅 km 3397 Mars mean equatorial radius
𝑅SOI km 170𝑅 Mars sphere of influence (SOI) radius [23]

particularly when the geometrical structures governing the transport mechanisms emerge. Eventually, capture sets at
Mars are identified in the intricate plot of separatrices.

The remainder of the paper is organized as follows. In Section 2, the dynamical model is described. The
methodology is discussed in Section 3. Results are shown in Section 4. Eventually, conclusions are drawn in Section 5.

2. Equations of motion
The planar ER3BP describes the motion of a massless particle moving under the gravitational attraction of two

primary bodies 𝑃1 (the Sun) and 𝑃2 (Mars) without influencing their motion. The two primaries revolve on ellipses
about their common barycenter, influenced only by their mutual attraction. The model is expressed in the synodic
reference frame centered at the primaries barycenter. The synodic frame non-uniformly rotates and pulsates to keep
their distance equal to one [19]. Let the mass parameter 𝜇 = 𝑚2∕(𝑚1 + 𝑚2), where 𝑚1 and 𝑚2 are the masses of 𝑃1and 𝑃2, respectively. The positions of 𝑃1 and 𝑃2 are (-𝜇, 0) and (1-𝜇, 0), respectively. The equations of motion (EoM)
are scaled such that the sum of 𝑃1 and 𝑃2 masses is set to one as well as their distance, and their period is scaled to 2𝜋
[19]. The true anomaly 𝑓 is designated as the independent variable of the system. The EoM read [19]

𝑥′′ − 2𝑦′ = 𝜔𝑥

𝑦′′ + 2𝑥′ = 𝜔𝑦
(1)

where primes represent differentiation with respect to the true anomaly 𝑓 that depends on the scaled time as [19]
d𝑓
d𝑡

=
(1 + 𝑒𝑝 cos 𝑓 )2

(1 − 𝑒2𝑝)3∕2
. (2)

In Eq. (1), subscripts (⋅)𝑥 and (⋅)𝑦 denote the partial derivatives of the potential function 𝜔 defined as [19]

𝜔 (𝑥, 𝑦, 𝑓 ) = 1
1 + 𝑒𝑝 cos 𝑓

[

1
2
(

𝑥2 + 𝑦2
)

+
1 − 𝜇
𝑟1

+
𝜇
𝑟2

+ 1
2
𝜇(1 − 𝜇)

]

, (3)

with 𝑟1 =
√

(𝑥 + 𝜇)2 + 𝑦2 and 𝑟2 =
√

(𝑥 + 𝜇 − 1)2 + 𝑦2 the distances of the particle from 𝑃1 and 𝑃2, respectively,
while 𝑒𝑝 is the common eccentricity of the primaries. The Sun–Mars physical parameters used in this study are reported
in Table 1. The EoM are integrated with a 8th-order Runge–Kutta scheme with a 7th-order embedded step-size control.
The integration relative tolerance is set to 10−9 [27, 36].

3. Methodology
3.1. Low-energy regime

BC orbits can be identified as those solutions allowing for material transfer between interior and exterior realms
[12]. In the circular restricted three-body problem (CR3BP), they could be quantitatively identified as trajectories with
Jacobi constant just below that of the collinear Lagrangian points 𝐿1 and 𝐿2. In the Sun–Mars system under study, this
means trajectories with 𝐶𝐽 < 𝐶𝐽1 = 3.000 203 (i. e., transfers between primary and secondary interior realms) and
𝐶𝐽 < 𝐶𝐽2 = 3.000 202 (i. e., transfers between interior and exterior realms) [12]. On the other hand, when the Jacobi
constant falls below that of the collinear Lagrangian point 𝐿3 (𝐶𝐽 < 𝐶𝐽3 = 3.000 001), then high-energy transfers are
found [9, 29]. However, qualitative statement on allowed and forbidden regions are no longer possible in the elliptic
problem since the Jacobi value becomes anomaly-dependent [19].
A. Quinci et al.: Preprint submitted to Elsevier Page 2 of 9
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3.2. Particle stability definition
Particle stability is inferred using an alternative formulation of the stable sets defined in [23]. While propagating

initial conditions (ICs) in the non-dimensional, synodic reference frame, the particle non-dimensional distance 𝑟(𝑓 )
and Kepler energy 𝐻(𝑓 ) with respect to the target body 𝑃2 are computed [19]. The following indications are used to
classify stability: A) a particle escapes at 𝑓 = 𝑓𝑒 if 𝐻(𝑓𝑒) > 0 ∧ 𝑟(𝑓𝑒) > 𝑅SOI; B) a particle impacts the surface of
the target at 𝑓 = 𝑓𝑖 if 𝑟(𝑓𝑖) < 𝑅. Based on its dynamical behavior over the integration interval [𝑓0, 𝑓𝑓 ], a propagated
trajectory is said to be: i) weakly stable if the particle neither escape nor impact with the target, so belonging to the subset
(𝑓𝑓 ); ii) unstable if the particle escapes from the target before 𝑓𝑓 , then condition A) is verified for 𝑓𝑒 ∈ [𝑓0, 𝑓𝑓 ], so
belonging to the subset (𝑓𝑓 ); iii) crash if the particle impacts with the target before 𝑓𝑓 , then condition B) is verified
for 𝑓𝑖 ∈ [𝑓0, 𝑓𝑓 ], so belonging to the subset (𝑓𝑓 ). A capture set is defined as (𝑓𝐵 , 𝑓𝐹 ) ∶= (𝑓𝐵) ∩(𝑓𝐹 ) where
𝑓𝐵 < 𝑓0 (backward leg), and 𝑓𝐹 > 𝑓0 (forward leg).

If neither the escape criteria nor the impact criteria are matched, then the orbit is considered weakly stable in the
interval [𝑓0, 𝑓𝑓 ], independently of the type of orbit considered. The definition adopted in this study is the same used
in [19, 23]. The aforementioned alternative particle stability formulation only regards the count of revolutions about
the target, which in this work is neglected.
3.3. Lagrangian descriptors

By manipulating the definition given in [24], we define the LD as

𝑀(𝐱0, 𝑓0, 𝑓𝐵 , 𝑓𝐹 ) = ∫

𝑓0

𝑓0+𝑓𝐵
| (𝐱(𝑓 ))|𝛾d𝑓 + ∫

𝑓0+𝑓𝐹

𝑓0
| (𝐱(𝑓 ))|𝛾d𝑓, (4)

where 𝐱 = [𝑥, 𝑦, 𝑥′, 𝑦′] is the state vector obtained by rearranging Eq. (1) as a four-dimensional, first-order system
of ordinary differential equations 𝐱′ = 𝐟 (𝐱, 𝑓 ). The integrand | (𝐱(𝑓 ))|𝛾 in Eq. (4) is a bounded, positive quantity,
while 𝛾 is the exponent defining the norm [24]. In this study, we select  ∶=

√

(𝑥′)2 + (𝑦′)2 and 𝛾 = 1∕2 because
they highlight the geometrical structures of the phase space better than the other integrands and norms as in [24].
The LD field is then defined as (𝑓0, 𝑓𝐵 , 𝑓𝐹 ) ∶= {𝑀(𝐱0, 𝑓0, 𝑓𝐵 , 𝑓𝐹 ) ∣ 𝐱0 ∈ Ω}, where Ω is the set containing the
ICs. In practise, the LD is computed appending its integrand to the space state equations with a zero initial value, and
propagating the extended dynamics. The integration of the extended dynamics is stopped at 𝑓𝑖 if the particle impacts
with the target body.

An abrupt change in the LD field yelds discontinuous derivatives along the direction transverse to the change.
Such singularities coincide with phase space structures separating trajectories with different dynamics, so abrupt
changes correspond to dynamics separatrices [24]. In Eq. (4), 𝑀(𝐱0, 𝑓0, 0, 𝑓𝐹 ) isolates dynamics separatrices obtained
propagating ICs forwards, thus they are linked to repelling LCSs. Conversely, 𝑀(𝐱0, 𝑓0, 𝑓𝐵 , 0) reveals separatrices
backwards, so highlighting the attracting LCSs [21].
3.4. Extraction of separatrices

The structures revealed by the LD field are extracted with an edge detection algorithm. Edge detection is an image
processing technique usually exploited for finding boundaries of objects within images. An edge is defined as the locus
of points where an abrupt change in intensity of the image occurs. Several edge detection algorithms are available
(e. g., Sobel, Prewitt, Roberts, Canny, and zero-cross methods) [14]. Roberts’ operator appears to be the most effective
in extracting edges from the LD field of the problem at hand [30].

Given the image of the scalar field, the algorithm finds edges at those points where the gradient magnitude of the
image is larger than a sensitivity threshold 𝜎 provided as input. The gradient of the image is approximated by computing
the sum of the squares of the differences between diagonal neighbors pixels [14, 30]. The threshold value is tuned1 to
show as many structures as possible associated to abrupt changes in the LD field.
3.5. Validation of separatrices

The dynamics separatrices extracted from the LD field are expected to match the WSB computed on the same
integration interval. The validation procedure devised to verify the correlation is outlined in Fig. 1. Firstly, a uniform
computational grid Ω having 500 × 500 points and centered at the target body is built over the square domain

1Values too small (< 10−3) could generate false positives in the output binary image. The larger the final true anomaly, the larger is the threshold
suggested to use. The trend is justified because changes in the LD value at the separatrices are stronger for longer propagations.

A. Quinci et al.: Preprint submitted to Elsevier Page 3 of 9



Qualitative study of ballistic capture at Mars via Lagrangian descriptors

Figure 1: Validation workflow.

[−𝜀, 𝜀] × [−𝜀, 𝜀], with 𝜀 = 6 × 10−4. At 𝑓0, the particle is assumed at the periapsis of an osculating prograde elliptic
orbit about the target body with given eccentricity 𝑒0 = 0.9 (see [19] for more details). Secondly, ICs are propagated
in the [𝑓0, 𝑓𝑓 ] interval. The LD values are computed and the ICs are allocated into the sets  ,  , or  according to
the stability definition discussed in Section 3.2. Then, the separatrices are extracted with the edge detection algorithm.
Finally, the patterns are inspected against the WSB.

4. Results
Without loss of generality, the LD-based approach is applied to the Sun–Mars system. The correlation between

the extracted separatrices and the WSB is tested for several integration intervals, for both forward and backward
propagations. In Fig. 2, the LD scalar field computed for two distinct final anomalies is shown (see Figs. 2a and 2c),
together with the extracted patterns overlapped to the subsets  ,  , and  derived for the same 𝑓𝑓 (see Figs. 2b
and 2d). In both cases a good match between separatrices and boundaries of the classified regions is observed. The
central green disk identifies ICs located inside the surface of Mars, which immediately generate crash orbits. The scalar
field in Fig. 2c is more accurate in revealing the geometrical structures that characterize the ER3BP dynamics, when
compared to that in Fig. 2a. The longer the finite horizon over which ICs are propagated, the more separatrices the
field is able to reveal [20, 21, 24]. Since initial states in (0,−𝜋, 0) are integrated over a shorter finite horizon, the
field cannot reveal structures with the same level of detail as compared with (0, 0, 2𝜋), in which initial states are
propagated over a longer finite horizon. Results for the case (0,−2𝜋, 0), here not included, reach the same accuracy
of the ones for the (0, 0, 2𝜋) field. Indeed, the two LD fields are symmetric with respect to the 𝑥-axis [16].

For small values of 𝑓𝑓 , the matching presents some inconsistencies that are intrinsic to the LD definition. In fact,
LD reveals patterns if ICs are integrated long enough for dynamical divergences between orbits to be manifested
[24]. Consequently, the classification of the phase space according to the definition of particle stability provided in
Section 3.2 may be inconsistent with some regions featured by the LD scalar field if the trajectories are not sufficiently
divergent to feature singular structures in the field [24]. The latter is particularly true for short integration intervals as
observed in Fig. 2b. For instance, ICs ‘c’ and ‘d’ in Fig. 2b are classified into two different sets, still their dynamical
behavior is very similar as shown by their orbits in Figs. 4c and 4d. Indeed, for a slightly larger integration interval
both orbits escape from Mars.

Remarkably, LDs detect divergence (forward propagation) and attraction (backward propagation) in the dynamical
behavior even in areas classified in the same way according to our particle stability definition. To illustrate this concept,
two grid points can evolve both in crash orbits, nonetheless their trajectories could be strongly different, as well as their
impact epochs. For example, samples ‘e’ and ‘h’ in Fig. 2d belong to two distinct regions of the same crash set (2𝜋),
therefore they both impact with Mars. However, they exhibit dissimilar trajectories (see Figs. 4e and 4h). They impact
from different directions, and orbit ‘h’ reverses its angular momentum with respect to Mars much earlier than orbit ‘e’.

Patterns ruling particles transport in both true anomaly directions are revealed combining the LD structures
propagated forwards and backwards [24]. The correlation of the two capture sets (−𝜋, 3𝜋∕2) and (−𝜋, 3𝜋) with
the separatrices extracted from (0,−𝜋, 3𝜋∕2) and (0,−𝜋, 3𝜋) fields, respectively, is presented in Fig. 3. Results
show that some of the areas in the phase space enclosed by LD separatrices appear to be capture sets. Based on the
outcome of the validation procedure, the devised methodology of computing the LD field and extracting the dynamics
separatrices has been proven successful.

Referring to Fig. 3, the LD approach omits the dynamical behavior featured by the highlighted numerous regions,
therefore a classification technique is still required to discern which areas are actually capture sets. A viable strategy
to overcome the aforementioned limitation is proposed for practical design of BC orbits. By sampling an individual IC
for each identified region and classifying its orbit, all areas in the phase space can be easily categorized either as  ,
 , or  subsets according to the particle stability definition given in Section 3.2.
A. Quinci et al.: Preprint submitted to Elsevier Page 4 of 9
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(b) (0,−𝜋, 0) separatrices and sets at 𝑓𝑓 = −𝜋; 𝜎 = 4 × 10−3.
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(c) (0, 0, 2𝜋).
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(d) (0, 0, 2𝜋) separatrices and sets at 𝑓𝑓 = 2𝜋; 𝜎 = 2 × 10−2.
Figure 2: Validation of separatrices extracted from LD field through inspection against the WSB. Left: LD scalar field. Right:
Extracted separatrices inspected against subsets (𝑓𝑓 ), (𝑓𝑓 ), and (𝑓𝑓 ).

The exact ICs sampled from Figs. 2 and 3 are collected in Table 2. Their orbits expressed in the Mars-centered,
non-rotating frame, oriented as the synodic frame at 𝑓0, and with Cartesian coordinates 𝑋 and 𝑌 are plotted in Fig. 4.
Compared to similar BC orbits found in the literature [19, 23], the weakly stable trajectories shown in Fig. 4 do not
fully complete the last revolution about Mars due to the dropping of the usual geometrical constraint on the revolutions
number. Nevertheless, they grant temporary capture at least over the finite horizon specified by the integration interval.

5. Conclusion
This study looks into the effectiveness of Lagrangian descriptors in revealing phase space organizing structures

when facing the ballistic capture phenomenon, so investigating their capability in highlighting the weak stability
boundary. They successfully reveal the geometrical structures governing the transport mechanisms that are then
extracted through an edge detection algorithm based on the Roberts’ operator to approximate the gradient of the
A. Quinci et al.: Preprint submitted to Elsevier Page 5 of 9
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(a) (0,−𝜋, 3𝜋∕2) separatrices inspected against capture set
(−𝜋, 3𝜋∕2). Sensitivity threshold 𝜎 set to 4×10−3 and 9×10−3
for backward and forward propagations, respectively.
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(b) (0,−𝜋, 3𝜋) separatrices inspected against capture set
(−𝜋, 3𝜋). Sensitivity threshold 𝜎 set to 4 × 10−3 and 3 × 10−2
for backward and forward propagations, respectively.

Figure 3: Inspection of separatrices extracted from (0, 𝑓𝐵 , 𝑓𝐹 ) against capture sets. Forward and backward separatrices of the
LD field are represented as gray and blue lines, respectively.

Table 2
Initial conditions of sample orbits.

Orbit Initial condition at 𝑓0 = 0 Set
𝑋0 = 𝑥0 − 1 + 𝜇 𝑌0 = 𝑦0 𝑥′

0 𝑦′0
a −5.170 000 × 10−5 −1.000 000 × 10−4 6.258 637 × 10−2 −3.235 715 × 10−2 (−𝜋)
b −7.575 000 × 10−5 1.695 000 × 10−4 −4.999 940 × 10−2 −2.234 486 × 10−2 (−𝜋)
c 4.509 000 × 10−4 3.621 000 × 10−4 −1.913 330 × 10−2 2.382 548 × 10−2 (−𝜋)
d 4.533 000 × 10−4 3.475 000 × 10−4 −1.871 302 × 10−2 2.441 039 × 10−2 (−𝜋)
e −7.094 000 × 10−5 1.960 000 × 10−4 −4.856 863 × 10−2 −1.757 887 × 10−2 (2𝜋)
f −1.719 000 × 10−4 −9.739 000 × 10−5 2.616 042 × 10−2 −4.617 492 × 10−2 (2𝜋)
g −1.551 000 × 10−4 −9.239 000 × 10−5 2.842 583 × 10−2 −4.771 994 × 10−2 (2𝜋)
h 1.094 000 × 10−4 −3.258 000 × 10−4 3.796 152 × 10−2 1.274 705 × 10−2 (2𝜋)
i −1.286 000 × 10−4 3.018 000 × 10−4 −3.772 815 × 10−2 −1.607 634 × 10−2 (−𝜋, 3𝜋∕2)
j −6.373 000 × 10−5 2.585 000 × 10−4 −4.429 485 × 10−2 −1.092 035 × 10−2 (−𝜋, 3𝜋∕2)
k −4.990 000 × 10−4 4.317 000 × 10−4 −1.863 920 × 10−2 −2.154 496 × 10−2 (−𝜋, 3𝜋)
l −1.719 000 × 10−4 7.575 000 × 10−5 −2.195 327 × 10−2 −4.981 872 × 10−2 (−𝜋, 3𝜋)

Lagrangian descriptor scalar fields. The extracted separatrices effectively distinguish regions with different dynamical
behavior. The detected patterns are in good agreement with the weak stability boundary computed on the same
integration interval. Lagrangian descriptors proved to be an intuitive, easy to implement, and convenient tool for
designing ballistic capture orbits. Without any a priory knowledge, Lagrangian descriptor patterns yield a consistent
match with the weak stability boundary and the associated stable sets. The proposed methodology supports the design
of ballistic capture orbits, enriching the dynamics knowledge in the proximity of the target planet. Furthermore, the
technique can be successfully applied to arbitrary non-autonomous, more representative, astrodynamics models without
any restrictions.
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Figure 4: Sample orbits in the Mars-centered, non-rotating frame. Forward (𝑓 > 𝑓0) and backward (𝑓 < 𝑓0) legs plotted as solid
and dashed lines, respectively; Mars’ SOI represented as a black dotted circumference. ICs indicated with square markers. Coloring
identifies the subset the orbits belong to, according to the color code used in Fig. 2. ICs collected in Table 2.
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