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Abstract. A new mathematical model of neural networks described by diffusive
FitzHugh-Nagumo equations with memristors and linear synaptic coupling is pro-
posed and investigated. The existence of absorbing set for the solution semiflow in
the energy space is proved and global dynamics of the memristive neural networks
are dissipative. Through uniform estimates and maneuver of integral inequalities
on the interneuron difference equations, it is shown that exponential synchroniza-
tion of the neural network at a uniform convergence rate occurs if the coupling
strength satisfies a threshold condition explicitly expressed by the system param-
eters, which is illustrated by an example and numerical simulation experiments.

1. Introduction

Recently the global dynamics and exponential synchronization of the neural net-
works modeled by the diffusive Hindmarsh-Rose equations with memristors were
proposed and studied by the first author in [37, 38]. In this paper, we shall consider
a new mathematical model of neural networks described by the diffusive FitzHugh-
Nagumo equations with memristors and linear synaptic interneuron coupling.

Let a network of m fully coupled memristive neuron cells be denoted by NW =
{Ni : i = 1, 2, · · · ,m}, where m ≥ 2 is a positive integer, which is described by
the following model of memristive and diffusive FitzHugh-Nagumo (FHN) equations.
Each neuron Ni, 1 ≤ i ≤ m, in this network is presented by the differential equations:

∂ui
∂t

= η∆ui + f(ui, x)− σwi + J − k tanh(ρi)ui +
m∑
j=1

P (uj − ui),

∂wi
∂t

= aui + c− bwi,

∂ρi
∂t

= qui − rρi,

(1.1)
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for t > 0, x ∈ Ω ⊂ Rn (n ≤ 3), where Ω is a bounded domain with locally Lipschitz
continuous boundary ∂Ω.

In the membrane potential ui-equations, the nonlinear term k tanh(ρi)ui presents
the memristive coupling effect [24, 33, 36], where ρi(t, x) stands for the memductance
of the memristor and tanh(ρi) is the the electromagnetic induction flux with its cou-
pling strength coefficient k. In this system, the fast excitatory variable ui(t, x) refers
to the transmembrane electrical potential of a neuron cell and the slow recovering
variable wi(t, x) represents the integrated ionic current across the neuron membrane.
The network neuron coupling terms are assumed to be linear with a common strength
coefficient P in the membrane potential equation.

We impose the homogeneous Neumann boundary condition

∂ui
∂ν

(t, x) = 0, for t > 0, x ∈ ∂Ω, 1 ≤ i ≤ m. (1.2)

The initial states of the system (1.1) will be denoted by

u0
i (x) = ui(0, x), w0

i (x) = wi(0, x), ρ0
i = ρi(0, x), 1 ≤ i ≤ m. (1.3)

The following Assumption is made on the scalar function f ∈ C1(R× Ω):

f(s, x)s ≤ −λ|s|4 + ϕ(x), s ∈ R, x ∈ Ω,

∂f

∂s
(s, x) ≤ β, s ∈ R, x ∈ Ω,

(1.4)

where λ and β are positive constants, ϕ ∈ L2(Ω) is a given function. Note that the
prototype nonlinear homogeneous function f(s) = s(s− κ)(1− s) with κ > 0 in the
original FitzHugh-Nagumo equations [9] satisfies the properties (1.4), in particular,

f(s)s = −s4 + (1 + κ)s3 − κs2 ≤ −1

4
s4 +

1

4
(1 + κ)4,

f ′(s) = −3s2 + 2(1 + κ)s− κ ≤ 1

3
(1 + κ)2 − κ ≤ β =

1

3
(1 + κ)2.

All the parameters η, σ, k, a, c, b, q, r, and P can be any positive constants, while the
reference membrane potential J can be any real number constant.

Typical models of neuron dynamics are four-dimensional Hodgkin-Huxley equa-
tions [12], two-dimensional FitzHugh-Nagumo equations [9], and three-dimensional
Hindmarsh-Rose equations [11], which originally consist of ordinary differential equa-
tions without memristors and characterize the periodic firing-bursting dynamics for
neurons and nerve systems. Analysis through Hopf bifurcations and energy or Hamil-
tonian methods with semi-numerical simulations are the main approaches to show
many solution patterns and collective synchronization behavior [6, 14, 20, 39].
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Global dynamics and synchronization of ensemble neurons and neural networks
modeled by partly diffusive Hindmarsh-Rose equations and FitzHugh-Nagumo equa-
tions have been studied by the authors’ group in recent years [20, 21, 25, 26]. These
models are hybrid differential equations and reflect the structural feature of neu-
ron cells, which contain short-branch dendrites receiving incoming signals and long-
branch axons propagating and transmitting outgoing signals through synapses.

The concept of memristor was coined by Chua [4] to describe the effect of electro-
magnetic flux on moving electric charges. Physical and generic memristive systems
initially reported in [5, 30] attracted broad scientific interests in the recent decade,
especially recognized in biological neuron models and artificial intelligence comput-
ing [1, 7, 15, 17, 29, 31] as a new type (other than electrical and chemical) synapsis or
as an ideal component which has the nonvolatile properties and can process dynam-
ically memorized signal information to exhibit more complex or chaotic dynamics in
neural networks. Memristor-based mathematical models now penetrate many fields
with applications to image encryption, DNA sequences operation, brain criticality,
cell physiology, cybersecurity, and quantum computers, cf. [17, 18, 23, 28, 29, 33, 34].

The researches on memristive FitzHugh-Nagumo and Hindmarsh-Rose neural net-
works in ordinary differential equations have been expanding in the recent decade,
cf. [1, 8, 16, 24, 40] and many references therein. Various synchronization results
with memristive effect of these models are achieved [10, 13, 19, 22, 31, 32, 35] mainly
by the methods of generalized Hamiltonian functions, Lyapunov exponents, and the
computational algebra with numerical simulations.

In this work we shall rigorously prove a threshold condition on the neuron coupling
strength P to ensure an exponential synchronization of the memristive neural net-
works (1.1) through the approach of dissipative dynamical analysis and sharp uniform
estimates, which can be extended to study complex or artificial neural networks.

2. Formulation and Preliminaries

Define two Hilbert spaces of functions:

E = [L2(Ω,R3)]m and Π = [H1(Ω)× L2(Ω,R2)]m

where H1(Ω) is a Sobolev space. Call E the energy space and Π the regular space.
The norm and inner-product of L2(Ω) or E will be denoted by ‖ · ‖ and 〈 ·, · 〉,
respectively. We use | · | to denote a vector norm or a set measure in Rn. The initial-
boundary value problem (1.1)-(1.3) can be formulated into an initial value problem
of the evolutionary equation:

∂g

∂t
= Ag + F (g), t > 0,

g(0) = g0 ∈ E.
(2.1)
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The unknown function is a column vector g(t) = col (g1(t), g2(t), · · · , gm(t)), where

gi(t) = col (ui(t, ·), wi(t, ·), ρi(t, ·)), 1 ≤ i ≤ m,

characterizes the dynamics of the neuron Ni. The initial data function in (2.1) is

g(0) = g0 = col (g0
1, g

0
2, · · · , g0

m) where g0
i = col (u0

i , w
0
i , ρ

0
i ), 1 ≤ i ≤ m.

The energy norm ‖g(t)‖ of the solution for the evolutionary equation (2.1) in the
space E is given by

‖g(t)‖2 =
m∑
i=1

‖gi(t)‖2 =
m∑
i=1

(
‖ui(t)‖2 + ‖wi(t)‖2 + ‖ρi(t)‖2

)
.

The closed linear operator A in (2.1) is defined by A = diag (A1, A2, · · · , Am), where

Ai =

η∆ 0 0

0 −bI 0

0 0 −rI

 : D(A)→ E, i = 1, 2, · · · ,m, (2.2)

with the domain D(A) = {g ∈ [H2(Ω) × L2(Ω,R2)]m : ∂ui/∂ν = 0, 1 ≤ i ≤ m},
is the generator of the C0-semigroup {eAt}t≥0 on the space E and I is the identity
operator. By the fact that H1(Ω) ↪→ L6(Ω) is a continuous imbedding for space
dimension n ≤ 3 and by the Assumption (1.4), the nonlinear mapping

F (g) =



f(u1, x)− σw1 + J − k tanh(ρ1)u1 +
∑m

j=1 P (uj − u1)

au1 + c

qu1

...

f(um, x)− σwm + J − k tanh(ρm)um +
∑m

j=1 P (uj − um)

aum + c

qum


: Π −→ E

(2.3)
is a locally Lipschitz continuous mapping.

In this work we shall consider the weak solutions [3, Section XV.3] of this initial
value problem (2.1).

Definition 2.1. A 3m-dimensional vector function g(t, x), where (t, x) ∈ [0, τ ]×Ω,
is called a weak solution to the initial value problem of the evolutionary equation
(2.1), if the following two conditions are satisfied:

(i) d
dt
〈g, ξ〉 = 〈Ag, ξ〉+ 〈F (g), ξ〉 is satisfied for a.e. t ∈ [0, τ ] and any ξ ∈ E∗ = E.

(ii) g(t, ·) ∈ C([0, τ ];E) ∩ C1((0, τ);E) and g(0) = g0.
Here E∗ is the dual space of the Hilbert space E.
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The following proposition can be proved by the Galerkin approximation method
[3] with the regularity property [27] of the parabolic operator semigroup eAt.

Proposition 2.2. For any initial state g0 ∈ E, there exists a unique weak solution
g(t; g0), t ∈ [0, τ ], for some τ > 0 may depending on g0, of the initial value problem
(2.1) formulated from the memristive FitzHugh-Nagumo equations (1.1). The weak
solution g(t; g0) continuously depends on the initial data and satisfies

g ∈ C([0, τ ];E) ∩ C1((0, τ);E) ∩ L2((0, τ); Π). (2.4)

Moreover, for any initial state g0 ∈ E, the weak solution g(t; g0) becomes a strong
solution for t ∈ (0, τ), which has the regularity

g ∈ C((0, τ ]; Π) ∩ C1((0, τ); Π). (2.5)

An infinite dimensional dynamical systems [3, 27] for time t ≥ 0 only is called a
semiflow. Absorbing set defined below is the key concept to characterize dissipative
dynamics of a semiflow.

Definition 2.3. Let {S(t)}t≥0 be a semiflow on a Banach space X . A bounded set
B∗ of X is called an absorbing set of this semiflow, if for any given bounded set
B ⊂X there exists a finite time TB ≥ 0 depending on B, such that S(t)B ⊂ B∗ for
all t > TB. The semiflow is called dissipative if there exists an absorbing set.

The Young’s inequality in a generic form will be used throughout this paper: For
any two positive numbers x and y, if 1

p
+ 1

q
= 1 and p > 1, q > 1, one has

x y ≤ 1

p
εxp +

1

q
C(ε, p) yq ≤ εxp + C(ε, p) yq, C(ε, p) = ε−q/p, (2.6)

where constant ε > 0 can be arbitrarily small. In Section 4, the Gagliardo-Nirenberg
interpolation inequalities [27, Theorem B.3] will be used in a crucial step to prove
the main result on exponential synchronization of the memristive neural networks.

3. Dissipative Dynamics of Memristive FitzHugh-Nagumo Semiflow

In this section, we shall prove the global existence of weak solutions in time for
the initial value problem (2.1) to establish a solution semiflow of the memristive
FitzHugh-Nagumo neural network modeled by (1.1). Then we show the dissipative
dynamics in terms of the existence of an absorbing set of this semiflow in the state
spaces E.

Theorem 3.1. For any initial state g0 ∈ E, there exists a unique global weak solution
in time, g(t; g0) = col (ui(t), wi(t), ρi(t) : 1 ≤ i ≤ m), t ∈ [0,∞), to the initial value
problem (2.1) of the memristive FitzHugh-Nagumo equations (1.1) for the neural
network NW.
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Proof. Conduct the L2 inner-products of the ui-equation with C1ui(t, x) for 1 ≤ i ≤
m, with the scaling constant C1 > 0 to be chosen later. Then sum them up to get

C1

2

d

dt

m∑
i=1

‖ui‖2 + C1η

m∑
i=1

‖∇ui‖2 = −C1P

m∑
i=1

m∑
j=1

∫
Ω

(ui − uj)2 dx

+ C1

m∑
i=1

∫
Ω

(f(ui, x)ui − σuiwi + Jui − k tanh(ρi)u
2
i ) dx

≤C1

m∑
i=1

∫
Ω

[
−λ|ui|4 + |ϕ(x)| − σuiwi + Jui + k| tanh(ρi)|u2

i

]
dx

≤C1

m∑
i=1

∫
Ω

[
−λu4

i + |ϕ(x)|+ 1

2

(
λu2

i +
σ2

λ
w2
i

)
+

1

2

(
J2

λ
+ λu2

i

)
+ ku2

i

]
dx

=C1

m∑
i=1

∫
Ω

((λ+ k)u2
i − λu4

i ) dx+
C1σ

2

2λ

m∑
i=1

‖wi‖2 + C1m

(
‖ϕ‖L1 +

J2

2λ
|Ω|
)

≤ − 1

2
C1λ

m∑
i=1

∫
Ω

u4
i (t, x) dx+

C1σ
2

2λ

m∑
i=1

‖wi‖2

+ C1m

(
‖ϕ‖|Ω|1/2 +

1

2λ
((λ+ k)2 + J2)|Ω|

)
,

(3.1)

where the Gauss divergence theorem and the Assumption (1.4) are used. In the

last step above, we notice that (λ + k)u2
i ≤

(λ+k)2

2λ
+ λ

2
u4
i . Then summing up the L2

inner-products of the wi-equations with wi(t, x) for 1 ≤ i ≤ m, by Young’s inequality
(2.6), we get

1

2

d

dt

m∑
i=1

‖wi‖2 =
m∑
i=1

∫
Ω

(auiwi + cwi − bw2
i ) dx

≤
m∑
i=1

∫
Ω

[(
a2

b
u2
i +

1

4
bw2

i

)
+

(
c2

b
+

1

4
bw2

i

)
− bw2

i

]
dx

=
m∑
i=1

a2

b

∫
Ω

u2
i (t, x) dx− b

2

m∑
i=1

‖wi‖2 +
mc2

b
|Ω|.

(3.2)

Next, we sum up the L2 inner-products of the ρi-equations with ρi(t, x), 1 ≤ i ≤ m,
to obtain

1

2

d

dt

m∑
i=1

‖ρi‖2 =
m∑
i=1

∫
Ω

(quiρi − rρ2
i ) dx ≤

q2

2r

m∑
i=1

u2
i (t, x) dx− r

2

m∑
i=1

‖ρi‖2. (3.3)
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Now add the above three inequalities. We come up with

1

2

d

dt

m∑
i=1

(
C1‖ui‖2 + ‖wi‖2 + ‖ρi‖2

)
+ C1η

m∑
i=1

‖∇ui‖2 + C1P

m∑
i=1

m∑
j=1

∫
Ω

(ui − uj)2dx

≤ −
m∑
i=1

∫
Ω

(
1

2
C1λu

4
i −

(
a2

b
+
q2

2r

)
u2
i

)
dx+

m∑
i=1

(
C1σ

2

2λ
− b

2

)
‖wi‖2 − r

2

m∑
i=1

‖ρi‖2

+ C1m

(
‖ϕ‖|Ω|1/2 +

1

2λ
((λ+ k)2 + J2)|Ω|

)
+
mc2

b
|Ω|, t ∈ Imax = [0, Tmax),

(3.4)

where Imax is the maximal existence interval of a weak solution. Now we can choose
the scaling constant to be

C1 =
bλ

2σ2
so that

C1σ
2

2λ
− b

2
= − b

4
. (3.5)

With this choice, from (3.4) it follows that

1

2

d

dt

m∑
i=1

(
C1‖ui‖2 + ‖wi‖2 + ‖ρi‖2

)
+ C1η

m∑
i=1

‖∇ui‖2 +
b

4

m∑
i=1

‖wi‖2 +
r

2

m∑
i=1

‖ρi‖2

+
m∑
i=1

∫
Ω

(
1

2
C1λu

4
i −

(
a2

b
+
q2

2r

)
u2
i

)
dx+ C1P

m∑
i=1

m∑
j=1

∫
Ω

(ui − uj)2 dx

≤C1m‖ϕ‖2 +m

(
C1 +

C1

2λ
((λ+ k)2 + J2) +

c2

b

)
|Ω|, t ∈ Imax = [0, Tmax).

(3.6)

By completing square and (3.5), we have

m∑
i=1

∫
Ω

[
1

2
C1λu

4
i −

(
a2

b
+
q2

2r

)
u2
i

]
dx

=
m∑
i=1

(
a2

b
+
q2

2r

)
‖ui‖2 +

m∑
i=1

∫
Ω

[
bλ2

4σ2
u4
i − 2

(
a2

b
+
q2

2r

)
u2
i

]
dx

=
m∑
i=1

(
a2

b
+
q2

2r

)
‖ui‖2 +

m∑
i=1

∫
Ω

[√
bλ

2σ
u2
i −

2σ√
bλ

(
a2

b
+
q2

2r

)]2

dx

−4mσ2

bλ2

[
a2

b
+
q2

2r

]2

|Ω| ≥
m∑
i=1

(
a2

b
+
q2

2r

)
‖ui‖2 − 4mσ2

bλ2

[
a2

b
+
q2

2r

]2

|Ω|.

(3.7)
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Substitute (3.7) in (3.6). It yields the inequality

1

2

d

dt

m∑
i=1

(
C1‖ui‖2 + ‖wi‖2 + ‖ρi‖2

)
+ C1η

m∑
i=1

‖∇ui‖2 + C1P

m∑
i=1

m∑
j=1

∫
Ω

(ui − uj)2 dx

+
m∑
i=1

(
a2

b
+
q2

2r

)
‖ui‖2 +

b

4

m∑
i=1

‖wi‖2 +
r

2

m∑
i=1

‖ρi‖2

≤C1m‖ϕ‖2 +m

[
C1 +

C1

2λ
((λ+ k)2 + J2) +

c2

b
+

4σ2

bλ2

[
a2

b
+
q2

2r

]2
]
|Ω|, t ∈ Imax.

(3.8)

Denote by

C2 = C1 +
C1

2λ
((λ+ k)2 + J2) +

c2

b
+

4σ2

bλ2

[
a2

b
+
q2

2r

]2

. (3.9)

Then (3.8) gives rise to the Gronwall-type differential inequality

d

dt

m∑
i=1

[
C1‖ui‖2 + ‖wi‖2 + ‖ρi‖2

]
+ µ

m∑
i=1

[
C1‖ui‖2 + ‖wi‖2 + ‖ρi‖2

]
≤ d

dt

m∑
i=1

[
C1‖ui‖2 + ‖wi‖2 + ‖ρi‖2

]
+ 2

m∑
i=1

[(
a2

b
+
q2

2r

)
‖ui‖2 +

b

4
‖wi‖2 +

r

2
‖ρi‖2

]
≤ 2C1m‖ϕ‖2 + 2C2m|Ω|, for t ∈ Imax = [0, Tmax),

(3.10)

where

µ = min

{
2a2

b
+
q2

r
,
b

2
, r

}
.

We can solve the differential inequality (3.10) to obtain the following bounding esti-
mate of all the weak solutions on the maximal existence time interval Imax,

‖g(t, g0)‖2 =
m∑
i=1

‖gi(t, g0
i )‖2 =

m∑
i=1

(
‖ui(t)‖2 + ‖wi(t)‖2 + ‖ρi(t)‖2

)
≤ max{C1, 1}

min{C1, 1}
e−µ t‖g0‖2 +

2m

µmin{C1, 1}
(
C1‖ϕ‖2 + C2|Ω|

)
, t ∈ [0,∞).

(3.11)

Here it is shown that Imax = [0,∞) for every weak solution g(t, g0) because it will
never blow up at any finite time. Therefore, for any initial state g0 = (g0

1, · · · , g0
m) ∈

E, there exists a unique global weak solution in time t ∈ [0,∞) of the initial value
problem (2.1) for this memristive neural network model (1.1) in the space E. �
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Based on the global existence of weak solutions shown in Theorem 3.1, we define
the solution semiflow {S(t) : E → E}t≥0 of the memristive and diffusive FitzHugh-
Nagumo equations (1.1) to be

S(t) : g0 7−→ g(t; g0) = col (ui(t, ·), wi(t, ·), ρi(t, ·) : 1 ≤ i ≤ m), t ≥ 0.

We call this semiflow {S(t)}t≥0 the memristive FitzHugh-Nagumo neural network
semiflow generated by the neural network model equations (1.1).

The next theorem shows that the memristive FitzHugh-Nagumo neural network
semiflow {S(t)}t≥0 is a dissipative dynamical system in the state space E.

Theorem 3.2. There exists a bounded absorbing set for the memristive FitzHugh-
Nagumo neural network semiflow {S(t)}t≥0 in the state space E, which is the bounded
ball

B∗ = {h ∈ E : ‖h‖2 ≤ K}. (3.12)

Here the constant

K = 1 +
2m

µmin{C1, 1}
(
C1‖ϕ‖2 + C2|Ω|

)
, (3.13)

where the constants C1 and C2 are given in (3.5) and (3.9).

Proof. This is the consequence of the global uniform estimate (3.11) shown in the
proof of Theorem 3.1, which implies that

lim sup
t→∞

‖g(t; g0)‖2 = lim sup
t→∞

m∑
i=1

‖gi(t; g0
i )‖2 < K (3.14)

for all weak solutions of (2.1) with any initial data g0 in E. Moreover, for any given
bounded set B = {h ∈ E : ‖h‖2 ≤ L} in E, there exists a finite time

TB =
1

µ
log+

(
L

max{C1, 1}
min{C1, 1}

)
such that all the solution trajectories started at the initial time t = 0 from the set B
will permanently enter the bounded ball B∗ shown in (3.12) for t > TB. Therefore,
the bounded ball B∗ is an absorbing set in E for the semiflow {S(t)}t≥0 so that this
memristive FitzHugh-Nagumo neural network semiflow is dissipative. �

We shall further prove an ultimate uniform bound of the membrane potential func-
tions {ui(t, x) : 1 ≤ i ≤ m} for all the weak solutions in the higher-order integrable
space L4(Ω), which paves the way for the attempt to achieve the memristive neural
network synchronization in the next section.
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Theorem 3.3. There exists a constant Q > 0 such that for any initial data g0 ∈ E,
the ui(t) components, 1 ≤ i ≤ m, of the weak solution g(t; g0) = (g1(t), · · · , gm(t)) of
the initial value problem (2.1) for the memristive FitzHugh-Nagumo neural network
NW satisfies the absorbing property in the space L4(Ω),

lim sup
t→∞

m∑
i=1

‖ui(t)‖4
L4 < 1 +Q. (3.15)

Proof. Take the L2 inner-product of the ui-equation in (1.1) with u3
i (t), 1 ≤ i ≤ m,

and sum them up. By the boundary condition (1.2) and Assumption (1.4), we get

1

4

d

dt

m∑
i=1

‖ui(t)‖4
L4 + 3η

m∑
i=1

‖ui∇ui‖2
L2

+ P
m∑
i=1

m∑
j=1

∫
Ω

(ui − uj)2(u2
i + uiuj + u2

j) dx

=
m∑
i=1

∫
Ω

(f(ui, x)u3
i − σu3

iwi + Ju3
i − k tanh(ρi)u

4
i ) dx

≤
m∑
i=1

∫
Ω

(−λu6
i + u2

iϕ(x)− σu3
iwi + Ju3

i + ku4
i ) dx, t > 0.

(3.16)

By Cauchy inequality, it is seen that

u2
iϕ(x)− σu3

iwi + Ju3
i ≤

1

6
λu4

i +
1

3
λu6

i +
6

λ

(
ϕ2(x) + σ2|wi(t, x)|2 + J2

)
. (3.17)

Using Young’s inequality (2.6),

ku4
i ≤

1

3

(
16 k3

λ2

)
+

2

3

(
λ

4
u6
i

)
≤ 6k3

λ2
+

1

6
λu6

i . (3.18)

Note that
∑m

i=1

∑m
j=1(ui − uj)2(u2

i + uiuj + u2
j) ≥ 0 always holds and

u4
i ≤

1

3
+

2

3
u6
i ≤ 1 + u6

i ,

so that

− 1

2
ui

6 ≤ 1

2
− 1

2
ui

4, (3.19)

From (3.16) wherein we successively use the above inequalities (3.17), (3.18), (3.19)
and (3.14), it follows that
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1

4

d

dt

m∑
i=1

‖ui(t)‖4
L4 + 3η

m∑
i=1

‖ui∇ui‖2

≤
m∑
i=1

(
λ

∫
Ω

(
1

6
u4
i −

1

2
u6
i

)
dx+

6σ2

λ
‖wi(t)‖2

)
+

6m

λ

(
‖ϕ‖2 +

(
J2 +

k3

λ

)
|Ω|
)

≤
m∑
i=1

(
−λ

3

∫
Ω

u4
i dx+

6σ2

λ
‖wi(t)‖2

)
+
mλ

2
|Ω|+ 6m

λ

(
‖ϕ‖2 +

(
J2 +

k3

λ

)
|Ω|
)

≤ − λ

3

m∑
i=1

‖ui(t)‖4
L4 +

6σ2

λ
K +m

[
6

λ
‖ϕ‖2 +

(
λ

2
+

6

λ
J2 +

6

λ2
k3

)
|Ω|
]
, t > 0.

(3.20)

Consequently, with the non-negative gradient term removed, (3.20) shows that

d

dt

m∑
i=1

‖ui(t)‖4
L4 +

4λ

3

m∑
i=1

‖ui(t)‖4
L4

≤ 24σ2

λ
K +m

[
24

λ
‖ϕ‖2 +

(
2λ+

24

λ
J2 +

24

λ2
k3

)
|Ω|
]
, t > 0.

(3.21)

By the parabolic regularity stated in Proposition 2.2, for any weak solution g(t; g0)
one has ui(1) ∈ H1(Ω) ⊂ L4(Ω) for 1 ≤ i ≤ m. Then the second statement in
Proposition 2.2 shows that any weak solution has the regularity

m∑
i=1

ui(t) ∈ C([1,∞), H1(Ω)) ⊂ C([1,∞), L4(Ω)).

Apply the Gronwall inequality to (3.21). It results in the bounding estimate of all
the ui(t) components in the space L4(Ω) as follows:

m∑
i=1

‖ui(t)‖4
L4 ≤ e−

4λ
3

(t−1)

m∑
i=1

‖ui(1)‖4
L4 +Q, for t ≥ 0, (3.22)

where the constant Q is independent of any initial data and given by

Q =
18σ2

λ2
K +m

[
18

λ2
‖ϕ‖2 +

(
3

2
+

18

λ2
J2 +

18

λ3
k3

)
|Ω|
]
. (3.23)

Therefore, the claim (3.15) of this theorem is proved. �
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4. Synchronization of Memristive FitzHugh-Nagumo Neural Networks

In this section, we shall prove the main result on the exponential synchronization
of the memristive FitzHugh-Nagumo neural networks described by (1.1) in the state
space E. This result provides a sufficient quantitative threshold condition for the
neuron coupling strength to reach the neural network synchronization.

Definition 4.1. For a model evolutionary equation of a neural network called NW
such as (2.1) formulated from the memristive and diffusive FitzHugh-Nagumo equa-
tions (1.1), we define the asynchronous degree of this neural network in a state space
(as a Banach space) Z to be

degs (NW) =
∑

1≤i<j≤m

{
sup

g0i , g
0
j ∈Z

{
lim sup
t→∞

‖gi(t; g0
i )− gj(t; g0

j )‖Z
}}

where gi(t) and gj(t) are any two solutions of the model equation with the initial
states g0

i and g0
j for two neurons Ni and Nj in the network. The neural network is

said to be asymptotically synchronized if

degs (NW) = 0.

If the asymptotic convergence to zero of the difference norm above for any two
neurons in the network admits a uniform exponential rate, then the neural network
is called exponentially synchronized.

Introduce the neuron difference functions: For i, j = 1, · · · ,m, we define

Uij(t, x) = ui(t, x)−uj(t, x), Wij(t, x) = wi(t, x)−wj(t, x), Rij(t, x) = ρi(t, x)−ρj(t, x).

Given any initial state g0 = col (g0
1, · · · , g0

m) in the space E, the difference between
any two solutions of (2.1) associated with two neurons Ni and Nj in the network is
what we consider:

gi(t, g
0
i )− gj(t, g0

j ) = col (Uij(t, ·),Wij(t, ·), Rij(t, ·)), t ≥ 0.

By subtraction of the three governing equations for the j-th neuron from the corre-
sponding equations for the i-th neuron in (1.1), we obtain the following differencing
FitzHugh-Nagumo equations. For i, j = 1, · · · ,m,

∂U

∂t
= η∆U + f(ui, x)−f(uj, x)− σW − k(tanh(ρi)ui − tanh(ρj)uj)−mPU,

∂W

∂t
= aU − bW,

∂R

∂t
= qU − rR.

(4.1)
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Here we can simply write U(t, x) = Uij(t, x),W (t, x) = Wij(t, x), R(t, x) = Rij(t, x)
and further U(t) = U(t, ·),W (t) = W (t, ·), R(t) = R(t, ·) for notational convenience.

The following exponential synchronization theorem is the main result of this paper.

Theorem 4.2. For the memristive FitzHugh-Nagumo neural network NW with the
model (1.1)-(1.4), If the following threshold condition is satisfied by the coupling
strength coefficient P ,

P > Γ. (4.2)

Here the threshold Γ is defined to be

Γ =
1

m

(
β + k +

1

2b
|a− σ|2 +

q2

r
+
C∗4 k8(1 +Q)2

η3 r4

)
,

where the constant Q is given in (3.23) and the constant C∗ is the coefficient in the
Gagliardo-Nirenberg inequality (4.8), then the neural network NW is exponentially
synchronized in the state space E at a uniform exponential rate α(P ):

α(P ) = min

{
b, r,

[
2mP − 2

(
β + k +

1

2b
|a− σ|2 +

q2

r
+
C∗4 k8(1 +Q)2

η3 r4

)]}
.

(4.3)

Proof. The proof will go through two steps.
Step 1. Take the L2 inner-products of the first equation in (4.1) with U(t), the

second equation in (4.1) with W (t), and the third equation in (4.1) with R(t). Then
sum them altogether and use the Assumption (1.4) to get

1

2

d

dt
(‖U(t)‖2 + ‖W (t)‖2 + ‖R(t)‖2) + η‖∇U(t)‖2 + b ‖W (t)‖2 + r‖R(t)‖2

=

∫
Ω

(f(ui, x)− f(uj, x))U dx+

∫
Ω

[(a− σ)UW + qUR] dx

−
∫

Ω

k(tanh(ρi)ui − tanh(ρj)uj)U ] dx−mP‖U(t)‖2

≤
∫

Ω

∂f

∂s
(`ui + (1− `)uj, x)U2 dx+

∫
Ω

[(a− σ)UW + qUR] dx

− k
∫

Ω

[
sech2(ξρi + (1− ξ)ρj)RuiU + tanh(ρj)U

2
]
dx−mP‖U(t)‖2

≤ β‖U‖2 +

∫
Ω

[(a− σ)UW + qUR] dx− k
∫

Ω

RujU dx+ (k −mP )‖U‖2,

(4.4)

where the properties | tanh(ρj)| ≤ 1 and sech2(ξρi+ (1− ξ)ρj) ≤ 1 for the hyperbolic
functions and ξ, ` ∈ [0, 1] are used.

Next we have to treat the two integral terms on the right-hand side of the differ-
ential inequality (4.4). By the Young’s inequality (2.6), we have
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∫
Ω

[(a− σ)UW + qUR] dx

≤
∫

Ω

[
b

2
W 2(t, x) +

1

2b
|a− σ|2U2(t, x)

]
dx+

∫
Ω

[
r

4
R2(t, x) +

q2

r
U2(t, x)

]
dx

=
b

2
‖W (t)‖2 +

r

4
‖R(t)‖2 +

(
1

2b
|a− σ|2 +

q2

r

)
‖U(t)‖2, t > 0.

(4.5)

For the last integral term in (4.4), by the Hölder inequality, we get

−k
∫

Ω

RujU dx ≤ k
∫

Ω

(
r

4k
R2(t, x) +

k

r
u2
j(t, x)U2(t, x)

)
dx

≤ r

4
‖R(t)‖2 +

k2

r

[∫
Ω

u4
j(t, x) dx

]1/2 [∫
Ω

U4(t, x) dx

]1/2

=
r

4
‖R(t)‖2 +

k2

r
‖uj(t)‖2

L4‖U(t)‖2
L4 , t > 0.

(4.6)

Substitute the term estimates (4.5) and (4.6) into the differential inequality (4.4),
we obtain

1

2

d

dt
(‖U(t)‖2 + ‖W (t)‖2 + ‖R(t)‖2) + η‖∇U(t)‖2 +

b

2
‖W (t)‖2 +

r

2
‖R(t)‖2

≤
(
β + k +

1

2b
|a− σ|2 +

q2

r
−mP

)
‖U(t)‖2 +

k2

r
‖uj(t)‖2

L4‖U(t)‖2
L4 , t > 0.

(4.7)

Step 2. The key challenge here is to handle the last term on the right-hand side
of the estimate inequality (4.7). We shall exploit the sharp technique of Gagliardo-
Nirenberg interpolation inequalities [27, Theorem B.3]. In view of the Sobolev em-
bedding

H1(Ω) ⊂ L4(Ω) ⊂ L2(Ω),

one has

‖U(t)‖2
L4 ≤ C∗‖∇U(t)‖2θ‖U(t)‖2(1−θ) (4.8)

where the coefficient C∗(Ω) > 0 only depends on the spatial domain Ω, and the
interpolation index θ = 3/4 is determined by

−3

4
= θ

(
1− 3

2

)
− (1− θ) 3

2
.

Hence (4.8) shows that

‖U(t)‖2
L4 ≤ C∗‖∇U(t)‖3/2‖U(t)‖1/2. (4.9)
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According to Theorem 3.3 and (3.15), lim supt→∞
∑m

i=1 ‖ui(t)‖4
L4 < 1 + Q, so that

there exists a finite time T (g0) ≥ 0 such that for all 1 ≤ i ≤ m,

‖ui(t)‖2
L4 < (1 +Q)1/2, for all t > T (g0).

Therefore, for any given initial state g0 ∈ E, by (4.9) and using Young’s inequality
(2.6), we can estimate

k2

r
‖uj(t)‖2

L4‖U(t)‖2
L4 ≤

k2

r
(1 +Q)1/2 ‖U(t)‖2

L4

≤C∗‖∇U(t)‖3/2

[
k2

r
(1 +Q)1/2 ‖U(t)‖1/2

]
≤ η‖∇U(t)‖(3/2)×(4/3) +

1

η3

[
C∗k2

r
(1 +Q)1/2 ‖U(t)‖1/2

]4

= η‖∇U(t)‖2 +
C∗4 k8(1 +Q)2

η3 r4
‖U(t)‖2, t > T (g0).

(4.10)

Substitute (4.10) in (4.7). After cancellation of the gradient terms η‖∇U(t)‖2 on
both sides of the inequality, it follows that for t > T (g0),

1

2

d

dt
(‖U(t)‖2 + ‖W (t)‖2 + ‖R(t)‖2) +

b

2
‖W (t)‖2 +

r

2
‖R(t)‖2

+

[
mP −

(
β + k +

1

2b
|a− σ|2 +

q2

r
+
C∗4 k8(1 +Q)2

η3 r4

)]
‖U(t)‖2 ≤ 0.

(4.11)

Therefore, the following Gronwall-type inequality holds:

d

dt
(‖U(t)‖2 + ‖W (t)‖2 + ‖R(t)‖2) + α(P )(‖U(t)‖2 + ‖W (t)‖2 + ‖R(t)‖2)

≤ d

dt
(‖U(t)‖2 + ‖W (t)‖2 + ‖R(t)‖2) + (b‖W (t)‖2 + r‖R(t)‖2)

+ 2

[
mP −

(
β + k +

1

2b
|a− σ|2 +

q2

r
+
C∗4 k8(1 +Q)2

η3 r4

)]
‖U(t)‖2 ≤ 0,

(4.12)

for t > T (g0), where the constant

α(P ) = min

{
b, r,

[
2mP − 2

(
β + k +

1

2b
|a− σ|2 +

q2

r
+
C∗4 k8(1 +Q)2

η3 r4

)]}
as shown in (4.3).

Under the threshold condition (4.2) of this theorem, solving this linear Gronwall in-
equality (4.12) directly shows the exponential synchronization result: For any initial
state g0 ∈ E and any two neurons Ni and Nj in the memristive FitzHugh-Nagumo
neural network (1.1), their difference function gi(t; g

0
i ) − gj(t; g0

j ) converges to zero
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in the state space E exponentially at a uniform rate α(P ) shown in (4.3). Namely,
for any 1 ≤ i < j ≤ m,

‖gi(t)− gj(t)‖2
E = ‖Uij(t)‖2 + ‖Wij(t)‖2 + ‖Rij(t)‖2

≤ e−α(P ) t
∥∥g0

i − g0
j

∥∥2 → 0, as t→∞.
(4.13)

Hence it is proved that

degs(NW) =
∑

1≤ i< j≤m

{
sup
g0 ∈E

{
lim sup
t→∞

‖gi(t)− gj(t)‖2
E

}}
= 0. (4.14)

Thus the exponential synchronization of the memristive and diffusive Hindmarsh-
Rose neural network NW in the space E is proved. �

5. Example and Numerical Simulation

In this section, we test some numerical experiments to verify and illustrate the
obtained theoretical result on synchronization stated in Theorem 4.2.

We numerically solve the memristive FitzHugh-Nagumo neural network NW with
the model (1.1)-(1.4) in a two-dimensional square domain. We use the finite difference
method for the numerical scheme and programmed in Python.

Choosing f(s) = s(s−1)(1−s), we consider the following selection of parameters:

m = 4, η = 10; σ = 0.01; J = 0.5; P = 1.45;

a = 0.35; b = 0.35; c = 0.7; q = 0.35; r = 10.

Make the time-step to be 0.00025s and spatial-step to be 1 on a 32 ∗ 32 membrane.
We compute the L2 norm of neuron potential ui, the recovering variable wi, the
memductance ρi, and also the vector solutions gi from (4.13) in the energy space E
as showing in Figure 1 to Figure 4.

In Figure 1 to Figure 3, with a comparison between the beginning stages and results
after 10000 iterations, one can observe the synchronization tendency of the three
characterizing variables (ui, wi, ρi) among the neurons in the simulated mimristive
neural network. From Figure 4, we observe that the differences among ‖gi‖ tend to
0.

We can get the the following constants that used in Theorem 4.2 based on our
selection of parameters.

λ = 0.25, φ(x) = 4, β =
4

3
,

C1 = 437.5 C2 = 876.4 µ = 0.175 K = 41345645.6 1 +Q = 1220899.6 C∗ = 0.4

P = 1.45 > Γ = 0.45, α = 0.35.
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Figure 1. The L2 norm of the neurons ui at the beginning (the upper
figure) and after 10000 iterations (the lower figure)

Remark: The λ, φ, β from (1.4) are not unique. The constant C∗ from Gargliardo-
Nirenberg inequality is chosen to be 0.4 based on [2].

Table 1 to Table 3 list the sampled values of the three components ui, wi, and ρi of
the simulated solution gi at one same point in the domain at t = 0 and at the 10000
time-step. It is seen that with a big difference on the initial values, after a certain
time, the curves of ui, wi, and ρi tend to be close to each other between various
neurons.

Table 1. Comparision of the ui at the point x = 10, y = 10

Initial Value At the 10000 time step
u1 0.021435249976028286 0.9004893259400936
u2 0.04741166022718009 0.900530237723381
u3 0.01014072281752508 0.9004848987658973
u4 0.032459331285605755 0.9004938438064932

The synchronization result rigorously proved in this work is illustrated by the
example with sample selections of the system parameters and a randomized set of
initial data. Our numerical simulation also exhibits that the neuron potentials ui
seem to be synchronized fastest within a limited time, while it takes much longer
time to observe the synchronization on the other two variables wi and ρi.
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Figure 2. The L2 norm of the neurons wi at the beginning (the upper
figure) and after 10000 iterations (the lower figure)

Figure 3. The L2 norm of the neurons ρi at the beginning (the upper
figure) and after 10000 iterations (the lower figure)

This observation actually enhances the conjecture that adding a nonlinear mem-
ristor coupling in the neuron potential equation would accelerate the synchronization
for the main variable of neuron membrane potential. On the other hand, it also hints
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Figure 4. The L2 norm of the neurons from the Energy space at
the beginning (the upper figure) and after 10000 iterations (the lower
figure)

Table 2. Comparision of the wi at the point x = 10, y = 10

Initial Value At the 10000 time step
w1 0.038162808368984426 1.4968727659565046
w2 0.016109788021287225 1.4881936913572227
w3 0.028702864538319866 1.4927071463421802
w4 0.04497009552599465 1.4999646128986852

Table 3. Comparision of the ρi at the point x = 10, y = 10

Initial Value At the 10000 time step
ρ1 0.02516293441173103 0.03032291951665976
ρ2 0.040098450204586085 0.030324374854761176
ρ3 0.015327673754565209 0.030322776082447638
ρ4 0.03404629085391771 0.03032306624583209

that although the main result Theorem 4.2 confirmed the exponential synchroniza-
tion has a uniform but may be small convergence rate, each of the three components
may have a different synchronization rate, which turns out to be a new open and
interesting problem for further research.
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6. Conclusions

We summarize the new contribution of results in this paper.
1. We propose a new mathematical model in (1.1) of memristive neural networks in

terms of the partly diffusive FitzHugh-Nagumo equations with a nonlinear memristor
and linear synaptic coupling in the membrane potential equations. This model as
a hybrid system of partial-ordinary differential equations features the full synaptic
coupling among all the neurons. In comparison with the extensively studied ODE
models, this model is more meaningful to capture the structure of biological neuron
cells with long-branch axons in neurodynamics.

2. The nonlinear memristive coupling across the neurons membrane for this work
is in the form of k tanh(ρi)ui, which appeared in quite a few researches as cited in the
references. In this paper we proved the exponential synchronization of this model
of memristive neural networks. There is another type of coupled memristors in the
quadratic form k(c+γρi+δρ

2
i )ui, which have also been actively studied most with the

ODE models of Hindmarsh-Rose equations on various topics of neuromorphic pat-
terns and chaotic dynamics. But synchronization of the hybrid PDE neural network
models such as the diffusive FitzHugh-Nagumo equations with quadratic memristors
and linear membrane potential coupling seems still an open problem.

3. In this work we take the analytic approach of global dynamics for the weak
solutions to pursue the synchronization investigation. Through the uniform a priori
estimates of grouped component solutions with adjustable scaling and maneuvering
the integral inequalities, we are able to show the existence of absorbing set in the
L2-energy space of the solution semiflow and the existence of asymptotic ultimate
bound in the higher-order integrable space of the key component solutions. This
signifies our methodology from dissipative global dynamics to synchronization for
such a complex neural network system.

4. The spirit of the entire mathematical proof is to tackle and control the nonlinear
memductance-potential effect by the linear network coupling in different integrable
spaces. Many steps of sharp analysis including the crucial Gagliardo-Nirenberg in-
terpolation are carried out and cohesively managed.

5. The main result Theorem 4.2 of this paper provides a sufficient threshold
condition for achieving the exponential synchronization of the memristive FitzHugh-
Nagumo neural networks described by this hybrid system. Importantly this quan-
titative threshold condition (4.2)-(4.3) is simply on the linear coupling coefficient P
and the exponentially decaying rate is explicitly expressed by the given biological
and mathematical parameters.

It is expected that modeling of biological and artificial neural networks by hybrid
differential equations or other types of PDE in neuroscience and in deep learning
field can be generalized with new features such as memristors and time delays. The
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mathematical approach presented in this work can be further explored and extended
with applications in a broad scope.

6. Numerical simulation of our model is presented and aligned with the theoretical
proof. All the important constants in the proof are calculated and the threshold of
coupling strength P is estimated based on the theoretical result. Synchronization of
our example can be seen from the L2 norm figures. Visualization of our model as
well as other hybrid equation models of network systems and further investigation of
time steps and computational estimate of suboptimal thresholds needed to achieve
some required synchronization is another interesting research problem.
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