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Abstract

Recently a general growth curve including the well known growth equations,
such as Malthus, logistic, Bertallanfy, Gompertz, has been studied. We now
propose two stochastic formulations of this growth equation. They are obtained
starting from a suitable parametrization of the deterministic model, by adding
an additive and multiplicative noise respectively. For these processes we focus
attention on the First Passage Time from a barrier and on the First Exit Time
from a region delimited by two barriers. We consider thresholds, generally time
dependent, for which there exist closed-forms of the probability densities of the
first passage time and of the first exit time.

Keywords: First-passage times, first-exit times, ordinary differential
equations, growth curve.

1. Introduction

The models for the description of growth phenomena, originally associated
with the evolution of animal populations, currently play an important role in
several fields such as economics, biology, medicine, ecology (see, for example,
[1], [2]). For this reason numerous efforts are oriented to the development of pro-
gressively sophisticated mathematical models for the description of a particular
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type of behavior. Systematically considered growth curves are of exponential
type and, among these, the logistic and Gompertz laws. Indeed, the population
size must be characterized by a limit due to the carrying capacity that repre-
sents, in general terms, the limitation of the natural resources. These curves
are monotonic and have a sigmoidal shape; this is due to the presence of an in-
flection point in which the curve changes from concave to convex. Logistic and
Gompertz curves have a similar growth pattern, the main difference between
them being the location of the inflection point: the Gompertz curve reaches
this point in the first part of the growth cycle whereas the logistic curve reaches
it at later times.

S-shaped time evolutions are also observed in dynamic economic phenomena,
such as the diffusion of technological innovations and product life cycles. These
dynamics are usually incorporated into formal models by ordinary differential
equations of the type ẋ = f(x), where f(·) satisfies suitable properties (Turner
et al. [3]).

These curves do not always adequately represent the realistic patterns; for
instance, during the last two centuries, economic growth happens in the form
of irregular successive expansions and contractions, whose expansion phases
are longer than its contractions. Therefore, various generalizations have been
proposed as the curves introduced by Von Bertalanffy, by Richards or as the
Hyperlogistic and Blumberg curves (Mialik et al. [4]). The von Bertalanffy curve
([5]) is mainly used for modeling both length and weight for some animal species
as well as in the study of the evolution of tumors treated with radiovirotherapy
([6]). The Richards curve, which has also been used to model the growth of
animals (see, for instance, Köhn et al. [7] and Nahashon et al. [8]), it has been
applied in epidemiology (see [9]).

The complexity and variety of phenomena that can be described through
growth models make it necessary, on the one hand, to provide mathematical
models capable of describing peculiarities of certain dynamical systems and, on
the other hand, to find equations capable of describing phenomena common to
the various models.

In this direction, recently, the general growth curve initially proposed in [3]
and later in [10] has been studied in [11]. The formulation includes several pa-
rameters, whose choice leads to a variety of models such as the classical cases of
Malthusian, Richards, Gompertz, Logistic and some their generalizations. The
study focuses on the effects of the involved parameters through both analytical
results and computational evaluations.

We point out that the existence of discrepancies between the proposed mod-
els and the observed data suggests the use of stochastic models, among which
those associated with stochastic diffusion processes stand out. Related to the
logistic curve, Tuckwell and Koziol [12] show a summary of some diffusion
processes, some of which are linked to specific applications like Demography
(Artzrouni and Reneke [13]), or energy consumption (Giovanis and Skiadas
[14]). Also, Schurz [15] considers a more general version for the stochastic dif-
ferential equation associated to logistic growth. In the case of the Bertalanffy
curve, we can cite the works of Quiming and Pitchford [16] and Román et al.
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[17]. However, it is perhaps the Gompertz curve that has been the subject
of the most in-depth studies. Indeed, the fact that the Gompertz curve is an
excellent model for the description of tumor growth has motivated the intro-
duction of several diffusion processes associated with it (see, for example, Lo
[18] and Ferrante et al. [19]). On the basis of these processes, a great number
of modifications have subsequently been made with the goal of describing the
evolution of tumor growth in the presence of therapeutic treatments (see, for
instance, Albano et al. [20] and references therein). On other hand, apart from
the classic growth models, new curves have recently been introduced that show
more flexibility in their behaviour. In this sense, Tabatabai et al. [21] have
constructed the so-called hyperbolastic curves and shown their usefulness in the
study of the evolution of tumor processes and stem cell growth (Tabatabai et
al. [22]). Regarding the stochastic versions of these latest models, Barrera et
al. [23] present a joint vision of all of them from the perspective of stochastic
differential equations.

We must note that the introduction of these type of models allows us to
deepen the study of the dynamic phenomena under consideration, beyond the
results that can be obtained through the deterministic versions. Indeed, the
inclusion of a probability structure makes it possible to approach the inference
of the models from observed sample data of the phenomenon. In particular, it
is possible to estimate parametric functions that represent important charac-
teristics associated with the curves under study, as well as confidence intervals
for the estimates and predictions (see, for example Gutiérrez et al. [24]). In
the same way, the fact of dealing with stochastic diffusion processes allows us
to consider the study of temporal variables that represent concrete problems.
Among these problems, and associated with growth phenomena, it is possible
to calculate the distribution of the random variable that indicates the time in
which the growth of the phenomenon reaches a certain value for the first time
or, in the case of sigmoidal phenomena, the instant in which the inflection point
is reached, which determines a change in growth behavior. These problems can
be addressed by considering the above situations as first-passage times, follow-
ing the lines drawn by Buonocore et al.[25] in the homogeneous case and by
Gutiérrez et al. [26] in the inhomogeneous one.

In the present paper, following the approach in [27], we proposed two differ-
ent stochastic models based on the deterministic curve studied in [11] obtained
by introducing a multiplicative or an additive noises in the growth equation. In
particular, the two stochastic models obtained are of the diffusive type and are
characterized by the same mean which coincides with the deterministic curve.
Also, they are lognormally and normally distributed, respectively; therefore the
main probabilistic characteristics, such as transition probability density function
and the related conditional moments, can be derived.

For the obtained stochastic processes, we analyze the first passage time
(FPT) through a time dependent boundary and the first exit time (FET) from
a region bordered by two time dependent boundaries. This problem is particu-
larly relevant in applications in which it is of interest to know the time for the
population size to reach a fixed level (see, for example, [28]). Furthermore, in
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biological and economic contexts, it is often useful to identify the time in which
the population first reaches a value coinciding with a percentage of its average
size.

The paper is organized as follows. In Section 2 the deterministic model
is described and a new parametrization is provided in order to prepare the
ground for the stochastic extension. Since the obtained stochastic processes are
related to Gauss Markov (GM) processes, in Section 3 a brief review of the GM
processes is made in which the necessary preliminary background and notation
is provided. In Section 4, by including an additive noise to the deterministic
growth equation, a lognormal process is obtained and for it the FPT and the
FET is anlysed providing suitable boundaries for wich the pdf’s have closed-
forms. In Section 5, by means of a multiplicative noise, an Ornstein-Uhlenbeck
process is obtained and the FPT and FET analysed. A numerical anlysis is
provided in Section 6, while some concluding remarks close the paper in Section
7.

2. The deterministic model

We consider the general growth curve described in the papers [3] and [11]:

dx

dt
= γkn(p−1)x1+n(1−p)

[
1−

(x
k

)n]p
, x(t0) = x0, (1)

where x0 denotes the population size at the initial time t0, k = lim
t→∞

x(t) > 0

represents the carrying capacity, γ, n and p are shape-parameters subject to
being positive with 0 < p < 1 + 1/n.

The solution of Eq. (1) is

x(t) =
k{

1 +
[
γn(p− 1)(t− t0) +A1−p

n

] 1
1−p

}1/n
. (2)

where An =

(
k

x0

)n

− 1 depends on the shape parameter n and on the ratio

between the carrying capacity k and the initial population size x0.
In [11] the curve (1) was extensively studied, showing that it is able to gener-

alize the most famous growth equations. In addition, it presents some peculiar
behaviors for suitable choices of the parameters n and p, such as indefinite
growth in a finite time or a plateau in a time interval followed by an indefinite
increase or by a decrease to the initial value x0. In particular, this last behavior
is interesting in the context of epidemics.

Encouraged by these interesting findings, in the following we consider a re-
parametrization of (2) which lends itself better to random generalization, also
in the light of the particular cases that the equation generalizes.
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Specifically, defining

α = e−γ n, η = [A1−p
n + nγ (1− p) t0]

1/(p−1), (3)

the (2) can be rewritten in the following form:

x(t) = x0
g(t0)

g(t)
, (4)

with
g(t) =

{
η + [1 + η1−p lnα (1− p) t]1/(1−p)

}1/n
. (5)

We note that Eq. (2) comes from (4). Indeed, from (3) and (5), one has:

gn(t) =
[ 1

A1−p
n + nγ (1− p) t0

]1/(1−p)

+
[
1− γ n (1− p) t

A1−p
n + n γ (1− p) t0

]1/(1−p)

,

=
1 + [A1−p

n − γ n (1− p) (t− t0)]
1/(1−p)

[A1−p
n + nγ (1− p) t0]1/(1−p)

(6)

so that
g(t0)

g(t)
=

{ An + 1

1 + [A1−p
n − γ n (1− p) (t− t0)]1/(1−p)

}1/n

. (7)

Finally, since An + 1 =

(
k

x0

)n

, from (4) and (7) Eq. (2) follows.

We note that the proposed parametrization is coherent with that one pro-
vided in [29] for the Richards curve (for p → 1) and logistic curve (for n → 1
and p → 1).

Remark 2.1. Equation (4) satisfies the following ordinary differential equation

dx

dt
= h(t)x(t), (8)

where

h(t) = −g′(t)

g(t)
= −η1−p lnα [1 + η1−p lnα (1− p) t]p/(1−p)

n [g(t)]n

= − d

dt
ln g(t). (9)

Indeed, by deriving (4) to respect to t, we obtain

dx

dt
= −x0g(t0)

g′(t)

g2(t)
,

and hence (8) holds.
Equation (8) represents a Malthus growth with time dependent fertility. In

the following two stochastic extensions of the deterministic growth curve given
in (4) will be addressed. The idea is to consider two diffusion processes whose
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means are equal to (8). This allows to reproduce different patterns starting
from real data.

The starting point is (8) to which we add a multiplicative noise and an
additive one, respectively. The resulting processes have different characteris-
tics. As we will see the first process is a version of a lognormal diffusion process
with exogenous factors, while the second one is a time inhomogeneous Ornstein-
Uhlenbeck (OU) process. For both the processes we analyze the first passage
time through a time dependent boundary. We remark that the obtained stochas-
tic processes are related to Gauss Markov (GM) processes, in the sense that the
OU process is a GM process with a degenerate initial distribution, while the
lognormal can be transformed into a GM process. This link permits to use all
the techniques known in the literature for GM processes. With this in mind,
a short review of these processes is addressed in the next section, in which the
necessary preliminary background and notation is provided.

3. Gauss-Markov processes in a nutshell

Let {X(t), t ∈ T}, with T denoting a continuous parameters set, be a con-
tinuous Gauss-Markov (GM) process such that the following properties hold:

• m(t) = E[X(t)] is continuous for t ∈ T ,

• the covariance function c(s, t) = E{[X(s)−m(s)][X(t)−m(t)]} is a con-
tinuous function for (s, t) ∈ T 2,

• {X(t)} is non-singular except possibly at the end points of T .

This last point means that if T = [a, b] then X(t) has a non-singular normal
distribution except possibly for the points a and b where X(t) could be degen-
erate in m(t).
The Gauss-Markov processes satisfy well known properties (see, for example,
[30] and [31]) that will be used in the following. In particular,

• a Gaussian process is Markovian if and only if the covariance function can
be expressed as

c(s, t) = k1(s) k2(t), s ≤ t (10)

where k1(t) and k2(t) are such that

r(t) =
k1(t)

k2(t)
(11)

is a monotonically increasing function by virtue of the Cauchy-Schwarz
inequality, with k1(t) k2(t) > 0 because of the assumed non-singularity of
the process in the interior of T ;
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• the transition pdf f(x, t|y, τ) of a Gauss-Markov process is a normal den-
sity with conditional mean and variance:

E[X(t)|X(τ) = y] = m(t) +
k2(t)

k2(τ)
[y −m(τ)],

V ar[X(t)|X(τ) = y] = k2(t)
[
k1(t)−

k2(t)

k2(τ)
k1(τ)

]
, (12)

respectively.

We note that the transition pdf f(x, t|y, τ) of a Gauss-Markov process satisfies
the Fokker Plank equation (see [32]):

∂f(x, t|y, τ)
∂t

= − ∂

∂x

[
B1(x, t)f(x, t|y, τ)

]
+

1

2

∂2

∂x2

[
B2(t)f(x, t|y, τ)

]
with the associated initial condition limτ→t f(x, t|y, τ) = δ(x−y), where B1(x, t)
and B2(t) are the drift and the infinitesimal variance of the process and they
are given by:

B1(x, t) = m′(t) + [x−m(t)]
k′2(t)

k2(t)
, B2(t) = k22(t) r

′(t). (13)

In the following subsections we provide a brief overview of the problems related
to the FPT and to the FET for the GM processes.

3.1. FPT for GM processes

Let s(t) be a continuous function and let X(t0) = x0 ̸= s(t0). The random
variable FPT of X(t) through the boundary s(t) is defined as

Tx0,s(t) =

 inf
t≥t0

{t : X(t) > s(t)|X(t0) = x0}, x0 < s(t0)

inf
t≥t0

{t : X(t) < s(t)|X(t0) = x0}, x0 > s(t0)

and g[s(t), t|x0, t0] is the FPT pdf.
Following [32], we have the following remark.

Remark 3.1. If s(t),m(t), k1(t) and k2(t) are C
1(T )-class, for x0 < s(t0), then

g[s(t), t|x0, t0] is solution of the following second kind Volterra integral equation:

g[s(t), t|x0, t0] = −2Ψ[s(t), t|x0, t0] + 2

∫ t

t0

g[s(τ), τ |x0, t0] Ψ[s(t), t|s(τ), τ ] dτ,

(14)
where

Ψ[s(t), t|y, τ ] =
{s′(t)−m′(t)

2
− s(t)−m(t)

2

k′1(t)k2(τ)− k′2(t)k1(τ)

k1(t)k2(τ)− k2(t)k1(τ)

−y −m(τ)

2

k′2(t)k1(t)− k2(t)k
′
1(t)

k1(t)k2(τ)− k2(t)k1(τ)

}
f [s(t), t|y, τ ]. (15)
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Further, Ψ[s(t), t|s(τ), τ ] = 0 for τ, t ∈ T with τ < t if and only the threshold
s(t) is chosen in the following way:

s̃(t) = m(t) + d1k1(t) + d2k2(t), d1, d2 ∈ R. (16)

Hence, from (14), by choosing s(t) as in (16), one has the following closed-form
for the FPT density:

g[s̃(t), t|x0, t0] =
s̃(t0)− x0

r(t)− r(t0)

k2(t)

k2(t0)
r′(t)f [s̃(t), t|x0, t0], x0 < s̃(t0), (17)

where r′(t) is the derivative of the function r(t) defined in (11) and f is the
transition pdf of X(t).

3.2. FET problem for GM processes

Let s1(t) and s2(t) be continuous functions such that s1(t) < s2(t) for t > t0.
Assuming that X(t0) = x0 is such that s1(t0) < x0 < s2(t0), we analyze the
evolution of the process X(t) defined in (13) in the presence of two absorb-
ing boundaries in s1(t) and s2(t). Specifically, we consider the following FET
random variables:

T1 = inf
t≥t0

{t : X(t) < s1(t); X(θ) < s2(θ),∀ θ ∈ (t0, t)} (FET from above)

T2 = inf
t≥t0

{t : X(t) > s2(t); X(θ) > s1(θ),∀ θ ∈ (t0, t)} (FET from below)

T1,2 = inf{T1, T2} (FET),

characterized by pdf’s

γ1(t|x0, t0) =
∂

∂t
P (T1 < t), γ2(t|x0, t0) =

∂

∂t
P (T2 < t)

γ(t|x0, t0) = γ1(t|x0, t0) + γ2(t|x0, t0), (18)

respectively. Clearly, the functions γi depend on the barriers s1(t) and s2(t)
although, for simplicity, we have omitted this dependence in the notation.
Following [33], we have the following remark.

Remark 3.2. If s1(t), s2(t),m(t), k1(t) and k2(t) are C
1(T )-class functions and

s1(t) < s2(t) for all t ∈ T , with s1(t0) < x0 < s2(t0), the functions γ1(t|x0, t0)
and γ2(t|x0, t0) are solutions of the following second kind Volterra integral equa-
tions:

γ1(t|x0, t0) = 2Ψ1(t|x0, t0)

−2

∫ t

t0

{
γ1(τ |x0, t0] Ψ1[t|s1(τ), τ ] + γ2(τ |x0, t0] Ψ1[t|s2(τ), τ ]

}
dτ,

γ2(t|x0, t0) = −2Ψ2(t|x0, t0)

+2

∫ t

t0

{
γ1(τ |x0, t0] Ψ2[t|s1(τ), τ ] + γ2(τ |x0, t0] Ψ2[t|s2(τ), τ ]

}
dτ,

8



where, for j = 1, 2, one has:

Ψj [t|y, τ ] =
{s′j(t)−m′(t)

2
− sj(t)−m(t)

2

k′1(t)k2(τ)− k′2(t)k1(τ)

k1(t)k2(τ)− k2(t)k1(τ)

−y −m(τ)

2

k′2(t)k1(t)− k2(t)k
′
1(t)

k1(t)k2(τ)− k2(t)k1(τ)

}
f [sj(t), t|y, τ ]. (19)

Further, if x0 = m(t0) + ak1(t0) + ck2(t0) and if

s1(t) = m(t) + ak1(t) + c1k2(t), s2(t) = m(t) + ak1(t) + c2k2(t),

with s1(t) < s2(t), for all t ∈ T then

γ(t|x0, t0) =
k2(t)

r(t)− r(t0)
r′(t)

∞∑
n=−∞

exp
{
−2n2(c2 − c1)

2

r(t)− r(t0)

}
×
{[

c− c1 + 2n(c2 − c1)
]
exp

{
−2n(c2 − c1)(c− c1)

r(t)− r(t0)

}
f [s1(t), t|x0, t0]

+
[
c2 − c− 2n(c2 − c1)

]
exp

{2n(c2 − c1)(c2 − c)

r(t)− r(t0)

}
f [s2(t), t|x0, t0], (20)

with a, c, c1, c2 ∈ R.

The results given in Section 3.1 and 3.2 will be used in the following to analyze
the FPT and the FET problems for the stochastic processes obtained adding
some types of noise to the deterministic differential equation (4).

4. Multiplicative noise: Lognormal diffusion process

Let XL(t) be the stochastic process obtained from the deterministic growth
equation (4) by including a multiplicative noise. In particular, the introduction
of a noise with variance σ2 > 0 in the intrinsic fertility h(t) leads to the following
stochastic differential equation (SDE) (see, for instance, [34]):

dXL(t) = h(t)XL(t)dt+ σXL(t)dW (t), XL(t0) = x0, (21)

where W (t) is a standard Wiener process in R, independent on the initial size
of the population and h(t) is the function defined in (9). We point out that the
initial size is usually a random variable, however in many real applications the
value XL(t0) is known, so that we assume that x0 is a degenerate random vari-
able, i.e. known without errors. From (21) we deduce that XL(t) is a diffusion
process with state space [0,+∞), having drift and infinitesimal variance:

A1(x, t) = h(t)x, A2(x) = σ2 x2. (22)

The solution of (21) is a inhomogeneous diffusion lognormal process:

XL(t) = x0 exp

{∫ t

t0

h(ξ)dξ − σ2

2
(t− t0) + σ

[
W (t)−W (t0)

]}

= x0
g(t0)

g(t)
exp

{
−σ2

2
(t− t0) + σ

[
W (t)−W (t0)

]}
, (23)

9



where (9) has been used.
The process XL(t) can be reduced to a Wiener process Z(t) characterized by
drift and infinitesimal variance

B1 = 0, B2 = σ2, (24)

by means of Ito’s lemma and the following transformation

z = log x−
∫ t

h(ξ) dξ +
σ2

2
t. (25)

The process Z(t) is a GM process with B1(x, t) = 0 and B2(t) = σ2, so that
from Remark (13), we have:

k1(t) = σ2t, k2(t) = 1, m(t) = 0.

The transition pdf of XL(t), denoted by fL(x, t|y, τ) = d
dxP [XL(t) < x |

XL(τ) = y], is a lognormal density. Specifically, for all t > τ ≥ t0 the con-
ditional random variable XL(t) | XL(τ) = y follows the lognormal distribution
Λ1

(
ML(t| ln y, τ), σ2(t− τ)

)
:

fL(x, t|y, τ) =
1

x
√
2πσ2(t− τ)

exp

{
− [lnx−ML(t| ln y, τ)]2

2σ2(t− τ)

}
, x, y ∈ R+,

(26)
with

ML(t| ln y, τ) = ln y − σ2

2
(t− τ) +

∫ t

τ

h(ξ)dξ = ln y + ln
g(τ)

g(t)
− σ2

2
(t− τ).

Moreover, the conditional cumulative transition distribution of XL(t) is given
by

FL(x, t|y, τ) =
∫ x

0

fL(z, t|y, τ) dz =
1

2

{
1 + Erf

[
lnx−ML(t| ln y, τ)√

2σ2(t− τ)

]}
,

where Erf(z) = 2√
π

∫ z

0
e−ξ2 dξ is the error function. The conditional moments

for XL(t) are:

E[Xn
L(t)|X(τ) = y] = exp

{
nML(t| ln y, τ) +

n2

2
σ2(t− τ)

}
,

from which we can easily obtain the conditional mean and variance:

E[XL(t)|XL(τ) = y] = y
g(τ)

g(t)
,

Var[XL(t)|XL(τ) = y] =
[
y
g(τ)

g(t)

]2[
exp{σ2(t− τ)} − 1

]
.

We point out that the conditional mean has the same trend of the solution (4)
of the deterministic equation.
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4.1. First passage time problem

Let TL
x0,s(t)

be the random variable FPT of XL(t) through a continuous time-

varying boundary s(t) and let gL[s(t), t|x0, t0] be the FPT pdf. We can study
the FPT problem for the process XL(t) starting from the results concerning the
FPT of the transformed Wiener process Z(t). In particular, from (16) and (17),
by choosing s̃(t) = a t+ b, one has:

gZ [s̃(t), t|ỹ, τ ] =
|s̃(τ)− ỹ|
t− τ

fZ [s̃(t), t|ỹ, τ ], ỹ ̸= s̃(τ)

being fZ [s̃(t), t|ỹ, τ ] the transition pdf of the Wiener process Z(t). Then, recall-
ing the transformation (25), we can obtain the FPT density of XL(t) through
the boundary

s(t) = A exp
{
Bt+

∫ t

0

h(ξ) dξ
}
, A > 0, B ∈ R, (27)

with h(t) given in (9). In particular we have

gL[s(t), t|x0, t0] =

∣∣∣ ln s(t0)
x0

∣∣∣√
2πσ2(t−t0)3

× exp

{
−

[
(σ

2

2 +B)(t−t0)+ln s(t0)
x0

]2
2σ2(t−t0)

}
, s(t0) ̸= x0. (28)

Moreover, by choosing in (27) B = 0 and A = ν x0 exp
{
−
∫ t0
0

h(ξ) dξ}
}

=

ν x0
g(0)
g(t0)

, with g(t) defined in (5), one has

s(t) = νE[XL(t)|XL(t0) = x0] = ν x0 exp
{∫ t

t0

h(ξ) dξ
}
= ν x0

g(t0)

g(t)
, (29)

that, for 0 < ν < 1, represents a percentage of the conditional mean of the
process XL(t). Therefore, for the process {XL(t); t ≥ t0} characterized by
infinitesimal moments (22), the FPT pdf through the boundary (29) is given by

gL[s(t), t|x0, t0] =
| ln ν|√

2πσ2(t− t0)3
exp

{
− [σ2 (t− t0)/2 + ln ν]2

2σ2(t− t0)

}
. (30)

We note that (28) and (30) can be obtained also following alternative procedure
as those one proposed in [35], [26]. In these papers, such as in [32], one can also
find procedures to obtain good numerical approximations to the FPT density.

4.2. First exit time problem

Let TL
1 , TL

2 and TL
1,2 be the FET random variables of the process XL(t)

through the continuous boundaries s1(t) and s2(t) (s1(t) < s2(t) for t > t0).
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Since the process XL(t) is time-inhomogeneous, procedures to analyze the FET
problem for it do not appear to be present in literature. However, the problem
can be solved recalling that the logarithmic transformation (25) applied toXL(t)
leads to a Wiener process Z(t) with infinitesimal moments (24).
Following the results provided in Section 3.2, we can obtain closed-forms for the
FET pdf γZ by choosing suitable boundaries as described in the following.
From Remark 3.2, setting

s̃i(t) = ci + αt i = 1, 2; (31)

and z0 = αt0 + c with c1 < c < c2, the FET pdf γZ(t|z0, t0) = γZ
1 (t|z0, t0) +

γZ
2 (t|z0, t0) of Z(t) from the interval

(
s̃1(t), s̃2(t)

)
is:

γZ(t|z0, t0) =
1√

2πσ2(t− t0)3

+∞∑
n=−∞

exp
{
−
2n2(c2 − c1)2

σ2(t− t0)

}
×
{
[c− c1 + 2n(c2 − c1)] exp

{
−
2n(c2 − c1)(c− c1)

σ2(t− t0)

}
exp

{
−
[α(t− t0) + c1 − c]2

2σ2(t− t0)

}
+[c2 − c− 2n(c2 − c1)] exp

{2n(c2 − c1)(c2 − c)

σ2(t− t0)

}
exp

{
−
[α(t− t0) + c2 − c]2

2σ2(t− t0)

}}
.

(32)

For some choices of the parameters Eq. (32) can be simplified; this happens, for
example, if the boundaries s̃i(t) are time independent and z0 is the midpoint
of the interval (s̃1, s̃2). In other words, if α = 0 and z0 = (c1 + c2)/2 then
γZ
1 (t, |ỹ, τ) = γZ

2 (t, |ỹ, τ) = γZ(t|ỹ, τ)/2 so from (32) we obtain:

γZ(t|z0, t0) =
c2 − c1√

2πσ2(t− t0)3
exp

{
−

[c2 − c1]2

8σ2(t− t0)

}{
1 +

+∞∑
n=1

exp
{
−
2n2(c2 − c1)2

σ2(t− t0)

}

×
[
[1 + 4n(c2 − c1)] exp

{
−
n(c2 − c1)2

σ2(t− t0)

}
+ [1− 4n(c2 − c1)] exp

{n(c2 − c1)2

σ2(t− t0)

}]}
.

Making use of the results just shown, we look at the FET problem of the process

XL(t) through the boundaries si(t) = exp
{
ci+

∫ t
h(ξ) dξ+αt− σ2

2 t
}
for i = 1, 2

obtained from (25) and (31). We note that the boundaries si(t) have the same
functional form of the (27) since they can be expressed as

si(t) = Ai exp
{
B t+

∫ t

0

h(ξ) dξ
}

(33)

with Ai related to ci, whereas the constant B is expressible in terms of the
constants α and of the intensity of the noise σ2. As in the case of a single
boundary, we can choice Ai and B such that Si(t) become percentages of the
conditional mean of the process. Indeed, if B ≡ α − σ2/2 = 0 and Ai =

νi x0 exp
{
−
∫ t0
0

h(ξ) dξ}
}
, for i = 1, 2 one has

si(t) = νiE[XL(t)|XL(t0) = x0] = νi x0

∫ t

t0

h(ξ) dξ = νi x0
g(t0)

g(t)
ν1 < ν2.

(34)

12



Therefore, from (32) by choosing α = σ2/2 and ci = ln νi + lnx0 −
∫ t0 h(ξ) dξ

and x0 = exp
{
ν
∫ t0
0

h(ξ) dξ
}

= g(0)
g(t0)

eν , we obtain the FET pdf of the process

XL(t) characterized by infinitesimal moments (22) through boundaries (34):

γL(t|x0, t0) =
1√

2πσ2(t− t0)3

+∞∑
n=−∞

exp
{
−
2n2(ln ν2

ν1
)2

σ2(t− t0)

}

×
{[

ln
ν

ν1
+ 2n ln

ν2

ν1

]
exp

{
−
2n ln ν2

ν1
ln ν

ν1

σ2(t− t0)

}
exp

{
−
[
σ2

2
(t− t0) + ln ν1

ν

]2
2σ2(t− t0)

}
+

{[
ln

ν2

ν
− 2n ln

ν2

ν1

]
exp

{2n ln ν2
ν1

ln ν2
ν

σ2(t− t0)

}
exp

{
−
[
σ2

2
(t− t0) + ln ν2

ν

]2
2σ2(t− t0)

}}
. (35)

5. Additive noise: Ornstein-Uhlenbeck diffusion process

Let XG(t) be the stochastic process obtained from the deterministic growth
equation (4) by including an additive noise. Specifically, starting from Eq. (8),
we obtain a stochastic generalization by introducing a white noise with variance
σ2, where σ > 0 represents the width of environment fluctuations. In this way,
we have the following SDE:

dXG(t) = h(t)XG(t)dt+ σdW (t), XG(t0) = x0, (36)

where W (t) is a standard Wiener process in R, independent by x and the func-
tion h(t) is defined in (9). From (36) we conclude that XG(t) is a diffusion
process with state space R, and infinitesimal moments:

B1(x, t) = h(t)x, B2(x) = σ2. (37)

Making use of the transformation

Z(t) = exp
{
−
∫ t

h(ϑ) dϑ
}
XG(t)

from (36) we obtain

dZ(t) = σ exp
{
−
∫ t

h(ϑ) dϑ
}
dW (t), (38)

so that

Z(t) = Z(t0) + σ

∫ t

t0

exp
{
−
∫ u

h(ϑ) dϑ
}
dW (u). (39)

Therefore, for the process XG(t) = exp
{∫ t

h(ϑ) dϑ
}
Z(t) we obtain:

XG(t) = x0 exp
{∫ t

t0

h(ϑ) dϑ
}
+ σ

∫ t

t0

exp
{∫ t

u

h(ϑ) dϑ
}
dW (u). (40)
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The transition pdf of XG(t) is Gaussian, specifically, for t0 ≤ τ < t the condi-
tional variable XG(t) | XG(τ) = y is distributed as N

(
MG(t|y, τ), VG(t|τ)

)
and

its pdf is

fG(x, t|y, τ) =
1√

2πV (t|τ)
exp

{
− [x−MG(t|y, τ)]2

2V (t|τ)

}
, x, y ∈ R (41)

where

MG(t|y, τ) = y exp
{∫ t

τ

h(ϑ) dϑ
}
= y

g(τ)

g(t)

VG(t|τ) = σ2

∫ t

τ

exp
{
2

∫ ϑ

τ

h(u) du
}
dϑ = σ2

∫ t

τ

[g(τ)
g(ϑ)

]2
dϑ. (42)

represent the conditional mean and the conditional variance of XG(t), respec-
tively. The conditional cumulative transition distribution is given by

FG(x, t|y, τ) =
∫ x

−∞
fL(z, t|y, τ) dz =

1

2

{
1 + Erf

[
x−MG(t|y, τ)√

2VG(t|τ)

]}
,

where Erf(z) is the error function.
In the following, we study the FPT and FET problems for XG(t). To this

aim, we note that XG(t) is a Gauss-Markov process, so that we can study the
FPT problem and the FET problem following the approach proposed in [32]
and [33], respectively.
Alternatively, we can transform XG(t) into the GM process Z(t) defined in (24).

5.1. First passage time problem

Let TG
x0,s(t)

be the random variable FPT of XG(t) through a boundary s(t)

and let gG[s(t), t|x0, t0] be the FPT pdf.
From (37), recalling (13), we have:

k1(t) = σ2k2(t)

∫ t

exp
{
−2

∫ u

h(ϑ) dϑ
}
du = σ2k2(t)

∫ t

g2(u) du

k2(t) = exp
{∫ t

h(ϑ) dϑ
}
=

1

g(t)
, m(t) = 0.

A closed-form of the FPT pdf of XG(t) can be obtained making use of Remark
3.1. In particular, by choosing the boundary

s(t) = exp
{∫ t

h(ϑ) dϑ
}[

A+Bσ2

∫ t

exp
{
−2

∫ u

h(ϑ) dϑ
}
du

]
=

1

g(t)

{
A+Bσ2

∫ t

g2(u)du
}
, (43)

14



and by using (11), the FPT pdf of XG(t) through s(t) is given by

gG[s(t), t|x0, t0] =
|s(t0)− x0|
r(t)− r(t0)

k2(t)

k2(t0)
r′(t) fG[s(t), t|x0, t0]

= [g(t)]2
|s(t0)− x0|∫ t

t0
[g(u)]2 du

fG[s(t), t|x0, t0] (44)

with fG[s(t), t|x0, t0] given in (41).
We note that the boundaries include a percentage of a conditional mean

of XG(t); indeed, by comparing (42) and (43) and by choosing B = 0 and
A = νx0g(t0) we have s(t) = νMG(t | x0, t0).

5.2. First exit time problem

Let TG
1 , TG

2 and TG
1,2 be the FET random variables of the process XG(t)

through the continuous boundaries s1(t) and s2(t) (s1(t) < s2(t) for t > t0).
Following the results provided in Section 3.2, we can obtain closed forms for the
FET pdf by choosing suitable boundaries.
Specifically, making use of Remark 3.2 and by choosing

si(t) = exp
{∫ t

h(ϑ) dϑ
}[

ci +Bσ2

∫ t

exp
{
−2

∫ u

h(ϑ) dϑ
}
du

]
=

1

g(t)

{
ci +Bσ2

∫ t

g2(u)du
}

i = 1, 2 (45)

x0 = exp
{∫ t

h(ϑ) dϑ
}[

c+Bσ2

∫ t

exp
{
−2

∫ u

h(ϑ) dϑ
}
du

]
=

1

g(t)

{
c+Bσ2

∫ t

g2(u)du
}

(46)

with c1 < c < c2, the FET pdf γG(t|x0, t0) = γG
1 (t|x0, t0)+γG

2 (t|x0, t0) of XG(t)
from the interval

(
s1(t), s2(t)

)
is obtained from (20). In particular, γG(t|z0, t0)

is obtained from (20) by replacing the transition pdf f with fG given in (41)
and recalling that for XG(t) one has k2(t) =

1
g(t) ,

r(t) = σ2

∫ t

g2(u) du, r′(t) = σ2g2(t).

We point out that also in this case, we can identify the boundaries si(t) as a
percentages of the conditional average of the process given in (42). Precisely,
by choosing B = 0 in (45), we obtain

si(t) = cix0
g(t0)

g(t)
i = 1, 2.
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and, from (20), recalling (41), the FET pdf becomes:

γG(t|x0, t0) =
g(t)

g(t0)

1√
2πσ2

∫ t
t0

1
g2(u)

du

1∫ t
t0

g2(u)du

∞∑
n=−∞

exp
{
−

2n2(c2 − c1)2

σ2
∫ t
t0

g2(u)du

}

×
{[

c− c1 + 2n(c2 − c1)
]
exp

{
−
2n(c2 − c1)(c− c1)

σ2
∫ t
t0

g2(u)du

}
exp

{
−

(c1 − 1)2x2
0

2σ2g2(t)
∫ t
t0

1
g2(u)

du

}

+
[
c2 − c− 2n(c2 − c1)

]
exp

{2n(c2 − c1)(c2 − c)

σ2
∫ t
t0

g2(u)du

}
exp

{
−

(c2 − 1)2x2
0

2σ2g2(t)
∫ t
t0

1
g2(u)

du

}}
.

(47)

6. Numerical results

In this section first we compare the sample paths of the two processes XL(t)
and XG(t) and then we provide a numerical analysis for the FPT and the FET
problems. As shown in [11], the deterministic curve x(t) in (1) exhibits different
behaviors depending on whether 0 < p < 1 and 1 ≤ p < 1+ 1

n . Clearly, different
dynamics are shown also for the processes XL(t) and XG(t), since the sample
paths of both of them move around to their mean function x(t). In Figure 1
we compare the deterministic curve (black curve) with the sample paths of the
processes XL(t) (red) and XG(t) (blue) for n = 1, γ = 0.5, k = 20, x0 = 1, t0 =
0, σ = 0.02 and for several choices of p aimed to show the possible dynamics of
the processes. Such behaviors are in accordance with those ones discussed in
[11]. Indeed in Figures 1(a) and 1(b) we have that 1 ≤ p < 1+ 1

n and the paths
have a sigmoidal shape going to the carrying capacity k; instead, in Figures 1(c),
1(d) and 1(e), we have chosen 0 < p < 1 and the sample paths present a different
behavior in each case. In particular, in Figure 1(c) the ratio 1

1−p is even and the
trend of sample paths is non monotonic showing an initial increasing followed
by a “plateau” around the value k, after which the process tends to zero in a
decreasing way. In Figure 1(d) p is such that the ratio 1

1−p is odd and, after

a plateau, the processes indefinitely increase. Finally, in Figure 1(e) the ratio
1

1−p is not an integer and the paths reach the value k in a finite time. In all the

figures the paths of the processes XL(t) and XG(t) present oscillations with very
different widths. Indeed, the variability of the lognormal process XL(t) depends
on the state in which the process is, while XG is homoskedastic, therefore it has
constant variability. This different variability implies that for the same value
of the parameter σ, the sample paths of XG(t) have oscillations smaller around
the mean function x(t) with respect to the paths of XL(t). For this reason, in
the following we choose values of σ different for the two processes.

6.1. Analysis of the process XL(t)

In our numerical analysis we choose n = 1, γ = 0.5, k = 20, x0 = 1, t0 = 0

and we consider several choices of σ. From (29) we have that S(t) = ν g(0)
g(t) with

g(t) =
1

19
+

[
1− 19p−1

2
(1− p)t

]1/(1−p)

(48)
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Figure 1: Sample paths of XL(t) and XG(t) for n = 1, k = 20, γ = 0.5, x0 = 1, t0 = 0 and
σ = 0.02.
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We point out that, although S(t) depends on the parameter p, the FPT pdf
gL[s(t), t|x0, t0] in (30) does not depend on it. Therefore the different cases
analyzed in Figure 1 lead to thresholds having different behaviors but presenting
the same FPT pdf.

In Figure 2 we show the FPT pdf of XL(t) through s(t) = ν g(0)
g(t) with g(t)

given in (48) for different values of the proportion ν (Figure 2(a)) and for dif-
ferent values of σ (Figure 2(b)). By fixing σ (Figure 2(a)), we observe two
different behaviors of the FPT pdfs as ν increases. Precisely, for 0 < ν < 1,
the FPT pdf becomes more and more peaked and the maximum is achieved in
a shorter time as ν increases. An inverse behavior is instead shown by the FPT
pdf if ν ≥ 1. Further, when the proportion ν is fixed and the width of the
oscillations σ increases (Figure 2(b)), the abscissa of the maximum of the FPT
pdf decreases as ν increases, while its ordinate increases. This can be verified
analytically by studying the instant of time in which the FPT pdf of XL(t)
reaches its maximum, seen as a function of σ2 and of ν.
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Figure 2: For n = 1, γ = 0.5, k = 20, x0 = 1, t0 = 0, the FPT density of XL(t) for different
values of the proportion ν (on the left) and for different values of σ (on the right).

Now we consider the FET problem of the process XL(t) through the region

[s1(t), s2(t)] with si(t) = νi
g(0)
g(t) and g(t) defined in (48). Also in this case, the

FET pdf γL(t|x0, t0) given in (35) does not depend on the parameter p, while
such a dependence is preserved in the boundaries si(t) (i = 1, 2).

In Figures 3 and 4 we have plotted the FET pdf γL(t|x0, t0) for several
choices of ν1, ν2 and σ. In particular in Figure 3(a) we have fixed σ and ν2, we
note that the FET pdf becomes more and more peaked as ν1 increases. This is
due to the fact that increasing ν1 is equivalent to narrowing the region of interest
[s1(t), s2(t)]. Instead, by increasing the parameter ν2, the region becomes wider
and, as shown in Figure 3(b), by fixing σ and ν1, the FET pdf becomes less and
less peaked as ν2 increases.
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Figure 3: For n = 1, γ = 0.5, k = 20, x0 = 1, t0 = 0, σ = 0.02, the FET pdf of XL(t) for
different values of ν1 (on the left) and for different values of ν2 (on the right).

In Figure 4 the FET pdf γL(t|x0, t0) is plotted for several values of σ, with
fixed values of the proportions ν1 and ν2. In this case the region is fixed and the
amplitude of the oscillations varies. Consequently, the maximum of the FET
pdf is higher and it is reached for shorter times. Furthermore, as expected, by
enlarging the width of the region [s1(t), s2(t)], i.e. comparing Figures 4(a) and
4(b), the maximum of the FET pdf gets lower.

6.2. Analysis of the process XG(t)

For the process XG(t) we consider the FPT pdf gG(s(t), t|x0, t0) given in 44
and the FET pdf γG(t|x0, t0) in 47. As in the case of the lognormal process
XL(t), we choose n = 1, γ = 0.5, k = 20, x0 = 1, t0 = 0 and we consider several

choices of σ. From (29) we have that S(t) = ν g(0)
g(t) with g(t) given in 48. Also

in this case, the FPT pdf gG(s(t), t|x0, t0) and the FET pdf γG(t|x0, t0) do not
depend on the parameter p that, instead, affects the boundaries s(t), s1(t) and
s2(t).

In Figure 5 the FPT pdf ofXG(t) through s(t) = ν g(0)
g(t) is plotted for different

values of ν (Figure 5(a)) and for different values of σ (Figure 5(b)). For σ fixed
(Figure 5(a)), the maximum of the FPT pdf becomes higher and it is reached for
shorter times, as ν increases. Further, the FPT pdf exhibits a similar behavior
when the proportion ν is fixed and the width of the oscillations σ increases
(Figure 5(b)).

Now we consider the FET problem of the process XG(t) through the region

[s1(t), s2(t)] with si(t) = νi
g(0)
g(t) and g(t) defined in (48).

In Figures 6 and 7 we have plotted the FET pdf γG(t|x0, t0) for several
choices of ν1, ν2 and σ. In particular in Figure 6(a) we have fixed σ = 10
and ν2 = 1.1, we note that the FET pdf becomes more and more peaked as
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Figure 4: For n = 1, γ = 0.5, k = 20, x0 = 1, t0 = 0, the FET pdf of XL(t) for different values
of σ.
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Figure 5: For n = 1, γ = 0.5, k = 20, x0 = 1, t0 = 0, the FPT density of XG(t) for different
values of the proportion ν (on the left) and for different values of σ (on the right).
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ν1 increases, i.e. narrowing the region [s1(t), s2(t)]. Instead, by increasing the
parameter ν2 and fixing σ and ν1 (Figure 6(b)), the FET pdf becomes less and
less peaked as ν2 increases.
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Figure 6: For n = 1, γ = 0.5, k = 20, x0 = 1, t0 = 0, σ = 10, the FET pdf of XG(t) for different
values of ν1 (on the left) and for different values of ν2 (on the right).

In Figure 7 the FET pdf γG(t|x0, t0) is shown for several values of σ, with
fixed values of ν1 and ν2; as σ increases, the maximum of the FET pdf becomes
higher and it is reached for shorter times. Finally, comparing the Figures 7(a)
and 7(b), we observe that as the width of the region increases, the FET pdf
becomes flatter and the tails become heavier.

7. Concluding remarks

We have proposed two stochastic formulations of a general growth equation,
including the well known growth equations, such as Malthus, logistic, Bertal-
lanffy, Gompertz. They have been obtained starting from a new parametriza-
tion of the growth equation, by adding an additive and multiplicative noise.
The processes obtained, although having the same mean, which coincides with
the deterministic solution of the growth equation, are lognormal Gaussian dis-
tributed. This diversity is also evident in the trajectories of the two processes
which are differently influenced by the amplitude of the random oscillations.

For these processes we have analyzed the FPT from a threshold and on the
FET from a region delimited by two thresholds. We have provided specific
time dependent thresholds, for which there exist closed-forms of the FPT and
FET pdf’s. it is interesting to observe that, with appropriate choices of the
parameters, the identified thresholds represent percentages of the average of the
two processes. Hence, in application contexts, our analysis answers the question
how much time is necessary for processes to reach a certain percentage of the
average.
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Figure 7: For n = 1, γ = 0.5, k = 20, x0 = 1, t0 = 0, the FET pdf of XL(t) for different values
of σ.

Some numerical results, aimed at analyzing the effect of the parameters and
thresholds, is finally provided.
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