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Abstract. Magnetic skyrmions widely exist in a diverse range of magnetic systems, including chiral magnets
with a non-centrosymmetric structure characterized by Dzyaloshinkii-Moriya interaction (DMI). In this study, we
propose a generalized semi-implicit backward differentiation formula projection method, enabling the simulations
of the Landau-Lifshitz (LL) equation in chiral magnets in a typical time step-size of 1 ps, markedly exceeding the
limit subjected by existing numerical methods of typically 0.1 ps. Using micromagnetics simulations, we show
that the LL equation with DMI reveals an intriguing dynamic instability in magnetization configurations as the
damping varies. Both the isolated skyrmionium and skyrmionium clusters can be consequently produced using
a simple initialization strategy and a specific damping parameter. Assisted by the string method, the transition
path between skyrmion and skyrmionium, along with the escape of a skyrmion from the skyrmion clusters, are
then thoroughly examined. The numerical methods developed in this work not only provide a reliable paradigm
to investigate the skyrmion-based textures and their transition paths, but also facilitate the understandings for
magnetization dynamics in complex magnetic systems.

1. Introduction

Magnetic skyrmions are whirling structures of magnetization that have been observed in diverse types of
magnetic systems [1, 2]. Due to the topological protection, skyrmions maintain the extremely stability under
external perturbations, and are thus frequently treated as particle-like objects [3, 4]. In addition, the individual
skyrmion possesses small size down to the nanometer range, and high mobility under electric currents [5, 6],
thus is a promising candidate for future ultradense information storages and logic techniques [7, 8].

The formation of skyrmions is facilitated by the Dzyaloshinkii-Moriya interaction (DMI) [9, 10], but for a
range of moderate strength. When the DMI strength is weak, the ground state is the homogeneous ferro-
magnetic domain of uniform magnetization; in another limit of strong DMI, the spin spiral state forms. For
the medium strength of DMI, skyrmion as well as skyrmionium, a similar texture yet with a trivial topology,
are spontaneously engendered [5, 11, 12, 13, 14]. These magnetic textures, depicting the inhomogeneous dis-
tribution of magnetizations, represent local minima of magnetic free energy in chiral magnets with nonzero
DMI. Gradient descent methods [15] therefore can be applied to search these minima states. In dynamics, the
Landau-Lifshitz (LL) equation [16, 17] guides the evolution of magnetization.

Micromagnetics simulations is an important tool to study the magnetization dynamics, where the LL equa-
tion is solved numerically. There are vast literatures on numerical methods for the LL equation without DMI
(see recent reviews [18, 19] and the references therein). During the past two decades, semi-implicit projection
methods [20, 21, 22, 23] and the tangent plane scheme [24, 25] have been developed for micromagnetics sim-
ulations to achieve a suitable trade-off between efficiency and numerical stability. However, while the DMI
is crucial in the generation and transition of skyrmion (and skyrmionium), the incorporation of DM field to
micromagnetics simulations is rarely studied. The prominent obstacle in the numerical modeling is the chiral
boundary conditions (a nonhomogeneous Neumann boundary condition), due to the curling nature of DM field.
Beside inhomogeneity, the DM field also imposes stringent constraint for the temporal step-size, typically in
0.1 ps in existing methods [26, 27].

To address these challenges posed by the DMI, we develop a generalized semi-implicit backward differentia-
tion formula (BDF) projection scheme with the second-order accuracy in both space and time to numerically
solve the LL equation with DMI. A time step-size of 1.0 ps is permissible in our method, that substantially
reduces the computational expenses by one order of magnitude. Dynamic instability of the LL dynamics is ob-
served that distinct stable magnetization configurations stabilize contingent on the damping parameter, from
the initialization e3. Diverse skyrmion textures such as isolated skyrmion, isolated skyrmionium and their
clusters are therefore generated, and minimal energy path (MEP) between these textures are determined with
the assistance of the string method. In addition, the protection by the chiral boundary and the propelling by
local magnetic field are also demonstrated.

The remaining sections of this paper are structured as follows. In Section 2, we present the second-order
semi-implicit method for the LL equation, along with the harmonic map heat flow technique to investigate the
magnetic free energy with DMI, and the string method to locate the transition path. Skyrmion-based textures
under different circumstances are then generated in Section 3, and the phase transitions associated with these
textures are visualized in Section 4. The concluding remarks are given in Section 5.
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2. Models and numerical methods

Magnetic skyrmions were initially discovered in 2009 [7] and have since been extensively studied due to their
unique features, including extraordinary metastability, and their small physical size (usually below ∼ 100 nm),
which results in high mobility at low-current densities [8, 15, 28]. On the atomic scale, DMI has the form

(2.1) EDM = −
∑
〈ij〉

dij · (mi ×mj),

where dij denotes the DMI vector between atomic indices i and j, having a direction dependent on the system’s
type [29], mi represents the atomic moment with a unit length, and the summation is over all atomic indices
that have finite neighbor interactions, 〈ij〉 [30, 31]. The total spin Hamiltonian comprises the Heisenberg
exchange interaction, the DMI, and the interaction with an applied magnetic field H, represented as:

(2.2) E = −J
∑
〈ij〉

mi ·mj −
∑
〈ij〉

dij · (mi ×mj)− µ0

∑
i

H ·mi,

where J is the exchange coupling constant, and µ0 denotes the vacuum permeability. The Heisenberg model
(2.2) outlined in [15, 32] disregards the anisotropy term and the stray field.

2.1. The continuum model. In the continuum model, the magnetization is represented as a vector field
that is dependent on the spatial variable, M = M(x) where x ∈ Ω. For non-centrosymmetric bulk materials
that have chirality, the continuous equivalent of (2.2) is given by:

(2.3) F [M] =

∫
Ω

A

M2
s

|∇M|2dx+
D

M2
s

∫
Ω

(∇×M) ·Mdx

− µ0

∫
Ω
H ·Mdx+

µ0

2

∫
R3

|∇U |2dx+

∫
Ω

Φ

(
M

Ms

)
dx,

where A is the exchange constant, D is the DMI constant, and Ω ⊂ Rd (d = 1, 2, 3) is the region occupied
by the magnetic body. Below the Curie temperature, the saturation magnetization Ms is a constant and it
satisfies |M(x)| = Ms. The fourth term is the dipolar energy that is defined by the Newtonian potential
N(x) = − 1

4π
1
|x| in the form

(2.4) U(x) =

∫
Ω
∇N(x− x′) ·M(x′)dx′.

Denote the stray field by Hs = −∇U(x), then the dipolar energy can be rewritten as −µ0
2

∫
Ω Hs ·Mdx.

The anisotropy energy Φ(M(x)/Ms) : Ω → R+ is a smooth function. For a uniaxial ferromagnet with the
easy-axis direction e1 = (1, 0, 0)T , the anisotropy energy has the form Φ(M(x)/Ms) = Ku(M2

2 + M2
3 )/M2

s =
Ku(M2

s −M2
1 )/M2

s with Ku the anisotropy constant. A magnetic skyrmion induced by the DMI has a topology
number (or skyrmion number), which is defined by [3, 5]

(2.5) Q =
1

4πM3
s

∫
M ·

(
∂M

∂x
× ∂M

∂y

)
dxdy = ±1.

In a skyrmion lattice, the topology number is proportional to the accumulated isolated skyrmion.
In the dynamic case, the magnetization M = M(x, t) follows the phenomenological Landau-Lifshitz-

Gilbert (LLG) equation (an equivalent of the LL equation)

(2.6)
∂M

∂t
= −γM×H +

α

Ms
M× ∂M

∂t
,

where γ is the gyromagnetic parameter, α is the dimensionless damping parameter, and H is the effective field
calculated by the variation of the energy functional (2.3),

(2.7) H =
2A

M2
s

∆M− 2Ku

M2
s

(M2e2 +M3e3) + µ0H + µ0Hs −
2D

M2
s

∇×M.

As a result of calculus of variations, the non-homogeneous Neumann boundary condition, also known as the
chiral boundary, is derived

(2.8)
∂M

∂ν

∣∣∣
∂Ω

= − D

2A
M× ν

with ν being the unit outward normal vector. This is important for the energy dissipation law of the magne-
tization dynamics stated in the following theorem.
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Theorem 2.1. Let M ∈ L∞([0, T ]; [H1(Ω̄)]3) ∩ C1([0, T ]; [C1(Ω̄)]3) be the solution of (2.6)-(2.8), then the
following energy dissipation law holds

(2.9)
dF [M]

dt
≤ 0

if the external magnetic field is independent of time.

Proof. For vectors v,w ∈ H1(Ω), it holds that ∇ · (v ×w) = w · (∇× v) − v · (∇×w). Taking the volume
integral and applying the divergence theorem, we have

(2.10)

∫
Ω
∇ · (v ×w)dx =

∫
Ω
w · (∇× v)− v · (∇×w)dx =

∫
∂Ω

(v ×w) · νdS.

Then, we get

(2.11)
d

dt

∫
Ω
M · (∇×M)dx = 2

∫
Ω

∂M

∂t
· (∇×M)dx−

∫
∂Ω

(
M× ∂M

∂t

)
· νdS.

Due to the nonhomogeneous boundary condition, we have∫
Ω

∂M

∂t
·∆Mdx =

∫
∂Ω

∂M

∂t
· ∇M · νdS − 1

2

d

dt

∫
Ω
|∇M|2dx

= − D

2A

∫
∂Ω

∂M

∂t
· (M× ν)dS − 1

2

d

dt

∫
Ω
|∇M|2dx

=
D

2A

∫
∂Ω

(
M× ∂M

∂t

)
· νdS − 1

2

d

dt

∫
Ω
|∇M|2dx.(2.12)

Taking inner product with (2.6) by γH− α
Ms

∂M
∂t , we arrive at

0 ≤ α

γMs

∫
Ω

(∂M
∂t

)2
dx =

∫
Ω

∂M

∂t
·Hdx

=
2A

M2
s

∫
Ω

∂M

∂t
·∆Mdx− 2Ku

M2
s

∫
Ω

∂M

∂t
· (M2e2 +M3e3)dx+

µ0

∫
Ω

∂M

∂t
·Hsdx+ µ0

∫
Ω

∂M

∂t
·Hdx− 2D

M2
s

∫
Ω

∂M

∂t
· (∇×M)dx

=
D

M2
s

∫
∂Ω

(
M× ∂M

∂t

)
· νdx− A

M2
s

d

dt

∫
Ω
|∇M|2dx− Ku

M2
s

d

dt

∫
Ω

(M2
2 +M2

3 )dx+

µ0
d

dt

∫
Ω
M · (H + Hs)dx−

D

M2
s

d

dt

∫
Ω
M · (∇×M)dx− D

M2
s

∫
∂Ω

(
M× ∂M

∂t

)
· νdx

=− dF
dt
,

where we use the fact that the external magnetic field is independent of time. This completes the proof. �

Skyrmion-based patterns induced by the DMI exhibit superior mobility in response to current fields. To
account for the magnetic interactions with an external current, we include the spin transfer torque (STT)
supplied by the spin-polarized current in the LLG model, as described in [33]:

(2.13)
∂M

∂t
= −γM×H +

α

Ms
M× ∂M

∂t
− b

M2
s

M× (M× (j · ∇)M)− bξ

Ms
M× (j · ∇)M,

Herein, P denotes the polarization rate, j represents the current density vector, b = PµB/(eMs(1+ξ2)), where
µB is the Bohr magneton, e is the elementary charge, and ξ is a dimensionless parameter that characterizes
the degree of non-adiabaticity.

Denote

Ĥ = −2Ku

M2
s

(M2e2 +M3e3) + µ0H + µ0Hs +
b

γM2
s

M× (j · ∇)M +
bξ

γMs
(j · ∇)M,

then (2.13) can be rewritten as the LL form

(2.14)
∂M

∂t
= − γ

1 + α2
M×

( 2A

M2
s

∆M− 2D

M2
s

∇×M + Ĥ
)
−

γα

1 + α2
M×

(
M×

( 2A

M2
s

∆M− 2D

M2
s

∇×M + Ĥ
))
.
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Define the dimensionless variables m = M/Ms, he = H/Ms, hs = Hs/Ms and spatial rescaling x → Lx
with L being the length of ferromagnetic body. The dimensionless magnetic free energy I[m] satisfying
F [M] = µ0M

2
s I[m] is

(2.15) I[m] =

∫
Ω

ε

2
|∇m|2 +

κ

2
(∇×m) ·m− he ·m−

1

2
hs ·m + Φ (m) dx

with ε = 2A/(µ0M
2
sL

2) and κ = 2D/(µ0M
2
sL). Meanwhile, we take the time rescaling t→ (1+α2)(µ0γMs)

−1t
and get the dimensionless LL equation

(2.16)
∂m

∂t
= −m×

(
ε∆m− κ∇×m + ĥ

)
− αm×

(
m×

(
ε∆m− κ∇×m + ĥ

))
,

where ĥ = −q(m2e2 + m3e3) + he + hs + b
µ0γM2

s
m × (j · ∇)m + bξ

µ0γM2
s

(j · ∇)m with q = 2Ku/(µ0M
2
s ). Note

that Ĥ = Msĥ.
In the absence of spin-polarized current, i.e. j = 0, we have the following LL equation with boundary and

initial conditions

(2.17)


∂m

∂t
= −m× h− αm× (m× h) in [0, T ]× Ω,

∂m

∂ν
= −κbm× ν on [0, T ]× ∂Ω,

m(0) = m0 with
∣∣m0

∣∣ = 1 in {t = 0} × Ω,

where

(2.18) h = − δI

δm
= ε∆m− κ∇×m− q(m2e2 +m3e3) + he + hs.

Here κb = DL/(2A) is proportional to L, implying the stiffness of the boundary.
A stable or metastable state, such as skyrmion and skyrmionium, given by the LL equation satisfies

(2.19) m = ch

with c being a constant for |m| = 1 in a point-wise sense. Due to the energy dispassion of the LL equation,
the convergent procedure should stop at the local minimizer of the energy functional (2.3) with

(2.20)


δI

δm
= 0,

s.t. |m| = 1.

Gradient decent methods, such as the nonlinear conjugate gradient method [15], therefore can be applied
to search the minima of the magnetic free energy. Alternatively, the stable magnetization configuration can
be obtained by simulating the dynamics driven by the harmonic map heat flow equation. In this case, the
minimization problem is formulated as

(2.21) inf
{
I(m) | ∂m

∂ν
= −κbm× ν on ∂Ω, |m(x)| = 1, ∀x ∈ Ω

}
.

Using the Lagrange multiplier method with λ̂ being the Lagrange multiplier, we get

(2.22) L(m, λ̂) = I(m) +
λ̂

2

∫
Ω

((m)2 − 1)dx.

At stationary points, it holds

δL

δm
= −h + λ̂m = 0,

(m)2 − 1 = 0.

So we have λ̂ = (m,h). Therefore, the harmonic map heat flow reads as

(2.23)
∂m

∂t
= − δL

δm
= h− (m,h)m

subject to the constraint |m| = 1 and the nonhomogeneous boundary condition. Thus, we also consider the
harmonic map heat flow system

(2.24)


∂m

∂t
= −m× (m× h), in [0, T ]× Ω,

∂m

∂ν
= −κbm× ν, on [0, T ]× ∂Ω,

m(0) = m0, in {t = 0} × Ω,

where |m0| = 1.
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2.2. Numerical methods. FeGe is a representative chiral ferromagnet with strong spin-orbit coupling. Here
we list its physical parameters in Table 1. It is clear that κ and κd are two leading parameters due to the DMI.

Table 1. Physical parameters of FeGe (L = 80 nm).

Parameter Value (unit) Dimensionless quantity
Ku 0 (J/m3) q = 0
A 8.78× 10−12 (J/m) ε ≈ 1.48× 10−2

Ms 3.84× 105 (A/m)
D 1.58× 10−3 (J/m2) κ ≈ 0.21, κd ≈ 7.20

The first parameter results a strong curl field in the LL equation and the second one leads to a stiff boundary
condition, both of which will be examined later.

In the framework of finite difference method, we construct unknowns on half grid points as m(xi, yj , zk) =
m((i − 1

2)hx, (j − 1
2)hy, (k − 1

2)hz). Here hx = 1/nx, hy = 1/ny, hz = 1/nz and h = hx = hy = hz holds for
uniform spatial meshes. The indexes i, j, k are valued with i = 1, · · · , nx, j = 1, · · · , ny and k = 1, · · · , nz. For
the sake of clarity, the approximations of the boundary condition and operator ∇ on x-direction are depicted
below.

⋯⋯⋯
𝑥0 𝑥1 𝑥2 𝑥𝑛𝑥+1𝑥𝑛𝑥𝑥𝑛𝑥−1⋯⋯⋯

0 1

Figure 1. Grids along the x-direction with two ghost points x0 and xnx+1.

Let ν = (1, 0, 0)T , the boundary condition at x = 1 is discretized as

m(xnx+1, yj , zk)−m(xnx, yj , zk)

hx
= −κb

m(xnx+1, yj , zk) + m(xnx, yj , zk)

2
× ν,

i.e. 

m1(xnx+1, yj , zk) = m1(xnx, yj , zk),

m2(xnx+1, yj , zk) =
1− k2

bx

1 + k2
bx

m2(xnx, yj , zk)−
2kbx

1 + k2
bx

m3(xnx, yj , zk),

m3(xnx+1, yj , zk) =
2kbx

1 + k2
bx

m2(xnx, yj , zk) +
1− k2

bx

1 + k2
bx

m3(xnx, yj , zk),

where kbx = κbhx/2. Similarly, discretization of the boundary condition at x = 0 yields

m1(x0, yj , zk) = m1(x1, yj , zk),

m2(x0, yj , zk) =
1− k2

bx

1 + k2
bx

m2(x1, yj , zk) +
2kbx

1 + k2
bx

m3(x1, yj , zk),

m3(x0, yj , zk) = − 2kbx
1 + k2

bx

m2(x1, yj , zk) +
1− k2

bx

1 + k2
bx

m3(x1, yj , zk).

Boundary conditions along y and z directions are discretized in a similar way.
The operator ∇x is discretized as

∇xm(x1, yj , zk) ≈
m(x1, yj , zk)−m(x0, yj , zk)

hx
,

∇xm(xi, yj , zk) ≈
m(xi+1, yj , zk)−m(xi−1, yj , zk)

2hx
,

∇xm(xnx, yj , zk) ≈
m(xnx+1, yj , zk)−m(xnx, yj , zk)

hx
,

where i = 2, · · · , nx− 1, j = 1, · · · , ny and k = 1, · · · , nz. ∇y and ∇z are discretized similarly.

Remark 1. In thin films, the DMI arises from robust spin-orbit couplings at the edges, whereby magnetization
is absent beyond the sample. In addition, the exchange interactions are non-symmetric and intrinsically
directional at the boundaries. To numerically capture such features, the introduction of ghost points outside
the material is commonly employed to approximate spatial derivatives within the vicinity of the boundaries.
The resulting discretization of the ∇ operator is achieved as described above.
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The Laplacian operator is descritized as

∆m(xi, yj , zk) ≈
m(xi−1, yj , zk)− 2m(xi, yj , zk) + m(xi+1, yj , zk)

h2
x

+

m(xi, yj−1, zk)− 2m(xi, yj , zk) + m(xi, yj+1, zk)

h2
y

+

m(xi, yj , zk−1)− 2m(xi, yj , zk) + m(xi, yj , zk+1)

h2
z

.

Regarding time-stepping, the standard second-order backward differentiation formula (BDF2) is employed

3mn+1 − 4mn + mn−1

2k
= −mn+1 × (ε∆mn+1 − κ∇×mn+1 + ĥn+1)

− αmn+1 × (mn+1 × (ε∆mn+1 − κ∇×mn+1 + ĥn+1)).

The prevalent feature of this approach involves the utilization of an implicit methodology, thereby necessitating
nonlinear solvers at each time step. Notably, a semi-implicit scheme incorporating a projection step has been
developed with the motivation of ensuring maintenance of |m| = 1 [23]. This scheme treats the DMI term
as implicit, primarily due to its dominance in the effective field. The ensuing semi-implicit BDF2 projection
scheme exhibits the following features. Given its second-order time accuracy, simulations in micromagnetics
employing this scheme may adopt a step-size ∆t = 1 ps. Conversely, earlier approaches were limited in their
ability to utilize sub-picosecond time step-sizes.

Algorithm 2.1. Set m̂n+1 = 2mn −mn−1 and h̃n+1 = 2ĥn − ĥn−1.

(i) Compute m̃n+1 such that

3m̃n+1 − 4mn + mn−1

2∆t
= −m̂n+1 × (ε∆m̃n+1 − κ∇× m̃n+1 + h̃n+1)

−αm̂n+1 × (m̂n+1 × (ε∆m̃n+1 − κ∇× m̃n+1 + h̃n+1))(2.25)

(ii) Projection onto S2:

(2.26) mn+1 =
1

|m̃n+1|
m̃n+1

For the harmonic map heat flow, a similar algorithm is proposed.

Algorithm 2.2. Set m̂n+1 = 2mn −mn−1 and h̃n+1 = 2ĥn − ĥn−1.

(i) Compute m̃n+1 such that

3m̃n+1 − 4mn + mn−1

2∆t
= −m̂n+1 × (m̂n+1 × (ε∆m̃n+1 − κ∇× m̃n+1 + h̃n+1)).

(ii) Projection onto S2:

mn+1 =
1

|m̃n+1|
m̃n+1.

The semi-implicit BDF1 approach is employed as a precursor to the BDF2 scheme, and allows for the
calculation of m1. This initial step does not impart any alteration to the overall second-order accuracy
exhibited by the numerical scheme. Additionally, it is worth mentioning that if the relative change in energy
between two consecutive time steps is less than 1.0 × 10−9 in the simulation, a steady state is considered to
have been attained.

In order to search the minimum energy transition paths of skyrmion-based magnetic textures, here we
further introduce the string method [34, 35]. By definition, a curve γ connecting two local minima satisfies

(2.27) (∇I)⊥(γ) = 0,

where (∇I)⊥ is the component of ∇I normal to γ. Then γ := {ϕ(a), a ∈ [0, 1]} defines a MEP from one local
minima to the other. After an initial parametrization of the curve is picked and usually the equal arc-length
parametrization is used, the curve evolve to the MEP following the equation

(2.28) ϕt = −(∇I(ϕ))⊥ + λτ,

where (∇I(ϕ))⊥ = ∇I(ϕ)− (∇I(ϕ), τ)τ , τ is the unit tangent vector along ϕ with τ = ϕa/ |ϕa|, and λ is the
Lagrange multiplier uniquely determined by the choice of parametrization. Let λ̄ = λ + (∇I(ϕ), τ), then the
(2.28) can be rewritten as

(2.29) ϕt = −∇I(ϕ) + λ̄τ.
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In order to find the MEP, the time-splitting method is applied to solve (2.29). Details are given in Algorithm
2.3. A convergent string means that all the images satisfy

(2.30) (∇I(ϕi))
⊥ = 0.

In our simulations, this is replaced by the stopping criterion (TOL = 1.0e-06) as

(2.31) max
i
||I(ϕi, t

n)− I(ϕi, t
n+1)||∞ ≤ TOL.

Algorithm 2.3. Choose an initial string γ0 with inclusion of N + 1 images such that γ0 := {ϕi = ϕ(ai), ai ∈
[0, 1], i = 0, · · · , N}.

• Step 1: Evolve the images on the string following the gradient flow

(2.32) ∂tϕi = −∇I(ϕi).

From current images {ϕni }, {ϕ∗i } are obtained by one time stepping. Here an image is denoted by
the magnetization configuration m(x),x ∈ Ω, and the harmonic map heat flow (2.24) is solved by
Algorithm 2.2.
• Step 2: Compute the parametrization {a∗i } by

s0 = 0, si = si−1 +
∣∣ϕ∗i − ϕ∗i−1

∣∣ , i = 1, · · · , N,
and then the updated mesh {a∗i } is normalized by a∗i = si/sN .

• Step 3: Parametrization of the string by equal arc-length and projection. The images {ϕ̂n+1
i } are

obtained by cubic spline interpolation at uniform grid points {ai = i/N}, and the new images {ϕn+1
i }

are obtained after the projection step.
• Step 4: Go back to Step 1 and iterate until convergence.

Remark 2. The approach to the string method utilized in this present work differs from the standard version
outlined in [35, 36]. This variance essentially stems from the novel conservation requirement on the length of
magnetization. Accordingly, Step 3 in the method is crafted to incorporate a projection step. Furthermore,
treating images as tensors characterized by ϕi ∈ R3∗nx∗ny∗nz makes it possible to consider the existence of a
reversible mapping between ϕ and m, which is captured by mappings L : ϕ → m and L−1 : m → ϕ in the
implemented technique.

3. Micromagnetics simulations

This section initiates with the utilization of Algorithm 2.1 and Algorithm 2.2 in generating stable magnetic
textures. The simulation carried out considers a FeGe sample having a consistent spatial mesh size of 2× 2×
2 nm3.

Specifically, this simulation focuses on a sample with dimensions 80 × 80 × 6 nm3. One observation of
notable interest is the onset of a dynamic instability in the LL equation, attributed to the presence of the DMI.
Starting from an initial uniform state of m0 = (0, 0, 1)T , the system relaxes into different stable configurations
in response to variations in the damping parameter. As depicted in Fig. 2, the LL equation readily generates

(a) Q =
−1

(b) Q = 0 (c) Q = 0 (d) Q = 1

Figure 2. Isolated skyrmions and isolated skyrmioniums by means of the LL equation with
different damping parameters α = 0.05, 0.07, 0.2, 0.6. The color of background represents the
component m3 and arrows represent the in-plane components m1 and m2.

skyrmions (Q = ±1) and skyrmioniums (Q = 0) with diverse damping parameters α. We also document
the energies and spatially averaged magnetization of the four configurations accounting for skyrmions and
skyrmioniums in Table 2. For varied α values within the interval (0, 1], the system reliably converges towards
one of the four configurations.

The publication [14] reveals that a skyrmionium is a composite structure composed of two topological
magnetic skyrmions possessing Q = 1 and Q = −1, and its motion is swifter when driven by an external
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Table 2. Energy and spatially averaged magnetization 〈m〉 = (〈m1〉, 〈m2〉, 〈m3〉)T of isolated
skyrmions and isolated skyrmioniums.

Label energy(10−18 J) 〈mx〉 〈my〉 〈mz〉 α
Fig. 2(A) -3.8989 0.0047 0.0038 -0.1204 0.05/0.06
Fig. 2(B) -3.0936 -0.0035 0.0036 -0.2627 0.07/0.08/0.09/0.1
Fig. 2(C) -3.0938 0.0188 -0.0038 0.2629 0.2/0.3/0.4/0.5
Fig. 2(D) -3.8986 0.0021 0.0042 0.1216 0.01/· · · /0.04/0.6/· · · /1.0

out-of-plane current than that of a skyrmion. In order to gain a better understanding of their fundamental
differences, the energy density distribution is visualized. Let L(m) denote the energy density distribution in
the absence of the Dzyaloshinskii-Moriya interaction (DMI), and D(m) denote the energy density distribution
corresponding to the DMI. The combination of these two, T (m) = L(m) +D(m), represents the total energy
density distribution. As illustrated in Fig. 3, the difference between the skyrmion and skyrmionium is mainly
attributable to D(m), as their energy distributions without the DMI appear similar along the axes passing
through the center. However, the energy density distribution of the DMI is almost entirely opposite.

(a) L(m) (b) D(m) (c) T (m)

(d) L(m) (e) D(m) (f) T (m)

Figure 3. The energy density distribution along the centered slice of the material in the xy-
plane. Top row: energy density distribution of the skyrmion with Q = 1. Bottom row: energy
density distribution of the skyrmionium.

In the context of the harmonic map heat flow equation, the relaxation of the system is aimed toward
achieving a single skyrmion configuration. As portrayed in Fig. 4, a meticulous scrutiny of the quantity 〈m3〉
indicates a swift formation of the skyrmion, followed by a prolonged period of relaxation that is required to
satisfy the stability criterion.

Isolated skyrmion and skyrmionium structures have been successfully generated in a controllable manner.
Subsequently, we have expanded our efforts towards generating skyrmion clusters in a ferromagnetic sample
with dimensions of 200 × 200 × 6 nm3. Initiated from a configuration where m0 = (0, 0, 1)T , the system
undergoes relaxation to yield varying clusters as we adjust the damping parameter α. A skyrmion cluster is
characterized based on the number of skyrmions it comprises and the nature of their interconnected structures.
Fig. 5 depicts representative skyrmion clusters generated by employing the LL equation.

The mutual interactions between individual skyrmions can lead to the formation of skyrmion lattices and
clusters. As illustrated in Fig. 5, the local structure of skyrmion lattices can be realized by the presence
of skyrmion clusters. For instance, by adopting a specific initialization scheme, the square skyrmion lattice
structure can be easily generated as a periodic replica of the square skyrmion cluster, as shown in either
Fig. 5(D) or Fig. 6. The initial magnetization exhibits a rectangular shape with in-plane dimensions of
40 nm× 40 nm, a configuration which yields skyrmions having a diameter of 40 nm. For the skyrmion lattice
generated via the LL equation, the stable energy and spatially averaged magnetization are −1.7066e-17 J and
〈m〉 = (−0.58e-04, 0.39e-03, 0.23)T , respectively. Meanwhile, the skyrmion lattice produced by means of the
harmonic map heat flow method possesses stable energy and averaged magnetization values of −1.6971e-17 J
and 〈m〉 = (0.28e-03, 0.04, 0.23)T , respectively.



9

10 ps 20 ps 45 ps 100 ps 350 ps

(a) Snapshots of relaxation driven by the harmonic map heat flow.

10 ps 20 ps 45 ps 100 ps 350 ps

(b) Snapshots of relaxation driven by the LL equation.
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(c) Energy evolution.
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(d) 〈m〉 evolution.

Figure 4. Comparison of the relaxation driven by the LL equation and the harmonic map
heat flow. The same initialization m0 = (0, 0, 1)T is used and the same skyrmion with Q = 1
is reached. The damping parameter α = 0.6 is used in the LL equation.

(a) α =
0.04.

(b) α =
0.05.

(c) α =
0.09.

(d) α =
0.5.

Figure 5. Representative skyrmion clusters formed in the 200× 200× 6 nm3 ferromagnet.

The emergence of isolated skyrmioniums and skyrmionium clusters is a subject that has received little
attention in the existing literature. In this study, we leverage the dynamic instability exhibited by the LL
equation to create isolated skyrmioniums and skyrmionium clusters with precise damping parameter settings.
When the ferromagnetic material attains an L value of 80 nm, both isolated skyrmions and skyrmioniums
can be observed, with the latter’s radius being considerably larger than that of the former, specifically in
an unsaturated phase. Consequently, we broaden our investigation by considering a sample of dimensions
500× 500× 6 nm3 and adopt two different initialization strategies to generate skyrmionium clusters.
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Figure 6. Left: Initial magnetization configuration. Middle and right: Stable magnetization
configurations formed by the LL equation and harmonic map heat flow, respectively. The back
ground color represents the magnetization component m3. The magnetization within the blue
blocks is (0, 0,−1)T , while the remianing area is (0, 0, 1)T .

Our first strategy involves placing nine rectangles with m3 = −1 within the initial magnetization configura-
tion and adjusting the inter-block distance. The dimensions of the blocks are fixed at 100 nm× 100 nm, while
the damping parameter is set to α = 0.2. When the blocks are spaced at 25 nm, four skyrmions emerge near
the corners along with a set of nine skyrmioniums arranged in the shape of a flower, as displayed in Fig. 7(B).
As the inter-block distance increases to 66 nm, four skyrmions are generated at diverse locations in a regular
skyrmionium lattice. It is important to note that the damping parameter plays a crucial role in the formation
of skyrmionium clusters, unlike skyrmion clusters and skyrmion lattices. Furthermore, in contrast to skyrmion
clusters and lattices, individual skyrmions consistently coexist with skyrmioniums in the skyrmionium clusters.

(a) (b) (c)

Figure 7. Initial configuration (A) and skyrmionium clusters (B) and (C). The sample size is
500 nm× 500 nm× 6 nm and the damping parameter is α = 0.2 in the LL equation.

Next, we reduce the size of the blocks in the initial configuration to 50 nm × 50 nm and set α = 0.1 in
the LL equation. As illustrated in Fig. 8, a skyrmion lattice comprising of 29 skyrmions and an additional
isolated skyrmion located at a corner is produced. However, we observe a defective lattice in this case due to
the existence of three distinct types of skyrmion clusters. Specifically, the skyrmion clusters are categorized
into three types: (1) a skyrmion is encircled by five neighboring skyrmions; (2) a skyrmion is surrounded by
six neighboring skyrmions; and (3) a skyrmion is surrounded by seven neighboring skyrmions. The occurrence
of the first two types of clusters is also observed in a ferromagnetic material with dimensions of 200 nm ×
200 nm× 6 nm. When the isolated skyrmions coalesce into an interconnected structure, the energy density at
the junctions of any two skyrmions exhibits a notably higher magnitude when compared to other locations.

Comprehending the phase transition between magnetic textures holds significant importance in the field of
spintronics. Pertaining to skyrmion-based textures, experimental observations have revealed various transitions
such as those between skyrmion clusters facilitated by a magnetic field [37], transitions between skyrmion
lattice structures induced by a magnetic field [38], transitions between skyrmioniums driven by spin-polarized
current [14], and the formation of skyrmions via ultrafast laser pulses [39]. The local order in magnetization is
disrupted and then re-established to generate skyrmion and skyrmionium structures as demonstrated in [39].
Motivated by these experimental findings, we aim to investigate the generation of skyrmion and skyrmionium
structures in a skyrmion lattice configuration during the re-stabilization process through simulations.

In our simulations, we perturbe the magnetization order of the stable magnetic texture depicted in Fig. 8 by
locally revaluating it randomly, in accordance with the LL equation. Specifically, in Fig. 9, the magnetization
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(a) Initializa-
tion

(b) Equilib-
rium

(c) T (m)

Figure 8. A skyrmion lattice over a 500 nm× 500 nm× 6 nm ferromagnet. Here an isolated
skyrmion is presented near the bottom-right corner, which resulted from the defectiveness of
the sample. From the initial magnetization configuration (A), the system reaches (B) with
spatial energy density distribution (C), following the LL dynamics with α = 0.1.

(a) Magnetization within the centered circle with radius 100 nm is randomly reval-
ued and re-stabilized.

(b) Magnetization within the centered circle with radius 120 nm is randomly reval-
ued and re-stabilized.

Figure 9. Generation of skyrmioniums and skyrmions in a skyrmion lattice under pertuba-
tions. The initial magnetization configuration is a skyrmion lattice with the magnetization
over a centered circle randomly pertubated, which is fed into the LL dynamics as the initial
condition. A new stable magnetization configuration is obtained by following the LL equation.
First column: initial configuration. Second column: stable magnetization configuration. Third
column: energy density distribution of the stable magnetization configurations.

order within a centered circular domain was randomly revalued while the radius of the circle was adjusted.
The results demonstrate that this perturbation spontaneously induces the formation of either a skyrmionium
or several skyrmions, thus initiating the transition of the skyrmion structure. A damping value of α = 0.1 was
employed, as depicted in Fig. 9 where the generation of the skyrmionium is observed as a consequence of the
aforementioned perturbation.
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4. Transition paths

The collapse of an isolated skyrmion, its subsequent escape through a boundary, and division into two
identical skyrmions, have been observed. The first two transitions shed light on the connection between isolated
skyrmions and the classical magnetic saturation state, while the last transition doubles the system’s topological
number. This study aims to identify transition paths pertaining to changes in the topological number of both
isolated skyrmions and skyrmion clusters. To this end, the string method, previously described in literature,
has been employed to identify transition paths between magnetic textures with differing topological numbers.
Subsequently, micromagnetic simulations have been conducted to realize the phase transition corresponding
to the identified path.

The primary objective of this study is to investigate the transition between a skyrmion and a skyrmionium.
By considering an isolated skyrmionium with a topological number Q = 0 and an isolated skyrmion with Q = 1
as the two initial endpoints, a transition path can be established through the implementation of the string
method. Such a path is illustrated in Fig. 10, where stable and saddle points are highlighted. Specifically, the
transition from the skyrmionium to skyrmion with Q = −1 is accompanied by the escape of a nucleus located
at the core of the skyrmionium from the protective ring pattern. It is worth noting that the nucleus of the
skyrmionium can be regarded as a reversed skyrmion and can be easily controlled by an in-plane current, while
the external ring cannot be as readily removed due to the pronounced boundary protection. Hence, this study
provides valuable insights into the transition from an isolated skyrmionium to an isolated skyrmion, whereby
the topological number is effectively erased as a result of the removal of the nucleus skyrmion.

0 0.2 0.4 0.6 0.8 1

-3.8875

-3.7057

-3.5239

-3.3421

-3.1603

-2.9785

A

B

C

D

E

F

G

H

B C D E F G H

Figure 10. Phase transition between an isolated skyrmionium Q = 0 and an isolated skyrmion
Q = 1. (A) The transition path between the skyrmionium and the skyrmion. The red points
denote the local minima and saddle points on the path. (B)-(H) are the magnetization config-
urations corresponding to minima and saddle points on the MEP.

During the transition path between a skyrmion with a topological number of Q = −1 and one with Q = 1, a
metastable state characterized by a skyrmion junction with a topological number of Q = 0 is encountered. The
change in topological number follows the sequence ±1→ 0→ ∓1 along this transition path, as demonstrated
in Fig. 11. In order to realize the transition from a skyrmion with Q = 1 to one with Q = −1 in the LL
equation, an in-plane current is applied, with a chosen damping parameter of α = 0.6. The simulation is
conducted in two stages. Firstly, from 0 ∼ 850 ps, a current with u = −bJ = −150 m/s and β = 0.5 along the
direction −e1 is applied, and the system reaches the skyrmion junction. Subsequently, from 1.5 ns to 2.1 ns,
a current with u = −50 m/s and β = 0.4 is applied along the direction −e2, and the system relaxes to the
skyrmion with Q = −1. The simulation results demonstrate that the energy barrier during the transition from
a skyrmion to a skyrmion junction is higher than that from the skyrmion junction to the skyrmion, owing to
the superior stability of isolated skyrmions.

This study then proceeds to investigate the transition between skyrmion clusters with a change in topological
number. The transition process is illustrated in Fig. 12, where a skyrmion escapes through a boundary, leading
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Figure 11. Energy evolution when a spin-polarized current is applied and 7 representative
snapshots of magnetization configuration are visualized. Top row: energy evolution driven by
the LL equation. Black real lines represent the dynamics when the current is removed, while
red and blue dashed lines represent the dynamics when the current is applied with different
directions and strengthes. Bottom row: 7 snapshots at different times, corresponding to the
pentagrams during the energy evolution.

to a transition between two skyrmion clusters and a subsequent reduction in the system’s topological number.
It is worth noting that although there are alternative mechanisms for inducing this transition, such as the
collapse of a skyrmion or the merger of two skyrmions into one, the transition path illustrated in Fig. 12
represents the MEP in this particular case.

0 0.2 0.4 0.6 0.8 1

-1.9

-1.85

-1.8
10-17
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Figure 12. Phase transition between skyrmion clusters and a skyrmion escapes from a bound-
ary.

The uniform application of an external field (i.e., magnetic or current field) leads to the simultaneous
movement of all skyrmions within the cluster. Hence, it becomes challenging to induce transitions between
skyrmion clusters using this approach. As a viable alternative, we propose the use of a local magnetic field
to manipulate individual skyrmions. To demonstrate this, we consider the use of a magnetic field to pull the
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central skyrmion from the cluster, causing it to eventually escape through a boundary. In this demonstration,
the magnetic field strength is chosen to be −2.5e3 T, which proves adequate for overcoming boundary stiffness,
but is considered too strong for inducing desired skyrmion movements. In addition, skyrmions can be attracted

0 ps 1 ns 2.5 ns 3 ns 12.5 ns

Figure 13. A local out-of-plane magnetic field applied over the green square domain drives
one skyrmion across the boundary. The magnetic field with magnitude −2.5e3 T moves along
the e1 direction with velocity 40 m/s.

or repelled by an out-of-plane magnetic field. For instance, when a local field is applied over an in-plane domain
of 40× 40 nm2 during a time interval of 0 ∼ 200 ps, two neighboring skyrmions are observed to move towards
each other, eventually resulting in their merger.

0 ps 40 ps 200 ps 400 ps 5.8 ns

Figure 14. Mergence of two skyrmions when an out-of-plane magnetic field−0.5ez T is applied
over the green square domain within the time period [0, 200 ps].

5. Conclusion

This study proposes a generalized, second-order accurate, semi-implicit projection scheme for solving the
Landau-Lifshitz (LL) equation with the Dzyaloshinskii-Moriya interaction (DMI), which enables the use of
larger step-sizes for micromagnetics simulations. It is observed that the LL system exhibits a dynamic insta-
bility, and that various stable magnetization configurations can be generated by means of simple initializa-
tion as the damping parameter varies, including isolated skyrmions, isolated skyrmionium, skyrmion clusters,
skyrmionium clusters, and combinations thereof, in a controlled manner. The string method is employed to
identify minimal energy paths connecting different stable magnetization configurations. In particular, the
transition between a skyrmion with Q = 1 and one with Q = −1 involves a local minimizer characterized by a
skyrmion junction with Q = 0. Moreover, for skyrmion clusters, a transition path is determined that involves
a skyrmion escaping through the boundary. The proposed method offers a dependable strategy for studying
skyrmion textures and their transition paths, which can greatly enhance our understanding of magnetization
dynamics for spintronics applications.

Acknowledgments

P. Li thanks for the helpful discussion of Zhiwei Sun, and acknowledges the program of China Scholarships
Council No. 202106920036. S. Gu acknowledges the support of NSFC 11901211 and the Natural Science
Foundation of Top Talent of SZTU GDRC202137. J. Lan acknowledges the support of NSFC (Grant No.
11904260) and Natural Science Foundation of Tianjin (Grant No. 20JCQNJC02020). J. Chen acknowledges
the support of NSFC (Grant No. 11971021). R. Du was supported by NSFC (Grant No. 12271360).

References

[1] C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M. Garst, T. Ma, S. Mankovsky, T. L. Monchesky, M. Mostovoy,
N. Nagaosa, S. S. P. Parkin, C. Pfleiderer, N. Reyren, A. Rosch, Y. Taguchi, Y. Tokura, K. von Bergmann, and J. Zang. The
2020 skyrmionics roadmap. J. Phys. D: Appl. Phys., 53(36):363001, jun 2020.

[2] K. Wang, V. Bheemarasetty, J. Duan, S. Zhou, and G. Xiao. Fundamental physics and applications of skyrmions: A review.
J. Magn. Magn. Mater., 563:169905, 2022.

[3] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel. Spontaneous
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[7] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni. Skyrmion lattice in a chiral
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magnetic nanostructures with tunable topological properties. Phys. Rev. Lett., 110:177205, Apr 2013.



16 PANCHI LI, SHUTING GU, JIN LAN, JINGRUN CHEN, WEIQING REN, AND RUI DU

Email address: LiPanchi1994@163.com

School of Mathematical Sciences, Soochow University, Suzhou, 215006, China

Email address: gst1988@126.com

College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China

Email address: lanjin@tju.edu.cn

Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, 92 Weijin
Road, Tianjin 300072, China.

Email address: jingrunchen@ustc.edu.cn

School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu

215123, China

Email address: matrw@nus.edu.sg

Department of Mathematics, National University of Singapore, 119076, Singapore

Email address: durui@suda.edu.cn

School of Mathematical Sciences, Soochow University, Suzhou, 215006, China.
Mathematical Center for Interdisciplinary Research, Soochow University, Suzhou, 215006, China.


	1. Introduction
	2. Models and numerical methods
	2.1. The continuum model
	2.2. Numerical methods

	3. Micromagnetics simulations
	4. Transition paths
	5. Conclusion
	Acknowledgments
	References

