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Abstract

Here we consider the anharmonic oscillator that is a dynamical system given by yxx+ δyn =

0. We demonstrate that to this equation corresponds a new example of a superintegrable

two-dimensional metric with a linear and a transcendental first integrals. Moreover, we show

that for particular values of n the transcendental first integral degenerates into a polynomial

one, which provides an example of a superintegrable metric with additional polynomial first

integral of an arbitrary even degree. We also discuss a general procedure of how to construct

a superintegrable metric with one linear first integral from an autonomous nonlinear oscillator

that is cubic with respect to the first derivative. We classify all cubic oscillators that can be

used in this construction. Furthermore, we study the Liénard equations that are equivalent

to the anharmonic oscillator with respect to the point transformations. We show that there

are nontrivial examples of the Liénard equations that belong to this equivalence class, like the

generalized Duffing oscillator or the generalized Duffing–Van der Pol oscillator.

1 Introduction

Integrability of dynamical systems is a complex notion that has different definitions in different
contexts (see, e.g. [1, 2, 3]). However, it can be suggested that there are two unifying properties
of integrable systems. The first one is that for an integrable system one can completely describe
global and local behaviour of its trajectories, and the second one is that a generic dynamical system
is not globally integrable. As a consequence, construction and classification of integrable systems
is a non-trivial problem. One of the possible approaches to this problem is based on establishing
integrability of a dynamical system by connecting it to another, perhaps simpler, integrable system.
Here we show that superintegrability of a two-dimensional Riemannian metric and integrability of
a family of Liénard equations, which includes the Duffing and the generalized Duffing–Van der Pol
oscillators, can be demonstrated by connecting them to what is probably the simplest nonlinear
oscillator, namely the anharmonic oscillator. We also extend this idea and show how autonomous,
cubic with respect to the first derivative oscillators, can be used in the construction of superintegrable
two-dimensional Riemannian metrics.

In this work we consider the anharmonic oscillator

yxx + δyn = 0. (1.1)
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Here y = y(x) and in (1.1) and in what follows we denote derivatives by lower indices, i.e. yx = dy/dx,
yxx = d2y/dx2 and so on. Throughout this work we also assume that n 6= 0, 1 and δ 6= 0 are arbitrary
parameters. We exclude n = 0 and n = 1 from the consideration because at these values of n
system (1.1) becomes a linear equation. Since at n = −1 both autonomous and non-autonomous
first integrals of (1.1) have a special form, this case will be considered separately in B. Therefore,
without loss of generality, we change δ in (1.1) to (n + 1)δ to obtain

yxx + δ(n + 1)yn = 0. (1.2)

It is worth noting that for n = −3 equation (1.1) admits a three-dimensional Lie algebra, while
for all n but n = −3, n = 1, n = 0 the Lie algebra of symmetries of (1.1) is two-dimensional. If
n = 0 and n = 1 equation (1.1) is linear and admits eight dimensional Lie algebra.

Let us also remark that the harmonic oscillator (i.e. (1.2) at n = 1) can be used for the description
of small-amplitude oscillations of e.g. springs that obey the Hooke’s Law. This is an idealized
situation that assumes that a system displaced from equilibrium responds with a restoring force
whose magnitude is proportional to the displacement. However, it fails to describe different nonlinear
phenomena that appear when finite amplitude motion is studied. For example, anharmonic oscillator
(1.2) and its generalizations can be used for the description of oscillatory motion of a load supported
by rubber like springs (see, [4, 5, 6] and references therein).

In a broader context, oscillatory behaviour is ubiquitous in a wide range of applications and
very often the idealized linear approximation breaks down and fails to describe different nonlinear
phenomena that appear for example in biology, chemistry or mechanics (see, [7, 8]). Therefore,
understanding of the behaviour of trajectories of nonlinear oscillators, like the Liénard systems, is
an important problem. One of possible solutions to this problem is establishing integrability, i.e. in
the context autonomous oscillators, the existence of an autonomous first integral. This allows one to
completely describe the behavior of trajectories of the corresponding oscillator in the phase plane.

In this work, we demonstrate that there is a non-trivial superintegrable two-dimensional Rie-
mannian metric with a linear and a transcendental first integrals corresponding to (1.2). Then,
we generalize this construction for autonomous, cubic with respect to the first derivative, nonlin-
ear oscillators. We also find all oscillators of this type that can be used for constructing certain
superintegrable two-dimensional Riemannian metrics. In addition, we show that important for ap-
plications integrable Liénard equations belong to the equivalence class of (1.2) with respect to point
transformations.

Recall the definitions of integrability and superintegrability for Hamiltonian systems (see, e.g.
[9, 10, 11]). A Hamiltonian system is integrable, if it possesses the same amount of functionally
independent first integrals, which are in involution, as the systems’ degrees of freedom. A Hamilto-
nian system is called superintegrable if it has more functionally independent first integrals than its
degrees of freedom. Notice that the maximal amount of functionally independent first integrals of a
Hamiltonian system is equal to 2m−1, where m is the number its degrees of freedom. For example, a
two-dimensional Hamiltonian system is called superintegrable if it possesses three functionally inde-
pendent first integrals. In its turn, a Riemannian metric is called integrable or superintegrable if the
corresponding Hamiltonian system for its geodesic flow is integrable or superintegrable, respectively
[12, 13, 14, 15, 16].

Construction and classification of superintegrable metrics are interesting problems due to their
importance in mathematical physics and differential geometry [13, 11]. In the former, superintegrable
systems are of great interest due to a possibility of an analytical description of their solutions, which is
quite rare for physically relevant systems of differential equations. In the latter, there are several open
problems that are connected with integrable geodesic flows [15, 16]. For example, in [15] (see problem
10.4) it was pointed out that it is an interesting problem to construct examples of metrics that are
not of constant curvature and are not Darboux-superintegrable, where all geodesics are explicitly
known. Below, we demonstrate that the metric connected to (1.2) provides such an example.

Furthermore, typically, superintegrable systems with polynomial in momenta integrals are consid-
ered [9, 13, 11, 17, 18]. There also has been some interest in integrable two-dimensional Hamiltonian
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systems with rational integrals [19, 20, 21, 22]. However, to the best of our knowledge, superintegrable
systems with transcendental first integrals have not been constructed and, hence, it is interesting
to obtain such examples. On the other hand, it is known [23, 16] that a generic integrable metric
does not have non-trivial (i.e. functionally independent of the Hamiltonian) polynomial first inte-
grals. Therefore, polynomial integrability or superintegrability imposes non-trivial constraints on a
Riemannian metric.

Here we show that the metric corresponding to (1.2) is superintegrable with a linear and a tran-
scendental first integrals. Moreover, at certain values of n the transcendental first integral degenerates
into a polynomial one of an arbitrary even degree. As far as we know, this is a first example of a
superintegrable metric with additional transcendental first integral. Moreover, the metric connected
to (1.2) provides an interesting example of a geodesic flow with a non-trivial polynomial first integral
of an arbitrary even degree.

To show superintegrability of a metric connected to (1.2) we use two first integrals of (1.2). The
first one is the obvious autonomous integral

I1 = y2x + 2δyn+1. (1.3)

The second one is non-autonomous first integral that is

I2 = x− yyx
y2x + 2δyn+1 2

F1

(

n + 3

2n+ 2
, 1;

n+ 2

n+ 1
;

2δyn+1

y2x + 2δyn+1

)

, (1.4)

where 2F1(a, b; c; ζ) is the hypergeometric function. The derivation of (1.4) is presented in A, where
we use the Euler integral representation of the hypergeometic function (see formula (A.7)) as its
definition. The standard definition of the hypergeometric function through power series can be found
in [24, 25, 26]. It is also demonstrated in A that (1.4) is a Liouvillian function. We recall roughly
speaking that Liouvillian functions comprise a set of functions including the elementary functions
and their repeated primitives. It is easy to see that (1.4) degenerates into a rational expression with
respect to yx (see, e.g. [25, 24]) if n = −(2k+3)/(2k+1) or (n+3)/(2n+2) = −k, k ∈ N0 = N∪{0},
where N = {1, 2, 3, . . .} is the set of natural numbers. With the help of (1.3) this rational first integral
can be converted into a polynomial one with the degree 2k + 2. Indeed, at n = −(2k + 3)/(2k + 1)
we have

I
(k)
2 = x

(

y2x + 2δy−
2

2k+1

)k+1

− yyx

k
∑

s=0

(−1)s
(

k

s

)

(2δ)ss!
(

1
2
− k
)

s

y−
2s

2k+1

(

y2x + 2δy−
2

2k+1

)k−s

, (1.5)

where (a)s = a(a + 1) . . . (a + s − 1) is the Pochhammer symbol and
(

k
s

)

denotes the binomial
coefficients.

Below, we also use these first integrals to construct integrable families of the Liénard equations.
The integrability in this context is an intrinsic property of a given autonomous two-dimensional
dynamical system, in particular the Liénard system, to have a global autonomous first integral.
Integrability problem consists in determining the existence and the functional class of an autonomous
first integral for a given dynamical system. For example, a two-dimensional dynamical system is
Liouvillian integrable when its autonomous first integral can be expressed in terms of the Liouvillian
functions (see, [27, 28]).

Finding integrable Liénard equations is an important problem from both mathematical and ap-
plied points of view (see, e.g. [29, 30, 31, 32, 33, 34, 35, 36, 37, 38]). For example, for an inte-
grable Liénard system one can determine existence or non-existence of isolated periodic trajectories
(limit cycles) or families of periodic trajectories (periodic trajectories surrounding neutrally stable
fixed points). This is of interest due to the connection with still unsolved problems of the exis-
tence of limit cycles and nonlinear centers in a given two-dimensional autonomous dynamical system
[29, 30, 31, 32, 33, 34, 35, 3]. As far as an applied point of view is concerned, for an integrable Liénard
system using a global first integral one can analytically describe all possible trajectories, i.e. com-
pletely understand dynamics that is governed by this system [32, 37, 36, 38]. In addition, this allows
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one to analytically study various bifurcations and special trajectories such as homoclinic and hete-
roclinic loops in a given integrable system. Here we show that several important integrable Liénard
equations belong to the equivalence class of (1.2) with respect to the point transformations. For
example, known integrable cases of the generalized Duffing oscillator, that has application in physics
and biology, belong to it. Furthermore, we find that there are other physically and mechanically rel-
evant oscillators among the equivalence class of (1.2). In addition, in Section 3 we demonstrate that
all autonomous cubic oscillators that are connected to superintegrable two-dimensional Riemannian
metrics with one linear first integral are also integrable in the above sense, i.e. they have an explicit
global first integral, which follows from their linearizability via nonlocal transformations. There are
physically, mechanically and biologically relevant examples among them. This demonstrates the
importance of our results in a broader context of nonlinear science and its applications.

The rest of this work is organized as follows. In the next section we deal with the metric that
corresponds to (1.2). Section 3 is devoted to the generalization of the results of Section 2 to an au-
tonomous cubic nonlinear oscillator. In Section 4 we construct Liénard equations that are equivalent
to (1.2) and consider several important examples of such Liénard equations. In the last Section we
briefly summarize and discuss our results.

2 Superintegrable metric with a transcendental first inte-

gral

We begin with some basic definitions that will be necessary for the construction of the metric
corresponding to (1.2) (see, e.g. [39, 40, 12, 41]).

Geodesics for a smooth two-dimensional surface with the metric

ds2 = g11(x, y)dx
2 + 2g12(x, y)dxdy + g22(x, y)dy

2, (2.1)

are defined by
ẍi + Γi

jkẋ
j ẋk = 0, (x1, x2) = (x, y), (2.2)

where

Γi
jk =

gil

2

(

∂gjl
∂xk

+
∂gkl
∂xj

− ∂gjk
∂xl

)

, gikgkj = δij , i, j, k = 1, 2. (2.3)

Conversely, geodesics satisfy the following two-dimensional Hamiltonian system

ẋi = Hpi, ṗi = −Hxi
, H =

1

2

(

g11p21 + 2g12p1p2 + g22p22
)

. (2.4)

Projection of (2.2) on the (x, y) plane is

yxx + a3(x, y)y
3
x + a2(x, y)y

2
x + a1(x, y)yx + a0(x, y) = 0, (2.5)

with
a3 = −Γ1

22, a2 = Γ2
22 − 2Γ1

12, a1 = 2Γ2
12 − Γ1

11, a0 = Γ2
11. (2.6)

Consequently, for every metric there exists an equation from (2.5) that is a projection of its geodesic
flow. However, the converse of this statement is not true, i.e. not every equation from (2.5) corre-
sponds to some metric (2.1). Equations from (2.5) that correspond to a metric are called metrisable
and necessary and sufficient conditions for metrisability of (2.5) were obtained in [41].
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Using the Levi–Civita relation (2.3), we explicitly express correlations (2.6) in terms of the com-
ponents of the metric tensor

a0 =
1

2

2g11g12,x − g11g11,y − g12g11,x
g11g22 − g212

,

a1 =
1

2

2g11g22,x − 3g12g11,y − g22
g11g22 − g212

, (2.7)

a2 =
1

2

g11g22,y + 3g12g22,x − 2g12g12,y − 2g22g11,y
g11g22 − g212

,

a3 =
1

2

g12g22,y + g22g22,x − 2g22g12,y
g11g22 − g212

.

Thus, for any metric (2.1) (recall that gij is positive-definite) we necessary obtain a projective equa-
tion in the from (2.5) with coefficients given by (2.7). Now suppose that we have four functions
al, l = 0, 3 and we need to find whether there are three functions g11, g12 and g22 satisfying (2.7).
Consequently, we can consider (2.7) as an overdetermined system of equations for g11, g12, g22 and if
it is compatible, then the corresponding equation from (2.5) is metrisable.

With the help of the transformations proposed by R. Liouville [42, 12, 41]

ψ1 = ∆2g11, ψ2 = ∆2g12, ψ3 = ∆2g22, ∆ = ψ1ψ3 − ψ2
2 6= 0, (2.8)

system (2.7) can be transformed into

ψ1,x = −2

3
a1ψ1 + 2a0ψ2,

ψ3,y = −2a3ψ2 +
2

3
a2ψ3,

ψ1,y + 2ψ2,x = −4

3
a2ψ1 +

2

3
a1ψ2 + 2a0ψ3,

ψ3,x + 2ψ2,y = −2a3ψ1 +
4

3
a1ψ3 −

2

3
a2ψ2.

(2.9)

This is a linear (contrary to (2.7) that is nonlinear) overdetermined system of four equations for
three functions ψl, l = 1, 2, 3 that was obtained by R. Liouville [42, 12, 41]. An equation from (2.5)
is metrisable if and only if there is a solution of (2.9) such that ∆ does not vanish [42, 12, 41]. The
modern variant of the proof of this statement is given in [12]. Notice also that geometric motivation
for the change of variables (2.8) is provided in [12]. System (2.9) is called the Liouville system
[12, 41, 43]. The compatibility conditions for (2.9) were constructed in [41]. On the other hand, for a
given equation from (2.5), one can directly check whether there is a solution of the Liouville system
that satisfies the condition ∆ 6= 0.

It can be directly shown by obtaining integrability conditions for the Liouville system (2.9) that
equation (1.2) is metrisable with the metric

ds2 =
1

C2
1(2δC1yn+1 + C2)2

[

(2δC1y
n+1 + C2)dx

2 + C1dy
2
]

, (2.10)

where C1 6= 0 and C2 are arbitrary constants.
The corresponding Hamiltonian for the geodesics of (2.10) is

H = (2C1δy
n+1 + C2)

(

C1
p21
2

+ (2C1δy
n+1 + C2)

p22
2

)

. (2.11)

It is clear that (2.11) has a cyclic coordinate x and, hence, the linear first integral

L = p1. (2.12)
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First integrals (1.3) and (1.4) can be lifted via yx = Hp2/Hp1 to be first integrals of (2.11) as follows

R =
(2C1δy

n+1 + C2)
2

C2
1

p22
p21

+ 2δyn+1, (2.13)

T = x− yv

1 + 2δyn+1v2
2F1

(

n+ 3

2n+ 2
, 1;

n + 2

n + 1
,

1

1 + 2δyn+1v2

)

,

v =

(

1 +
C2

2C1δyn+1

)

p2
p1
.

(2.14)

It is easy to see that (2.13) is a function of H and L, however, the Jacobi matrix for H , L and T
has the full rank.

One can also demonstrate that metric (2.10) is not flat since its Gaussian curvature is

K = (n + 1)C2
1δ(C2ny

n−1 + δC1(n− 1)y2n). (2.15)

With the help of (1.5) one can see that at n = −(2k + 3)/(2k + 1), k ∈ N0 Hamiltonian (2.11)
admits a first integral

Tk =
(

ṽ2 + 2δy−
2

2k+1p21

)k+1

x− yṽ

k
∑

s=0

(−1)s
(

k

s

)

(2δ)ss!
(

1
2
− k
)

s

y−
2s

2k+1

(

ṽ2 + 2δy−
2

2k+1
p21

)k−s

p2s+1
1 ,

ṽ =

(

C2

C1
+ 2δy−

2
2k+1

)

p2.

(2.16)

This integral is a polynomial function of momenta with the degree 2k + 2. Consequently, we obtain
an example of a two-dimensional integrable metric with a polynomial integral of an arbitrary even
degree.

The case of k = 0 or n = −3 leads to a quadratic first integral, which means that metric (2.10)
at n = −3 is a Darboux superintegrable one [13]. One can also use the results of [12] to demonstrate
that (2.10) is Darboux superintegrable if and only if n = −3. Indeed, assume that n 6= 0, 1. Then the
dimension of the Lie algebra of projective vector fields of (2.10) is 3 if and only if n = −3. Finally,
in [12] it was shown that all Darboux superintegrable metrics have three-dimensional Lie algebra of
projective vector fields.

It is known (see, e.g. [12]) that for every solution of projective equation (2.5) y(x), the curve
(x, y(x)) is, up to reparametrization, a geodesic of the corresponding metric. Therefore, with the
help of the general solution of (1.2) one can explicitly construct all geodesics of (2.10). One can find
the general solution of (1.2) by eliminating yx from (1.3) and (1.4). Notice also that it is convenient
to express x as a function of y. Indeed, suppose that I1 = C3 and I2 = C4. Then geodesics of (2.10)
are formed by the curves

(y, x(y)) =

(

x, C4 ±
y

C3

√

C3 + 2δyn+1
2F1

(

n+ 3

2n+ 2
, 1;

n + 2

n + 1
;
2δ

C3
yn+1

))

, (2.17)

where C3 6= 0 and C4 are arbitrary constants. If C3 = 0, then geodesics of (2.10) are given by

(y, x(y)) =

(

x, C5 ±
1− n

2
√
−2δ

y
1−n
2

)

, (2.18)

where C5 is an arbitrary constant. Let us remark that, without loss of generality, one can assume δ
equal to −1 in (2.18), by redefining the constant C1 in metric (2.10).

Let us also remark that by directly checking conditions from [13] for the existence of a superinte-
grable metric with a linear and a cubic integrals, one can show that at n = −1/2 (2.14) degenerates
into a cubic polynomial with respect to momenta. At any other value of n 6= −1, 0, 1 metric (2.10)
does not satisfy the conditions from [13].
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Now let us demonstrate two examples of Hamiltonian (2.11) with polynomials first integrals.
Suppose that k = 1 or n = −5/3, δ = 1, C1 = 1 and C2 = 0. Then, we obtain that the Hamiltonian

H =
p21
y2/3

+
2p22
y4/3

, (2.19)

possesses the fourth order polynomial first integral

T1 =
x

y2/3
p41 −

3

y1/3
p2p

3
1 +

4x

y2
p22p

2
1 −

2

y
p1p

3
2 +

4x

y8/3
p42. (2.20)

If k = 2 or n = −7/5 and C1, C2 and δ the same as in the previous case, we find that the Hamiltonian

H =
p21
y2/5

+
2p22
y4/3

, (2.21)

admits the following sixth order polynomial first integral

T2 =
x

y6/5
p61 −

5

y1/5
p2p

5
1 +

6x

y8/5
p22p

4
1 −

20

3 y3/5
p32p

3
1 +

12x

y2
p42p

2
1 − 4

4

y
p52p1 +

8x

y12/5
p62. (2.22)

In this section we have demonstrated that there is a superintegrable Riemannian metric with a
linear and a transcendental first integrals. This transcendental first integral degenerates at certain
values of the parameter n into a polynomial one of an arbitrary even degree.

3 General construction of a superintegrable metric from an

autonomous equation from (2.5)

In this Section we generalize the construction presented above for an autonomous equation from
(2.5).

Consider an autonomous equation from (2.5)

yxx + k(y)y3x + h(y)y2x + f(y)yx + g(y) = 0, (3.1)

where k, h, f , g are sufficiently smooth functions that do not vanish simultaneously.
Suppose that (3.1) is metrisable, i.e. the Liouville system (2.9) is compatible for coefficients of

(3.1). Suppose also that there exists such non-degenerate solution ( i.e. ∆ = ψ1ψ3 − ψ2
2 6= 0) of the

Liouville system (2.9) that ψ1,x = ψ2,x = ψ3,x = 0. Finally, we assume that (3.1) possesses an explicit
representation for its non-autonomous first integral.

It is clear that under the above assumptions the Hamiltonian that corresponds to (3.1) does
not depend explicitly on x and, hence, has the cycling coordinate x and the linear first integral
L = p1. When one lifts the non-autonomous first integral of (3.1), the resulting first integral, say
F (x, y, p1, p2), of the Hamiltonian system will depend explicitly on x in contrast to the Hamiltonian
and L. Consequently, this first integral will be functionally independent of the Hamiltonian and the
linear integral. Indeed, the corresponding Jacobi matrix will be

J =





0 Hy Hp1 Hp2

Fx Fy Fp1 Fp2

0 0 1 0



 . (3.2)

Now it is also clear that the autonomous first integral of (3.1), will be a function of the Hamiltonian
and the linear integral.

Consequently, one gets the following result:

Proposition 1. Suppose that an equation from (3.1) is metrisable and possesses an explicit non-

autonomous first integral. Then, if there exists a non-degenerate solution of the Liouville system that

depends only on y, this equation will lead to a superintegrable two-dimensional Riemannian metric.
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All equations of form (3.1) that are metrisable with ψi,x = 0, i = 1, 2, 3 can be described as
follows

Theorem 1. Equation (3.1) is metrisable with the metric that does not explicitly depend on x if and

only if one of the following correlations holds

(I) 27kg2 − 9hfg + 2f 3 + 9gfy − 9fgy = 0, f 6= 0, k 6= 0, (3.3)

(II) 2f 3 − 9hfg + 9gfy − 9fgy = 0, f 6= 0, g 6= 0, (3.4)

(III) k = f = 0, g 6= 0, (3.5)

(IV ) f = g = 0, k 6= 0, (3.6)

(V ) f = g = k = 0, h 6= 0 (3.7)

The solution of the Liouville system in each case can be found from the following relations

(I) ψ2 =
2hψ3 − 3ψ3,y

6k
, ψ1 =

3g

f
ψ2,

9fkψ3,yy − 3Bψ3,y − 2(2kfh2 − 6f 2k2 + 3kfhyy − Bh)ψ3 = 0,

B = fhk − 9gk2 + 3fky, 2hψ3 − 3ψ3,y 6= 0,

(3.8)

(II) ψ1 =
3gψ2

f
, ψ2,y =

2fψ3 − hψ2

3
, ψ3,y =

2hψ3

3
, ψ2 6= 0 (3.9)

(III) ψ1,y = 2gψ3 −
4hψ1

3
, ψ3,y =

2hψ3

3
, ψ2 = 0, ψ1ψ3 6= 0, (3.10)

(IV ) ψ1,y = −4hψ1

3
, ψ2,y = −kψ1 −

hψ2

3
, ψ3,y =

2hψ3

3
− 2kψ2, (3.11)

(V ) ψ1,y = −4hψ1

3
, ψ2,y = −hψ2

3
, ψ3,y =

2hψ3

3
. (3.12)

In all cases it should be assumed that ψ1ψ3 − ψ2
2 6= 0.

Proof. The proof is straightforward. Assuming that all ψi, i = 1, 2, 3 do not depend on x, the
Liouville system for (3.1) becomes an overdetermined system of ordinary differential equations. Its
integrability conditions can be easily computed and are presented in (3.3)-(3.7).

It is worth noting that all families of equations described in Theorem 1 are completely integrable.
The first family, given by (3.3), is a particular case of cubic oscillators that can be linearized via the
generalized nonlocal transformations (see [32]). The second family, defined by (3.4), is equivalent
to the harmonic oscillator wξξ + βwξ + αw = 0 at α = 2β2/9 via the Sundman transformations
(see [44]). The case of (3.5) is also linearizable via the Sundman transformations to the wξξ = 0.
The remaining two cases can be integrated in an obvious way. While this guarantees the existence
of an explicit autonomous first integral, for the generating a superintegrable metric one needs an
explicit expression for the non-autonomous first integral, finding which may be a non-trivial problem.
Finally, we remark that classification presented in Theorem 1 is up to point transformations since they
preserve metrisability. It is also worth noting that various particular cases of linearizable equations
that are given by (3.3) and (3.4) are applicable in physics, mechanics and biology (see, e.g. [32, 44]
and references therein). This provides an interesting connection between integrable metrics with a
linear first integral and physically, mechanically and biologically relevant autonomous oscillators.

On the other hand, integrability of the equations described in Theorem 1 follows from the fact
that the corresponding metric is integrable with a linear integral. One can find autonomous first
integrals for equations defined by (3.3)-(3.7) by projecting a combination of the Hamiltonian and the
linear first integral on the (x, y) plane. In other words, suppose that a metric with ψ1,x = ψ2.x = ψ3,x

corresponds to an equation from (3.1). Then the corresponding Hamiltonian system for geodesics has
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two first integrals: the Hamiltonian and the linear first integral. Their combination can be projected
to an autonomous first integral of an equation defined by (3.3)-(3.7).

Now we deal with a canonical form of the equations described in Theorem 1. It is well known
(see [45]) that any two-dimensional Riemannian metric with a linear first integral can be transformed
into

ds2 = λ(y)(dx2 + dy2). (3.13)

Here λ 6= 0 is sufficiently smooth function.
The corresponding Hamiltonian is

H =
p21 + p22
2λ

. (3.14)

An equation from (2.5) that corresponds to (3.13) has the form

yxx −
λy
2λ
y2x −

λy
2λ

= 0. (3.15)

As a result, we have the following statement

Theorem 2. Any metrisable equation from families described in Theorem 1 can be transformed into

(3.15) via point transformations with some particular function λ.

In this Section we have found equations from (3.1) that will generate a superintegrable two-
dimensional metric once the explicit expression for their non-autonomous first integral is known.
These equations can also be transformed into canonical form (3.15).

4 Liénard equations and equivalence class of the anhar-

monic oscillator

In this section we construct a class of Liénard equations

wξξ + f(w)wξ + g(w) = 0, (4.1)

that is equivalent to (1.2) via point transformations

y = F (ξ, w), x = G(ξ, w). (4.2)

We will show that this family of Liénard equations is Liouvillian integrable with a first integral that
is expressed in terms of the hypergeometric function. The following statement holds:

Theorem 3. Suppose that n 6= 0,±1. Then equation (4.1) is equivalent to (1.2) via (4.2) if one of

the following correlations holds

(I) f =
2C1n

n− 1
− 3C1MMww

2M2
w

, g =
C2

1(n+ 1)M

(n− 1)Mw
− C2

1M
2Mww

2M3
w

, (4.3)

(II) f = α, g =
2(n+ 1)α2

(n+ 3)2
w + δwn, n 6= −3, (4.4)

(III) f = 0, g = −w − δw−3, n = −3. (4.5)

Equivalence transformations in all cases are given by

(I) F =

(

e−2C1ξ(2MwMwww − 3M2
ww)

4nδ(n+ 1)M2
w

)
1

n−1

, G = eC1ξM, (4.6)

(II) F = (n+ 1)−
1

n−1we
2αξ
n+3 , G =

(n+ 3)

α(n− 1)
e−

α(n−1)ξ
n+3 , n 6= −3, (4.7)
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(III) F = 2eξw, G =
√
2e2ξ, n = −3. (4.8)

Here M 6= 0 is a solution of the equation

4nM2
w

(

2nM2
w +MMww + 2M2

w − nMMww

)

Mwwww + 4 (n− 1)2MM2
wM

2
ww−

−4MwwMw

(

14M2
wn

2 − 3Mn2Mww + 10M2
wn+ 3MMww

)

Mwww+

+3 (5n+ 3)M3
ww

(

4M2
wn+MMww − nMMww

)

= 0

(4.9)

and C1 6= 0 is an arbitrary constant. Notice that families (4.3), (4.4) and (4.5) are defined up to

shifts and scalings in the independent and dependent variables.

Proof. One needs to consider two different cases separately, namely the case of Gw 6= 0 and the case
of Gw = 0. The latter one corresponds to the fiber-preserving transformations.

Suppose that Gw = 0. We also assume that FwHξ 6= 0, since otherwise transformations (4.2)
degenerate. Substituting (4.2) into (1.2) we obtain an equation of the form wξξ + h̃(ξ, w)w2

ξ +

f̃(ξ, w)wξ + g̃(ξ, w) = 0, whose coefficients are functions of F and G.
Then we require that h̃ = f̃ξ = g̃ξ = 0. This leads to a system of three equations for two functions

F and G, which is

Fww = 0,

(

ln

{

F 2
w

Gξ

})

ξξ

= 0,

{

Gξ

Fw

[

(

Fξ

Gξ

)

ξ

+ δ(n + 1)F nGξ

]}

ξ

= 0. (4.10)

Now we need to demonstrate that this system is compatible and find its solution. We differentiate
the last equation from (4.10) with respect to y for three times and use the first two equations to
exclude Fww and Fwξξ and their differential consequences. Consequently, we arrive at

{

Gξξξ

Gξ
− 3

2

G2
ξξ

G2
ξ

+ 2δn(n+ 1)F n−1G2
ξ

}

ξ

= 0,

{

ln
(

F n−2FwG
2
ξ

)}

ξ
= 0,

{

ln
(

F n−1
w G2

ξ

)}

ξ
= 0.

(4.11)

One can see that the further differentiation with respect to w will not lead to any new relations on
F and G.

Now using the last equation from (4.11) and second equations from (4.11) and (4.10) we get

FFξw − FξFw = 0, FFξξ − F 2
ξ = 0. (4.12)

In order to obtain an equation for G we substitute (4.12) into the last equation from (4.11) to obtain

2FGξξ + (n− 1)GξFξ = 0. (4.13)

The last equation from (4.10) and the first equation from (4.11) are automatically satisfied if one
takes into account (4.12) and (4.13).

Solving (4.12) and (4.13) together with the first equation from (4.10) for the functions F and G
we find

F = ec1ξ (c2y + c3) , G = c4 + c5e
−

c1(n−1)ξ
2 , (4.14)

and the corresponding equivalence class of (1.2) with respect to (4.14) is

wξξ +
(n+ 3)c1

2
wξ +

δ(n+ 1)(n− 1)2c21c
2
5

4c2
(c2w + c3)

n +
(n+ 1)c21

2
w +

(n+ 1)c21c3
2c2

= 0. (4.15)

Here ci, i = 1, 5 are some constants such that c1c2c5 6= 0. Since we define equivalence classes up to
shifts and scalings, without loss of generality, we set c3 = c4 = 0 and c2 = (n+1)−1/(n−1). Parameter
c5 6= 0 corresponds to the scaling of the independent variable and is assigned below. Therefore,
equivalence class (4.15) is parametrized by c1.
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In order to simplify the presentation of our results, we set c1 = 2α/(n+ 3) and c5 = (n+ 3)(n−
1)−1α−1 and use the parameters α and δ instead of c1 and c5. Thus, the coefficients at wξ and wn

are equal to α and δ, respectively. As a result, we obtain family (4.4) and transformations (4.7).
The above reparametrization degenerates at n = −3, when the coefficient at the first derivative

in (4.15) vanishes and all parameters can be removed from (4.15). Therefore, we present this case
separately in (4.5) and (4.8), where we set c2 = 2, c5 =

√
2 and c1 = 1. Moreover, this case can be

also taken apart because at n = −3 equation (1.2) and, hence, its equivalence class with respect to
transformations (4.2), possesses a three-dimensional Lie algebra of point symmetries.

Finally, the general case of Gw 6= 0 can be treated in the same way. This completes the proof.

Corollary 1. Any equation that is defined by (4.3), (4.4), or (4.5) at n 6= −1 possesses two first

integrals that can be obtained from (1.3) and (1.4) by substituting (4.2) with (4.6), (4.7) or (4.8) into
(1.3) or (1.4). These integrals are

J1 =

(

Fξ + Fwwξ

Gξ +Gwwξ

)2

+ 2δF n+1, (4.16)

J2 = G− Fξ + Fwwξ

Gξ +Gwwξ

F

J1
2F1

(

n + 3

2n+ 2
, 1;

n+ 2

n+ 1
;
2δF n+1

J1

)

. (4.17)

Since transformations (4.2) depend explicitly on ξ, both integrals (4.16) and (4.17) can be non-
autonomous, i.e. can depend explicitly on ξ. Therefore, any equation that is equivalent to (1.2) has
two explicit non-autonomous first integrals. However, one can solve one of them for ξ, say J1, and
substitute the result into the other one, say J2. As a result, we arrive to an autonomous first integral
for systems described in Theorem 3. Let us also recall that (1.4) is a Liouvillian function (see A)
and, hence, (4.17) is also a Liouvillian function if F and G are Liouvillian functions. Consequently,
the following statement holds:

Theorem 4. Any equation from (4.1) that is equivalent to (1.2) via (4.2) is Liouvillian integrable

provided that F and G are Liouvillian functions. Otherwise, an equation from (4.1) that is equivalent
to (1.2) is integrable with a transcendental first integral.

Since (1.2) possesses a two-dimensional Lie algebra of point symmetries at n 6= −3 and a three-
dimensional algebra at n = −3, another corollary of Theorem 3 holds.

Corollary 2. Any equation from (4.1) that is equivalent to (1.2) at n 6= 0, 1 possesses either a

two-dimensional or a three-dimensional Lie algebra of point symmetries.

Therefore, we see that any equation from (4.3), (4.4) and (4.5) can be integrated via the classical
Lie approach (see, e.g. [46]).

Now we consider several examples of Liénard equations that are equivalent to (1.2).
Example 1. We begin with a particular case of the generalized Duffing oscillator that is given

by (4.4):

wξξ + αwξ +
2(n+ 1)α2

(n+ 3)2
w + δwn = 0, n 6= −3,−1, 0, 1. (4.18)

This family of equations was considered in [47, 48]. The autonomous first integral in terms of the
hypergeometric function for (4.18) was found in [47], while in [48] for n ≥ 2, n ∈ N it was shown that
the Duffing oscillator is Liouvillian integrable if and only if it is given by (4.18). However, it has not
been demonstrated previously that integrability of (4.18) can be established from the equivalence to
(1.2) and the existence of the corresponding two-dimensional Lie algebra of point symmetries.

Let us also remark that in [48] the following equation was considered separately

wξξ + αwξ −
6α2

25
w + δw2 = 0. (4.19)
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However, it can be transformed into (4.18) at n = 2 by a simple shift w → w + 6α2/(25δ). Finally,
we remark that the generalized Duffing oscillator is used in biology, mechanics, technics and other
fields of science (see [47, 48] and references therein.)

Example 2. Let us suppose that

M = 1 +
3µ(m+ 1)

2(m+ 2)wm
, m 6= −1,−2,−1

3
(4.20)

and δ = −1. Then from (4.3) we get that the family of nonlinear oscillators

wξξ + (wm + µ)wξ +
2

9(m+ 1)
w2m+1 +

µ

m+ 2
wm+1 +

(m+ 1)µ2

(m+ 2)2
w = 0, (4.21)

is equivalent to (1.2) with n = (1−m)/(3m+ 1) and δ = −1.
Transformations (4.2) that map (4.21) into (1.2) are given by

F =

(

3
√
2µm(m+ 1)

(m+ 2)(3m+ 1)wm

)
3m+1
2m

e−
µ(3m+1)ξ

2m+4 , G = e−
µmξ
m+2

(

3µ(m+ 1)

2(m+ 2)wm
+ 1

)

. (4.22)

Consequently, from Theorem 4 we obtain that (4.21) is Liouvillian integrable. If one substitutes
(4.22) into (4.16) and (4.17), one gets explicit expressions for the first integrals of (4.21).

On one hand, equation (4.21) can be considered as a traveling wave reduction of the diffusion
equation ut = uζζ + umuζ + b1u

2m+1 + b2u
m+1 + b3u, where w = u(ζ − µt), b1 = 2/(9(m + 1)),

b2 = µ/(m + 1) and b3 = (m + 1)µ2/(m + 2)2. This partial differential equation is used in physics
for the description of diffusion and filtration problems [49]. On the other hand, at m = 1 (4.21) is
a cubic oscillator with linear damping, that has application in heat propagation problems [50], and
at m = 2 (4.21) is the generalized Duffing–Van der Pol oscillator, which is used in mechanics and
physics [51, 52].

5 Conclusion and discussion

In this work we have considered geometric and analytical properties of the anharmonic oscillator.
We have demonstrated that (1.2) provides an example of a superintegrable two-dimensional Rieman-
nian metric with a linear and a transcendental first integrals and a two-dimensional metric with a
polynomial integral of an arbitrary even degree. In addition, we have found geodesics of metric (2.10)
in the explicit form. We have generalized this construction for an arbitrary nonlinear oscillator that
is cubic with respect to the first derivative. We have explicitly described all such oscillators that
can lead to a superintegrable metric with a linear first integral. Furthermore, we have constructed
the family of Liénard equations that is equivalent to (1.2) with respect to the point transformations
and demonstrated that there are examples of important nonlinear oscillators among this family. In
addition, we remark that the results of this work highlight a connection between integrable two-
dimensional Riemannian metrics and nonlinear autonomous oscillators, wherein the latter can have
applications in physics, biology and other fields of science. This also demonstrates a way of how
the results on the integrability of two-dimensional metrics can be used in studying integrability of
nonlinear oscillators and vice versa.

To conclude, our results show that different notions of integrability can be connected even through
quite a simple dynamical system like (1.2). While integrability of (1.2) alone is evident, both super-
integrability of (2.10) and integrability of the Liénard equations given by (4.3) or (4.4) are not so
obvious. Moreover, by connecting these Liénard equations with (1.2) we automatically demonstrate
that in the generic case they admit a two-dimensional Lie algebra of point symmetries. Finally, let
us remark that by excluding yx from (1.3) and (1.4) one can obtain the general solution of (1.2)
in the explicit form (notice that we present x as a function of y in this way). With the help of
transformations (4.6), (4.7) and (4.8) we can map this general solution to the general solution of the
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corresponding Liénard equation. Therefore, it is easy to construct general solutions of the Duffing
oscillators (4.18) or the generalised Duffing–Van der Pol oscillators (4.21), which, to the best of our
knowledge, has not been done previously.
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A Appendix A

Here we derive integral (1.4) for (1.2). A non-autonomous first integral of (1.2) is a solution of
the equation

Ix + uIy − δ(n+ 1)ynIu = 0, (A.1)

where u = yx. Suppose that I = x+H(y, u). Then we get

uHy − δ(n+ 1)ynHu = −1. (A.2)

In order to find a solution of (A.2) we use the method of characteristics (see, e.g. [3, 53, 54]).
Characteristic equations of (A.2) are

dy

u
=

du

−δ(n + 1)yn
=
dH

−1
. (A.3)

The general solution of (A.2) is an arbitrary continuously differentiable function of two functionally
independent first integrals of (A.3) [3, 53, 54]. The first one can be obtained by integrating the
equation that is formed by the first two terms of (A.3)

u2 + 2δyn+1 = c1. (A.4)

Here c1 is an integration constant. Finding the second first integral with the help of the first and
last terms of (A.3) and taking into account (A.4) we get that

H = −
∫

dy
√

c1 − 2δyn+1
. (A.5)

This quadrature can be computed as follows

∫

dy
√

c1 − 2δyn+1
=

1√
c1(n + 1)

n+1

√

c1
2δ

∫

τ−
n

n+1 (1− τ)−
1
2dτ =

=
1√

c1(n+ 1)
n+1

√

c1
2δ

τ
∫

0

ζ−
n

n+1 (1− ζ)−
1
2dζ =

τ
1

n+1

√
c1(n + 1)

n+1

√

c1
2δ

1
∫

0

v−
n

n+1 (1− τv)−
1
2dv =

=
1√
c1

n+1

√

c1
2δ
τ

1
n+1 2F1

(

1

2
,

1

n + 1
;
n + 2

n + 1
; τ

)

=
y√
c1

2F1

(

1

2
,

1

n+ 1
;
n+ 2

n+ 1
;
2δ

c1
yn+1

)

.

(A.6)

Here we use the Euler integral representation for the hypergeometric function [26, 25, 24]

2F1(a, b; c; τ) =
Γ(c)

Γ(b)Γ(c− b)

1
∫

0

vb−1(1− v)c−b−1(1− τv)−adv, (A.7)
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and the following notations

τ =
2δ

c1
yn+1, ζ = τv. (A.8)

As a result, we get the expression for non-autonomous first integral of (1.2)

I
′

2 = x− y
√

y2x + 2δyn+1
2F1

(

1

2
,

1

n+ 1
;

1

n+ 1
+ 1;

2δyn+1

y2x + 2δyn+1

)

. (A.9)

If one applies the linear transformation (see, e.g. [26, 25, 24]) to (A.9), then one gets (1.4).
One can see that the Euler representation for the hypergeometric function is obtained from

the indefinite integral. Consequently, the hypergeometric function that is in (A.9) or in (1.4) is a
Liouvillian function.

B Appendix B

In this appendix we consider (1.1) at n = −1, i.e.

yxx + δy−1 = 0. (B.1)

The autonomous firs integral of (B.1) is

N1 = y2x + 2δ ln y. (B.2)

In the same way as in A one can find the non-autonomous first integral of (B.1) as follows

N2 = x+

√

π

2δ
ye

y2x
2δ erf

{

yx√
2δ

}

. (B.3)

Equation (B.1) is metrisable with the Riemannian metric

ds2 =
1

C2
1 (2δC1 ln y + C2)2

(

(2δC1 ln y + C2)dx
2 + C1dy

2
)

, (B.4)

where C1 6= 0 and C2 are arbitrary constants. The corresponding Hamiltonian system for geodesics
is

H = (2δC1 ln y + C2)C1

(

C1
p21
2

+ (2δC1 ln y + C2)
p22
2

)

. (B.5)

As in the case of (1.2), integral N1 lifted to (B.5) will be a combination of Hamiltonian (B.5) and
the linear integral L = p1. On the other hand, the integral N2 will lead to an additional first integral
of Hamiltonian (B.5), which is functionally independent of H and L.
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doi:10.1063/1.4998147.

[44] D.I. Sinelshchikov, On linearizability via nonlocal transformations and first integrals for
second-order ordinary differential equations, Chaos Soliton. Fract. 141 (2020) 110318.
doi:10.1016/j.chaos.2020.110318.

[45] A. V Bolsinov, V.S. Matveev, A.T. Fomenko, Two-dimensional Riemannian metrics with
integrable geodesic flows. Local and global geometry, Sb. Math. 189 (1998) 1441–1466.
doi:10.1070/sm1998v189n10abeh000346.

[46] G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer New York, New York,
NY, 1989. doi:10.1007/978-1-4757-4307-4.

[47] T. Stachowiak, Hypergeometric first integrals of the Duffing and van der Pol oscillators, J. Differ.
Equ. 266 (2019) 5895–5911. doi:10.1016/j.jde.2018.10.049.

[48] M. V. Demina, Liouvillian integrability of the generalized Duffing oscillators, Anal. Math. Phys.
11 (2021) 1–18. doi:10.1007/s13324-020-00459-z.

[49] A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman
and Hall/CRC, Boca Raton-London-New York, 2011.

[50] V. J. Ervin, W.F. Ames, E. Adams, Nonlinear waves in pellet fusion, in: C. Rogers, T. Moodie
Bryant (Eds.), Wave Phenom. Mod. Theory Appl., North Holland, Amsterdam, 1984: pp.
199–210.

[51] D. Delignières, D. Nourrit, T. Deschamps, B. Lauriot, N. Caillou, Effects of practice and task
constraints on stiffness and friction functions in biological movements, Hum. Mov. Sci. 18 (1999)
769–793. doi:10.1016/S0167-9457(99)00040-8.

[52] I.M. Uzunov, Z.D. Georgiev, Localized Pulsating Solutions of the Generalized Complex
Cubic-Quintic Ginzburg-Landau Equation, J. Comput. Methods Phys. 2014 (2014) 1–13.
doi:10.1155/2014/308947.

[53] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer
New York, New York, 1988.

[54] A.D. Polyanin, V.F. Zaitsev, A. Moussiaux, Handbook of First-Order Partial Differential Equa-
tions, CRC Press, 2001. doi:10.1201/b16828.

17


	Introduction
	Superintegrable metric with a transcendental first integral
	General construction of a superintegrable metric from an autonomous equation from (2.5)
	Liénard equations and equivalence class of the anharmonic oscillator
	Conclusion and discussion
	Acknowledgement
	Appendix A
	Appendix B

