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Artificial syntactic violations activate Broca’s region
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Abstract

In the present study, using event-related functional magnetic resonance imaging, we investigated a
group of participants on a grammaticality classification task after they had been exposed to well-formed
consonant strings generated from an artificial regular grammar. We used an implicit acquisition paradigm
in which the participants were exposed to positive examples. The objective of this study was to investigate
whether brain regions related to language processing overlap with the brain regions activated by the gram-
maticality classification task used in the present study. Recent meta-analyses of functional neuroimaging
studies indicate that syntactic processing is related to the left inferior frontal gyrus (Brodmann’s areas
44 and 45) or Broca’s region. In the present study, we observed that artificial grammaticality violations
activated Broca’s region in all participants. This observation lends some support to the suggestions that
artificial grammar learning represents a model for investigating aspects of language learning in infants
[TICS 4 (2000) 178] and adults [Proceedings of the National Academy of Sciences of United States of
America 99 (2002) 529].
© 2004 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

The human capacity to learn and communicate through language is an outstanding scientific
challenge to understand (Chomsky, 2000; Hauser, Chomsky, & Fitch, 2002; Jackendoff, 2002)
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and Chomsky, following von Humboldt, has suggested that natural language processing is a
paradigmatic example of the ‘infinite use of finite means’ (Chomsky, 1965; von Humboldt,
1836). Since the 1950s a fundamental problem in theoretical linguistics has been to construct
explicit models reflecting this intuition (Chomsky, 1965; Newmeyer, 1995). The simplest for-
mal model incorporating the idea of ‘infinite use of finite means’ is represented by the family
of regular (right-linear phrase structure) grammars (Chomsky, 1957). Furthermore, it has been
suggested that the task of learning an artificial grammar is a potentially relevant model for
investigating aspects of language learning in infants (Gomez & Gerken, 2000), exploring key
differences between human and animal learning relevant to the narrow faculty of language
(Hauser et al., 2002), as well as second language learning in adults (Friederici, Steinhauer, &
Pfeifer, 2002). The seminal work ofReber (1967)indicated that humans can learn artificial
grammars in an implicit fashion and suggested that relevant information was abstracted from
the environmental input.Reber (1967)also suggested that this process represented a mecha-
nism that is intrinsic to natural language learning. From a cognitive neuroscience perspective
it is therefore of interest not only to understand the nature of the knowledge, its representation,
and the functional role acquired during learning, but also to characterize the neural infras-
tructure subserving these aspects of artificial grammar processing. This enterprise includes
both charactering the end-state of artificial grammar learning as well as the learning process
itself using different functional neuroimaging approaches as well as behavioral measures. This
makes it possible to compare natural and artificial language processing in the human brain
and to address important questions related to the characteristics of the learning mechanism(s)
involved, the nature of the knowledge acquired, and how this knowledge is represented and
put to use.

Humans appears to be equipped with acquisition mechanisms that have the capacity to extract
structural information implicitly without induction of an explicit model from the experience
of observed exemplars (Reber, 1967; Stadler & Frensch, 1998). It has been suggested that
such acquisition mechanisms play an important role in several types of information extraction
processes or forms of learning (e.g.,Cleermans & McClelland, 1991; French & Cleeremans,
2002; Lewicki, 1986; Stadler & Frensch, 1998). In the present study we employed the classical
artificial grammar learning (AGL) paradigm (Stadler & Frensch, 1998), which includes an
acquisition phase and a classification phase. During the acquisition phase, participants were
engaged in a short-term memory task using an acquisition sample of symbol sequences gener-
ated from an artificial grammar. Subsequent to the acquisition phase the subjects were informed
that the items (i.e., symbol sequences) were generated according to a complex system of rules
and they were asked to classify new items, not previously encountered, as grammatical or
non-grammatical guided by their immediate intuitive impression (‘gut feeling’). Typically,
subjects perform reliably above chance on this task (Reber, 1967; Stadler & Frensch, 1998).

One component in the definition of a formal language is its finite lexicon (alphabet)V of ter-
minal symbols,V = {t1, t2, . . . , tN}. The set of all possible finite symbol strings that can be gen-
erated from the alphabetV is given by Kleene-star operatorV ∗ = {Ø, t1, t2, . . . , tN, t1t1, t1t2,

t1t3, . . . , tk1tk2, . . . , tkm, . . . }. A formal languageL over V is then defined as a subset ofV∗,
L ⊆ V ∗; a symbol strings = tk1tk2, . . . , tkm is well-formed or grammatical if and only ifs ∈ L

(e.g.,Davis, Sigal, & Weyuker, 1994; Lewis & Papadimitriou, 1981; Taylor & Taylor, 1997).
This way of introducing formal languages amounts to an extensional definition, an E-language,
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where the language is identified with its string set. This is adequate for formal investigations
but is, perhaps, of limited interest from a cognitive point of view. In the context of natural
language grammars it has been questioned whether an extensional definition is meaningful
(Chomsky, 1986, 2000). A more fruitful approach takes as its point of departure an intentional
definition of language (cf.Chomsky & Lasnik, 1995). This entails the specification of a gener-
ating mechanism, including principles of combinations and additional non-terminal symbols,
capable of generating all grammatical (well-formed) strings and only those in a given language
(e.g.,Davis et al., 1994; Lewis & Papadimitriou, 1981; Taylor & Taylor, 1997). The generating
mechanism serves as an intentional definition of the language, an I-language, and a string s is
grammatical (s ∈ L) if and only if the formal mechanism (or machine) can generate it. Here,
it should be noted that the term ‘language’ in formal language, do not entail anything beyond
what is outlined above and that a formal (or artificial) grammar represents a specification of a
mechanism that generates (or recognizes) certain types of structural regularities.

As noted above, a simple formal model incorporating the idea of the ‘infinite use of finite
means’ is represented by a family of artificial grammars called regular grammars (Partee, ter
Meulen, & Wall, 1990). A regular grammar (Fig. 1) generates right-branching phrase structure
trees and the class of regular grammars has a generative capacity equivalent to the class of
regular languages and can be implemented in the finite state machine architecture (see, for
example,Davis et al., 1994; Savage, 1998; Taylor & Taylor, 1997). A finite state machine
can be viewed either as a language generator (Chomsky, 1957; Lasnik, 2000) or language
recognizer for a given regular language (Cohen, 1997; Davis et al., 1994; Savage, 1998). Recent
developments in the theory of transformational grammar suggest that two important processing
devices may capture human syntactic competence, namely, Merge and Move (Chomsky, 1995;
Radford, 1997) The family of right linear phrase structure grammars is closely related to and can
be implemented by a constrained Merge operator. They are equally easy to implement within
the framework of unification grammars (Jackendoff, 1997; Shieber, 1986) by for example a

Fig. 1. The transition graph representation of the Reber grammar. MSSVRXV is a grammatical string and this can be
seen by starting in the initial state 1 and successively read one symbol at the time moving from one internal state to
the next according to the symbols labeling the arrows (legal transitions; in the present case: 1-2-2-2-4-3-2-4) ending
in the final state which can be reached from{4, 5, 6} after having read the whole string. In contrast, MSSVSXV is
non-grammatical.



386 K.M. Petersson et al. / Cognitive Science 28 (2004) 383–407

constrained unification operation (Vosse & Kempen, 2000), or within most common formal
approaches to grammar (Sag, Wasow, & Bender, 2003).

A recent meta-analysis of functional neuroimaging studies of syntactic processing (Indefrey,
in press, briefly reported inIndefrey, 2001; see also the reviews ofBookheimer, 2002; Friederici,
2002) reported that the most reliably replicable finding related to syntactic parsing across
imaging techniques, presentation modes, and experimental procedures, was localized to the
left inferior frontal gyrus (Brodmann’s areas (BA) 44 and 45), consistent with what is known
from brain lesion data (Caplan, 1992; Caramazza & Zurif, 1976; see alsoFriederici, 2002;
Zurif, 1990). The left inferior frontal region is part of the prefrontal cortex, which has been
related to different aspects of language processing, including phonological, syntactic, seman-
tic, pragmatic, as well as non-linguistic contextual information (Bookheimer, 2002; Duncan,
2001; Mesulam, 2002). The prefrontal cortex has also been related to different short-term
working memory and long-term memory processes (Baddeley, 2003; Simons & Spiers, 2003).
In Baddeley’s model of working memory (Baddeley, 1992, 2003), the ‘phonological loop’
has been associated with the left temporo-parietal and left inferior frontal regions. Recently it
was suggested that the ‘phonological loop’ may have evolved to facilitate the acquisition of
language and in support of this notion, its capacity appears to be a good predictor of second
language learning (Baddeley, 2003; Baddeley, Gathercole, & Papagno, 1998). The prefrontal
cortex has been investigated in several primate studies at the neuronal level in a wide range of
complex tasks, including categorization, working memory, rule learning and rule switching, as
well as cross-modal integration (Duncan, 2001; Duncan & Miller, 2002). The response proper-
ties of prefrontal neurons are highly adaptable and any given neuron can be driven by different
kinds of input, perhaps through the dense interconnections that exist within the prefrontal cor-
tex as well as reciprocal connections to a majority of cortical and subcortical structures (Fuster,
1997; Mesulam, 2002; Stuss & Knight, 2002).

A number of recent FMRI studies have investigated implicit (Seger, Prabhakaran, Poldrack,
& Gabrieli, 2000; Skosnik, Mirza, Gitelman, Parrish, & Mesulam, 2002) and explicit learning
of material generated from artificial grammars (Fletcher, Büchel, Josephs, Friston, & Dolan,
1999; Strange, Henson, Friston, & Dolan, 2001), artificial language (Opitz & Friederici, 2003),
and natural languages different from the native language of the subjects (Musso, Moro, Glauche,
Rijntjes, & Reichenbach, 2003). Opitz and Friederici (2003)used the experimental paradigm
outlined byFletcher et al. (1999)andStrange et al. (2001). The task used in these studies
can be characterized as explicit problem solving with performance feedback. In this set-up,
the participants are explicitly instructed to extract the underlying grammatical rules during the
learning condition, while during the classification task the participants receive performance
feedback after each trial. In the study byMusso et al. (2003), the subjects were explicitly
taught three natural language rules and three rules not observed in natural language grammars.
In the present study, using functional magnetic resonance imaging (FMRI) in an event-related
fashion, we investigated a group of participants on a grammaticality classification task after
they had been exposed to well-formed consonant strings generated from the Reber grammar
(Fig. 1). We used an implicit acquisition paradigm in which the participants were exposed
to positive examples. The objective of this study was to investigate whether brain regions re-
lated to language processing overlap with the brain regions activated by the grammaticality
classification task used in this study. Thus, we specifically tested the hypothesis that brain
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regions related to syntactic comprehension are also engaged in processing of input strings
generated from an artificial grammar as well as strings that violated this grammar. We were
interested in the behavior of the left inferior frontal gyrus (BA 44, 45) during processing of
the input strings. Several of the studies reviewed inIndefrey (in press)used grammar violation
paradigms, in which non-grammatical items were compared with grammatical items, yielding
activations in the left inferior frontal region or Broca’s region (Amunts, Schleicher, Burgel,
Mohlberg, & Uylings, 1999) specifically related to the non-grammatical versus grammatical
comparison. Thus, we specifically hypothesized that non-grammatical compared to grammat-
ical items, reflecting artificial grammar violations, would activate Broca’s region during the
grammaticality classification task. It should be noted that we are using the terms ‘grammatical’
and ‘non-grammatical’ in a descriptive sense reflecting their generative origin.

2. Materials and method

2.1. Participants

Twelve right-handed healthy university students volunteered to participate in the study (3
female and 9 male subjects with mean age±SD= 24±3 years). They were all pre-screened and
none of the subjects used any medication, had a history of drug abuse (including nicotine), head
trauma, neurological or psychiatric illness, or a family history of neurological or psychiatric
illness. The local Ethics committee at the Karolinska Institutet/Hospital approved the study.
All subjects gave written informed consent.

2.2. Stimulus material

The stimulus material was generated from the regular (right linear) grammar as imple-
mented by the finite-state machine of Reber (Reber & Allen, 1978), Fig. 1. Of the 110 possible
grammatical (G) consonant strings of 2–8 letters, 56 randomly chosen items were allocated to
the acquisition/training set and the remaining 54 items were included in the classification set.
The non-grammatical (NG) strings were generated from the grammatical strings by randomly
re-arranging the order of letters to render them non-grammatical. The NG strings were included
in the classification set so that this set included 108 items in total, 50% G- and 50% NG-items.

2.3. Experimental procedure

2.3.1. Implicit acquisition task
The acquisition or training phase consisted of a short-term memory task using the acquisition

set. In a self-paced paradigm, each subject was instructed to attend to the consonant strings
as they were presented on a computer screen for 5 s, and then as the string disappeared, to
recall the string and type it into the computer. Subjects were allowed to correct themselves.
The acquisition set was presented three times. The acquisition phase lasted approximately
40 min.
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2.3.2. Classification task
Following the training phase, the subjects were informed that the previously studied strings

followed a complex set of rules. The participants were instructed to classify a new set of conso-
nant strings, half of which were generated from the same underlying structure while the other
half in many aspects were similar but violate the grammar in some respect, as grammatical and
non-grammatical, respectively. The subject were asked to make their classification judgement
based on their immediate intuitive impression/impulse (‘gut-feeling’ or guessing inclination),
and were informed that this strategy would yield the best performance. During the classifica-
tion task event-related FMRI data were acquired. A sensorimotor classification control task
was also included in the FMRI study, in which the subjects had to decide whether the pre-
sented string consisted of only P:s or L:s (same average length as the consonant strings). The
subjects indicated their response by pressing one of two different buttons with their middle-
(NG, L) or index finger (G, P). During the FMRI experiment, the different stimulus types were
presented in random order on a screen for 3 s, during which time the subjects responded by
pressing a keypad, followed by a fixation-cross for 4 s. A minimum of approximately 1.5 h
separated the acquisition- and the classification phase. The computer screen was displayed to
the subject through a LCD-projector standing inside the MR-scanner room, projecting onto
a semi-transparent projection screen that the subject viewed comfortably through a binocular
device mounted on the head-coil.

2.4. MRI data acquisition

During both the acquisition and classification task, the consonant strings were presented
visually using the ERTS software (http://www.erts.de). During the classification task, whole
head T2∗-weighted EPI-BOLD FMRI data were acquired with a GE Signa 1.5T MR-scanner
using an sequential slice acquisition EPI sequence (volume TR= 4.2 s, TE = 100 ms, 90◦

flip-angle, 42 axial slices, slice-matrix size= 64× 64, slice thickness= 3 mm, slice gap=
0.5 mm, FOV= 224 mm, isotropic voxel-size= 3.5 mm×3.5 mm×3.5 mm) in a randomized
event related fashion. For the structural MR image volume a high-resolution T1-weighted 3D
SPOILED-GRASS2 sequence was used (volume TR= 24.0 ms, TE= 6 ms, 35◦ flip-angle,
124 coronal slices, slice-matrix size= 256×256, slice thickness= 1.5 mm, slice gap= 0 mm,
voxel-size= 0.859 mm× 1.5 mm× 0.859 mm interpolated to 1 mm× 1 mm× 1 mm).

2.5. MR image pre-processing and statistical analysis

Image pre-processing and statistical analysis was performed using the SPM99 software
(http://www.fil.ion.ucl.ac.uk). The functional EPI-BOLD images were realigned, slice-time
corrected, and the subject-mean functional MR images were co-registered with the corre-
sponding structural MR images. These were subsequently spatially normalized (i.e., the nor-
malization transformations were generated from the structural MR images and applied to the
functional MR images) and transformed into a common approximate Talairach space (Talairach
& Tournoux, 1988), as defined by the SPM99 MNI T1 template, and finally spatially filtered
by convolving the functional image volumes with a isotropic 3D spatial Gaussian filter kernel
(10 mm FWHM). The FMRI data was proportionally scaled to account for global effects and

http://www.erts.de
http://www.fil.ion.ucl.ac.uk
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analyzed statistically using the general linear model and statistical parametric mapping (Friston
et al., 1995). The linear model included explanatory variables, modeling G- and NG-items
separated in terms of correct and incorrect responses. The explanatory variables were tem-
porally convolved with the canonical hemodynamic response function. In addition, the linear
model included the time derivative of the convolved regressors, specifying a design matrix
incorporating the condition effects as effects of interest and, as effects of no-interest, the
session/subject-effects, and a temporal high-pass filter to account for various low-frequency
effects (e.g., related to different physiological effects such as heart-rate and respiration, and
slow MR-scanner drifts). In order to account for temporal autocorrelation, the FMRI data
were convolved with a Gaussian (FWHM= 4 s) temporal kernel and effective degrees of
freedom estimated (Worsley & Friston, 1995). In the statistical analysis relevant contrasts,
corresponding to null-hypotheses, were used to generate statistic images SPM[T]:s, which
were all thresholded atT = 3.11 (p = .001, uncorrected). The cluster size was used as the
test statistic and only clusters significantp < .05 (corrected for multiple non-independent
comparisons) are described. Allp-values reported are corrected for multiple non-independent
comparisons based on the theory of smooth 3D random field theory (Adler, 1981; Worsley,
Marrett, Neelin, Vandal, & Friston, 1996). The significant clusters were subsequently resolved
into peak-height of local maxima withZ-score >3.09 andp-values were corrected for multiple
non-independent comparisons based on the false discovery rate (Genovese, Lazar, & Nichols,
2002). In addition we investigated commonalities over subjects using minimumT-field theory
(Worsley & Friston, 2000). The terms of activation and deactivation are used as synonyms for
a relative increase and decrease in BOLD signal, respectively. For reasons of portability of data
the tables of local maxima use the Talairach nomenclature (Talairach & Tournoux, 1988).

3. Results

All subjects showed for each classification session, during which event-related FMRI data
were acquired, a significant above-chance correct classification performance on the classifi-
cation task (mean± SD = 73± 7%, range= 61–92%, whereas 50% correct is expected by
chance) consistent with the original result reported byReber (1967). Thus the subjects were
able to reliably differentiate between grammatical and non-grammatical items.

A significantly activated set of regions (set-level inferencep < .001; seeTable 1andFig. 2)
were observed in the grammaticality classification (CL) task compared to the sensorimotor
baseline (B) task and included 5 significant clusters: The left middle-inferior frontal gyrus (p <

.001) centered on BA 44/45 extending into BA 6/9 and BA 45/47, the anterior cingulated cortex
(p = .007; BA 32), the left inferior parietal cortex (p = .012) centered on the supramarginal
gyrus (BA 40) extending into the inferior parts of the superior parietal cortex, and bilateral
middle-inferior occipital and occipito-temporal cortex (left:p < .001, right:p < .001; BA
18, 19).

Testing our critical hypothesis of artificial grammatical violations in a random effects model,
that is, comparing the brain activity related to non-grammatical (NG) versus grammatical (G)
items, showed a significant activation (p = .01, corrected) in the left inferior frontal gyrus
(BA 44 with local maximum at [x y z] = [−48 16 22], and BA 45 with local maximum at
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Table 1
The significantly activated set of regions observed in the grammaticality classification task compared to the senso-
rimotor control task

Region (Brodmann’s area) Clusterp-value Z T11 Voxel p-value [x y z]

Left middle-inferior frontal cortex <.001
BA 6/9 4.29 7.17 .016 [−56 2 36]
BA 6/44 4.12 6.63 .016 [−58 0 32]
BA 44 4.09 6.53 .016 [−48 8 22]
BA 44 4.05 6.41 .016 [−52 10 16]
BA 45/47 3.56 5.05 .021 [−56 10−2]
BA 9/44 3.54 5.01 .021 [−50 16 28]
BA 6/44 3.41 4.71 .025 [−58 10 8]

Anterior cingulated cortex .004
BA 32 4.01 6.26 .016 [6 28 36]
BA 32 3.56 5.04 .021 [−6 26 44]

Left inferior parietal cortex .023
BA 40 4.25 7.06 .016 [−30−50 42]
BA 40/7 3.56 5.73 .016 [−26−64 44]

Left middle-inferior occipital
and occipito-temporal cortex

<.001

BA 18 4.36 7.42 .016 [−20−88−2]
BA 19 4.28 7.14 .016 [−30−88 6]
BA 18/19 4.20 6.89 .016 [−36−84−6]
BA 19 4.17 6.79 .016 [−32−86 16]
BA 18/19 3.90 5.94 .016 [−32−88−12]
BA 19/37 3.57 5.08 .020 [−40−66−10]

Right middle-inferior occipital
and occipito-temporal cortex

<.001

BA 19 4.69 8.77 .016 [40−78 8]
BA 18 4.62 8.47 .016 [44−80 10]
BA 19 4.43 7.68 .016 [40−78−4]
BA 19 4.24 7.00 .016 [24−94−10]
BA 19 4.19 6.85 .016 [40−72−12]
BA 18 4.06 6.42 .016 [26−82−2]

All p-values are corrected for multiple non-independent comparisons. TheT11-scores relate to theT-distribution
on 11 degrees of freedom and the voxelp-values are corrected based on the false discovery rate.

[−40 22 22]; seeFig. 3 andTable 2). At a lower level of thresholding we also observed a
local maximum at [−44 26 10] in BA 45 (p = .01, uncorrected). This effect was observed
in each of the 12 subjects (minimumT-field conjunction over subjects >0 with local maxima
at [−44 12 22],Z = 4.37; BA 44/45; [−46 16 24],Z = 4.32, BA 44; [−40 22 22],Z =
3.71, BA 45). We also investigated the effects of (C) versus incorrect (NC) responses and the
interaction G/NG×C/NC in the random effects analysis. No significant effects related to these
contrasts were observed in the left inferior frontal gyrus. However, we did observe a significant
interaction [GC-GNC] versus [NGC-NGNC] in the left ventero-lateral thalamus ([−12 −18
12], Z = 5.00,p = .05, corrected).
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Fig. 2. Grammaticality classification compared to the sensorimotor baseline task, seeTable 1for coordinates of
the local maxima. Significant activations were observed in the left middle-inferior frontal region (centered on
BA 44 extending into BA 6/9 and BA 45/47), the anterior cingulated cortex (BA 32), the left inferior parietal
cortex centered on the supramarginal gyrus (BA 40) extending into the inferior parts of the superior parietal cortex
(BA 7), and bilateral middle-inferior occipital and occipito-temporal cortex (left BA 18/19/37 and right BA 18/19).

Fig. 3. Artificial syntactic violations were related to a significant activation in the left inferior frontal gyrus centered
on BA 45 and extending into BA 44.

In order to further investigate the effects in the inferior prefrontal region with greater statisti-
cal power we used a minimumT-field approach (Worsley & Friston, 2000) to test different con-
trasts as conjunctions over subjects. In the minT-conjunction over grammaticality classification
versus baseline & correct versus incorrect ([CL-B] & [C-NC]), we observed a significant effect
in a superior–posterior sub-region of the left inferior prefrontal region described above (BA
44, [−52 8 26],Z = 6.01,p < .001, corrected), and in the minT-conjunction over [grammat-
ical classification vs. baseline] & [correct vs. incorrect] & [non-grammatical vs. grammatical]

Table 2
Significant non-grammatical vs. grammatical effects in the left inferior frontal gyrus, Broca’s region (Brodmann’s
area 44 and 45)

Region (p = .01, corrected) Brodmann’s area Z T11 [x y z]

Left inferior frontal gyrus BA 44 4.41 7.62 [−48 16 22]
Left inferior frontal gyrus BA 45 3.70 5.40 [−40 22 22]

Local maxima with aZ-score >3.7 (p = .0001, uncorrected) are listed.



392 K.M. Petersson et al. / Cognitive Science 28 (2004) 383–407

([CL-B] & [C-NC] & [NG-G]) we observed significant effects in the same left inferior pre-
frontal sub-region (BA 44, [−50 10 26],Z = 5.72,p < .001, corrected, and BA 44/45, [−48
12 20],Z = 4.51). There was also a small sub-region that showed a significant interaction
effect between the factors grammaticality and correctness (BA 44, [−44 10 20],Z = 5.18,
p = .02, corrected) in the minT-conjunction over [grammatical classification vs. baseline] &
[grammaticality× correctness interaction] ([CL-B] & [[GC-GNC]− [NGC-NGNC]]) related
to the fact that the response was greater in correct grammatical versus incorrect grammatical
compared to correct non-grammatical versus incorrect grammatical. However, this interaction
effect was not observed in the whole region related to the grammaticality violation effect (i.e.,
[GNC-GC]). This was determined by an exclusive masking procedure in which we masked
away the effects related to the conjunction of [grammatical classification vs. baseline] & [cor-
rect vs. incorrect] & [interaction] ([CL-B] & [C-NC] & [[GC-GNC]− [NGC-NGNC]]). Thus
we observed a significant effect in [−44 12 22], BA 44, (Z = 5.18,p = .02, corrected) related
to ([CL-B] & [C-NC] & [NG-G])/([CL-B] & [C-NC] & [[GC-GNC] − [NGC-NGNC]]) close
to the local maxima [−48 16 22] observed in [NG-G]. In summary, these results indicate that
there might be a regional functional sub-specialization within the left BA 44 and 45.

4. Discussion

The primary objective of the present study was to investigate whether brain regions activated
by the grammaticality classification task described here would overlap with regions related to
natural language processing. The present results indicate that the use of the knowledge acquired
from an artificial grammar in an implicit acquisition paradigm using only positive examples is
subserved by the same neural processing infrastructure that has most consistently been related
to human syntactic processing (Figs. 3 and 4). We note that the effect of artificial syntactic
violations was stimulus-locked rather than response-locked (when time-locking on the subject
responses we did not observe the effect). More specifically, we observed that artificial syntactic
violations specifically activate Broca’s region, that is, the Brodmann’s areas 44 and 45 of the
left inferior frontal gyrus (Amunts et al., 1999). This was observed in all subjects as revealed
by minimumT-field conjunction over subjects >0 in this region. The observation that artificial
syntactic violations activate Broca’s region thus lends some support to the suggestions that
artificial grammar learning represents a model for investigating aspects of language learning
in infants (Gomez & Gerken, 2000) and adults (Friederici et al., 2002), and perhaps exploring
differences between human and animal learning relevant to the narrow faculty of language
(Hauser et al., 2002). It should be noted that we take no particular position on the characteristics
of the knowledge acquired by the subjects in the present study but we outline a number of
possibilities in the discussion below.

When comparing grammaticality classification with the sensorimotor baseline we observed
a significantly activated network of regions including the left middle-inferior frontal gyrus
(centered on BA 44/45 extending into BA 6/9 and BA 45/47), the anterior cingulated cortex
(BA 32), the left inferior parietal cortex (centered on the supramarginal gyrus BA 40 extending
into the inferior parts of the superior parietal cortex), and the bilateral middle-inferior occipital
and the ventral occipito-temporal cortex (BA 18, 19). This is consistent with previous studies
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Fig. 4. The cross-hair is localized at the mean coordinates (approximately [x y z] = [−44 19 12]) of the natural
syntax FMRI studies reported in the review ofBookheimer (2002). The mean distance of the individual local
maxima reported inBookheimer (2002)to the mean coordinates is approximately 13 mm indicated by the radius
of the circle in the figure. Artificial syntactic violations specifically activated the left inferior frontal gyrus centered
on BA 45 and extending into BA 44.

of implicit artificial grammar learning (Seger et al., 2000; Skosnik et al., 2002). Furthermore,
this indicates that the left inferior frontal region is actively interacting in the context of an
extensive functional brain network, consistent with the common insight from functional neu-
roimaging suggesting that cognitive functions are implemented in functional networks (Ingvar
& Petersson, 2000).

4.1. Functional neuroimaging studies of natural and artificial grammars

The classical model for language organization in the brain (Broca, 1861; Wernicke, 1874)
relates language production to the anterior language areas in the dominant hemisphere, most
commonly the left, centered on the posterior left inferior frontal region, and language com-
prehension to the posterior language areas centered on the posterior left superior temporal
(restricted Wernicke’s area) and surrounding parieto-temporal regions (extended Wernicke’s
area). However, this simple mapping of production and comprehension components onto an-
terior and posterior language related brain regions have since been re-examined and shown to
be oversimplified (see, e.g.,Caplan, 1992; Kaan & Swaab, 2002; Zurif, 1990, 1998). Corti-
cal electrical stimulation mapping has indicated that aspects of syntactic processing is related
to the left middle-inferior frontal, posterior superior temporal, and inferior parietal regions
(Ojemann, 1983; Ojemann & Mateer, 1979). Also, several neuroimaging studies (for recent
reviews see, e.g.,Bookheimer, 2002; Kaan & Swaab, 2002) have indicated that these regions
may be associated with different aspects of syntactic processing, including the syntactic com-
plexity of sentences (Caplan, Alpert, & Waters, 1998; Caplan, Alpert, & Waters, 1999; Caplan,
Alpert, Waters, & Olivieri, 2000; Cooke et al., 2001; Inui et al., 1998; Just, Carpenter, Keller,
Eddy, & Thulborn, 1996; Stromswold, Caplan, Alpert, & Rauch, 1996), grammatical error
detection (Embick, Marantz, Miyashita, O’Neil, & Sakai, 2000; Kang, Constable, Gore, &
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Avrutin, 1999; Ni, Constable, Mencl, Pugh, & Fulbright, 2000), or sentence matching under
a syntactic/lexical manipulation (Dapretto & Bookheimer, 1999). A recent study byIndefrey,
Hagoort, Herzog, Seitz, and Brown (2001)reported data on brain activations during language
processing in an experiment requiring the subjects to detect grammatical errors in meaningless
sentences. The study ofIndefrey et al. (2001)distinguished syntactic processing from several
other cognitive and linguistic functions and the data revealed that syntactic error detection was
specifically related to a region of the left dorsolateral prefrontal cortex in or adjacent to Broca’s
region. A recent meta-analysis of functional neuroimaging studies of syntactic processing con-
cluded that the most reliably replicable finding related to syntactic parsing is localized to the left
inferior frontal gyrus (BA 44, 45) representing evidence for an involvement of Broca’s region
in aspects of syntactic processing (Indefrey, in press), while the overview ofKaan and Swaab
(2002)appears to argue for a different conclusion. However another recent meta-analysis of
natural language FMRI studies indicated that there are evidence for a functional specializa-
tion with respect to the left inferior frontal region related to phonology, syntax, and semantics
(Bookheimer, 2002). Despite considerable overlap, there seemed to be general trends indicat-
ing that the anterior–inferior part of the left inferior frontal gyrus (centered around BA 47) is
related to aspects of semantic processing, while the posterior–superior part (centered on the
posterior parts of 44 and extending into the anterior parts of BA 6) is related to aspects of
phonological processing. Activations related to aspects of syntactic processing were centered
on the middle part of the left inferior frontal gyrus centered on BA 44 and 45. A simple descrip-
tive analysis of the coordinates listed byBookheimer (2002)yields mean coordinates [−46 11
26], [−44 19 12], and [−42 25 4] for phonology, syntax, and semantics, respectively (the mean
distances of the local maxima to the mean coordinates are 10, 13, and 15 mm, respectively).
In terms of spatial extent, the effect of artificial grammaticality violations we observed in the
present study was localized to the middle portion of the left inferior frontal gyrus centered on
BA 45 and extending into BA 44 (Fig. 4).

The results from the minimumT-field analysis indicated a complex response pattern within
this region with respect to the factors correct/incorrect and grammatical/non-grammatical.
These included effects of correct versus incorrect responses, non-grammatical versus grammat-
ical items, as well as interactions related to the fact that the response was greater in correct gram-
matical versus incorrect grammatical compared to correct non-grammatical versus incorrect
grammatical. These results indicate that there may be a regional functional sub-specialization
within the left inferior frontal region (BA 44, 45). However, the precise interpretation of these
results is at present unclear. It should also be noted that the issue of precise spatial localization in
functional neuroimaging is complex and related to, among other things, inter-individual resid-
ual anatomical variability (i.e., residual variability after anatomical normalization), threshold
effects, and the choice of test statistic (Petersson, Nichols, Poline, & Holmes, 1999). It appears
that spatial precision in group studies of higher cognitive functions is on the order of approx-
imately 10 mm (cf.Brett, Johnsrude, & Owen, 2002; Petersson et al., 1999). The descriptive
results of the data reported inBookheimer (2002)are thus in line with this estimate. For ex-
ample, the mean spatial spread of the individual local maxima reviewed inBookheimer (2002)
related to the FMRI studies of natural syntactic processing is approximately 13 mm (Fig. 4).

As noted in the introduction, a number of recent FMRI studies have investigated explicit
learning of material generated from artificial grammars (Fletcher et al., 1999; Strange, Fletcher,
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Henson, Friston, & Dolan, 1999; Strange et al., 2001), artificial language (Opitz & Friederici,
2003), and from natural languages different from the native language of the subjects (Musso
et al., 2003). One difference between these studies and the present is that we contrasted gram-
matical and non-grammatical items while the other studies focused on learning related effects
(time × condition interactions). Another difference is that we employed an implicit acquisi-
tion task, exposing the subjects only to positive examples. In contrast,Fletcher et al. (1999),
Strange et al. (1999, 2001), andOpitz and Friederici (2003)used experimental tasks which can
be characterized as explicit problem solving with performance feedback, whileMusso et al.
(2003)explicitly taught their participants the rules to be learned. For example, the observation
of learning related effects in the medial temporal lobe in the studies ofOpitz and Friederici
(2003)andStrange et al. (1999)is likely related to the explicit character of the task. The me-
dial temporal lobe memory system is critically involved in declarative and episodic memory
(Cohen, Ryan, Hunt, Romine, & Wszalek, 1999; Eichenbaum & Cohen, 2001; Squire, 1992;
Squire, Knowlton, & Musen, 1993). Furthermore, studies conducted with amnesic patients
indicate that patients and normal controls performed similarly on both the classical and the
transfer version of the AGL task, despite the fact that the amnesic patients showed no explicit
recollection of either whole-item or fragment information (Knowlton & Squire, 1994, 1996, cf.
the discussion below). The explicit problem solving character of the tasks may also provide an
explanation for the observation of learning related effects in the anterior prefrontal/frontal pole
region (centered on BA 9/10) in several of these studies (Fletcher et al., 1999; Strange et al.,
2001). In addition,Strange et al. (2001)suggest that the experimental paradigm they used is
similar to the Wisconsin Card Sorting Test which has also shown to activate this fronto-polar
region following a rule sorting switch (Rogers, Andrews, Grasby, Brooks, & Robbins, 2000).
However,Opitz and Friederici (2003)observed learning related changes in the left posterior
BA 44 bordering on BA 6. They suggested that this might relate to the fact that they used a small
artificial language incorporating rules that can be found in natural languages. However, they
also noted that the artificial vocabulary used was composed of pronounceable items that do not
exist in German or other natural languages known to the participants. It appears possible that
their subjects engaged explicit and implicit learning processes in phonological learning. Thus
it is unclear that their finding is related to the rules of the artificial language, as conceptualized
by them. In addition they observed similar learning related changes in bilateral middle occipital
(BA 19), left inferior occipital region (BA 18), and the right posterior parietal (BA 7) regions to
the one observed in the left inferior frontal region. Hence, it appears that the learning process
engaged during the task is related to a complex set of brain regions in both hemispheres, and it
is not clear how or which of these regions are specifically related to the structural regularities
of the artificial language.

Noam Chomsky has argued that children’s capacity to acquire natural languages depends
on an innate universal grammar (UG) that constrains the form of possible human languages
(Chomsky, 1965, 1986; Chomsky & Lasnik, 1995). In a recent study,Musso et al. (2003)
attempted to investigate the neural correlate of acquiring new linguistic competence by teaching
adult participants two types of rules, UG consistent and rules which have not been found in
any known natural language. They reported relative activation over time in Broca’s region for
the former and relative decreased activation for the latter. These results are broadly consistent
with the observations ofOpitz and Friederici (2003). However, the effect reported byMusso
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et al. (2003)was related to the middle portion of the left inferior frontal gyrus and thus more
anterior to the one observed byOpitz and Friederici (2003). Musso et al. (2003)speculated
that biological constraints and language experience interact in Broca’s region to enable new
linguistic competence to develop. However, Chomsky posited the existence of a language
acquisition device (instantiating universal principles and parameters) because, he argued, the
impossibility of acquiring a language (which takes place largely implicitly) and almost entirely
from unlabeled positive information alone (i.e., without explicit feedback as well as negative
evidence; cf. discussion below). Chomsky has also argued for sometime that there are no
language rules (cf. e.g.,Chomsky, 2000). He states that the ‘Principle and Parameters’ approach
(cf. e.g.,Chomsky & Lasnik, 1995) rejects the concept of rules and grammatical constructions
entirely (Chomsky, 2000, p. 8). Instead, he argues, there are only general principles or linguistic
constraints that interact to yield the properties of linguistic expressions. Furthermore, these
principles are not learned or acquired but innate (cf.Chomsky, 1995, 2000). The variation
between natural languages is accounted for by different parameter settings which are acquired
(or triggered) during the acquisition process (cf.Radford, 1997, 2000). Similarly, the universal
framework of ‘Optimality Theory’ (Kager, 1999; Prince & Smolensky, 1997), the tripartite
framework ofJackendoff (1997, 2002)as well as the lexicalist unification framework ofVosse
and Kempen (2000)specify linguistic constraints rather than rules. The subjects in the study of
Musso et al. (2003)were explicitly taught the rules they had to learn, information was provided
describing each rule with example sentences clarifying the rule. The subjects then practiced on
correct and incorrect examples and performance feedback were provided. However, they were
not provided with any information about phonological aspects of the new vocabulary. Thus,
as noted byMarcus, Vouloumanos, and Sag (2003), one may ask whether the results reported
reflect any aspect of language acquisition as such.Marcus et al. (2003)suggest a number of
alternative interpretations in terms of working memory, complexity demands, or linguistically
independent domain-general rule learning.

4.2. The possible roles of the left inferior frontal region

An important general problem for models entailing that Borca’s region, or more gener-
ally, that the left inferior frontal region, is specifically related to different aspects of language
processing is that neither neuropsychological lesion studies nor functional neuroimaging data
appear to support such a strong hypothesis (Caplan, 1992; Dronkers, 2000; Kaan & Swaab,
2002; Marcus et al., 2003; Zurif, 1990, 1998). For example,Kaan and Swaab (2002)suggest that
recent insights from aphasia research require a re-evaluation of the classical interpretation of the
structure–function relationship based on the apparent double dissociation between Wernicke’s
(traditionally associated with left temporo-parietal lesions) and Broca’s aphasia (traditionally
associated with left middle-inferior frontal lesions). They argue that Broca’s region is nei-
ther necessary nor sufficient to induce syntactic deficits; these patients do not completely lack
syntactic processing capacities and they also exhibit some semantic deficits.Kaan and Swaab
(2002)also suggest that Broca’s aphasia can alternatively be interpreted as a processing deficit
in contrast to a knowledge deficit. In other words, Broca’s aphasia, may at least partly, be
understood in terms of difficulties with certain aspects of temporal processing and integration
of information, or alternatively, in terms of short-term memory capacities. This suggestion is
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consistent with functional neuroimaging data indicating an important role of the prefrontal cor-
tex, including the left inferior frontal region, in both short-term working memory and long-term
memory (Cabeza, Dolcos, Graham, & Nyberg, 2002; Fletcher & Henson, 2001; Nyberg,
Forkstam, Petersson, Cabeza, & Ingvar, 2002; Nyberg et al., 2003; Simons & Spiers, 2003). In
addition, functional neuroimaging studies comparing syntactically complex and simple sen-
tences can be interpreted in terms of memory load and integration/unification of information
(cf. Kaan & Swaab, 2002, for a review of the literature supporting this interpretation).

Furthermore, several recent studies have indicated that Broca’s region or left inferior frontal
region might have a broader role in cognition and appears to be engaged in several cognitive
domains in addition to the ones already mentioned (Marcus et al., 2003), including musical
syntax (Maess, Koelsch, Gunter, & Friederici, 2001), absolute pitch perception (Zatorre, Perry,
Beckett, Westbury, & Evans, 1998), and human imitation (Iacoboni, Woods, Brass, Bekkering,
& Mazziotta, 1999). A growing body of evidence from functional neuroimaging suggests an
overlap in the processing of structural relations in language and music. This include investi-
gations using EEG (Patel, Gibson, Ratner, Besson, & Holcomb, 1998), MEG (Maess et al.,
2001), and FMRI (Koelsch, Gunter, Cramon, Zysset, & Lohmann, 2002; Tillmann, Janata,
& Bharucha, 2003), for a recent review, seePatel (2003). Recently, the similarities between
music and language have been stressed (Hauser & McDermott, 2003; Patel, 2003; Peretz &
Coltheart, 2003; Trehub, 2003). It has been suggested that music is a human universal, that
like language, organizes discrete elements into hierarchically structured sequences according
to syntactic principles (Lerdahl & Jackendoff, 1983), see also (Jackendoff, 2002; Patel, 2003).
For example,Patel (2003)suggests that the commonalities between structural processing in lan-
guage and music can be understood in processing terms. The idea is that brain regions engaged
in processing these commonalities provide the neural infrastructure for structural integration.
According to this view, the neural infrastructure engaged in structural integration are ‘process-
ing regions’ that serve to rapidly and selectively bring low-activation items in ‘’representation
regions’ up to the activation threshold needed for integration to take place. This suggestion is
similar to the framework recently proposed byHagoort (2003)in which integration of various
sources of linguistic information (phonological, syntactic, semantic/pragmatic) operate in par-
allel in a workspace where incremental unification takes place. The workspace is hypothesized
to be related to the left inferior frontal region and it is suggested that lexically specified struc-
tures enter the unification space according principles outlined byVosse and Kempen (2000)
during parsing. Cross-talk between different sources of information can, when necessary, im-
mediately influence the integration process. It is also of interest to note that there seems to
be a considerable overlap between regions implicated in the perception/production of music
and the perception/production of abstract sequences, including the left inferior frontal region
(Janata & Grafton, 2003). However, as already noted, there are indications of functionally
segregated subdivisions within the left inferior frontal region (Bookheimer, 2002). In addition,
Marcus et al. (2003)suggest that syntactic processing may engage the pars triangularis of the
left inferior frontal gyrus (BA 45), while studies of Jabberwocky sentences, musical syntax
and imitation of actions tend to activate the more posterior pars opercularis subdivision (BA
44) of the left inferior frontal gyrus.

There is also a growing body of evidence indicating that Broca’s region is not the only area
related to the processing of syntactic information. Other brain regions which have been related
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to syntactic processing include the left superior anterior temporal lobe, the left middle and
posterior parts of the superior and middle temporal gyri, as well as right hemisphere regions
(Bookheimer, 2002; Friederici, 2002; Kaan & Swaab, 2002). According toKaan and Swaab
(2002), none of these regions are uniquely activated by syntactic processing. Thus it is not un-
reasonable to suggest that syntactic natural language processing, or more generally the faculty
of language, is in fact dependent on a functional network of interacting brain regions, none
perhaps which is uniquely involved in syntactic processing only. This perspective seems to hold
for higher cognitive functions more generally (Ingvar & Petersson, 2000). With respect to this
latter perspective, one might suggest that particular brain regions, for example, the prefrontal
cortex (cf. e.g.,Dehaene, Kerszberg, & Changeux, 1998; Duncan, 2001; Duncan & Miller,
2002; Fuster, 1997; Mesulam, 2002; Stuss & Knight, 2002), are computationally or process-
ing specific (e.g., detecting and recognizing structural regularities; interpreting, integrating
or unifying hierarchical regularities, or recognizing dependencies between related elements)
independently of particular content domains. As noted byMarcus et al. (2003), on this view, spe-
cific brain regions may genuinely participate in a range of tasks, including Broca’s region, with
specialized function emerging from unique configurations of domain-general mechanisms.

4.3. Learning artificial grammars, the question of knowledge representation, and
learnability

A complementary perspective on artificial grammar learning views this as a model for in-
vestigating implicit learning.Reber (1967)defined implicit learning as the process by which
an individual comes to respond appropriately to the statistical structure in the input. Thus, he
argued, the capacity for generalization subjects show in the grammaticality classification task
is based on the implicit acquisition of regularities reflected in the input strings.Reber (1967)
suggested that humans can acquire implicit knowledge of aspects of the underlying structure
through an inductive statistical learning process and that this is put to use during grammatical-
ity classification. Support for the implicit character of artificial grammar learning comes from
lesion studies on amnesic patients.Knowlton and Squire (1996)investigated amnesic patients
and normal controls on a classical and a transfer version of the AGL task. The patients and their
normal controls performed similarly on both AGL tasks while the amnesic patients showed no
explicit recollection of whole-item or fragment (i.e., bi- or tri-gram) information. Knowlton
and Squire argued that these results indicate that the explicit recollection in the normal controls
reflects an epiphenomenon not necessary for adequate performance on the classification task.
Instead, AGL depends on the implicit acquisition of both abstract and exemplar-specific in-
formation, the latter indicating the acquisition of distributional information of local sequential
regularities (Knowlton & Squire, 1996). They also argued for the existence of abstract represen-
tations (i.e., ‘rule-based’ representations) based on the results from the transfer version. It thus
appears that humans are able to transfer knowledge acquired from exemplars in one domain to a
different domain (Gomez & Schvaneveldt, 1994). Similarly,Skosnik et al. (2002)suggest that
AGL involve the non-conscious consolidation of complex rules and structures. Furthermore,
it has been shown that infants have the capacity to learn and generalize over local regularities.
Recent studies indicate rapid (on the order of 2–10 min) ‘rule-abstraction’ (Marcus, Vijayan,
Bandi Rao, & Vishton, 1999), learning of transition probabilities in artificial syllable sequences
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(Saffran, Aslin, & Newport, 1996), and artificial grammar learning (Gomez & Gerken, 1999)
in young infants. In the study ofGomez and Gerken (1999), infants also demonstrated some
transfer capacity, suggesting that they were abstracting beyond the transitional probabilities
holding between particular items in the grammar. However, it is an issue under discussion
whether transfer studies demonstrated ‘rule-based’ learning. It is unclear whether this conclu-
sion follows, or more specifically, this depends on the assumption that transfer performance is
critically dependent on abstract representations and it is unclear whether this is necessarily the
case. Transfer performance is dependent on a mapping from the representation of the acquired
knowledge to the new surface form which by necessity has to be established during the initial
phase of the transfer task. Whether this mapping is generated from an abstract knowledge repre-
sentation or a surface based knowledge representation is at present unknown (cf.Redington &
Chater, 1996). For example, it has been demonstrated that transfer results could be explained
by similarity judgements and knowledge of substring regularities (Redington & Chater, 1996,
2002). On the other hand, the results ofKnowlton and Squire (1996)are compatible with
an abstract representation, given the observation that the classification performance did not
correlated with associative chunk strength when the participants had reached the late acquisi-
tion phase. This may indicate that at least some form of abstraction of grammatical structure
takes place. In addition, learning of long distance dependencies has been demonstrated in
sequence learning as well as in artificial grammar learning (Ellefson & Christiansen, 2000;
Poletiek, 2002). It has been suggested that induction cannot be explained entirely in terms
of the acquisition of local sequential regularities, as argued by, for example,Meulemans and
Van der Linden (1997). While Reber (1967)originally argued that the implicit learning pro-
cess abstracted ‘rule-based’ knowledge (seeReber, 1993for a modification of his position),
these more recent studies indicate that dual mechanisms may be at play (for an alternative per-
spective, seeChannon, Shanks, Johnstone, Vakili, & Chin, 2002; Johnstone & Shanks, 2001).
In summary, it is reasonably clear from these studies that distributional information of local
sequential regularities are acquired and used in grammaticality classification.

In this context it is of interest to note that no super-finite class of languages, including
the class of regular languages, is in general learnable from positive examples alone without
additional constraints on the specific learning paradigm. This is for example the case in the
formal learning theory framework ofGold (1967). At a first glance this appears to exclude
the possibility of learning an artificial grammar from positive examples alone. It has also been
suggested that this is the case when statistical learning mechanisms (cf. e.g.,Cherkassky &
Mulier, 1998; Duda, Hart, & Stork, 2001; Vapnik, 1998) are employed (Nowak, Komarova, &
Niyogi, 2002). In the classical learning framework ofGold (1967), cf. Jain, Osherson, Royer,
and Sharma (1999)it was assumed that the learning system had to identify the target language
exactly based on only positive examples (i.e., well-formed strings); in addition it was assumed
that the environment provides, and that the learning system has access to, an arbitrarily large
number of examples (while issues related to computational complexity were ignored). How-
ever, alreadyGold (1967)noted that under suitable circumstances, that is, with additional
constraints on the learning paradigm, this (un)learnability paradox might be avoided. These
may for example include the existence and effective use of explicit negative feedback, prior
restrictions on the class of possible languages, or prior restrictions on the possible language
experiences that can occur (i.e., prior restrictions on the characteristics of the possible language
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environments). Recent results in formal learning theory confirmGold’s (1967)suggestion that,
if the class of possible languages is restricted, then it is possible to learn infinite languages in
infinite classes of formal languages from positive examples (Shinohara, 1994; Shinohara &
Arimura, 2000); see alsoJain et al. (1999). It should be noted that these prior constraints on
the class of possible (or accessible) languages are of a general type and not ‘language specific’
per se(e.g., restrictions on the maximal number of rules employed by the languages in the
class). As noted byScholz and Pullum (2002), there exists classes of formal languages rich
enough to encompass the ‘string-sets’ of human languages and at the same time being identi-
fiable from a finite sequence of positive examples. Furthermore, the acquisition task becomes
potentially more tractable if there are additional structure in the input or if only ‘probable
approximate’ identification is required (cf. e.g.,Anthony & Bartlett (1999)for an outline of
the probably approximately correct learning paradigm andEngel and Van den Broeck (2001)
for an alternative perspective). It has also been also suggested that the acquisition of super-finite
classes of languages may be possible given reasonable probabilistic properties of the language
environment and the initial language experience of children. Furthermore, negative evidence
might be available, based on expectations, without explicit corrections (cf.Rohde & Plaut,
1999). One possibility is to generate expectations or predictions based on an internal model. If
the learning system has access to or can acquire a forward model, this can be used for model
dependent prediction. This entails the possibility of an unsupervised learning framework in
which error information (= difference[input, prediction]) drives the learning process. Simple
examples include predictive adaptive time-series models (Haykin, 1998) and predictive simple
recurrent neural networks (e.g.,Elman, 1990; Haykin, 1998). Recent connectionist modeling
suggest that this may be a viable approach to finite recursion (Christiansen & Chater, 1999; for
a general overview, seeChristiansen & Chater, 2001; see alsoSeidenberg, 1997; Seidenberg,
MacDonald, & Saffran, 2002). Simple recurrent networks may be viewed as a time-discrete
analog version of the finite state architecture (i.e., if real number processing is employed).
It should be noted that simulations of a simple recurrent neural network, using finite preci-
sion numbers, effectively becomes a simulation of a finite state architecture. In summary, as
noted byScholz and Pullum (2002), formal learning theory (Jain et al., 1999) holds open the
possibility that language classes of interest, at least in principle, can be acquired from weak
environmental input consisting of a finite sequence of un-interpreted positive example (Pullum
& Scholz, 2002; Scholz & Pullum, 2002).

Lastly, in the present study we used a regular grammar, the simplest form of phrase structure
grammar. This class of grammars can be implemented in the finite state architecture. It is com-
monly held that the class of finite state machines represents a restrictive class of computational
models. However, it should be noted that the computational mechanisms (i.e., the transition
function/relation of the computational system) of universal computational architectures like
unlimited register machines (Cutland, 1980) and Turing machines (Davis et al., 1994) can be
implemented in a finite state architecture (cf.Savage, 1998). In fact, the central processing unit
of the register machine as well as the control unit of a Turing machine are examples of finite
state machines (cf.Savage, 1998; Tanenbaum, 1990, for concrete examples). The difference
in formal language expressivity between regular grammars and context-free/context-sensitive
as well as semi-Thue grammars (cf.Davis et al., 1994; Partee et al., 1990) springs necessarily
from the memory organization characteristics of the computational system. In particular, formal
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language expressivity depends on the interaction between the computational mechanisms and
factors like memory access (e.g., stack- or random access) and most crucially on the memory
capacity, that is whether this is finite or infinite (cf.Minsky, 1967; Savage, 1998). In a funda-
mental sense, it is the characteristics of the memory organization that allow the computational
architectures to re-use their processing capacities (i.e., computational mechanisms) recursively
to generate structurally rich languages (i.e., high expressivity). If finite memory constraints
are imposed, it follows that the computational mechanisms of universal architectures are no
more powerful than that of the finite state architecture. The finite state machine is the only
computational architecture in the Chomsky hierarchy of infinite expressivity with respect to
its fundamental recursive construction (i.e., concatenation) and at the same time being finite
with respect to both its computational mechanism and its memory organization. In addition,
it is possible to implement finite recursion of a general type in a finite state machine. From a
neurobiological and cognitive neuroscience perspective it seems reasonable to assume that the
human brain instantiate a finite storage capacity, both with respect to short-term working as
well as long-term memory. This might indicate the importance of the neurobiological analogue
of the finite state architecture.

5. Conclusion

In the present study, we observed that artificial syntactic violations activate the left inferior
frontal gyrus (BA 44, 45) or Broca’s region in all participants. This observation lends some
support to the suggestions that artificial grammar learning represents a model for investigating
aspects of language learning in infants (Gomez & Gerken, 2000) and adults (Friederici et al.,
2002). Alternatively, the artificial grammar learning paradigm can be viewed as a tool to inves-
tigate the implicit acquisition of structured information and may a means to further investigate
the role of the inferior frontal region in information processing.
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