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Children Construct Novel Word Meaning Ad-hoc Based on Known
Words: Computational Model of Shape and Material Biases

Kosuke Kurosakia∗, Takashi Omorib

aGraduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido,
JAPAN

bTamagawa University Research Institute, Tamagawa University, Tokyo, JAPAN

Taking the stance that two well-known word learning biases (shape and material bias) are formed through
learning (learned bias account, LBA), we illustrated a concrete computational mechanism with “ad-hoc meaning
substitution (AMS)” hypothesis, and verified it by two computer simulations. AMS represents that when given a
novel word and a corresponding instance, children create novel word meaning by using the known word meaning
and the instance as an ad-hoc template. The AMS function enables fast mapping and vocabulary spurt. To
describe the AMS process computationally, we introduced “word distributional prototype (WDP),” which is the
explicit representation of word meaning with an inductive learning function. Simulation 1 revealed that when a
network with WDP and AMS was given a biased vocabulary reflecting young children, it demonstrated shape,
material, and overgeneralized shape biases. This result suggested that a triad of word meaning induction, ad-hoc
meaning substitution, and early biased vocabulary is essential for the emergence of biases. Simulation 2 introduced
the notion of maturity that denoted a degree of learning convergence for each word meaning, and then the network
showed neither shape nor material bias during an early small vocabulary. This result indicated that the period
at which each bias emerges is decided by maturity. Though AMS consists of simpler and valider mechanisms
than those proposed in previous studies, it could reproduce behavior of shape and material biases and explain
their emergence process clearly. These results suggest that phenomena concerning shape and material biases are
explicable with a simple ad-hoc learning instead of meta-learning among LBA or innate language-specific ones.

1. Introduction

When we encounter a novel word such as Gav-
agai and guess its meaning, too many logically
possible meanings exist (Quine, 1960). Never-
theless, children as well as adults can estimate
the meaning of words relatively well. Although
children have little knowledge of the world, their
learning of words is so fast that they can achieve
estimation even with a single experience (Carey
& Bartlett, 1978). Such fast mapping can’t be ex-
plained by existing machine learning algorithms
based on trial and error. However, children in the
first stage of word acquisition don’t show such in-
telligence. They need to hear a word repeatedly
before producing it, and they still often use words
incorrectly. And the pace with which they acquire
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meanings is slow. But after a children’s produc-
tive noun vocabulary exceeds 50 words, which
happens around eighteen months, their vocabu-
lary begins to grow quite rapidly. This is called
vocabulary spurt .

To explain these phenomena, developmental
psychologists have suggested word learning bi-
ases, which made children focus on particular fea-
tures when applying a novel name to an object in-
stead of other possible features. They also greatly
narrow the infinite number of possible correspon-
dences between a word and objects and enable
children to estimate a word’s meaning more ac-
curately (Markman, 1989; Markman & Hutchin-
son, 1984; Markman & Wachtel, 1988; Landau,
Smith, & Jones, 1988; Clark, 1987; Soja, Carey,
& Spelke, 1991). The problem is that these bi-
ases are just phenomenological explanations that
can’t explain why they exist or how they are pro-
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cessed in the human brain. We have to describe a
more detailed computational mechanism of these
biases not only to explain them but also to apply
these findings to studies of education and lan-
guage related disorders. In this paper, we try
to closely illustrate a computational mechanism
of two well-known biases: shape bias (Landau,
Smith, & Jones, 1988) and material bias (Dick-
inson, 1988; Soja et al., 1991) especially in their
early stages.

Shape bias is the behavior that when people
hear a novel solid object named with a novel
noun, they tend to extend the noun to objects
similar in shape to the named object (Landau,
Smith, & Jones, 1988). Material bias is the be-
havior that when people hear a novel nonsolid
substance named with a novel noun, they tend
to generalize the noun to the substance similar
in material (Dickinson, 1988; Soja et al., 1991).
Some studies have argued against “learned bias
account (LBA),” which proposes that these biases
result from simple learning. But we discuss the
counterargument in section 6.2. We support LBA
for the following three reasons. First, shape bias
doesn’t appear in early stages of development. It
only appears after children have acquired a cer-
tain number of words (Smith, 1995; Samuelson
& Smith, 1999). Material bias also appears in
the same manner, but later than shape bias (Soja
et al., 1991; Colunga & Smith, 2005). This rea-
son is necessary but not sufficient for supporting
LBA; we can explain that specific modules for
shape/material biases exist in human brains and
that they begin to function along with develop-
ment of the brain area concerned with word ac-
quisition. The other reasons increase the persua-
siveness of LBA. The second reason is existence
of overgeneralization of shape bias to material
bias. Samuelson (2002) reported that children
extended novel nouns assigned to nonsolid sub-
stances to objects similar in shape to the named
substance. The overgeneralization is not easy to
explain if one assumes specific modules for those
biases. Meanwhile, LBA may be able to explain it
because such overgeneralization is just a behav-
ior actually observed in machine learning. The
third reason is that shape/material bias is behav-
ior for solid/nonsolid objects and both arise in

almost identical situations except for their target
stimuli’s solidity . This similarity indicates that
they may possess the same internal mechanism.
Based on these reasons, we assume in this paper
that shape and material biases emerge from the
same mechanism of simple learning; hence mate-
rial bias is overgeneralized by shape bias and both
appear after the learning of a certain amount of
vocabulary.

Here, we propose a simpler computational hy-
pothesis that can account for the behavior of bi-
ases and explain their emergence process from
the LBA framework. Specifically, we hypothe-
size that shape and material biases arise from two
internal general learning abilities that are avail-
able from infancy and one external factor - bi-
ased early vocabulary. The first internal general
learning ability is the one to learn the meanings
of words by induction. Though it is fundamen-
tal to word meaning learning, it isn’t enough to
explain fast mapping. Consequently, we hypothe-
size another internal general learning ability: the
ability to instantly estimate novel word mean-
ing based on already learned word meanings and
given encounters with the word. This substitu-
tion of word meaning from a known noun to a
novel noun enables us to show fast mapping. We
call the second ability “ad-hoc meaning substitu-
tion (AMS).” When children with the two abili-
ties are exposed to the early biased vocabulary,
which contain among solid/nonsolid words a high
percentage of nouns organized by shape/material
similarity, they show shape and material bias
because AMS accounts for the substitution of
meaning among such biased vocabulary (solid-
shape, nonsolid-material) for meanings of novel
solid/nonsolid nouns. In our model, this triad of
the word meaning induction, the ad-hoc meaning
substitution, and the learning of early biased vo-
cabulary is a necessary and sufficient factor for
the emergence of biases. But this triad can cause
different behavior from children’s no biases: sta-
ble biases from the beginning of word learning. So
we introduce a notion of maturity to inhibit the
early stable bias. Here maturity means a degree
of learning convergence for each word meaning,
and relates to the developmental level of the ner-
vous system, the experience of each word’s learn-
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ing, and other factors. We posit that immaturity
prevents effects of inductive learning and AMS
and causes no bias at the beginning of word learn-
ing.

The format of this paper is as follows. In sec-
tion 2, we summarize findings about word learn-
ing biases and present behavior our simulation
should reproduce. And we introduce previous
LBA studies and clarify distinction between their
hypotheses and ours. In section 3, we explain
AMS and discuss the learning process with it, and
in sections 4 and 5 we explain the design of simu-
lations and discuss their results. In section 6, we
give a general discussion and conclude this study
in section 7.

2. Previous Word Learning Bias Studies

2.1. Novel Noun Generalization Task
Novel noun generalization task investigates

subject naming behavior when novel ob-
jects/substances and corresponding novel nouns
are presented. Samuelson (2002), Samuelson &
Smith (1999) used the following procedures to ex-
amine shape and material biases. Experimenter
prepares two stimulus sets: solid and nonsolid.
Each set consists of three stimuli: a novel non-
sense target stimulus, two shape-match stimuli
that have the same shape as the target stimulus,
and two material-match stimuli that have the
same material . First, the experimenter assigns
a novel noun to the target stimulus in front of a
subject. Next, the experimenter presents a pair
of a shape-match stimulus and a material-match
stimulus, asks children to select the one that
can be called by the same noun as the target
stimulus, and repeats the selection with 4 pair (2
shape-match stimuli × 2 material-match stimuli).
When either is selected significantly more often
by subjects, we conclude that subjects have bias
to generalize novel nouns based on similarity in
shape/material. We replicate this task in sections
4 and 5.

2.2. Summary of Findings about Word
Learning Biases

In this subsection we summarize shape and ma-
terial bias findings and show the behavior LBA

models should reproduce in simulation experi-
ments. The emergence of shape bias are stable
from 24-month-olds to adults (Soja et al., 1991;
Dickinson, 1988; Imai & Gentner, 1997). But
some studies reported that toddlers less than two
years old didn’t show shape bias (Samuelson &
Smith, 1999). In contrast, material bias results
aren’t so stable: two- and two-and-a-half-year-
olds showed material bias (Soja et al., 1991); so
did three-, four-, and five-year-olds (Dickinson,
1988); meanwhile, toddlers ranging from 17 to 33
months old never showed material bias (Samuel-
son & Smith, 1999); two-, two-and-a-half-, and
four-year-olds and adults who spoke Japanese and
two-year-olds who spoke English showed mate-
rial bias, but two-and-a-half-, four-year-olds, and
adults who spoke English didn’t (Imai & Gen-
tner, 1997); three-, four-, and five-year-olds didn’t
show material bias when given such syntax infor-
mation as determiners (Subrahmanyam, Landau,
& Gelman, 1999). And surprisingly, Samuelson
(2002) reported that children showed extraordi-
nary shape bias for nonsolid stimulus, which is
the exact opposite case of material bias. Here,
we call such opposite bias “overgeneralized shape
bias” because it looks like the overgeneralization
of shape bias to material bias. If material bias
is derived from an innate module independent of
shape bias, such overgeneralization from shape
bias is improbable. That kind of overgeneral-
ized bias has also been reported as to rigidity,
too (Samuelson & Smith, 2000; Samuelson et al.,
2006). Existence of such overgeneralized biases
strongly supports that they are phenomena nei-
ther specific to solidity nor poorly-reproducible,
and indicates that they can be a key to clarifica-
tion of bias mechanisms.

Before summarizing the findings above, we con-
sider some related issues here. First, we discuss
the mechanism of these biases under neutral syn-
tax conditions. It is because we want to reveal the
mechanism of children’s naming bias to solid ob-
jects and nonsolid substances but the addition of
syntax information (e.g., articles or determiners)
complicates it (Dickinson, 1988; Subrahmanyam
et al., 1999).

Next, only Imai & Gentner’s results that
English-speaking adults didn’t show the material
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bias aren’t consistent with other findings. But
they shouldn’t be considered exact counterexam-
ples of material bias because the results are odd,
even for native English speakers (Bloom, 2000, p.
103). Besides, Hall (1996) reported that English-
speaking adults (and children) concentrated on
the material of novel nonsolid substances in situ-
ations in which they were asked to explain the
substances. Though Hall’s study wasn’t word
learning task, this material attention in language-
related task supports existence of material bias
for adults. These suggest that although Imai &
Gentner’s results are controversial, adults gener-
ally show material bias in language learning situ-
ation.

Finally, we discuss the correlation between vo-
cabulary size and age in the previous word learn-
ing bias studies. We introduced the studies above
by referring to the age of children because most
of them had investigated biases from the aspect
of age. However, the latest studies investigated
them from the aspect of vocabulary size (Samuel-
son & Smith, 1999; Smith et al., 2002; Colunga
& Smith, 2005), and we also consider that vocab-
ulary size is essential for bias emergence. Here
we note a report which showed high correla-
tion between age and productive vocabulary size
(Samuelson & Smith, 1999). Based on the corre-
lation, we apply the findings about age to vocab-
ulary size in this study.

So, combining these findings, we summarize
behavior that models explaining shape and ma-
terial biases to reproduce as below:

(2.2.1) Solid stimuli

(a) No shape bias during a small vocabu-
lary (Samuelson & Smith, 1999)

(b) Stable shape bias after a middle vocab-
ulary (Samuelson & Smith, 1999)

(2.2.2) Nonsolid stimuli

(a) No material bias during a small vocab-
ulary (Samuelson & Smith, 1999)

(b) Overgeneralized shape bias during a
small vocabulary (Samuelson, 2002)

(c) Robust material bias after a sufficiently
large vocabulary (Soja et al., 1991).

2.3. Previous LBA Studies
Linda Smith and colleagues led LBA studies

(Smith, 1995; Samuelson & Smith, 1999; Smith,
Jones, Landau, Gershkoff-Stowe, & Samuelson,
2002; Samuelson, 2002; Colunga & Smith, 2005).
They have explained word learning biases by asso-
ciative learning. First, they proposed that when
exposed to word learning experience, a “nonlin-
ear attentional system” organized attention to
particular dimensions by associative learning and
that selective attention resulted in word learning
biases (Smith, 1995). Recently, they explained
the associative learning hypothesis by a 4-step
model (Smith et al., 2002); A child experiences
a pair of an instance and a word and learns map-
ping between them (step 1); he learns the mean-
ing of each word through adequate experience
of the pairs by general statistical learning (step
2); he abstracts higher-order knowledge from the
learned word meanings, and such knowledge rep-
resents the meta meaning nouns generally have
(step 3); and he uses the higher-order knowledge
to estimate the meanings of novel nouns and to
facilitate vocabulary acquisition (step 4). So far
there is no specific mechanism that causes shape
bias. However, when children experience early
vocabulary which is dominated by nouns orga-
nized by similarity in shape (Samuelson & Smith,
1999), the learned higher-order knowledge be-
comes shape-based, which subsequently encour-
ages the acquisition of shape-based meanings (i.e.,
shape bias). We call the multi-step abstract-
ing function “higher-order abstraction (HOA).”
The 4-step model/HOA has also been material-
ized by a neural network, a kind of associative
learning machine (Samuelson, 2002; Colunga &
Smith, 2005).

LBA seems to be plausible based on the three
reasons in section 1. In the LBA framework,
Smith et al.’s hypotheses are meaningful because
they intended to illustrate the mechanism that
had been compressed into the words “innate” or
that hadn’t been discussed. However, there may
be other computational mechanisms under the
LBA framework along with HOA. HOA is one
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of the hypotheses that can reproduce and ex-
plain the biases, but the existence of the biases
can’t prove HOA per se. Which LBA-related hy-
potheses are more plausible should be discussed
in terms of the following points:

(2.3a) Reproductivity and illustrativity of bias
findings

(2.3b) Cognitive adequacy

(2.3c) Prediction and its confirmation

The terms reproductivity and illustrativity of
bias findings (2.3a) refer to whether a hypoth-
esis can reproduce experimental results of solid
stimuli (2.2.1) and nonsolid stimuli (2.2.2) and il-
lustrate how the results arise. The term cognitive
adequacy (2.3b) refers to whether cognitive fac-
ulties necessary for a hypothesis are available at
24 months of age, when shape bias has appeared.
The terms prediction and its confirmation (2.3c)
refer to whether a hypothesis can predict new
phenomena and whether they can be confirmed
by further experiments. Prediction and confir-
mation (2.3c) is the most effective in proving a
hypothesis. However the aim of this paper is to
propose another LBA hypothesis and its verifica-
tion by computer simulation. Consequently, we
focus on (2.3a) and (2.3b) in this paper, refering
to (2.3c) in section 6.2 only.

In discussing cognitive adequacy (2.3b), we first
consider the age at which children can attend to
particular sensory dimensions in nonnaming cate-
gorization tasks. Smith (1989) demonstrated that
children start to present selective attention af-
ter becoming five years old. From this result,
we consider it difficult for 24-month-olds to ac-
quire association between words and particular
dimensions even in naming tasks (Soja et al.,
1991). Although experiencing novel nouns may
encourage the organization of selective attention
(Smith, 1995), it is unlikely to bridge the cogni-
tive gap between 24-month-old and five-year-old
children. And we also feel the necessity to discuss
the age of concept acquisition. Children generally
begin to use words of superordinate-level cate-
gories at about four years of age. If the knowl-
edge of a superordinate-level category word is ab-

stracted from the knowledge of basic-level cate-
gory words2, the abstraction process should re-
semble the HOA proposed by Smith et al. (2002)
and both available ages can hardly be expected
to be so different. From the viewpoint of avail-
ability, especially for 24 months of age or earlier,
we raise concerns about the cognitive adequacy
of HOA.

As for reproductivity and illustrativity (2.3a),
we attended to simulation results of HOA stud-
ies. Samuelson (2002) reproduced shape and
overgeneralized shape bias but not material bias,
while Colunga & Smith (2005) reproduced shape
and material biases but not overgeneralized shape
bias. The reason for their difference is not clear.
Their different parameter setting might result in
the different results. However, at least there is no
study reproducing the three biases integratively.
Moreover, they used at most two dozens of nouns
in their computer simulation(Samuelson, 2002;
Colunga & Smith, 2005), while Smith (1995) and
Samuelson & Smith (1999) reported that chil-
dren who had larger vocabularies started to show
shape and material biases. An explanation of
the gap between their vocabulary size is neces-
sary in terms of reproductivity3. As to illustrativ-
ity (2.3a), though HOA proponents argued that
correlation in vocabulary was necessary for bias

2Some researchers have claimed that superordinate cate-
gories exist from early infancy (Mandler, Bauer, & Mc-
Donough, 1991; Mandler & McDonough, 1993) and we
agree with them. However, the issue here is not innate su-
perordinate knowledge, but a function of newly abstract-
ing knowledge through experience. Such knowledge and
function are two different thing which should be discussed
separately.
3They may argue that using only a dozen words in their
computer simulations has no problem if the small vocab-
ulary has the same statistics as a larger vocabulary which
Samuelson & Smith (1999) revealed and that children with
a small vocabulary don’t show biases because their small
vocabulary doesn’t have the statistics. But there are a
few problems with the small vocabulary. First, there is
no evidence that the statistical bias doesn’t exist in such
a small vocabulary. The statistical bias is rather likely to
be strong, if children pick up a dozen words from strongly
biased vocabulary. Second, according to our study (see
section 4, 5), not only structural proportion within vo-
cabulary but also vocabulary size is important for emer-
gence/disappearance of biases. So there is some doubt
about the validity of substituting a dozen words for a
larger vocabulary in computer simulation.
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emergence, they haven’t clarified how the corre-
lation and HOA’s associative learning caused the
developmental course of the three biases and why
the difference of their simulation results arose.
From these discussions, it seems that at present,
reproductivity and illustrativity of bias findings
is incomplete.

Summarizing the discussions above, we believe
that LBA is a plausible explanation for bias
emergence and that Smith et al. have made a
large contribution to its investigation by propos-
ing LBA and discussing the tangible mechanism
of biases: HOA. However, there is no evidence
that HOA are causing shape and material bi-
ases. Furthermore, HOA is not fully supported
in terms of reproductivity and illustrativity (2.3a)
and cognitive adequacy (2.3b). In the next sec-
tion, we introduce another hypothesis which has
higher reproductivity and illustrativity (2.3a) and
cognitive adequacy (2.3b) for the biases emer-
gence. We propose ad-hoc meaning substitution
(AMS) as a simpler but more concrete hypothe-
sis of shape and material biases. AMS must show
and explain the behavior for solid stimuli (2.2.1)
and nonsolid stimuli (2.2.2). To describe AMS’s
representation and computational process, we in-
troduce “word distributional prototype (WDP).”

3. Proposed Hypothesis and its Rationale

3.1. Word Representation in This Study
First, we explain input and category represen-

tation used in this study. Following Samuelson
(2002), input representation consisted of three at-
tributes: SOLIDITY, SYNTAX, and FEATURE.
SOLIDITY, which denotes the solidness of ob-
jects/substances presented to learners, has three
discrete attribute values: SOLID, NONSOLID,
and AMBIGUOUS. AMBIGUOUS denotes bor-
derline cases in which SOLIDITY is neutral or
both SOLID and NONSOLID are possible. SYN-
TAX is the contextual attribute in a sentence
given in parallel with the named object. It has
three discrete attribute values: COUNT, MASS,
and AMBIGUOUS. AMBIGUOUS within SYN-
TAX denotes borderline cases similar to SOLID-
ITY. For example, COUNT appears with indefi-
nite article a or a determiner such as many , etc.

Such syntactic information was introduced be-
cause children receive it in a natural word learn-
ing situation. FEATURE is the attribute that
denoted other perceptual information and con-
sists of three attributes: SHAPE, MATERIAL,
and OTHER. OTHER includes miscellaneous in-
formation other than SHAPE and MATERIAL:
color, odor, fun, and so on.

We assumed children would experience pairs of
a new noun and the above information, and would
construct a category knowledge for the noun.
Based on the above definition of FEATURE,
we defined three categories: SHAPE-BASED,
MATERIAL-BASED, and OTHER-BASED, or-
ganized on the basis of similarity in shape, ma-
terial, and other miscellaneous information, re-
spectively. These categories may overlap for each
noun. For example, crayon is considered SOLID,
a COUNT noun, and SHAPE-BASED, but it can
also be simultaneously considered MATERIAL-
BASED; glue is NONSOLID, a MASS noun, and
MATERIAL-BASED.

3.2. Multidimensional input and category
representation

In this paper, we defined input representation
based on Samuelson (2002). The input informa-
tion that constituted a novel object was repre-
sented as a 36-dimensional vector in which the
first three dimensions denoted SOLIDITY, the
next three dimensions denoted SYNTAX, and
the remaining 30 dimensions denoted FEATURE.
In FEATURE, 10 dimensions were assigned to
SHAPE, MATERIAL, and OTHER. Each dimen-
sion was represented as a real number of [-1, 1].
When the SOLIDITY of an input was SOLID,
NONSOLID, or AMBIGUOUS, each was repre-
sented as (0.95, 0, 0), (0, 0, 0.95), or (0, 0.95, 0),
respectively, and contained the noise between [-
0.05, 0.05]. When the SYNTAX of an input was
COUNT, MASS, or AMBIGUOUS, each was rep-
resented as (0.95, 0, 0), (0, 0, 0.95), or (0, 0.95,
0), respectively, and contained the same noise as
SOLIDITY.

Each input belonging to the SHAPE-BASED
category was assigned arbitrary but constant val-
ues to the dimensions of SHAPE attributes and
random and changeable values to the dimensions
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SHAPE-BASED

category

MATERIAL-BASED

category

OTHER-BASED

category

SOLIDITY

.........

SYNTAX FEATURE (30)

(3) (3) SHAPE (10) MATERIAL (10) OTHER (10)

Constant Random Random

SOLID

AMBIGUOUS

NONSOLID

MASS

AMBIGUOUS

COUNT

.........

ConstantRandom Random

.........

ConstantRandomRandom

Figure 1. Representations of input and categories. Black circles denote constant values in each type of
word category. Gray circles denote random values in the category. White circles denote that they aren’t
related to the category.

of other attributes. The same relation applied
to MATERIAL- and OTHER-BASED categories;
that is, MATERIAL and OTHER attributes were
assigned arbitrary but constant values and ran-
dom and changeable values to other attributes
respectively. See Fig. 1 for more concrete under-
standing. To each of fixed feature input, noise
between [-0.05, 0.05] was added.

3.3. Word Distributional Prototype
(WDP)

We introduced explicit representation of word
meaning, which enable us to describe a compu-
tational process of AMS concretely. There have
been few studies using word meaning explicitly.
But we need a concrete model of meaning repre-
sentation to discuss on the computational mech-
anism. In psychological studies, word meanings
have generally been considered in relation to cat-
egories and concepts and defined as prototypes,
which were the most typical and central mem-
bers among category members (Rosch & Mervis,
1975; Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976). Some studies have sought vocab-
ulary learning by associations between sensory
feature vectors and discrete categories (see Roy,

2005). As pointed out by Roy, not all properties
concerning word meaning can be covered by such
associative learning models. But at least, they are
consistent with prototype models in psychology.
Therefore, in this paper, we propose a prototype-
like model of word meaning derived from associa-
tive learning.

In our model, we assume that word mean-
ing is defined as the prototype that consists of
the distribution formed by input information co-
occurring with the word (Kurosaki & Omori,
2005). Input information isn’t limited to percep-
tual information but it also contains other multi-
modal and hidden information such as memory,
emotion, time series information, and so on. In
this paper, we assume that the input contains SO-
LIDITY, SYNTAX, and FEATURE information.
Here it is notable to use input information dis-
tribution as word meaning. For example, banana
is generally used for crescent-shaped yellow fruit,
but not for red or globular things. It’s so sen-
sitive to shape and usage information that even
slight discrepancy is unacceptable. Meanwhile,
such information as emotion isn’t crucial for the
recognition of banana, though it’s also presented
simultaneously with the name. Such characteris-
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tics of word meaning can be expressed by two fac-
tors: the separated mean value in each informa-
tion dimension and the allowable deviation from
the mean value. Children learn them based on
experience.

We used multidimensional normal distribution,
one of the simplest possible representations for
the meaning of a word, to fulfill the above require-
ments. We called it word distributional proto-
type (WDP). Its mean vector denoted the word’s
standard appearance in input space. Its variance
matrix denoted the allowable range of fluctuation
from the mean vector. However, non-diagonal el-
ements of the variance matrices were fixed to zero
for simplification, meaning that input dimensions
had no correlation to each other. This simplifica-
tion might have some problems, but we thought
that at least for young children, WDP was suffi-
cient for the prototype-like representation of word
meaning.

In this model, each word meaning was described
as below. �x ∈ �M, �x = (x1 x2 · · · xM)T is
an input vector in M -dimensional input space, j
is an ID number for a WDPj, �μj ∈ �M, �μj =
(μj 1 μj 2 · · · μj M)T is a mean vector of WDPj,
μj i ∈ � is a mean value of input unit i of WDPj,
Σj ∈ �M × �M is a diagonal variance matrix of
WDPj, and σj i ∈ � is a standard deviation of
input unit i of WDPj. Then, likelihood pj(�x) of
WDPj is calculated as:

pj(�x) =
1

(2π)
M
2 |Σj| 12

exp
(
−1

2
(�x−�μj)TΣ−1

j (�x−�μj)
)
(1)

WDPs were trained by the following algorithm:

(3.3a) Initially, each word is paired with an in-
dividual WDP.

(3.3b) Given input vector �x and a corresponding
word, all WDPs calculate likelihood pj(�x)
for the input, and the winning WDPc that
outputs the highest likelihood is chosen.

(3.3c) If WDPc is the correct WDP paired with
the given word, then it learns to increase its
likelihood pj(�x) for the input, and the others
don’t. Loss function εc(�x) and update rules
for each parameter are defined as:

εc(�x) = − log (pc(�x)) (2)

Δμc i = −α
∂εc(�x)
∂μc i

= −α
μc i − xi

σc i
2

(3)

Δσc i = −β
∂εc(�x)
∂σc i

= −β

(
1

σc i
− (μc i − xi)2

σc i
3

)
(4)

(3.3c’) If WDPc is incorrect WDP for the given
word, then it learns to decrease its likeli-
hood pj(�x) for the input. Its update rules
correspond to those of the opposite direc-
tion of (3.3c). The correct WDP, paired
with a given word and which should give the
highest likelihood, simultaneously learns by
the update rule (3.3c).

(3.3d) Repeat (3.3b), (3.3c), and (3.3c’) depend-
ing on word input.

To maintain stable learning, we set the lower
limit of σj i to 0.1 and the range of μj i to [−1, 1].
The above algorithm is relevant to the extension
of “learning vector quantization (LVQ)” (Koho-
nen, 1995). The initial value of every σj i is set to
a sufficiently large value so that all WDPs don’t
output higher likelihood to particular inputs in
the initial state.

3.4. Ad-hoc Meaning Substitution (AMS)
and Nearest Neighbor Hypothesis
(NNH)

Consider a situation again in which children
are given a pair of novel objects/substances and
the corresponding noun. In this situation, noth-
ing teaches them whether they should expand
the noun based on similarity of SHAPE, MATE-
RIAL, or OTHER. In other words from the per-
spective of WDP, just one experience of the set
can reveal the mean vector of the word, but not
either standard deviation. Nevertheless, as seen
in word learning bias, children tend to general-
ize word meaning based on similarity of certain
properties. As discussed above, such behavior
is learned, not innate. Children must have the
ability to complement the missing information of
standard deviations by plausible methods nonspe-
cific to vocabulary learning.
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Therefore, we proposed the following hypothe-
sis on a mechanism to realize novel noun general-
ization. When given a pair of input information
and a novel noun, children determine the noun’s
meaning based on the meaning of a particular
known noun: The variance matrix of the most
similar known noun WDP, which output the high-
est likelihood to the input information, is copied
as the variance matrix of the novel noun. We call
the copying process “nearest neighbor hypothe-
sis (NNH)” (Fig. 2). Since we used multidimen-
sional normal distribution as WDP, NNH denotes
that the WDP nearest to the input vector from
the perspective of Mahalanobis distance was cho-
sen, and its variance matrix was used as that of
the novel noun (Eqs. (5) and (6)). Meanwhile,
the input vector presented with a novel noun was
copied and pasted as the mean vector of the novel
noun (Eq. (7))4.

c = arg max
j

pj(�x) (5)

Σnew = Σc (6)

�μnew = �x (7)

In a WDP framework, a single presentation of
a novel word corresponds to one point in input
space. The fact that children show word learning
biases indicates a process in which they construct
certain form of distribution (Eqs. (5) and (6))
and locate it on certain position in input space
(Eq. (7)) based on a single datum. To comple-
ment the missing information of the variance ma-
trix and the mean vector, one of probable strate-
gies is to substitute the nearest known word and
input vector for the information, even if it may
not work always correctly. We call this ad-hoc
construction of novel noun meaning ad-hoc mean-
ing substitution (AMS) (Eqs. (5), (6), and (7)).

4Suppose that a child, who has known the word dog and
its corresponding concept but hasn’t seen rabbits, meets a
rabbit and its corresponding name diff . In the framework
of our hypothesis, he accepts the instance of the rabbit as
a prototype of diff ; if he thinks the rabbit resembles dogs,
he substitutes his knowledge of dog for his new knowledge
of diff . (e.g., diff can be a noun organized by similarity
of shape and texture, but not by similarity of color and
size, etc.)

For the variance matrix, such competitive learn-
ing is often used in studies of neural networks and
is thought to actually exist in the brain (Koho-
nen, 1995).

3.5. Predicted Process of Word Learning
under AMS

Here, we explain in detail the process of how
AMS causes fast emergence of shape bias for solid
stimuli (2.2.1) and delayed emergence of material
bias for nonsolid stimuli (2.2.2). We have argued
that the triad of inductive learning, AMS, and
biased early vocabulary is fundamental to bias
emergence and that no bias behavior in the very
first stage of word acquisition is caused by matu-
rity, which will be explained in the next section.
To understand how AMS works more clearly, we
attend to the roles of maturity and two aspects
of vocabulary:

(3.5a) Vocabulary structure: statistical bias of
word attributes among early-acquired vo-
cabulary

(3.5b) Vocabulary size (sparseness): density of
WDPs in the SOLID and NONSOLID fields

(3.5c) Maturity of word meanings and related
cognitive faculties

For a simplified and essential discussion, here
we consider SHAPE FEATURE and MATERIAL
FEATURE as one-dimensional information and
omit the other attributes (SYNTAX, AMBIGU-
OUS SOLIDITY, and OTHER FEATURE) from
the input vector. Then, we have three remain-
ing attributes: SOLIDITY, SHAPE, and MATE-
RIAL. We discuss relationship between AMS and
the three factors (3.5a-c) in the three-dimensional
space. In that case, we can consider a SOLID
and a NONSOLID fields, where SOLIDITY is
fixed to SOLID or NONSOLID (Fig. 3). Each
SOLID and NONSOLID stimulus used in novel
noun generalization tasks is represented as one
point in the SOLID and NONSOLID fields, re-
spectively. WDP corresponding to a word is rep-
resented as an oval on either field (though it ac-
tually forms a hyper-oval-sphere in multidimen-
sional input space). Assuming that the horizon-
tal and vertical axes denote SHAPE and MATE-
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Figure 2. Ad-hoc meaning substitution (AMS). For a novel noun, new WDP copies its variance matrix
from the nearest neighbor word which outputs the highest likelihood to the target stimulus (NNH) and
copies its mean vector from the input vector.
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as white vertical ovals and MATERIAL-BASED nouns as filled horizontal ovals. Upper planes depict
SOLID fields and lower planes do NONSOLID fields.
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Table 1
Structural ratio in early vocabulary. Upper table shows ratio of each attribute value in SOLIDITY and
FEATURE. Lower table shows conditional ratio of each attribute value in FEATURE when SOLIDITY
is SOLID, NONSOLID, or AMBIGUOUS, respectively. (see Samuelson & Smith, 1999, for whole ratio)

SOLIDITY FEATURE
SOLID NONSOLID AMBIGUOUS SHAPE MATERIAL OTHER

.63 .04 .32 .48 .16 .39
SOLID .61 .11 .31

NONSOLID .00 .51 .39
AMBIGUOUS .30 .15 .50

RIAL values respectively, we can represent the
WDP of SHAPE-BASED as an oval that has a
minor axis in the SHAPE direction and a ma-
jor axis in the MATERIAL direction. Then the
WDP of MATERIAL-BASED is represented as
orthogonal to SHAPE-BASED.

Samuelson & Smith (1999) reported that the
ratio of SOLIDITY, SYNTAX, and FEATURE
attributes in an early vocabulary is not equal
but quite biased. We call it the statistical bias
(3.5a). We especially focus on the following three
points in the bias: The number of SOLID nouns
is much larger than NONSOLID nouns; the num-
ber of SHAPE-BASED nouns is much larger than
MATERIAL-BASED nouns when SOLIDITY is
SOLID; meanwhile, the number of MATERIAL-
BASED nouns is much larger than SHAPE-
BASED nouns when SOLIDITY is NONSOLID
(Table 1).

We also focus on the transition of WDP density
in the SOLID and NONSOLID fields along with
vocabulary size (Fig. 3), which we call sparseness
(3.5b). Becoming dense in a field, the WDPs in
each field are more likely to be chosen as the near-
est one to novel input in the field.

From the perspective of these three points
(3.5a-c), we consider the transition of shape and
material bias. First, consider cases with a small
vocabulary, such as ten words. WDPs are sparse
in both SOLID and NONSOLID fields. The
NONSOLID field is especially sparse because an
early vocabulary contains only 4% of NONSOLID
nouns (Table 1). Therefore, when NNH is ap-
plied to the novel inputs in the SOLID field, the

WDPs in the SOLID field are almost chosen as
the nearest for the input. Since SHAPE-BASED
nouns are dominant in the SOLID field (Table
1), a significant shape choice can emerge (2.2.1b).
Meanwhile, when NNH is applied to the novel in-
puts in the NONSOLID field, WDPs in the NON-
SOLID field are rarely chosen as the nearest; in-
stead those in the SOLID or AMBIGUOUS fields
are chosen because the NONSOLID field is too
sparse to choose the nearest WDP from among
the field. In that case, significant shape choice
takes place as with the case of a novel SOLID in-
put, and it leads to shape bias to NONSOLIDs,
i.e. (2.2.2b) overgeneralized shape bias.

Second, consider large vocabulary cases. Ap-
plied to novel input in the SOLID field, NNH can
make more significant shape choices (2.2.1b) be-
cause the density of WDPs in the SOLID field
is more increasing than small vocabulary cases.
Meanwhile, applied to novel input in the NON-
SOLID field, NNH can cause significant material
choice (2.2.2c) because the sparseness of WDPs in
the NONSOLID field has been cleared; i.e. NON-
SOLID field has become dense. Since WDPs in
the NONSOLID field are chosen as the nearest
and MATERIAL-BASED nouns are dominant in
the NONSOLID field (Table 1), it leads to a sig-
nificant material choice (2.2.2c).

Finally, consider middle vocabulary cases. Ap-
plied to novel input in the SOLID field, NNH can
cause significant shape choices (2.2.1b) because
it is middle cases of small and large vocabulary,
which cause shape choice. Meanwhile, applied to
novel input in the NONSOLID field, NNH may
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cause mixed results depending on the degree of
the sparseness. The complicated results for ma-
terial bias in some studies may have arisen not
from the difference of experimental conditions but
from the subjects’ vocabulary size - sparseness.

3.6. Predicted Process of Word Learning
after introduction of Maturity

Though some of the phenomena for solid stim-
uli (2.2.1) and nonsolid stimuli (2.2.2) can be
explained in the previous section, some points
remained unexplained. We can’t explain the
mechanism of no shape bias during small vocab-
ulary (2.2.1a) at all. The overgeneralized shape
bias in section 3.5 is also inadequate because it
was likely to emerge stably during small vocab-
ulary, although it doesn’t appear so frequently
in the natural course of vocabulary development
(2.2.2a). Nor we can explain no material bias
during small vocabulary (2.2.2a). So we intro-
duce the notion of maturity (3.5c) here.

We assume that children who have a small
vocabulary have encountered fewer instances of
each known word, and thus their learning of each
word meaning hasn’t converged. Along with
vocabulary development, after they have experi-
enced more instances of each known word, their
learning of word meaning has converged. We
call the degree of learning convergence for each
word meaning maturity. In our WDP model,
an immature situation corresponds to the state
in which learning of mean vector and variance
matrix for each WDP hasn’t progressed beyond
initial values. Each variance matrix element of
WDP is assigned a large enough initial value
(see section 3.3). Since WDP almost forms hy-
perspherical distribution in feature space, novel
WDP corresponding to a novel word also copies
its variance matrix and thus will output almost
equal likelihood for every input. It leads to no
shape bias (2.2.1a) and no material bias (2.2.2a)
during a small vocabulary. Through resolving
the immature state with further word learning,
novel WDPs that copy the variance matrixes of
SHAPE-BASED or MATERIAL-BASED nouns
comes to show shape or material bias respec-
tively, even immediately after producing a novel
WDP (Fig. 4).

The entire process of word learning bias for-
mation with maturity is summarized as follows.
During a large vocabulary, learners have enough
word learning experience. Therefore their bi-
ases to generalize novel nouns are same as the
no maturity case (section 3.5): They will show
significant shape bias to the solid set (2.2.1b)
and significant material bias to the nonsolid set
(2.2.2c). Meanwhile, during a small vocabulary,
novel WDPs copy hyperspherical distribution be-
cause the learning of known WDPs is immature.
It causes different results from the no maturity
case: no shape bias (2.2.1a) and no material bias
(2.2.2a). Finally, during a middle vocabulary,
the resulting bias varies sensitively depending
on the extent of maturity. Learners show shape
bias to the solid set (2.2.1b) if their learning has
somewhat converged. Meanwhile, they probably
won’t show material bias to the nonsolid set be-
cause its appearance may have been affected by
maturity in addition to sparseness. In this case
we predict that they will show the mixed results
of no material bias (2.2.2a), or overgeneralized
shape bias (2.2.2a).

The effect of AMS and maturity is sum-
marized as follows. The biased vocabu-
lary structure (3.5a) causes choice of known
SOLID/NONSOLID nouns by NNH to
SOLID/NONSOLID stimuli; since most of
known SOLID/NONSOLID nouns are SHAPE-
BASED/MATERIAL-BASED, it causes substi-
tution of SHAPE-BASED/MATERIAL-BASED
meaning to SOLID/NONSOLID stimuli; and
it results in shape/material bias. This is the
default process in children’s novel noun general-
ization. However, sparseness (3.5b) and maturity
(3.5c) affect the default process. Sparseness of
vocabulary prevents NNH from choosing known
NONSOLID nouns for novel NONSOLID stimuli
and causes overgeneralized shape bias. Matu-
rity has no effect on the choice, but it creates
a situation where known nouns’ WDPs are hy-
perspherical and uninformative for novel nouns
and causes no bias behavior. The overgeneralized
shape bias caused by vocabulary sparseness will
not be salient because it is canceled by the matu-
rity factor. In short, vocabulary structure creates
shape and material biases, sparseness distorts it,
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Figure 4. Predicted transition of voabulary structure with maturity. WDPs of SHAPE-BASED and
MATERIAL-BASED nouns are represented as white and filled ovals, respectively. Upper planes depict
SOLID fields and lower planes do NONSOLID fields.

and maturity delays their effects. AMS consists
of processing sensitive to these three effects, thus
biases emerge.

In the following section, we tested whether
our model based on WDP and AMS could show
behavior consistent with children. In simulation
1, we didn’t introduce maturity into the model
and showed the behavior predicted in section 3.5.
In simulation 2, we introduced maturity into the
model and showed behavior predicted in section
3.6.

4. Simulation 1

4.1. Simulation course: inductive learning
phase and generalizing phase

We divided the word learning process into two
phases: “inductive learning phase” and “gener-
alizing phase.” In the inductive learning phase,
learners received sets of words and correspond-
ing input information and regulated WDPs (word
distributional prototypes) using Eqs. (3) and (4),
that is, without applying AMS (ad-hoc meaning
substitution). Then in the generalizing phase,
they realized fast mapping with AMS and the al-
ready learned knowledge of WDPs without up-
dating the WDPs. Though children aren’t likely
to actually have such divided learning phases, this

division is useful to clarify the computational pro-
cess included in word learning and to easily verify
the model.

To compare the results of experiments by
Samuelson & Smith (1999), we prepared six
groups whose learners experienced a constant
number of words in each group and verified their
novel noun generalization tendencies after learn-
ing each group. Learners in each of the six groups,
called groups 1, 2, 3, 4, 5, and 6, were given 18,
50, 102, 213, 281, and 312 words, respectively (see
Samuelson & Smith, 1999). For each group, we
prepared 21 learners who learned different words
each other.

4.2. Inductive Learning Phase
4.2.1. Used Vocabulary for Inductive

Learning Phase
The vocabulary used in this phase must be ap-

propriate words generally heard and produced by
young children. Hence, we cited MCDI (Fen-
son et al., 1994), which include a typical vo-
cabulary for 16- to 30-month-olds. In accord-
ing with previous studies (Samuelson & Smith,
1999; Samuelson, 2002), we picked up 312 words
from nine categories of the MCDI: “animals,”
“vehicles,” “toys,” “food and drink,” “clothing,”
“body parts,” “small household items,” “furni-
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Table 2
Structural ratio in early vocabulary evaluated in this study. Upper table shows ratio of each attribute
value in SOLIDITY, SYNTAX, and FEATURE. Lower tables show conditional ratio of each attribute
value.

SOLIDITY SYNTAX FEATURE
SOLID NON-

SOLID
AMBIG-
UOUS

COUNT MASS AMBIG-
UOUS

SHAPE MATE-
RIAL

OTHER

.63 .04 .32 .74 .10 .16 .48 .16 .39

SOLID .88 .03 .09 .71 .09 .19
NONSOLID .07 .43 .50 .07 .86 .14

AMBIGUOUS .56 .19 .25 .24 .36 .45

COUNT .75 .00 .25 .66 .08 .34
MASS .19 .19 .61 .03 .84 .16

AMBIGUOUS .35 .14 .51 .20 .41 .45

SHAPE .85 .01 .15 .85 .01 .15
MATERIAL .26 .18 .55 .26 .18 .55

AMBIGUOUS .55 .02 .43 .75 .05 .21

ture and rooms,” and “outside things.”
As preparation for making learning data for

computer simulations, we evaluated the 312
words from a perspective of the attributes in sec-
tion 3.2. Some studies (Samuelson, 2002; Hi-
daka & Saiki, 2004b) asked adults to evaluate
the words in terms of SOLIDITY, SYNTAX,
and FEATURE attributes. But one important
factor for this kind of study is the consistency
of the structural ratio in the vocabulary com-
pared to Samuelson & Smith’s one (1999) (Table
1). Therefore we evaluated the words ourselves
from a perspective of the attributes in section
3.1 (‘glue’ is NONSOLID, MATERIAL-BASED,
and MASS. ‘Bicycle’ is ...). The result is shown
in Table 2. There may be some criticism of our
evaluation procedure. However, in this study, we
don’t aim to clarify vocabulary structure in early
vocabulary, but attempt to reproduce bias find-
ings and illustrate their mechanisms with AMS.
Then what is important is to preserve the vo-
cabulary structure (Samuelson & Smith, 1999) in
the learning data for simulation. This method
was also adopted by previous simulation studies
(Samuelson, 2002; Colunga & Smith, 2005; Hi-
daka & Saiki, 2004b), which picked up small num-
ber of nouns from a whole early vocabulary as the
structure was preserved.

To convert the evaluated noun data into a set
of concrete learning data, we used a method de-
scribed in section 3.2. Consider the case of ‘glue.’
Glue has some consistent properties of ‘glue’ such
as nonsolidness, while there are diverse kinds of
glue in the world. The consistency and diver-
sity is represented in the inductive learning phase
as follows. Its SOLIDITY dimensions are fixed
in NONSOLID (0, 0, 0.95), its SYNTAX dimen-
sions are fixed in MASS (0, 0, 0.95), and its
MATERIAL dimensions among FEATURE are
fixed in arbitrary 10-dimensional values. For each
value in the 16-dimensional vector, noise between
[−0.05, 0.05] is added. Each value in remaining
20 dimensions (SHAPE and OTHER) is set at
random to generate the diversity.

The vocabulary for all learners was chosen ran-
domly from the 312 words, and the number of
words depended on the group to which learn-
ers belonged. Every learner in a group thereby
learned a different set, but the same number of
words. All learners experienced the inductive
learning phase and formed their own WDPs with
the update rules Eqs. (3) and (4).

4.2.2. Results of Inductive Learning Phase
We set α and β to 0.001, the initial values of

μj i to 0.500 + [−0.001, 0.001] and σj i to 1.0 for
the simulation. To represent a word’s distribu-
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tion, we prepared 50 instances for the word, and
the corresponding WDP learned the instances. In
an epoch , learners experience all instances of all
the words prepared for the learner. The learning
iterated the epoch 30 times. We confirmed that
the learning of all groups almost converged and
that the learning parameters in each WDP were
correctly estimated to form the distribution of the
corresponding noun/category.

4.3. Generalizing Phase
4.3.1. Experimental Design

After the inductive learning phase was finished,
a novel noun generalization task was applied to
the learners of each group. In this phase, we with-
held SYNTAX information from learners because
we intended to compare our results to Samuel-
son & Smith (1999) and Samuelson (2002), who
conducted experiments with children and com-
puter simulation without SYNTAX to examine
tendencies to generalize novel nouns independent
of SYNTAX information. Specifically, we calcu-
lated the likelihood of WDPs (Eq. (1)) without
SYNTAX.

We used the stimuli of solid and nonsolid sets
and separately conducted novel noun generaliza-
tion tasks with them. Each set had 21 stimulus
sets5, and a set consisted of one target stimu-
lus, corresponding shape-match stimuli, and cor-
responding material-match stimuli. Twenty pairs
of shape-match and material-match stimuli6 were
prepared for each target stimulus. Shape-match
stimuli were made as input vectors that had the
same SOLIDITY and SHAPE values as the tar-
get stimulus, random MATERIAL and OTHER
values, and no SYNTAX value. The material-
match stimuli were the same except that the roles

5Ideally, target stimuli should be absolutely unknown ob-
jects/substances for children/learners. In the case of an
experiment with humans, experimenter can prepare such
appropriately novel target stimuli based on her common
sense. But it was difficult for computer simulation studies
to prepare such appropriate target stimuli. Therefore, we
resolved this problem by preparing a comparatively large
number of target stimuli randomly. The large number re-
duces the effect of a few accidental uses of familiar target
stimuli.
6This comparatively large number of shape- and material-
match stimuli was also prepared for the same reason as the
number of target stimuli.

of SHAPE and MATERIAL were switched with
shape-match stimuli. Noise between [−0.05, 0.05]
was added to the input dimensions that had
the same attribute values as the target stimu-
lus. Both stimulus sets were initially prepared
and shared by all learners in all groups.

In our model, shape choice probabilities for
each group were calculated below. Given the
following pair, a novel target stimulus and a
novel noun, Learnerg i of Groupg made a novel
WDP for the noun applying AMS. Then we gave
Learnerg i a pair of corresponding shape-match
and material-match stimuli and compared which
evoked higher likelihood. We considered that
the stimulus raising higher likelihood would cor-
respond to human choice in psychological stud-
ies. Learners made these choices for 21 pairs of
shape-match and material-match stimuli. Shape
choice probability p(g, i, j) to Target stimulusj

by Learnerg i in Groupg was calculated by Eq.
(8):

p(g, i, j) =
winning number of shape−match stimuli

total number of pairs
.(8)

Shape choice probability pL(g, i) to all target
stimuli by Learnerg i in Groupg was calculated by
Eq. (9):

pL(g, i) =

∑
j p(g, i, j)

total number of target stimuli
. (9)

The mean probability of shape choice p(g) by
all learners in Groupg is calculated by Eq. (10).
We tested the significance of shape and mate-
rial biases in Groupg by t-test on the basis of
mean probability p(g) and standard deviations of
pL(g, i).

p(g) =
∑

i pL(g, i)
total number of learners

. (10)

4.3.2. Generalizing Phase Results
First, we show the solid set results. t-test con-

firmed that the shape choice probability for each
group was significantly larger than chance: They
showed shape bias; t(20) = 12.95, p ≺ .001; t(20)
= 23.02, p ≺ .001; t(20) = 26.77, p ≺ .001; t(20)
= 27.98, p ≺ .001; t(20) = 27.89, p ≺ .001; and
t(20) = 32.45, p ≺ .001, respectively (Fig. 5).

To discuss the effects of sparseness in each
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Figure 6. Solidity and feature distances in simulation 1. (Upper left: solidity distance in solid set;
upper right: feature distance in solid set; lower left: solidity distance in nonsolid set; lower right: feature
distance in nonsolid set.)
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SOLID and NONSOLID field, we measured the
Mahalanobis distance between the target stim-
ulus and the nearest WDP among each WDP
set respectively assigned SOLID, NONSOLID, or
AMBIGUOUS values to SOLIDITY attributes.
Each Mahalanobis distance was identical to the
value calculated by Eq. (1) without the normal-
izing term. We averaged the Mahalanobis dis-
tances for 441 target stimuli in each group, which
consisted of 21 target stimuli of 21 learners. We
called this mean distance the “solidity distance”
and used it as an index to represent sparseness in
the SOLID and NONSOLID fields. We plotted
solidity distances for each WDP group (Fig. 6,
upper left).

To discuss the effects of choice in NNH (nearest
neighbor hypothesis), we also measured the Ma-
halanobis distance between the target stimulus
and the nearest WDPs among each WDP set that
belonged to SHAPE, MATERIAL, or OTHER-
BASED categories. We averaged the distances
for all stimuli as with the solidity distance and
called it the “feature distance” and plotted it for

each group (Fig. 6, upper right). The feature dis-
tance directly represented the effect of sparseness
to category of chosen WDP by NNH.

Both solidity and feature distances almost
monotonically decreased along with vocabulary
development. The solidity distance to SOLID and
the feature distance to SHAPE-BASED were con-
sistently nearest to the novel inputs among SO-
LIDITY and FEATURE.

We measured which SOLIDITY value a WDP
had when selected as the nearest one for a target
stimulus. Then, we calculated the selection rates
at which SOLID, NONSOLID, or AMBIGUOUS
WDPs were selected as the nearest to the in-
puts in each group (Fig. 7, upper left). In the
same way, we calculated the selection rates for
the SHAPE-, MATERIAL-, or OTHER-BASED
WDPs (Fig. 7, upper right). They were also in-
vestigated by using 441 target stimuli. We call
them the “solidity selection ratio” and the “fea-
ture selection ratio,” respectively.

The solidity selection ratio of SOLID was dom-
inant from group 1, the small vocabulary group,
and this tendency was strengthened with an in-
crease of vocabulary (Fig. 7, upper left). The fea-
ture selection ratio of SHAPE was also the high-
est from group 1, and this tendency was stable
independent of vocabulary development (Fig. 7,
upper right). We discuss the computational in-
terpretation of these results in the next section.

Next, we show the nonsolid set results. Each
bias was confirmed by t-test as below. The prob-
abilities of shape choice for groups 1, 2, and 3
were significantly larger than chance even for the
nonsolid set: They showed overgeneralized shape
bias; t(20) = 2.71, p ≺ .05; t(20) = 3.27, p ≺ .01;
and t(20) = 4.68, p ≺ .001, respectively. But
those for groups 4, 5, and 6 were significantly
smaller than chance: They showed material bias;
t(20) = −3.54, p ≺ .01; t(20) = −3.57, p ≺ .01;
and t(20) = −4.82, p ≺ .001, respectively (Fig.
5).

As with the solid set, all solidity and feature
distances monotonically decreased with vocabu-
lary development (Fig. 6, lower row). The differ-
ence from the solid set results was that, though
the solidity distance to SOLID and the feature
distance to SHAPE-BASED in the earlier two
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groups were closer to novel inputs than NON-
SOLID and MATERIAL-BASED, relative orders
gradually switched along with vocabulary devel-
opment. This was caused by the drastic decreases
of solidity distance to NONSOLID and the fea-
ture distance to MATERIAL-BASED.

The same mechanism also applied to the so-
lidity and feature selection ratios (Fig. 7, lower
row). Originally, the solidity selection ratio of
SOLID and feature selection ratio of SHAPE-
BASED categories were higher than NONSOLID
and MATERIAL-BASED, respectively. But the
relative orders gradually switched with vocabu-
lary development (Fig. 7, lower row).

4.4. Discussion
The solid set results (Fig. 5) show that our

model reproduced stable shape bias during a
somewhat larger vocabulary (2.2.1b). We discuss
the adequacy of the prediction in section 3.5 here
and the appearance of shape bias during a small
vocabulary in the next section.

The monotonic decrease of solidity distance
along vocabulary development (Fig. 6, upper left)
suggested that both the SOLID and NONSOLID
fields were becoming dense and that the SOLID
field was consistently the densest from the small
vocabulary group to the largest one. Correspond-
ingly, the solidity selection ratio of SOLID was
consistently the highest (Fig. 7, upper left) be-
cause the WDPs in the SOLID field were more
likely to be nearest to the target stimuli in solid
set by NNH, and the SOLID field was dense
enough to support selection in the field. The re-
sults of feature distance to solid set (Fig. 6, upper
right) can be explained by the above process and
the structural ratio in Table 2. Since the WDPs
in the SOLID field were dominated by SHAPE-
BASED ones (Table 2), SHAPE-BASED WDPs
were consistently nearest the solid set (Fig. 7,
upper right). To sum up, we found that all these
mechanisms caused shape bias (2.2.1b) and sup-
ported the explanation in section 3.5.

Meanwhile, the results of the nonsolid set
(Fig. 5) showed that our model could reproduce
the overgeneralized shape bias during a small vo-
cabulary (2.2.2b) and material bias during a large
vocabulary (2.2.2a). We discuss the adequacy of

our prediction in section 3.5 here and the con-
sistent emergence of overgeneralized shape bias
during a small vocabulary in the next section.

All solidity distances for nonsolid sets mono-
tonically decreased (Fig. 6 lower left), identi-
cal to the solid set, which indirectly suggests the
sparseness disappearance in all SOLIDITY fields.
The NONSOLID field was drastically becoming
dense compared to its initial sparseness, and thus
the order of the solidity distance of SOLID and
NONSOLID changed with vocabulary develop-
ment. In turn, although one advantage was that
NONSOLID WDPs were more likely to be the
nearest ones for the inputs of the nonsolid set,
learners couldn’t exploit the advantage during a
small vocabulary: They managed to choose the
nearest WDPs from the SOLID field (Fig. 7,
lower left, group 1-3). But increases of vocabu-
lary and density in the NONSOLID field allowed
them to take advantage: They came to choose the
nearest WDPs from the NONSOLID field (Fig. 7,
lower left, groups 4-6).

The results of feature distance (Fig. 6, lower
right) were explained by the above reasons and
the structural ratio in Table 2. During a small vo-
cabulary, since SOLID WDPs were chosen as the
nearest ones by NNH and most SOLID WDPs
were simultaneously SHAPE-BASED (Table 2),
SHAPE-BASED WDP was likely to became the
nearest for the input of the nonsolid set (Fig. 7,
lower right). They resulted in the overgeneralized
shape bias (2.2.2b). But just the opposite situa-
tion occurred after a somewhat large vocabulary.
The WDPs in the NONSOLID field were cho-
sen by NNH, and most were MATERIAL-BASED
(Table 2). Then the MATERIAL-BASED WDPs
became the nearest (Fig. 7, lower right) and
caused material bias (2.2.2c). To sum up, the
results of the nonsolid set supported the explana-
tion in section 3.5.

Finally, we conclude the results of simula-
tion 1 as follows. Depending on just statisti-
cal bias in early vocabulary, AMS could explain
not only the shape bias from the early period
(2.2.1b) and the material bias after becoming a
somewhat larger vocabulary (2.2.2c), but also the
overgeneralized shape bias during small vocabu-
lary (2.2.2b), which has not been reproduced in-
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tegratedly by previous model studies. However,
unexplained phenomena remain: no shape bias
(2.2.1a), and no material bias during a small vo-
cabulary (2.2.2a). The inevitable overgeneralized
shape bias during a small vocabulary was also
contrary to the previous findings, which haven’t
show such a robust overgeneralized shape bias
(2.2.2b). To explain these points, we introduce
the notion of maturity in the next section.

5. Simulation 2

5.1. Inductive Learning Phase
The simulation procedures and used vocabu-

lary were identical to simulation 1. We intro-
duced maturity to produce a situation in which
the convergence of word meaning learning wasn’t
sufficient for learners who had smaller vocabular-
ies compared to learners who had large vocabu-
laries. Here, we realized an insufficiently learned
condition by reducing the number of instances for
each word, depending on the vocabulary size of
the learner. (In simulation 1, the number of in-
stances was fixed to 50 in each group.) In simu-
lation 2, we determined the number of instances
of each group as 50 multiplied by the maturity
coefficient, which meant the degree of maturity
in each group. Since there was no reliable evi-
dence about the maturity coefficient, we tenta-
tively used the ratio of the number of words in
each group to 281 (the number of words for group
5) as the maturity coefficient for each group: re-
spectively, 0.1, 0.2, 0.4, 0.8, 1.0, and 1.1 in as-
cending order of group number.

Fig. 8 shows the progress of learning in the in-
ductive learning phase. The line for each group
represents the transition in the mean value of
the log likelihood of the nearest WDPs to all in-
puts, which included all instances of all words
for 21 learners in each group. The graphs show
that learning hadn’t converged even at the end
of epochs in groups 1 and 2. Their parameters
had also not been estimated correctly, compared
with simulation 1. We also confirmed that though
the learning in group 3 apparently converged bet-
ter than groups 1 and 2, their parameters hadn’t
been estimated as well as simulation 1. After
group 4, their learning had almost converged and
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Figure 8. Results of inductive learning phase of
simulation 2. Lines denote transition of mean log-
likelihood of winning WDPs in each group along
with learning epochs.

their parameters had been estimated well enough.
From these results, the expected effects from the
introduction of maturity were realized.

5.2. Generalizing Phase
The generalizing phase procedure was identical

to simulation 1. First, we show the solid set re-
sults. Each bias was confirmed by t-test as below.
The probability of shape choice for group 1 was
significantly lower than chance even for the solid
set, demonstrating material bias: t(20) = −20.39,
p ≺ .001. But in group 2, there was no significant
differences to chance, that is, it showed no bias:
t(20) = 0.081, p � .05. After that, the probabil-
ities for groups 3, 4, 5, and 6 were significantly
higher than chance, that is, they showed shape
bias: t(20) = 15.01, p ≺ .001; t(20) = 33.59, p ≺
.001; t(20) = 26.63, p ≺ .001; and t(20) = 37.49,
p ≺ .001, respectively (Fig. 9).

All solidity and feature distances monotoni-
cally increased along with vocabulary develop-
ment except in the first two groups (Fig. 10, up-
per row). The solidity distance to SOLID and the
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Figure 10. Solidity and feature distances in simulation 2. (Upper left: solidity distance in solid set;
upper right: feature distance in solid set; lower left: solidity distance in nonsolid set; lower right: feature
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Figure 11. Solidity selection and feature selection ratios in simulation 2. (Upper left: solidity selection
ratio in solid set; upper right: feature selection ratio in solid set; lower left: solidity selection ratio in
nonsolid set; lower right: feature selection ratio in nonsolid set.)
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feature distance to SHAPE-BASED were consis-
tently nearest to novel inputs. By introducing
maturity, we got quite different results from sim-
ulation 1.

The solidity selection ratio of SOLID was dom-
inant since the small vocabulary (group 1) and
this tendency became stronger with vocabulary
development (Fig. 11, upper left). The feature
selection ratio of SHAPE-BASED also demon-
strated the same tendency, but it was less dom-
inant than the solidity selection rate (Fig. 11,
upper right). At first both selection ratios were
smaller than simulation 1, but in later groups
they almost reached the same ratios as simula-
tion 1.

Next, we show the nonsolid set results. Each
bias was confirmed by t-test. The probabilities of
shape choice for groups 1, 2, 4, 5, and 6 were sig-
nificantly smaller than chance, showing material
bias; t(20) = −24.54, p ≺ .001; t(20) = −5.98, p
≺ .001; t(20) = −3.77, p ≺ .01; t(20) = −3.86, p
≺ .001; and t(20) = −4.01, p ≺ .001, respectively.
But in group 3, we observed a significantly larger

shape choice than chance, demonstrating shape
bias even for the nonsolid set; t(20) = 5.48, p ≺
.001 (Fig. 9).

All of the solidity and feature distances mono-
tonically increased with vocabulary development
except the first 2 groups, as the solid set (Fig.
10, lower row). After the earlier two groups, at
first NONSOLID and MATERIAL-BASED dis-
tances were nearer to nonsolid inputs than SOLID
and SHAPE-BASED, respectively. But the or-
ders gradually switched with vocabulary develop-
ment because of lower increasing rates for NON-
SOLID and MATERIAL-BASED (Fig. 10, lower
row). When looking at the order among them,
they were identical to simulation 1.

Concerning the solidity and feature selection
ratios for the nonsolid set, at first SOLID and
SHAPE-BASED were higher than NONSOLID
and MATERIAL. But reflecting the solidity dis-
tance ratio and the feature distance rate, we ob-
served the same reversing tendencies for the rel-
ative orders (Fig. 11, lower row). It also had the
same order as simulation 1.

5.3. Discussion
First, we discuss the results of the solid set.

The transition of shape choice (Fig. 9) showed no
shape bias to the solid set during a small vocab-
ulary in group 2 (2.2.1a) and stable shape bias to
the solid set in subsequent groups (2.2.1b). The
appearance of material bias in group 1 was incon-
sistent with the prediction in section 3.5, but it
can be explained. In the very early group, the
learning of WDPs was insufficient because of the
small number of instances for each word, so it re-
mained almost a hyperspherical WDP with wide
variances. Then, calculating the likelihood of
WDPs for novel noun input by Eq. (1), we didn’t
get large differences between the outputs of indi-
vidual WDPs. This mechanism caused the prob-
lem of significant bias in group 1 (Fig. 9). Since
shape choices by such learners became almost
random, pL(g, i) for all learners became around
0.5 and their deviation became very small. It re-
sulted in statistically significant shape/material
bias even though just slightly larger/smaller than
chance. In other words, it was caused by setting
maturity the same among learners within each
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group and making the extent of learning conver-
gence identically. But in the actual development
of infants, it isn’t likely that all children in the
same vocabulary group simultaneously show the
same developmental levels. So the problem can
be resolved by modifying the current simplifica-
tion of uniform maturity. These results fulfilled
the prediction for solid stimuli (2.2.1).

Now, we discuss the consistency of the results
with the computational process predicted in sec-
tion 3.6. For the solidity and feature distances
(Fig. 10), those distances in very early groups
were smaller than later groups because the WDPs
in the very early groups were closer to hyper-
spheres, and novel WDPs formed in the generaliz-
ing phase copied the variance matrixes of hyper-
spherical WDPs. Such WDPs specificially out-
put comparatively high likelihood values to ev-
ery input. However, the performance is the con-
sequence of their incomprehension of each word
meaning and subsequent low ability to distinguish
different words. This situation corresponds to
children’s overextension of words (“This is dog-
gie, that is doggie too, ...”). Meanwhile, well-
learned WDP output high likelihood for inputs
likely to co-occur with the word corresponding
to the WDP and low likelihood for inputs that
aren’t likely to do so. The target stimuli pre-
sented in the novel noun generalization task were
unknown to learners. They output comparatively
higher likelihood if they had a lot of unlearned
WDPs and very low likelihood contrary if they
had a lot of well-learned WDPs. Hence, though
later groups superficially seemed to show worse
performances than early groups with regard to
solidity/feature distance (Fig. 10), it was the con-
sequence of their sophisticated knowledge clearly
differentiating doggie from cat and so on.

As with simulation 1, the SOLID and NON-
SOLID fields became dense with vocabulary de-
velopment. The order among solidity and fea-
ture distances respectively decided the solidity
and feature selection ratios, which subsequently
affected the tendency of novel noun generaliza-
tion. Hence the most important feature here was
not the absolute value of those distances but the
relative order among the solidity/feature distance
in each group. In solid and feature distances,

SOLID and SHAPE were nearest to the inputs
except in the first two groups (Fig. 10, upper
row). Therefore, we found that all solidity and
feature distances were equally small in the early
groups because of their insufficiently learned hy-
perspherical WDPs; all distances became larger
in the later groups because of their more learned
and specialized WDPs for corresponding words,
as predicted in section 3.6. Besides, the consis-
tent orders in which SOLID and SHAPE were
respectively the nearest were identical to simula-
tion 1.

These discussions also affected the solidity and
feature selection ratios (Fig. 11, upper row). As
presented in Fig. 10, all the solidity and feature
distances in the first two groups were almost the
same to each other due to the influence of matu-
rity. Hence, for the solidity and feature selection
ratios, the rate with which each type of WDP
was chosen as the nearest was almost random. In
such cases, both solidity and feature selection ra-
tios were determined depending on the structural
ratio in the early vocabulary shown in the upper
row of Table 2. Along with increasing vocabu-
lary and converging learning for each word, the
WDP with the same SOLIDITY as the target
stimulus output higher likelihood values. Thus
WDPs in the SOLID field were chosen more often
as the nearest ones for novel SOLID target stimu-
lus (Fig. 11, upper left). Following the choice, the
feature selection ratio was automatically decided
depending on the rate of the SOLID case in Table
2 (Fig. 11, upper right). These results illustrated
the following process. WDPs in the SOLID field
tend to be chosen as the nearest ones; they are
likely to be SHAPE-BASED, resulting in shape
bias; such a tendency increases with the develop-
ment of vocabulary and maturity. Therefore, we
confirmed that our model behaved as predicted
in section 3.6 and explained the emergence mech-
anism of word learning biases for the solid set.

Next, we discuss the nonsolid set results. In
groups 1 and 2, the existence of material bias was
suggested from the results of shape choice prob-
ability (Fig. 9). They were inconsistent with the
prediction in section 3.6, but they could be ex-
plained by the same reason as the material bias
of group 1 in the solid set: Almost the same
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likelihood output by insufficiently learned WDPs.
Though our model couldn’t so clearly show no
material bias to the nonsolid set during a small
vocabulary (2.2.1a), at least it inhibited the in-
evitable emergence of overgeneralized shape bias
during a small vocabulary in simulation 1. And
though the experimental evidence in subsequent
groups was mixed (2.2.2a) (2.2.2c), there is no
doubt that material bias finally settles in older
children (Soja et al., 1991; Bloom, 2000), as was
also demonstrated in our model. The results of
our model for the nonsolid set were almost con-
sistent with previous evidence.

Now we discuss whether our results arose from
the same process as in section 3.6. As with the
solid set, something important for NNH-based
choice is the order among solidity and feature dis-
tances. We must consider the order in each group
to explain the change of material bias with vocab-
ulary development. In the early stage of groups
1 and 2, all solid and feature distances were al-
most equal (Fig. 10, lower row). Contrary, in the
last groups 5 and 6, the solidity distance of NON-
SOLID became the nearest, but the NONSOLID
field remained sparser compared to the SOLID
field (Fig. 10, left). Hence the feature distance
of MATERIAL in the nonsolid set wasn’t nearer
than others compared with SHAPE in the solid
set (Fig. 10, right). To make material bias in the
nonsolid set emerge as dominant as shape bias
in the solid set, NONSOLID field must become
much denser, that is, much larger NONSOLID
vocabulary. In middle groups 3 and 4, the orders
of SOLID and NONSOLID among solidity dis-
tance changed. But middle stage results should
be unstable because they were composed of a sub-
tle power relationship between maturity whose
insufficiency led to no bias, the attracting force
from WDPs in the SOLID field that produced
shape bias, and from WDPs in the NONSOLID
field that produced material bias. We confirmed
by additional experiments that the results were
unstable and changeable depending on such con-
ditions as network parameters. Such changeable
behavior might explain the mixed evidence of no
material bias (2.2.2a) and stable material bias
(2.2.2c) in previous behavioral studies.

This process also dealt with the solidity and

feature selection ratios (Fig. 11, lower row). In
the first three groups, both selections were done
depending on the structural ratio in the early vo-
cabulary in the upper row in Table 2, as with
the solid set. Then with vocabulary development,
the WDPs in the NONSOLID field output higher
likelihood and were chosen more as the nearest
ones for the novel NONSOLID target stimulus
(Fig. 11, lower left). But the solidity selection ra-
tio of NONSOLID for the nonsolid set was much
less than SOLID for the solid set, even in group 6,
because the NONSOLID field resolved sparseness
later than the SOLID field and thus temporarily
remained affected by WDPs in the SOLID field.
In that case, feature selection was done depending
on the NONSOLID rate in Table 2 (Fig. 11, lower
right), but was affected by SOLID. These results
demonstrated the following trajectory. Affected
by the WDPs in the SOLID field, WDPs in the
NONSOLID field are becoming more likely to be
chosen as the nearest ones; they are likely to be
MATERIAL-BASED ones, which cause material
bias; such a tendency increases with the develop-
ment of vocabulary and maturity. Therefore, we
also confirmed that our model could explain the
emergence mechanism of word learning biases for
the nonsolid set.

6. General Discussion

6.1. Our Position within LBA study
Here we discuss the relation between Smith et

al.’s and our hypotheses. Both are LBA (learned
bias account) studies and share the two funda-
mental factors of inductive learning and biased
early vocabulary. Thus a difference exists only in
the way of generalizing meanings of novel nouns,
i.e. higher-order abstraction (HOA) (Smith et al.,
2002) and ad-hoc meaning substitution (AMS).
AMS assumes the following mechanism: chil-
dren simply manipulate the nearest known word’s
meaning and multimodal input as ad-hoc but tol-
erable templates of novel noun meanings. Mean-
while, HOA can be interpreted as assuming the
following mechanism: children abstract higher-
order knowledge from already learned meanings
and copy it as a template for novel noun mean-
ings. In other words, HOA and AMS differ in
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Table 3
Differences between higher-order abstraction (HOA) and ad-hoc meaning substitution (AMS). “O”/“X”
marks denote desirable/undesirable characteristics. “∗” means they might be explained when HOA is
extended well, but not currently.

Point of Comparison HOA AMS

Fundamental notion of process Concept abstraction Competitive learning and substitution

Template of novel noun mean-
ings

Higher-order abstracted knowledge Meaning of the nearest known noun

Shape bias O: Explained O: Explained

Material bias O: Explained O: Explained

Overgeneralized shape bias O∗: Almost reproduced O: Explained

Cross-linguistic difference O: Reproduced ∗: Likely to reproduce

Cognitive adequacy ∗: Adequate except for very early stage O: Adequate from the period of bias emergence

Acquisition of abstract concept
words

∗: Likely to explain X: Likely not to explain

how they conceptualize templates of novel word
meanings.

As written in section 2.3, previous studies ma-
terialized Smith et al. (2002)’s 4-step model/HOA
by a neural network, a kind of associative learn-
ing (Samuelson, 2002; Colunga & Smith, 2005).
In general, neural networks come to predict ade-
quate outputs for novel inputs after enough num-
ber of inputs and outputs have been learned (step
4 of the 4-step model). It is because neural net-
works not only learn pairs of inputs and outputs
(step 2), but learn more general functional rela-
tionships between inputs and outputs (step 3). In
other words, the essence of neural networks is to
learn generalized/abstracted knowledge through
data. Thus, it is natural for Samuelson (2002)
and Colunga & Smith (2005) to adopt associative
learning to materialize the 4 steps thoroughly.
Meanwhile, our model doesn’t include the gener-
alizing/abstracting function (step 3). AMS has
the meaning substitution ability and the near-
est neighbor hypothesis (NNH), which also seem
appropriate for explanation of early biases be-
cause the competitive processing among known
nouns and the winner-takes-all learning in AMS
are natural in early brain processing. In addition,
AMS can be plausible from a perspective of anal-
ogous to “personification as analogy” (Inagaki &
Hatano, 1987; Inagaki & Sugiyama, 1988), which
argues that children reason about animals and

plants by analogy with familiar humans. It’s sim-
ilar to the AMS process that children substitute
knowledge of unfamiliar things based on familiar
things. Consequently, both HOA and AMS are
equivalently natural in processing.

Next, we compare them in terms of more de-
tailed computational mechanisms. Their most re-
markable difference is existence/nonexistence of
the third step of Smith et al. (2002). It leads to
difference in their hierarchical network structures:
HOA has to include a hidden layer that encodes
the relationship between learned word meanings,
whereas AMS does not. Each of the structures
was adopted not by chance, but as a logical con-
sequence of use/disuse of higher-order knowledge.
The difference in existence/nonexistence of a hid-
den layer subsequently results in difference be-
tween their calculation costs; a network with-
out a hidden layer has a smaller calculation cost
obviously. Therefore, it is possible that AMS’s
lower-level processing and smaller cost can resolve
HOA’s difficulty in cognitive adequacy (2.3b), es-
pecially for early biases around 24 months of age.

As for reproductivity and illustrativity consid-
erations (2.3a), HOA studies currently have not
fully reproduced shape, material, or overgeneral-
ized shape biases, and have also lacked discussion
about the small vocabulary size in their simula-
tion. Meanwhile, AMS not only reproduced the
bias emergence, but also demonstrated the pro-



Children Construct Novel Word Meaning Ad-hoc Based on Known Words 27

cess of emergence and disappearance of the bi-
ases along with vocabulary development. Addi-
tionally, AMS could illustrate how they emerge,
why emergence of material bias is later than
shape bias, and why overgeneralized shape bias
is a hard-to-observe phenomenon from the view-
points of vocabulary structure (3.5a), vocabu-
lary size (3.5b), and maturity (3.5c) (Fig. 3-
4). However, it is true that HOA has superi-
ority in reproductivity of cross-linguistic differ-
ences over AMS. Colunga & Smith (2005) con-
ducted a computer simulation with English and
Japanese vocabulary, and reproduced the same
bias behavior found with English and Japanese
children (Imai & Gentner, 1997). We think that
any hypotheses within LBA are likely to repro-
duce a kind of cross-linguistic difference because
in LBA framework, bias emergence is affected by
the differences of vocabulary structure between
English and Japanese. But, since other LBA hy-
potheses don’t necessarily show the same cross-
linguistic difference as children, its confirmation
with English and Japanese vocabulary should be
done.

In sum, we argue at least currently that AMS
has an advantage in reproductivity and illustra-
tivity (2.3a) over HOA except for some open ques-
tions, and that cognitive adequacy (2.3b) of AMS
also seems more consistent than HOA. We think
that especially based on cognitive adequacy find-
ings, AMS plays a key role in the first stage of
the biases (around 24 months of age). However,
these findings don’t necessarily prove AMS be-
cause other hypotheses which meet the conditions
(2.3a) (2.3b) may exist. To prove those hypothe-
ses, evaluations of them based on their predic-
tion results (2.3c) are necessary. Meanwhile, we
shouldn’t exclude HOA because it can apparently
explain well the acquisition of words belonging
to superordinate categories or more abstract con-
cepts. We think that they work together for those
biases. We summarize the differences between
HOA and AMS in Table 3.

6.2. Some predictions and comments
about HOA and AMS

AMS assumes that a child forms a novel noun
meaning based on a known noun meaning at sin-
gle blow and the learned meaning for a novel noun
depends on a known noun chosen as the nearest
noun. Thus, in a state where a specific known
noun is evoked in the subject’s mind, the mean-
ing of the noun will have a strong influence on the
result of novel noun generalization. For exam-
ple, we may be able to observe children’s “over-
generalized material bias” for novel SOLID stim-
uli when they are evoking known NONSOLID
nouns. Meanwhile, even in that situation, chil-
dren won’t show overgeneralized material bias un-
der the HOA framework, which uses generalized
knowledge as a template of novel noun meaning.

Similarly, under AMS framework, overgener-
alized shape bias won’t be observed in children
whose vocabulary is over a certain size. Dur-
ing a small vocabulary, they choose the nearest
known word for novel NONSOLID nouns from
the SOLID field but not from the sparse NON-
SOLID field. But such odd choices disappear
when sparseness in the NONSOLID field is re-
solved by an increase of vocabulary. Therefore,
it’s difficult to observe overgeneralized shape bias
unless young children with small vocabularies are
forced to selectively learn SOLID and SHAPE-
BASED nouns.

Next, the strength of shape and material biases
a child shows correlates with the level of under-
standing of each word, that is, maturity. If a
child doesn’t show biases in spite of her adequate
vocabulary size and age, we speculate that her
maturity is low. Maturity in this paper means
a complex measure of the degree of child’s com-
prehension of each word meaning, cerebral de-
velopment, and other factors. Though it would
be difficult to assess maturity, its assessment is a
promising direction for future research to prove
our hypothesis.

Finally, we should discuss effect of the sparse-
ness on both SOLID and NONSOLID fields in
addition to the structural ratio in the vocabulary.
Structural ratio alone can’t explain why mate-
rial bias appears after overgeneralized shape bias,
even though SHAPE-BASED nouns still remain
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dominant in the vocabulary. But we can explain
emergence of material bias in the dominance of
SHAPE-BASED nouns based on growth of the
density in NONSOLID field. After all, we might
predict what kind of bias children would show or
how strongly they might show it if we know their
vocabulary triad: sparseness, maturity, and the
structural ratio.

6.3. Relationship to Counterarguments
Although we support LBA, some researchers

made objections to it. Booth & Waxman (2002,
2005) revealed that children behaved differently
depending on whether shown a target object in an
animate or an artifact context. They suggested
that children generalize novel nouns based not
only on similarity in SHAPE but on other con-
ceptual information such as ANIMACY. However
this isn’t a crucial objection because the general-
ization tendency in both HOA and AMS depends
on the templates of novel nouns, and the template
can also be affected by ANIMACY as they were
affected by SOLIDITY in our experiment.

Diesendruck & Bloom (2003) revealed that chil-
dren showed shape bias when asked to choose the
same kind of object as a target stimulus. They
argued that shape bias is derived from guess-
ing what kind of thing the target stimulus is,
rather than from LBA’s simple attention learn-
ing. However, LBA is no longer inconsistent
with their view because HOA and AMS consist
of knowledge-based guesses about what kind of
meaning the noun has, which result in attentional
learning or word learning biases. Critics seem to
misunderstand Smith and her colleague’s current
stance. Their findings rather offer supporting ev-
idence for LBA.

Bloom (2000) suggested that it was difficult for
LBA alone to illustrate shape bias and that “the-
ory of mind (ToM)” was indispensable because it
is informative to know a word’s referent. But as
Bloom himself remarked, ToM alone is also in-
sufficient to determine a word’s meaning (Bloom,
2000, p. 87). Besides, ToM accounts also have an
age problem because it is difficult to expect ToM
to reach maturity at 24 months when shape bias
emerges. However, it is quite conceivable that af-

Age0 1 2 3 4

Basic Cognitive Function

Higher-Order Abstruction (HOA)
Theory of Mind (ToM)

Word Acquisition Ability

Other Functions

Emergence of

Word Learning Bias

Ad-hoc Meaning Substitution (AMS)

Figure 12. Probable positioning of various func-
tions in development of word acquisition ability.

ter ToM becomes available, it first narrows the
possible meanings of a word and then HOA and
AMS work together.

In summary, we could find neither crucial ev-
idence against LBA nor a more appropriate al-
ternative to it. But it is quite possible that HOA
and AMS cooperatively and competitively engage
in bias emergence with ToM and other functions.
We consider AMS to be the simplest function
within them, and thus it takes an important role
as the basis of bias emergence from an early stage
(Fig. 12).

7. Conclusion

In this paper, we presented an integrated expla-
nation of ad-hoc meaning substitution (AMS) for
behaviors that had been described separately as
shape and material biases and verified it by com-
puter simulation. AMS is a hypothesis among
learned bias account (LBA) and argues that chil-
dren simply use the meaning of known words and
given instances as ad-hoc templates of novel noun
meanings. It is a simpler hypothesis than pre-
vious studies. However, it could replicate phe-
nomena concerning shape and material biases and
explain the process clearly. Besides, to describe
AMS’s processing, we introduced word distribu-
tional prototype (WDP) as the explicit represen-
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tation of word meaning with an inductive learning
function. Few studies have explicitly represented
word meaning. But we consider such represen-
tation is valid methodology for illustrating the
computational mechanism of word learning bias,
which itself is deeply committed to word mean-
ing.

Simulation 1 revealed that when learners who
possess WDP and AMS were exposed to early
biased vocabulary, they showed shape and mate-
rial biases as well as overgeneralized shape bias.
This result suggested that the triad of word mean-
ing induction, ad-hoc instantaneous estimation of
meaning, and early biased vocabulary is essen-
tial for the emergence of biases. Simulation 2 re-
vealed that when maturity was introduced, learn-
ers showed neither shape nor material bias during
an early small vocabulary. This result indicated
that the period of bias emergence is decided not
by the triad but by maturity.

Though we have verified AMS from the per-
spective of reproductivity, illustrativity, and cog-
nitive adequacy, there is no conclusive evidence
that AMS causes shape and material biases. To
prove AMS, we have to investigate prediction and
its confirmation (2.3c). Additionally, it’s also un-
likely that only AMS realizes novel noun gener-
alization throughout life because there are some
functions which HOA and other models seem to
be able to explain. We consider that AMS works
as one mechanism of producing the biases and
plays a central role, especially in their emerging
stage. Future work includes investigations into
how AMS cooperates with other cognitive func-
tions (Fig. 12) and how AMS joins other word
learning biases. Finally, computational modeling
is one promising method for the illustration of a
more concrete hypothesis of human internal pro-
cessing such as word learning. We expect more
advanced studies with this method and hope to
integrate abundant findings from various fields in-
cluding psychology, physiology, and others.
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