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Alonso-Mart́ına, Miguel A. Salichsa

aAll authors are with the Department of Systems Engineering and Automation, Universidad
Carlos III de Madrid, Spain.

Abstract

Nowadays, robots and humans coexist in real settings where robots need to

interact autonomously making their own decisions. Many applications require

that robots adapt their behavior to different users and remember each user’s

preferences to engage them in the interaction. To this end, we propose a deci-

sion making system for social robots that drives their actions taking into account

the user and the robot’s state. This system is based on bio-inspired concepts,

such as motivations, drives and wellbeing, that facilitate the rise of natural be-

haviors to ease the acceptance of the robot by the users. The system has been

designed to promote the human-robot interaction by using drives and motiva-

tions related with social aspects, such as the users’ satisfaction or the need of

social interaction. Furthermore, the changes of state produced by the users’

exogenous actions have been modeled as transitional states that are considered

when the next robot’s action has to be selected. Our system has been eval-

uated considering two different user profiles. In the proposed system, user’s

preferences are considered and alter the homeostatic process that controls the

decision making system. As a result, using reinforcement learning algorithms

and considering the robot’s wellbeing as the reward function, the social robot

Mini has learned from scratch two different policies of action, one for each user,
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that fit the users’ preferences. The robot learned behaviors that maximize its

wellbeing as well as keep the users engaged in the interactions.

Keywords: Decision making system, autonomous robots, human-robot

interaction, learning behaviors, artificial motivations.

1. Introduction

Recently, robots have been moved out of controlled environments (such as

laboratories or production lines) to be introduced in more friendly conditions.

In the last few years, a number of social robotic platforms have been developed

with the capability of exhibiting social behaviors and collaborating with non-5

expert users in diverse environments (e.g. homes [1, 2], schools [3, 4], offices

[5, 6, 7], hospitals [8, 9], or museums [10, 11]).

Social robots aim at interacting socially and communicate with humans fol-

lowing the behavioral norms expected by the people they interact with [12].

That is, since they are designed to live among humans, social robots should, for10

example, greet when they meet someone, or maintain a certain distance from

their interlocutor while interacting. Real scenarios, particularly those involving

human-robot interaction (HRI), are unpredictable and change continually. For

instance, when a person is talking to a robot, unexpected events can happen; for

example, the person can leave the conversation at any moment, (s)he changes15

the topic, or a new interlocutor arrives. This requires social robots to adapt

their behavior to the environment and to make their own decisions.

Many researchers have focused their works on the adaptation of the robots’

behaviors to unexpected events happening in the surroundings of the robot. For

example, mobile robots are able to avoid unexpected obstacles encountered in20

their paths [13], or robots that grasp objects can deal with different forms and

poses [14]. In the case of social robots, humans are now part of their environ-

ment, so they must be able to adapt their behavior to the people’s unpredictable

reactions. In this paper, we focus on the adaptation of the behavior of the social

robot Mini to different kind of users while interacting. The goal is to provide25
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the social robot with the capabilities to make decisions autonomously taking

into account the particularities of each user, such as different reactions or pref-

erences. In this work we consider the users’ preferences in relation to the actions

executed by the robot.

Moreover, in social robotics it is crucial to have robots that exhibit natural30

behaviors in order to ease its acceptability. In this context, we consider natural

behaviors as those that can be observed in living beings such as animals or

even humans. One way to achieve these behaviors is taking inspiration from

nature, so we have employed a bio-inspired decision making system (from now

on DMS) that includes motivations, drives, and wellbeing. This DMS drives the35

robot’s actions in order to obtain well-accepted behaviors depending on the user.

Particularly, in this work, we aim at achieving a social robot which interacts

autonomously with different users, one at a time, and the robot’s behavior is

adapted to each user’s preferences. Users’ preferences have been incorporated

in a homeostatic system as a robot’s motivation and a drive, or need. This40

motivation and drive are not related to the robot itself (as most researcher

do) but to an external agent (a user). This is a new approach for seeking the

satisfaction of the user when interacting with the robot. This can be seen as a

form of cognitive empathy where the robot reacts to the preferences of each user

[15, 16]. This is important because, according to several researchers [17, 18],45

in order to achieve social interactions, empathy is one of the prerequisites.

Moreover, for this adaptation, we have considered unexpected human actions

that may occur at any time and we have modeled their effects as time-based

states.

The rest of the paper is structured as follows. Section 2 reviews the most rel-50

evant contributions on bioinspired DMS that have been applied to social robots.

After, Section 3 presents the DMS proposed in this article where motivations

and drives lead the robot’s behavior. The scenario where this DMS has been

evaluated is described in Section 4. The results of the evaluation are commented

on in Section 5 and, finally, the paper is concluded in Section 6.55
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2. Related works

Decision making in robotics is closely tied to answer two questions: what

action does the robot have to execute? And when does it have to execute it?

That is, a DMS selects the most appropriate action the robot has to perform at

each moment.60

Action selection has been extensively studied in robotics from decades. Since

the late 80s, researchers looked for systems that combined goal-directed tasks

and reactivity to anticipate changes in the environment [19]. In 1991, Brooks

suggested robots that were able to select an action based exclusively on the

changes of their surroundings [20], i.e. the behaviors exhibited by the robots65

where completely reactive. On the other hand, a few years later, researchers

in behavioral psychology and artificial intelligence proposed that a behavior

system needs to be composed by three types of elements: reactive, deliberative

and reflective [21, 22, 23].

Other researchers took inspiration from the living beings and considered70

the homeostatic drive theory [24]. According to Cannon, homeostasis means

maintaining a stable internal state [25]. According to the homeostatic drive

theory, drive is an error signal that represents a deficit and the agent/animal

acts to reduce the deficit and maintain an internal equilibrium. Drives evolve

from a low value (or a satiated drive) to a high value when the deficit is very75

severe. Each drive is related to a motivation that leads the actions of the agent.

Motivations compete to become the dominant motivation. Depending on the

dominant motivation, the animal (or robot) selects the action or behavior to

execute; for example, when an animal is hungry, the animal is motivated to eat

so the animal consumes food and the drive hunger is reduced or satiated.80

Some animal behaviors can be explained by the homeostasis theory so re-

searchers have taken inspiration from it to obtain natural robot behaviors.

When applying this theory to artificial agents, each agent has certain internal

needs, such as hunger, companion or fun, which have to be kept within certain

ranges to achieve the internal stability. When one or more of these internal85
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needs are not satiated, a motivation urges the agent to act in order to satiate

it.

There are several homeostatic-based architectures in the field of robotics

that deserve special attention. The first one was developed by Velasquez in

the late 90s [26]. He proposed the Cathexis architecture where a network of90

behaviors, such as “smile” or “express something”, compete for the control of

the agent. Each behavior contains two components: the expressive component

and the experiential component. The expressive component includes aspects

like prototypical facial expression, body posture, and vocal expression. The

experiential component considers the motivations that affect the drives, as95

well as the action tendency and readiness that are modeled by the behaviors.

The selection of actions in this architecture is made by a competition among

behaviors in order to obtain the control of the agent: the behavior with highest

value becomes the active behavior. This value is calculated from the motivations

and a wide variety of external stimuli.100

In 2000, Arkin et al. presented a bio-inspired model of the praying man-

tis that was applied to a robotic system [27]. In this model, there are three

internal variables called motivational variables: fear (associated with predator

avoidance), hunger (related to prey acquisition), and sex-drive (mating related).

Each one of these variables is associated with a behavior that is enabled when105

the associated variable is the highest one. The enabled behavior is executed if

a certain external stimulus is present. Otherwise, the next behavior with the

highest motivation is evaluated.

Two years later, Arkin et al. studied the role of ethological and emotional

models as the basis for an architecture that includes a behavior system for110

Sony’s robot AIBO [28]. The mechanism of action selection in Arkin’s archi-

tecture is based on evaluating both external and ongoing internal drives. They

employed the “homeostasis regulation rule” where internal variables are spec-

ified and maintained within proper ranges. Behavioral actions and changes in

the environment produced changes in the internal variables. In this architec-115

ture, the regulation of the internal variables was used as a motivational drive
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signal for selecting the behavior to be executed by the robot.

Later, Stoytchev and Arkin extended this work by considering circadian

rithms in the evolution of the motivational variables [29]. In that work, four

motivations (authors named them as curiosity, frustration, homesickness, and120

anger) changed their values based on different time-varying functions.

In 2003, Cañamero considered motivational states, e.g.hunger or social at-

tachment, as internal drives or needs which were related to the survival of the

agent [30]. Then, Cañamero proposed to use motivations, such as curiosity or

fatigue, driven by the internal needs, that urged the agent to act. Motivations125

competed among themselves and the one with the highest value executed a

behavior that contributed to satisfy the most urgent need(s) [31, 32].

In 2004, Breazeal designed a behavior system for the social robot Kismet.

The interaction between the robot and the user is guided and inspired by that

which occurs between a human infant with its caregiver. Kismet takes the130

infant role and the user is its caregiver [33]. Breazeal proposed that, in general,

an animal can only pursue one behavior at a time. Therefore, each behavior

is viewed as a self-interested goal-directed entity that competes against other

behaviors for controlling the agent. Moreover, each behavior determines its own

degree of relevance by taking into account the agent’s internal motivational state135

and its perceived environment.

In the same year, Parisi focused on the importance of considering the internal

elements of organisms when creating robots that are aimed at exhibiting natural

behaviors[34]. In his simulations, Parisi considered physiological needs, such as

food and water.140

More recently, in 2013, Vouloutsi et al. proposed the Experimental Func-

tional Android Assistant (EFAA) that contained multiple drives to display so-

cial competence and behaviors that promoted the HRI [35]. The EFAA was

endowed with a repertoire of actions which were executed depending on the

android’s goal. These goals depended on the drives and each drive aimed at145

satisfying one goal.

Recently, Cao et al. [36] presented a homeostatic system adapted to the
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HRI field. They proposed a hybrid concept for the behavior decision-making

process which combines hierarchical (actions are linked to drives that compete

to select the next action) and parallel (a set of actions is paired with each drive150

which has a priority and some preconditions that determine when to execute

it) approaches. The robot behavior was selected based on external stimuli and

drives, and the homeostatic system was used for triggering different artificial

emotions too. The system was applied to an HRI scenario where a therapist

and a Nao robot interacted with children. In a similar way, we propose to apply155

a homeostatic system to a real HRI scenario to lead the robot’s behavior but

taking into account the singularities of the individuals that interact with the

robot.

Robot adaptation can happen at different levels. For example, Gomez-

Donoso et al. [37] have developed a robotic system that adapts how patients160

with different capabilities interact with the robot during the therapy. The adap-

tation is conducted in a previous phase and it is conducted with the assistance

of a therapist. The exercises realized during the therapy are predefined by the

experts. Then, in this case, the adaptation is supervised by an external person

and it is related to how the users communicate with the robot and the exercises165

conducted.

Homeostatic-based DMSs have been used to adapt the robot’s behavior to

social aspects. In particular, Hieida et al. briefly combines a homeostasis pro-

cess with reinforcement learning [38]. The robot’s affective state is part of the

homeostasis process which forms the reward signal in the learning process.170

Several works have shown the importance of the adaptation of the robots’

behaviors when they have to interact with people [39, 40]. Recently, Rossi et al.

[41] have presented a survey where the robot behavioral adaptation is classified

in physical, cognitive, and social. Focusing on the social adaptation, social sig-

nals coming from the people interacting with the robot should be considered by175

the robot. Vinciarelli and Pentland [42] considered social signals as observable

behaviors that produce behavioral changes during the interaction. Based on

this definition, one of these social signals is the user’s preferences.
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Users’ preferences is a signal that has already been used in robots that are

involved in HRI [43, 44]. Preferences are related with the emotional state. Thus,180

Tanevska et al. proposed a DMS where the iCub robot adapted its behavior to

the person’s preferences considering the user’s emotional state [45]. Tanevska et

al. used one Markov chain per each robot’s action modeling the probabilities of

transition among three users’ emotional states (neutral, bored, and interested).

These states were determined by an image processing algorithm that used images185

of the user’s face. However, authors did not evaluate the adaptation of the robot

but the perception module.

Other researchers have presented works where the robot adapts its behavior

to the people the robot interacts with. This is the case of the study made

by Ramachandran et al. [46], where a social humanoid robot is used to tutor190

children in one-on-one interactions. They outlined an architecture in which the

robot used reinforcement learning to adapt the difficulty of tutoring exercises

of arithmetic problems to each child. The engagement level and the learning

gains were used for the reward signal. Similarly, thanks to our DMS, the robot

customizes its behavior to different users.195

In addition to the users’ preferences, it is important to consider unexpected

events that could happen during the HRI. Recently, Görür et al. considered

unexpected human behaviors in a collaborative task where a human operator

and a robot work together in a factory [47]. In the work of Görür et al., authors

used POMDPs to create an stochastic decision-making mechanism where the200

partially observed states are related to the operator’s intentions and the robot

decides when to assist her. In this model the actual action of the operator and

its consequences are not considered in the DMS, but the system considers a

model of the humans that helps to predict her future actions and the robot acts

accordingly. In that work, the evaluation is conducted in a virtual environment205

where the robot and the operator are simulated. In this line, we are interested in

the effects of the unexpected human actions, rather than just user’s intentions,

on the robot in real settings.

Based on previous works [48, 49, 50], in this paper we propose to use a
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homeostatic approach to allow a robot to make decisions considering the person210

located around the robot. The main contribution of this work is twofold. First,

in contrast to the previous work, the DMS is tailored to foster the HRI and adapt

the robot’s behavior to the user’s preferences towards the robot’s actions. This

is achieved by including the user’s preferences in our homeostatic-based DMS.

Secondly, we consider unexpected human actions happening at any time during215

the interaction (for example, a user approaches the robot or a user interrupts

the interaction). The effects of the user’s actions are modeled as transitional

states and considered in the learning mechanism that allows the autonomous

adaptation of the robot to the user’s behavior.

3. The Decision Making System220

3.1. Drives and motivations in the homeostatic process

Following a similar approach to that presented in several of the works men-

tioned in section 2, our DMS includes a homeostatic process. The term home-

ostasis refers to a state of psychological equilibrium obtained when a drive has

been reduced or eliminated. Thus, the robot has certain needs or drives that225

should remain at their lowest values. When a drive deviates from its minimal

value, a motivation arises to urge the robot to take action and overcome the

deficiency. For example, when a predator is hungry, its drive related to hunger

is very high and the motivation to eat makes it to prey on other animals.

Sometimes, motivations arise because of perceptual stimuli rather than in-230

ternal causes. For instance, when a kid sees chocolate, whether she/he is very

hungry or not, she is motivated to eat it. These perceptions from the environ-

ment are called external stimuli and influence the robot’s decision making

process by altering the motivations to behave in one way or another. This is

inspired by the Behavioral Theory [51] where Hull proposed the idea that moti-235

vation is determined by two factors: the first factor is the drive; and the second

one is the incentive, that is, the presence of an external stimulus that predicts

the future reduction of the need.
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In our approach, drives are considered as the robot’s needs and their ideal

value is zero (satisfied). Each drive evolves automatically increasing its value240

until the saturation value is reached or reduced due to an action (e.g. the

predator preys on other animals). When a drive is satiated due to a robot’s

action, the drive remains satiated (i.e. with a value of zero) for a while before

it starts to evolve again. This is called the satisfaction time. According to the

Behavioral Theory [51], the intensities of the robot’s motivations are modeled245

as a function of its drives and some external stimuli. Depending on the level of

a drive, the stimulus needed to trigger a motivation can be intense or weak.

Therefore, the value of the motivations is calculated as shown in Equation 1.

If Di < Ld then Mi = 0

If Di ≥ Ld then Mi = Di + wi

(1)

where Mi is a particular motivation, Di is its related drive, wi corresponds

to the related external stimuli, and Ld is the activation level. The activation250

level is defined as a threshold that makes the motivation relevant just after the

related drive has reached a certain value.

Motivations are competing continuously among themselves for being the

dominant one. The motivation with the highest value is considered the dom-

inant motivation and it leads the robot’s actions. According to Equation 1,255

motivations whose drives are below their activation levels will not be able to

lead the robot’s behavior.

3.2. The robot’s state

In our approach, the robot selects the next action to be executed depending

on its current state. The robot’s state has been defined as the combination260

of the internal and external states. The internal state is determined by the

dominant motivation and the external state is related to the objects the robot

can interact with. Continuing with the example of the predator, its actions

could be different if the predator is motivated to eat or to rest (internal state),

and also if the predator is alone or accompanied by other predators (external265
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state). Mathematically, the state of the robot s ∈ S is represented in Equation

2.

S = Sinternal × Sexternal (2)

In relation to the external state, the robot might interact with multiple

objects. In this work, we aim at achieving a social robot which interacts au-

tonomously with different users one at a time. Therefore, the objects the robot270

is able to interact with are the different users who communicate with the robot

and its external state is related to the state of the users (Sexternal = Suser).

As an example, consider the situation where userA is interacting with the

robot and, after a long time of activity, the robot’s need to relax is very high

making the motivation to rest become the dominant one. In this situation, the275

state of the robot is presented in Equation 3.

S = Sinternal × Sexternal =

= Sdominantmotivation × SuserA =

= rest× userA(interacting)

(3)

3.3. Learning a policy of actions

As already stated in section 1, social robots must be autonomous in order to

exhibit a natural behavior. This implies that these robots have to make decisions

based on their state and their repertoire of actions. The robot’s action selection280

policy maps states and actions. This policy can be predefined by the roboticists

or it can be learned by the robot. In this work, our goal is to have a robot that

is able to adapt its behavior autonomously to different users and, at the same

time, to maintain its needs within an acceptable range. Since the way each user

behaves is unknown and very different from one to another, a predefined policy285

is unpractical. Then, we have developed a mechanism that allows the robot to

learn from scratch the best action to execute depending on its most urgent need

(the internal state) and its state in relation to the user present at each moment

(the external state).
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In line with our previous work [48], we use reinforcement learning (RL) as290

the unsupervised learning technique to find out the robot’s best actions for each

user in different situations. RL is inspired by the behaviorist psychology and

concerned with how agents ought to take actions in an environment so as to

maximize a reward. The goal of RL is then to maximize the total expected re-

ward. RL differs from standard supervised learning in that correct input/output295

pairs are never presented, but the agent learns from direct interaction with the

environment.

In particular, the learning algorithm included in our DMS is the Q-Learning

algorithm [52]. This algorithm consists in an agent that is in a state st and

executes an action a. When the action is done, the agent has transited to a new300

state st+1 and receives a reward r. The learning algorithm updates the Q-value

for that pair (st, a) according to the obtained reward r and the new state st+1.

These Q-values represent how good it is to execute a particular action when

the agent is at a particular state. Q-values are defined as the expected reward

when executing an action a in the state s (Q(s, a)).305

In our case, the robot learns the best action for each user individually so our

DMS considers different Q-values for each user. The Q-values for a particular

user are updated according to Equation 4.

Quseri(s, a) = (1− α) ∗Quseri(s, a) + α ∗ (r + γ ∗ Vuseri(s′))

s, s′ ∈ Suseri ; a ∈ Auseri

(4)

Suseri is the set of states in relation to useri and Auseri is the set of actions

related to useri. Vuseri(s
′) is the value of the state s′ and it is the best reward310

the robot expects from state s′. Vuseri(s
′) is calculated as shown in Equation 5.

Vuseri(s
′) = max

a∈Auseri

(Quseri(s
′, a)) (5)

Parameters γ, α and r are respectively the discount factor, the learning rate,

and the reward.
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The discount factor γ defines how much expected future rewards affect de-

cision now. A high value of this parameter gives more importance to future315

rewards. On the contrary, a low value gives much more importance to the

current reward.

On the other hand, the learning rate α controls the weight provided to the

reward from the action made. This parameter gives more or less importance to

the learned Q-values than new experiences. A low value implies that the robot is320

more conservative and therefore gives more importance to past experiences. On

the contrary, a high value makes the agent values the most recent experience.

In relation to the reward, r, we have used the variation of the robot’s well-

being as the reinforcement received after the execution of every action. This

approach was inspired by Gadanho [53] and it has already been used by the325

authors in prior works [48, 49, 50]. The robot’s wellbeing (Wb) is related to its

needs and it is computed as presented in Equation 6.

Wb = Wbideal −
∑
i

Di (6)

Wbideal represents the ideal value of the wellbeing when all drives are sati-

ated (
∑

i×Di = 0). It corresponds to the maximum robot’s wellbeing or, in

relative terms, the 100% of its value.330

On the other hand, the higher the values of the drives, the lower the value of

the wellbeing. In view of this definition, the reward is calculated as the variation

of the robot’s wellbeing before and after executing the action a (Equation 7).

reward = ∆Wba = Wbafter a −Wbbefore a (7)

It is important to mention that the robot’s actions have effects over the

drives. Some actions reduce or satiate a drive (e.g. playing with a user reduces335

the need of interaction) but others can increase their values (e.g. playing a

game increases the need to rest).

Consequently, when the robot executes an action that causes a significant

drop in the value of a drive, this is reflected in an increase in the robot’s wellbeing
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and therefore in a positive reward. This can be understood as executing that340

action from that state is a good decision. On the contrary, a negative reward is

caused by an action that leads to a rise of the robot’s drives and, correspondingly,

it produces a reduction of its wellbeing.

4. Evaluation

4.1. The robotic platform345

The robotic platform used in this work is Mini (Figure 1), a desktop social

robot created to interact with people, in particular with elders suffering cognitive

impairment [54]. Mini is able to conduct meaningful interactions in order to

perform cognitive stimulation exercises or to play educational games.

Considering that Mini is a desktop robot, it cannot move around and there-350

fore the potential HRI is limited by this aspect. Having this in mind, the location

of the user in relation to the robot is a key aspect to consider while the user

interacts with the robot.

Regarding the hardware components, Mini’s head includes: two screens

where animated expressive eyes are displayed, two RGB-LED cheeks, and a355

VU-meter-like mouth that illuminates according to the volume of the audio sig-

nal generated by the robot. Mini can move its head by means of a 2 DOF neck

(pan and tilt) and it is endowed with two 1 DOF arms. Its torso includes a

colorful LED-based heart that beats and changes its color. Furthermore, several

touch sensors are located in the body to detect when and where the robot is360

touched. In addition, a microphone and two speakers are located in the belly

to carry out verbal communication.

In the base, a depth camera (Kinect) eases the detection and identification

of different users around the robot. The main computer and a data acquisition

board are placed inside the base.365

An external tablet is used to show videos, images, or menus during games

or exercises. Finally, an external button is used to provide the push-to-talk
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functionality: when it is pressed, the automatic speech recognition module starts

to process the input audio signal to extract the meaning of the user’s utterances.

Figure 1: The social robot Mini and its hardware architecture.

4.2. Customization of the Decision Making System370

In this study, we desire to have an interactive robot which aims at creating

social bounds with different bystanders and engaging them in playing interactive

games. Having this in mind, the robot’s DMS has been tailored to achieve these

goals.

It is important to remark that the configuration presented in this section375

is a design decision that will affect the robot’s behavior. That means that

other values or parameters would result in a robot showing different behaviors.

Studying how the parameters of the DMS affect the robot’s behavior is out of

the scope of this work.

As already mentioned in Section 3, in our DMS, the state of the robot is a380

crucial concept that is represented as a tuple formed by the internal and the

external states (Si × Se).
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4.2.1. The internal state Si

In this experiment we have defined three motivations: please, relax, and

socialize; each one is associated with the following drives respectively: user’s385

satisfaction, rest, and interaction (see Table 1). In contrast with some of

the previous works presented in Section 2 [26, 28, 30, 31, 35], our drives are not

related with physiological needs or survival (e.g. food, energy, or security). In

line with Cao et al. [36], our drives are aimed at fostering the HRI.

Motivation Drive

please user’s satisfaction

relax rest

socialize interaction

Table 1: Motivations and their associated drives.

In order to ease the engagement in the interaction, we consider that the user390

experience with the robot is very important. Thus, the motivation please has

been designed to consider the user’s enjoyment when interacting with Mini. The

drive associated to this motivation, called user’s satisfaction, decreases when

the user is pleased and increases when she is disappointed; that is, the more she

likes the robot, the lower the robot’s need of satisfying the user (because she is395

already satisfied). Thus, the value of the user’s satisfaction drive changes when

the user shows its satisfaction or disappointment with the interaction (see the

step-shaped plot in Figure 2a). Its saturation value (i.e. its maximum value)

was set to 100 and, considering that it is the highest one among all drives, the

associated motivation please is the most urgent one and Mini’s primary goal is400

to keep its users satisfied.

In the case of relax, this motivation has been included to avoid a hyperactive

robot that never gets tired. This motivation helps to achieve a more natural

behavior where a robot sometimes is proactive but, after a while, it needs to rest.

In this case, the need to rest (its associated drive) increases when the robot is405

performing an action (2.67 points/10 seconds) and it decreases when it is idling
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(a) User’s satisfaction drive. When the

step-shaped plot goes up, the user has en-

joyed the interaction; when it goes down,

the user is disappointed with the interac-

tion.

Time
0 s 60 s 120 s 180 s 240 s

D
ri
v e
 v
a l
ue

(b) Rest drive. The drive increases when

the robot is acting and decreases when it is

waiting.
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(c) Interaction drive. When the robot is

interacting with a user, this drive decreases;

otherwise, it increases.

Figure 2: Evolution chart for the drives.
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(see Figure 2b). This drive ranges from 0, its initial value, to 80, its saturation

level, and the satisfaction time is 120 seconds. For this motivation, the potential

HRI is considered as an external stimulus, an incentive, then, when a person is

close enough to Mini, the value of the motivation relax rises 10 points.410

We believe that the social bounds between the users and Mini will be es-

tablished after several interactions. To foster these social interactions, the mo-

tivation socialize impels our robot to communicate and interact with people.

The need of interaction grows when no one is interacting with the robot (at a

rate of 4 points/10seconds) and, on the contrary, drops at the same rate while415

HRI is happening (see Figure 2c). For this drive, the saturation level has been

established to 90 points, and the satisfaction time is set to 60 seconds. In addi-

tion, the presence of a user represents an external stimulus for the motivation

of socialize and its value increases 10 points.

At the beginning of the scenario, all drives are satiated and consequently420

their initial value is 0.

The parameters used in the configuration of the internal state have been

decided considering two criteria: first, our previous experience with this type

of DMS in robots [48, 49, 50]; and second, the parameters have been adjusted

to obtain a robot that experiences all possible situations for the internal state425

(i.e. dominant motivation). Before running the evaluation, we have empirically

tested the DMS and observed the robot’s behaviors using different values for

the parameters. When Mini experienced all dominant motivations, those were

the values selected for the evaluation.

4.2.2. The external state Se430

As previously described in Section 3, the external state is represented by the

state of the robot in relation to all items. In this work, the robot is intended to

interact with users. Therefore, Se is composed by the state of Mini in relation

to the people that Mini interacts with. We have limited the scenario to 1-by-

1 interactions, which means that the robot interacts with one user at a time.435

Then, for each user (ui) we have the following three basic robot’s states:
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• User is absent: ui is not perceived by Mini. This is the default state for

all users.

• User is near: the robot detects ui in the surroundings.

• User is interacting: ui is right in front of Mini facing it. In this state, we440

consider the user is interacting with the robot, or willing to.

Users are considered as autonomous agents that act by themselves and their

actions can affect the robot’s state. These actions, from the robot’s perspective,

are exogenous actions; that is, actions that are executed by other agents (or

people in this approach) and cause changes in the robot’s environment, but445

they cannot be controlled by the robot. For example, if a person turns off the

light of the room where the robot is, this action alters the conditions where the

robot is operating. These exogenous actions can trigger unexpected changes of

the robot’s state. For example, if the robot is alone in a room and a person

enters, now the robot is accompanied but that change in the robot’s state has not450

been due to a robot’s action, but due to an action of that person. Considering

exogenous actions by the robot’s DMS is an open problem.

In this work, we have considered the effects of the exogenous actions. When

the effect of an exogenous action is perceived, a transition to a time-based state

is triggered; after a predefined time window, the system transits automatically455

to another state. In this approach we have considered the exogenous actions

related to the user’s displacements and we have ended up with the next four

time-based robot’s states in relation to each user:

• User is appearing: ui has entered into the perception field of the robot.

• User is approaching: ui was near Mini and has moved right in front of the460

robot.

• User is leaving: after interacting, ui walks away from Mini.

• User is disappearing: ui leaves the area where the robot is so the user

exits the perception field of the robot.
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Note that all transitional states are associated with user’s actions. These465

states are active for a limited amount of time that was empirically set to 5

seconds.

Figure 3 shows all the external states considered in this experiment for each

user.

Figure 3: External states of the robot considered for each user.

4.2.3. Repertoire of actions470

The scenario defined for this experiment is an educational game where dif-

ferent mathematical questions (according to different levels) are asked by the

robot. Mini has been endowed with a predefined set of actions to engage users in

this scenario. It is important to mention that Mini has the repertoire of actions

but it does not know when to execute each one of them. The DMS proposed in475

this work first learns the best policy for each user and then it selects the proper

action in every situation according to that policy.

The available robot actions for this scenario are:

• wait: Mini remains idle and says utterances like ”I’m tired”.

• ask an easy question: Mini asks an easy mathematical question.480

• ask a medium question: this is equal to the previous one but the difficulty

of the questions increases.

• ask a hard question: in this case, the robot asks the most difficult math-

ematical questions.
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• attract attention: Mini tries to draw the users’ attention by greeting them485

or using utterances like “Is anybody there?”, “Does anyone want to play

with me?”, or “Are you leaving?”.

It must be said that after the user has answered a mathematical question,

either verbally or through the tablet, Mini asks for the user’s satisfaction dis-

playing a message in the table (”Rate your satisfaction with the game”) and490

using a 3 star menu. A rating of 1 star means that the user’s satisfaction is

very low, a 2 star score represents a medium satisfaction, and the maximum

satisfaction is represented by the 3 star rating.

As explained in Section 3, all actions cause some kind of effect. These effects

alter the drives of the robot and consequently its wellbeing. The effects of all495

actions are summarized in Table 2. Notice that most of the actions raise 5 points

the value of the rest drive. This effect represents the “effort” of executing an

action and consequently the need of rest increases. In the case of the action

wait, this drive decreases at the rate of 2.67 points every 10 seconds. The longer

the robot waits, the longer it rests, and the lower need of rest.500

In relation to the drive user’s satisfaction, its value changes depending on

how the user has enjoyed the interaction. As already explained, this is evaluated

through a 3 star menu after the user’s responds: if the user rates the interaction

with 3 stars, the user’s satisfaction drive is reduced by 10 points; if she gives

1 star, this drive increases 10 points; a 2 star rate does not change the drive.505

As we mentioned earlier, one of the robot’s motivations is to please and this is

achieved when the user enjoys the interaction with Mini.

Notice that the answer to the math questions (either easy, medium or hard)

does not have an effect on the drives. That is, whether the user’s answer is right

or wrong is not relevant because it does not change the value of the drives.510

Remember that the drive interaction changes depending on the state of the

users (it rises when the user is interacting and it drops when she is not) so it is

not affected by the robot’s actions.
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Action Drive: effect

wait rest: −2.67 points/10 seconds

user’s satisfaction: -10 if 3-star rating

ask easy question user’s satisfaction: +10 if 1-star rating

rest: +5

user’s satisfaction: -10 if 3-star rating

ask medium question user’s satisfaction: +10 if 1-star rating

rest: +5

user’s satisfaction: -10 if 3-star rating

ask difficult question user’s satisfaction: +10 if 1-star rating

rest: +5

attract attention rest: +5

Table 2: Actions-Effects relation.

4.3. The interactions

In order to evaluate the DMS, we considered two different user profiles (Sec-515

tion 4.4). Each user interacted with Mini during 5 hours, divided in 4 sessions:

three 90 minute sessions and a final 30 minute session (see Figure 4).

In order to select the action to execute, we used the Boltzmann distribution

[52]. This method uses a parameter called temperature (T ) to balance between

exploration and exploitation. A high values of T benefits the random selection520

of the actions, independently of the Q-value associated. On the contrary, a low

value of T implies a reduction on the randomness so the action selected will be

the one with the highest Q-value. Considering that the robot was learning from

scratch, it needed time to learn the best actions in each situation. Then, the ex-

ploration phase was composed by the first 3 learning sessions (Session 1, Session525

2 and Session 3 in Figure 4) where the robot selected the next action to execute

randomly; thanks to a high value in the temperature parameter (T = 100), in

these learning sessions, the Q-values barely influenced the action selection. In

the exploitation phase, the final session (Session 4 in Figure 4), the temperature
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is drastically reduced (T = 0.1). Consequently, in this last session, the robot530

selected the actions according to the learned Q-values, that is, it exploited the

acquired knowledge by following the learned policy of actions.

Following the approach used in our previous work [50], the learning rate (α

in Equation 4) was reduced gradually from 0.3 in Session 1 to 0 in Session 4.

This implies that during the last session, the Q-values are not updated any more535

and Mini exploited the learned values.

Session 1

Exploration
T=100
a=0.3

1.5 h/session

Session 2

Exploration
T=100
a=0.2

Session 3

Exploration
T=100
a=0.1

Session 4

Exploitation
T=0.1
a=0

30 min.

Figure 4: Sessions defined for the HRI experiments. ’a’ corresponds to the learning rate and

’T’ is the temperature factor that balances the exploitation and the exploration.

4.4. User profiles

Our DMS has been designed to adapt the robot’s behavior to the user

through to the interaction. To show it, we have considered 2 antagonistic user

profiles to demonstrate how our system is able to adapt the robot’s behavior540

to very different users. These profiles describe the behavior of two users when

they are nearby the robot.

In this case, we considered the users’ preferences towards the robots actions;

in particular, the user profiles differ mainly on the preferences for the level of

the mathematical questions. Then, when talking about the users’ preferences,545

we refer to the different users’ ratings of each game after they play with the

robot.

Therefore, Mini will learn 2 policies of action, one for each user profile, using

our DMS.
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4.4.1. User profile 1550

The user profile 1 (UP1) is a curious person that is attracted by the robot but

it interacts with the robot sporadically. The user is not particularly attracted

by a specific robot behavior, so the user does not prefer a behavior over the

others.

When playing the quiz with Mini, she likes to answer correctly the maximum555

number of questions and she is not interested on challenging questions. This

means that, when the user answers correctly a question, she rates higher her

satisfaction. On the contrary, when she answers incorrectly, her ratings are

lower.

4.4.2. User profile 2560

The user profile 2 (UP2) represents a sociable person that is willing to inter-

act with Mini as many times as possible. Thus, when Mini calls her attention,

this user approaches the robot.

Furthermore, she likes challenging questions, despite she might not know

the answer. Then, when facing challenging questions, her satisfaction increases.565

In contrast, she is very disappointed with easy questions and her satisfaction

decreases.

5. Results

The evaluation of the DMS system has been conducted considering the

learned policy of actions for each user profile and the robot’s wellbeing during570

the exploitation phase. It is important to remember that, in the exploitation

phase, the DMS selected the best action depending on the robot’s state to max-

imize Mini’s wellbeing. In the following, we present the results for each user

profile.

5.1. User profile 1575

Figure 5 represents the policy of actions learned for interacting with the

UP1. That is, the best actions to be executed for each dominant motivation
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depending on the state of the robot in relation to the UP1.

Figure 5: Learned policy for User Profile 1. White boxes represent the states related to the

user and colored boxes show the best action to execute for the different dominant motivations

(orange: please; green: relax; blue: socialize).

5.1.1. Dominant motivation: please

In relation to the please motivation, the robot has learned that the best580

action when interacting with UP1 is to ask easy questions because most of

these questions are correctly answered and, when this has happened, UP1 has

rated her experience higher. Let us recall that UP1 enjoyed to answer correctly

the maximum number of questions and this is more likely when asking easy

questions.585

Considering that UP1 approaches the robot regardless of what the robot is

doing, Mini has learned that, for the rest of external states, the best action is

to wait. During the learning, Mini tried all possible actions in each external

state but, since UP1 did not show any preference for any robot’s behavior (as

it is described where the UP1 is presented, Section 4.4.1), none of the actions590

was evaluated as very positive for the robot’s wellbeing. The resulting best
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action, waiting, represented a small positive reward because it reduces the need

of resting and consequently represents a positive variation of the wellbeing.

Focusing on the external state user is disappearing, the action with the high-

est Q-value is attract attention. This result may seem strange but, in comparison595

with the other states, this one was barely explored; this implies that presumably

the robot did not have enough chances to learn the right action in this state.

We believe that longer exploring sessions would have resulted in more chances

to explore this state and the consequences of the actions from it, and likely in

a different best action for that state.600

5.1.2. Dominant motivation: relax

In the case of the relax motivation, predictably, the best action in most of

the external states is to wait. In this situation, the effect of waiting is to reduce

the drive rest, which is related to the dominant motivation relax, and it obtains a

large positive variation of the Mini’s wellbeing. Notice that just when the user605

is interacting, the learned action is to ask easy questions, instead of waiting.

This can be explained if you consider two effects: (i) in this state, the drive

interaction decreases; and (ii) the more right answers, the more UP1 likes the

interaction and hence the user’s satisfaction drive is reduced too. This double

drop on the robot’s needs represent a very large increment on its wellbeing,610

even higher than the reward obtained when the drive related to the dominant

motivation is reduced.

5.1.3. Dominant motivation: socialize

The learned behavior when the highest motivation is socialize is the same

as when the dominant motivation is relax. Again, this is a consequence of the615

unpredictable user’s behavior: her reactions are unrelated to the robot’s ac-

tions and the action the robot executes does not drag the user to the interacting

state. The double reward obtained when asking easy questions while interacting

is observed here too, even stronger. In this case, when interaction is the domi-

nant motivation, the reward is higher when the user interacts longer with Mini620
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because she is entertained answering successfully (this occurs more frequently

with easy questions).

5.2. User profile 2

5.2.1. Dominant motivation: please

The learned policy for UP2 is presented in Figure 6. When please is the625

dominant motivation, the need of user’s satisfaction is very high and the robot

seeks the way to please the user. This is achieved when UP2 rates the inter-

actions satisfactorily and, considering this profile, this happens when the robot

asks her hard questions (see on Figure 6 that the best action while interacting

when please is the dominant motivation is to ask hard questions).630

Using the RL algorithm, the robot does not learn only the immediate action,

but the sequence of actions to satiate a drive. This can be clearly observed with

UP2 when please is the dominant motivation: the best action in most of the

states is to attract the user’s attention, which is how Mini can afterwards interact

with the user. Notice that when UP2 is absent, this means that Mini can not635

perceive the presence of the user but it does not mean that the user cannot hear

or see Mini. Actually, because of the way UP2 behaves, when UP2’s state is

absent or disappearing, Mini acts to attract her attention, UP2 perceives it, she

is interested on Mini and approaches it. As a consequence to this behavior, the

best action Mini can do in the subsequent states, appearing and near, is to wait640

since UP2 is going to interact in any case.

5.2.2. Dominant motivation: relax and socialize

As it happened with UP1, in the cases of the dominant motivation is relax

or socialize, the learned behavior is the same for both inner states. It should

be noted again that, when interacting, the robot’s wellbeing increases due to a645

double reduction of the drives: first the interaction drive drops because Mini

and the user are interacting, and second the UP2’s favorite action is executed

(ask hard question) resulting in the fall of the need of the user’s satisfaction. In
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particular, in the case of the relax motivation, this two-sided reward is higher

than that obtained by waiting, which would make more sense.650

In the other states for UP2, waiting is the best action. This is obvious in

the case of the relax motivation because it reduces the drive rest whose value

should be very high since it is associated with the dominant motivation.

Figure 6: Learned policy for User Profile 2. White boxes represent the states related to the

user and colored boxes show the best action to execute for the different dominant motivations

(orange: please; green: relax; blue: socialize).

5.3. Mini’s Wellbeing

During learning (exploration phase), Mini executed actions randomly to655

learn their consequences and, as a result, its wellbeing was adversely affected.

On the contrary, during the exploitation phase, Mini used the learned policy

to select the best actions (in terms of Mini’s wellbeing) to be executed. To

show how the DMS works after learning the policy of actions, in this section we

analyze the robot’s wellbeing during the 30 minute exploitation phase for UP1.660

Figure 7 details the evolution of the dominant motivation, the UP1 state,

the executed actions, and the robot’s wellbeing. Initially, please is the dominant
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2 - user’s satisfaction    3 - rest    4 - interaction

nothing

1 - absent    2 - appearing    3 - near    4 - approaching    5 - interacting    6 - leaving    7 - disappearing

show question
easy nothing show question

easy nothing show question
easy nothing

Dominant Motivation:    1-Please      2-Relax       3-Socialize
3

2

1

0 min                                                                                                        15min                                                                                                        30min

User states:    1 - Absent      2 - Appearing      3 - Near      4 - Approaching      5 - Interacting      6 - Leaving      7 - Disappearing

waiting ask easy
question waiting waiting waitingask easy

question
ask easy
question

Figure 7: Detail of the exploitation phase with UP1.

motivation and the wellbeing decreases until the user starts interacting with

Mini. Following the learned policy, the robot is waiting until it starts asking easy

questions. As a consequence of the satisfaction of the user after the interactions,665

the dominant motivation changes to socialize. In this state, the robot keeps on

asking easy questions until the user decides to leave. This behavior is repeated

several times through the 30 minute session.

Around the minute 10, relax becomes the dominant motivation and Mini

continues waiting even if it has the possibility of interaction sometimes.670

As Mini learned, when relax is the dominant motivation but it has the

possibility of interaction, it asks easy questions to UP1. This action outweighs
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others because it provides the largest increase in the robot’s wellbeing.

In relation to the wellbeing, we have represented it as a percentage: the

maximum value of 100% is the ideal situation when all drives are satiated. The675

minimum value of 0% corresponds to the worst situation when all drives have

reached their saturation levels. Focusing on Mini’s wellbeing (bottom plot on

Figure 7), it is stabilized between 90% and 80%. This means that Mini has

learned a policy that keeps its wellbeing in a very good range (recall that the

ideal wellbeing is 100%).680

Asking easy questions rises Mini’s wellbeing due to its already mentioned

two-sided effect on the drives user’s satisfaction and interaction. For the action

waiting, Mini executes it when relax is the internal state and the need of rest has

to be reduced. However, since the other two drives can increase at a faster rate,

the execution of this action can result on a reduction of the robot’s wellbeing685

(first and third execution of waiting in Figure 7). However Mini has learned

that this is the best action in this situation and this is corroborated by the

stable high wellbeing Mini keeps through the exploitation session.

6. Conclusion

In this paper, we have proposed a bioinspired decision making system (DMS)690

that uses unsupervised learning to adapt the robot’s behavior to different user’s

profiles and improve the HRI. In particular, we have considered a homeostatic

process at the core of the DMS that includes the user’s preferences in order to

learn different policies of behavior for each user. The goal of the DMS is to

maximize the robot’s wellbeing, which is related to the drives: user’s satisfac-695

tion, rest, and interaction. The DMS has been tuned to end up with a robot

that is sociable and tries to please the multiple users.

Unexpected changes of the robot’s state related to user’s displacements (ap-

pearing, disappearing, approaching the robot, and moving away from the robot)

have been modeled as time-based states. The robot has learned how to react to700

these exogenous actions.
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The system has been tested with two different profiles of users: (i) UP1

approaches the robot sporadically and independently of the robot’s action, and

she likes to guess the right answer; and (ii) UP2 uses to approach the robot when

Mini calls her attention and enjoys challenging questions. Mini has learned a705

different policy of action for each user that helps to keep its wellbeing within a

high value as well as to enjoy both users, since their satisfaction is considered

in the robot’s wellbeing.

After the evaluation, we have observed that the number of times the robot

explores the effects of the actions in all situations is a key aspect. We have710

observed that actions barely explored can lead to low performance (in terms

of robot’s wellbeing), and strange behaviors. This has happened, for instance,

when the UP1 is disappearing and Mini is motivated to please; in this case the

selected action is to attract the user’s attention but it does not make sense since

this user approaches, or moves away from, Mini almost randomly. We believe715

that a longer exploration of this state could lead to a different behavior.

In this line, we have observed that when the user behavior is not consistent,

the robot learns a conservative policy of actions; that is, the most cost-effective

actions are the preferred. This is the case of the action waiting in our scenario.

It is worth mentioning the relevance of several parameters of the DMS; de-720

pending on how they are adjusted, the resulting robot’s behavior could be dif-

ferent. In our case, we have ended up with a lazy robot that, in most of the

states, is waiting but, at the same time, encourages users to interact with it.

6.1. Limitations

This work presents some limitations that constrain the results obtained.725

The effects of the actions executed by the users, the exogenous actions, have

been modeled as time-constrained transitional states. The time assigned to each

one of these states is a design decision. Different times could affect the robot’s

behavior.

Moreover, the extension of the system to other exogenous actions is not730

straight forward. The consequences of each exogenous action have to be defined
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as new states.

Finally, the user profiles considered in this work are constant along all the

phases, both learning and exploitation. We have not considered changes on the

users’ preferences or behaviors as it happens to humans in the course of their735

life.
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