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Abstract

Smart environments offer valuable technologies for activity monitoring and health assessment. 

Here, we describe an integration of robots into smart environments to provide more interactive 

support of individuals with functional limitations. RAS, our Robot Activity Support system, 

partners smart environment sensing, object detection and mapping, and robot interaction to detect 

and assist with activity errors that may occur in everyday settings. We describe the components of 

the RAS system and demonstrate its use in a smart home testbed. To evaluate the usability of RAS, 

we also collected and analyzed feedback from participants who received assistance from RAS in a 

smart home setting as they performed routine activities.
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1. Introduction

The world’s population is aging – the estimated number of individuals age 85+ is expected 

to triple by 2050 [1]. Currently, an estimated 50% of adults age 85+ need assistance with 

everyday activities and the annual US cost for this assistance is nearly $2 trillion [2]. In the 

case of dementia, cognitively-complex functional activities such as using the phone, 

preparing meals, taking medications, and managing finances are affected early in the course 

of the disease [3]–[5]. Moreover, functional impairment in older adults, or the inability to 

independently perform these tasks, has been associated with increased health care use, and 

placement in long-term care facilities [6], [7], number of days in the hospital [8], poorer 

quality of life [9], [10], morbidity, and mortality [11]. According to the National Aging in 

Place Council [12], upwards of 90% of older adults prefer to age in place as opposed to 

moving into a nursing home. Alternative forms of health care are therefore needed to 

preserve older adults’ independence and quality of life. Technologies that automatically 
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assist with activity of daily living may relieve some of the strain on the health care system as 

well as caregivers, allowing individuals to remain functionally independent and age in place.

Previous research suggests that smart home technologies, powered by machine learning and 

automated reasoning, can provide insights into a person’s health status [13]–[18]. 

Information from smart homes can also be harnessed to create reminder systems [19] as well 

as automate control of home devices [20]. What smart homes do not normally bring is a 

tangible, mobile avatar that partners with the smart home to proactively provide assistance.

In this paper we introduce RAS, a multi-agent robot system that is designed to provide in-

home activity support for older adults and others that need assistance to independently 

perform basic and instrumental activities of daily living (ADLs). RAS represents a 

collaboration between a smart home and a mobile robot. In this partnership, the smart home 

tracks activities of daily living and determines when the resident needs assistance. The robot 

represents an interactive, assistance agent that provides the assistance in the moment, as the 

need for help is detected. We describe the vision for RAS as well as the details of its design 

and implementation. We also demonstrate RAS capabilities with a participant performing 

activities in a smart home testbed.

2. Related work

Many elder-care robots are already being designed or are in production, representing a wide 

assortment of appearances and purposes. One such purpose is companionship, exemplified 

by the robot Paro [21]. Paro resembles a baby seal and mimics animal-assisted therapy to 

elicit feelings of joy, happiness, and relaxation from its owner without facing the potential 

dangers of a real animal such as bites. Pepper is another social companion robot that 

perceives its owner’s emotions and adapts its behavior accordingly [22]. Because Pepper can 

move, talk, and display information on a tablet, the robot can also talk with the user about 

the news or weather.

A second role that assistive robots play is that of coach. For example, robots can motivate 

older adults to engage in physical exercise. The robot coach can demonstrate exercises that 

users need to perform for fitness or for physical therapy [23]. Similarly, a robot coach can 

promote strong social interaction strategies for individuals needing autism behavior therapy 

or stroke rehabilitation [24]. In the case of the robot nurse Pearl, the robot can guide users to 

where they need to go in order to make important appointments [25].

A third role for robots in elder care is physical assistance. A well-known example is Asimo. 

Designed by Honda, Asimo helps older adults who have physical limitations. Because 

Asimo [26] is mobile and it can fetch food and turn devices on or off in the home, the robot 

can provide physical assistance to individuals. Robear, a nursing robot, can pick patients up 

and transfer them between bed and wheelchair [27].

Some assistance for activity prompting has been provided in past approaches through a 

speaker or computer, but studies have shown that users are more responsive to a physical 

robotic coach than a virtual one [23]. Research also indicates that the way in which the robot 

approaches a human and leads a human around a space is important. For example, Hoffman 
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et al. [28] found that robot movements and gestures are socially expressive and will affect 

the engagement of the human into the interaction. Similarly, Kupferberg et al. [29] 

confirmed that human-like velocity in robot movement facilities perception of a humanoid 

robot as a true interaction partner. Destephe et al. [30] and Bisio et al. [31] confirmed that 

humans better understand robot intent (such as leading them to where a key object may be 

found) if the robot moves in ways that mimic biological movement patterns.

Our RAS system also introduces a robot that plays the role of a coach-style demonstrator as 

well as physical assistant. Two systems that share similar goals with this work have been 

introduced by Begum et al. [32] and by Bovbel at al. [33]. The robotic activity support 

system developed by Begum et al. [32] uses a camera system to track participants as they 

perform two activities in a laboratory setting. The robot system identifies errors consisting of 

skipped steps. When an error is detected, an operator tele-operates the robot to where the 

human is at and plays a video recording of the missed step. Bovbel et al. [33] also designed 

a robot system that aids with activities, specifically kitchen-based cooking activities. The 

location of the human is provided to the robot, which searches for a path to reach the human 

and guide them to the kitchen. Once in the kitchen, the robot points to items at 

preprogrammed locations that can be used in a recipe that the human selects.

Like these previous approaches, the RAS robot coaches users on needed activity steps so 

that residents can perform their daily activities accurately and completely. RAS extends 

previous work to detect when there is a need for such assistance based on sensor-driven 

detection of activity errors. Unlike previous approaches, RAS searches for and locates the 

humans, automatically provides video reminders, and leads them to the detected objects that 

are required for the skipped activity steps. Furthermore, RAS provides physical assistance 

by showing residents where key objects are in the home that they need for daily activities. 

As we will describe in the following section, a physical robot can uniquely extend the 

assistance of a smart home environment by approaching the resident when a need for help is 

detected and by physically guiding the resident to find objects needed for daily tasks.

3. Robot Activity Support

Memory has a large impact on everyday function, particularly as cognition-affecting 

diseases progress. RAS represents a technology that aids with everyday function by acting as 

a cognitive prosthesis. Figure 1 illustrates the Robot Activity Support (RAS) system 

components. As shown in the figure, sensors are embedded inside a smart home 

environment. Based on collected sensor data, models are built of typical activity 

performance and provide a basis for detecting errors in activity performance. Activities can 

contain a variety of errors. Previous work [34] categorizes activity errors as errors of 

omission (a needed activity step is not performed), substitution (an unusual object is used), 

irrelevant action (an action unrelated to the activity is performed), and inefficient action (an 

action is performed that slows down the task). RAS currently detects omission errors and 

substitution errors. In some contexts, inefficient actions or irrelevant actions may be detected 

if they cause an activity step to not occur at the expected point in the sequence.
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When an error is detected, a message is sent to the physical robot to provide assistance. The 

robot finds and approaches the resident and asks if they would like help with the activity. if 

they request help, the user has three options. First, they can indicate through a tablet 

interface that they would like to see a video of the activity step they should be performing 

next. Second, they can indicate that they want to see a video of the entire activity. Third, they 

can alternatively ask the robot to show them where the object is that they need for the 

current activity step. The RAS robot uses the onboard tablet to play the requested videos. If, 

however, the resident needs help finding the object, the robot will retrieve its learned map of 

the home and object locations and use the information to lead the resident to the object.

For RAS to be capable of performing all of these tasks the system requires a variety of 

functions. These include a navigation module to create a map of the house, localize itself 

within that map, and move to specified locations within the house; an object detection 

module to visually recognize objects (as well as the human resident) coupled with a depth 

sensor that determines the 3D object location relative to the map for storage and retrieval; a 

user interface module that can prompt the resident if he or she needs help as well as offer 

relevant activity information; an error detection module to recognize when the resident has 

made an error and may require assistance; and a process manager to control all of the 

modules. All of the RAS modules are implemented in the ROS robot operating system [35]. 

Figure 2 diagrams these key components, the locations of the components and needed data 

on various devices, and the flow of communication between the components. The 

components are described in detail in the following sections.

As an example of a RAS interaction, consider the task of eating breakfast. RAS must 

identify that the resident is eating breakfast and that the resident typically eats cereal. RAS 

may then assist the resident by suggesting that it is time for breakfast (if the resident does 

not initiate the task at the normal time), showing the entire breakfast routine by video if 

needed, showing a video of the next step if the resident is stuck mid-activity (e.g., cannot 

remember where to find the bowl), and leading the resident to the needed object such as a 

bowl if they cannot find it.

3.1. Robot Platform

The physical design of the robot platform must allow the robot to interact naturally with the 

user (i.e., voice and/or video), allow the robot to understand what steps the user has and has 

not yet accomplished (i.e., use sensors on the robot and/or in the home to detect the 

environment and the resident actions), and provide assistance (i.e., show a video or find an 

object). The robot must be able to move on level hard floors as well as carpet, have an 

onboard camera, and carry a tablet at chest-level that acts as the main user interface for 

RAS.

Our robot is based on a design by Eaton, et al. [36] with modifications in its mechanical 

design. Specifically, we increased the height of the robot by one foot and added a 4 ft mast 

of lightweight extruded aluminum that further raises the height to 5.5 ft. We also changed 

the pan-tilt mount design for positioning the 3D camera by adding an extra small mast in the 

horizontal direction. This better accommodates the Arduino board and actuators which 

automate the pan-tilt mount. All cables are routed through the mast to the Turtlebot base. 
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Some of the major mechanical challenges with the prior work were weight limitations (with 

a maximum payload of 5 kilograms) and instability of the moving platform on rough 

surfaces. To tackle these problems, a transformation robot was built on a Turtlebot 3 

platform which is a two-wheeled differential drive type platform with a maximum payload 

of 30 kg. To improve the quality of maneuvers and avoid wobbling, we added 3D printed 

wheels, “Omni wheels”, at the back of the platform. These wheels allow the robot to move 

in all directions. We utilize an Intel Joule computer and OpenCR controller board for robot 

control and a Nvidia Jetson computer for object detection and object location storage. The 

robot base employs 2D LiDAR for navigation. To facilitate object/human detection, we 

installed an Orbbec Astra RGBD camera on the top of the robot. Finally, we added an 

Android tablet for user interaction. The robot platform is shown in Figure 3.

3.2. Management Module

To connect the RAS components, we implemented a manager module. The manager is 

implemented within ROS State Machine (SMACH) [37], a task-level architecture for rapidly 

creating complex robot behavior. Specifically, we constructed two state machines: a “Go to 

Person” SMACH and a “Go to Object” SMACH, as shown in Figure 4. These state machines 

are reflective of the fact that activity errors are currently detected based on lack of use of the 

correct activity object at the correct point in the sequence, as described at the beginning of 

Section 3. Within a SMACH, a “state” is a local execution state or a single task that the 

system performs. In Figure 4, each oval represents a state executed by the system.

Once the “Go to Person” SMACH is triggered by the manager, the “FindPerson” state is 

initiated. This state first queries the database for the location of the human and a 

corresponding timestamp when the human was detected. If the timestamp has expired (i.e., it 

is at least 10 seconds old), the system looks for the human by rotating the camera to scan the 

space. Upon successfully locating the human, the state ends which gives rise to a new state, 

“GotoXY”. If the human is not located then the robot moves to a new location (in the new 

state “GotoNewBase”) and repeats the search. When found, the human’s location is sent (via 

“GotoXY”) to the navigation system. A similar SMACH controls the robot in search of 

objects that are used in daily activities.

3.3. Navigation Module

States “GotoXY” and “GotoNewBase” are handled by the navigation module. The 

navigational map is built using Google’s Cartographer system [38]. The Cartographer’s 

simultaneous localization and mapping (SLAM) [39] algorithm constructs a map of the 

smart home (as shown in Figure 5) and dynamically determines the robot’s location on the 

map. The map is available to all components using ROS’s publish/subscribe service. Desired 

XY map coordinates are given to the ROS movebase to move the robot to the goal location 

as well as to detect and avoid possible collisions. In order to create an initial accurate map of 

the space, a human driver manually directs the robot around the environment. The robot 

moves while assisting the resident as well, which provides an opportunity to dynamically 

update the map.
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Navigational obstacles are detected in the environment by the robot’s LiDAR. We analyze 

both the raw data sent by the sensor and data that is filtered through Cartographer. The 

combined information is used to generate an effective cost map, which indicates points in 

the space that will cause collisions with our system (as shown in Figure 5). These collision 

points are then expanded to create a safe area around detected obstacles that prevents “close 

call” collisions between the RAS robot and the physical environment.

To account for objects which exist primarily outside of the LiDAR range, we create 

navigation paths that leave a maximum amount of clearance on either side of the robot. For 

an indoor environment, this offers a practical strategy because in most situations the robot 

will detect opposing walls at all times. Using SLAM, the cost map, and this path-building 

strategy, the robot can navigate to the resident and to the needed objects throughout most 

smart environment spaces. In our smart home testbed the robot was able to navigate to 

approximately 90% of the points in the space. The remaining 10% of the home represent 

regions that the robot could not reach with sufficient clearance to nearby obstacles.

3.4. Object Detection Module

RAS requires an object detection module to visually find objects of interest as well as find 

the human resident. RAS needs to keep track of where objects are that are typically used for 

daily activities so that if the resident forgets where an object was left, the robot can lead the 

person to the object. We implement object detection using an RGB-D camera. Here, RGB 

refers to the red, green, and blue channels of a color image and D refers to an additional 

depth channel, where depth reflects the distance to the nearest object at each pixel from the 

RGB image.

The RGB-D camera is positioned on an Arduino-controlled pan-tilt mount that is integrated 

into the ROS system. In addition to panning and tilting via two servos, the Arduino reports 

to ROS the servo angles. These pan/tilt values enable calculation of where the camera is 

pointed with respect to the robot. RAS can thus scan the environment to find objects with 

respect to the robot’s map through a coordinate transformation. RAS currently requires that 

the objects be placed in plain view for the robot, such as sitting on a table or hanging in a 

closet with the door open.

From the RGB image, the object detection algorithm generates a bounding box around each 

object of a given class (e.g., each medicine container) within the image. Once the bounding 

box is created, 3D positions of each bounding box are calculated based on the calibrated 

depth channel. Next, the 3D position relative to the camera is converted into a position 

relative to the navigation module’s map. This conversion is performed by applying a 

coordinate transform to the original 3D location. Finally, we update the last-seen location of 

the object and save it to a database that RAS can later query when the object is needed.

A common technique for performing object detection is by using a convolutional neural 

network (CNN). In this process, a collection of boxes of different sizes are overlaid atop an 

image, each of which provides a data point for training the network. The network is trained 

to predict a class (object label) for each box as well as an amount and direction to shift the 

box to accurately cover the ground truth object bounding box. During training, an objective 
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function is used that balances minimizing error between incorrect class labels and 

minimizing error due to incorrect bounding box positions [40]. Utilizing a complex objective 

function results in many parameters that need to be refined for object detection. These 

include the structure of the network and the objective function. They also include choices for 

bounding box numbers, sizes, and positions.

We consider three types of CNN-based object detection strategies [40]. These include single 

shot multibox detectors (SSD), regions with convolutional neural networks (R-CNN), and 

region-based fully convolutional network (R-FCN). SSD makes a single pass through the 

CNN to predict both classes and bounding boxes. In contrast, R- CNN performs two steps. 

In the first step, a portion of a feature extractor network processes the image and proposes 

boxes that may contain the objects. After cropping the image to contain only the boxes, the 

updated features are processed by the rest of the network in the second step to classify the 

objects. R-FCN performs similarly to R-CNN except the image is cropped at the penultimate 

layer of the network rather than in the middle of the feature extraction network.

With any of these network choices, object detection CNNs can be trained using a 

combination of object images from the smart home and images of similar objects from an 

online database. Each image is preprocessed by manually drawing a bounding box around 

the object of interest and giving it a label. Once trained, the object detection algorithm runs 

in real time from video captured on the RAS robot. The algorithm processes approximately 

10 frames per second, which allows for image processing at the normal speed of movement 

for the robot. The training and use process is illustrated in Figure 6 based on an SSD 

detector [41]. During RAS operation, the point cloud generated from the camera’s depth 

sensor indicates the 3D position of the detected object relative to the camera. ROS’s tf2 

library transforms the relative position to a position that can be stored in an object location 

database as the last-seen location of this object.

The last-seen location of each object can then be integrated into the error detection and 

recovery mechanisms. When a task error is detected, the first step is to navigate the robot 

from its base location to the person. This requires knowledge of the human’s location. One 

of the “objects” that the object recognition system detects is the human, so the last-seen 

location of the human is queried from the database along with the timestamp. If the 

timestamp has not expired, then the navigation goal is set to this location, and the robot 

approaches the human to display several options for assistance. If the timestamp has expired, 

then the robot will navigate to a known location with high visibility (such as the entrance to 

a hallway) and rotate the camera to find the human. In our experiments, this method of 

finding the human was largely successful due to the majority of the apartment being visible 

from a couple of key locations.

If the detected error involves an object recognized by the object recognition system, one of 

the options for error recovery is to lead the person to that object. At this point, the robot can 

again query the database to retrieve the last- seen location of that object. This location is 

then set as the robot’s navigation goal as the robot says “follow me” via its speaker. The 

robot then autonomously drives to the location and rotates to face the object. Upon arrival, it 

says “here you go” to indicate the object should be in front of the robot. Thus, through 
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object recognition with the camera and maintaining a list of last-seen locations, the robot is 

able to both navigate to the human and also navigate to objects for error recovery.

3.5. User Interface Module

RAS’s onboard tablet provides an interface between the human and the robot. The interface 

is a website that is displayed on the tablet. Connections between the web browser, the robot, 

and the retrieved videos are shown in Figure 7. The ROS package rosbridge provides a web 

socket that is accessible via Javascript. The Javascript library facilitates creating and 

accessing ROS publish/subscribe notifications, services, and actions through the webpage.

Studies indicate that older adults prefer less anthropomorphic designs for robot assistants 

[42]. To provide interaction with the smart home resident that is not overly humanoid, the 

RAS interface module includes several artist-rendered faces that indicate the “emotion” of 

the robot. As shown in Figure 8, these expressions can be either neutral, questioning, or 

pleased. The neutral face is the robot’s resting face and is supplied when the robot is 

observing user tasks in the home. If an activity error is detected, then a questioning 

expression is displayed along with a text query and automatically-voiced query whether the 

user needs activity help. If the user does request videobased help, then videos of either the 

current activity step or the entire activity are pulled from a server and displayed on the web 

interface. If the user requests RAS to take them to the needed object, then the automated 

audio prompt “Okay, follow me” is played before the robot leads the user to the object. Once 

the error is corrected and the activity step is correctly performed (or the user selects “I did 

it!” on the interface), RAS displays a pleased expression.

3.6. Smart Home-Based Error Detection Module

Smart homes and other smart environments provide a timely opportunity for automated 

health monitoring and intervention. In these environments, sensor data is collected while 

residents perform daily routines. Unlike many other forms of behavioral data collection, 

smart home-based data collection can be performed without making any changes to a 

resident’s routine activities. This provides a more ecologically valid mechanism for 

functional health observing, assessing, and intervening. Recent advances have transformed 

smart homes from experimental prototypes to operational assistive environments [43], [44]. 

One such smart home design, CASAS, partners with RAS to provide activity tracking and 

intervention support.

In a smart home environment, the home acts as an intelligent agent that perceives the state of 

the physical environment and its residents using sensors, reasons about this state using 

artificial intelligence t echniques, and then takes actions to achieve specified goals [45]. 

During perception, control flows from the physical components through the middleware to 

the software applications. When taking an action, control moves back from the application 

layer to the physical components that automate the action. As a class of physical 

components, sensors in the home generate readings while residents perform daily activities. 

The sensor readings are collected by a computer network and sent to a middleware manager 

that tags each reading with a time stamp and an identifier for the sensor that generated the 

reading. The sensor data is then collected in a relational database that an intelligent agent 
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can use to generate useful knowledge such as patterns, predictions, and trends. If an activity 

error is detected, then a decision will be sent through the middleware to the robot at the 

physical layer and the robot executes the selected action (e.g., interact with the user, play a 

video, or find a needed object).

The CASAS physical layer contains hardware components including sensors and actuators. 

The software architecture utilizes a wireless network to control communication between 

physical and software components. The middleware, which resides on a Raspberry Pi, 

contains a publish/subscribe manager. Every component in CASAS communicates to the 

manager by means of a XMPP bridge. Examples of such bridges are the Zigbee / wireless 

bridge, the Scribe bridge which archives sensor data, inferred patterns, and selected 

decisions in a secure database, and bridges for each component in the application layer.

When RAS is used “in the wild” it will rely on activity recognition to determine a smart 

home resident’s current activity and track activity steps to detect possible errors. Many 

diverse approaches have been explored for activity recognition in smart homes [46]–[51]. 

Some of these techniques have demonstrated the ability to perform real-time activity 

recognition in home settings and some work has been explored to detect errors within the 

progression of simple and complex activities [52]. In the current RAS approach, a directed 

acyclic graph (DAG) is constructed for each activity showing the order in which activity 

steps should be performed. In near real-time, when steps are detected in a non-DAG-

supported order, then the CASAS system initiates an error state and communicates the error 

step to the management module. The error detection module will wait for a message from 

the management module that the error state is resolved before it continues monitoring the 

remaining activity steps. In this first RAS study, the activities to monitor are given to the 

module at the start of the experiment.

Although a variety of sensors can be employed in a smart home environment, for our initial 

RAS implementation we use Estimotes [53]. Estimote units contain accelerometers and 

temperature sensors embedded within stickers that can be attached to key items around a 

house. Activity steps can then be detected based on object usage. To collect Estimote data 

into the CASAS infrastructure, we designed an app that receives time-stamped Estimote data 

via Bluetooth and sends corresponding start time and stop time information to the 

middleware manager each time an object is used.

4. Evaluation of RAS activity assistance

To demonstrate the ability of RAS to perform activity assistance, we constructed several 

scenarios in which smart home residents performed activities in a smart apartment testbed. 

Twenty-six participants were recruited to perform the activities, interact with the robots, and 

provide feedback on the experience. While each participant performed the activities and 

interacted with the robot, two experimenters observed from a remote location and a third 

experimenter stayed on site to assist with the robot if needed.

Participants completed three scenarios representative of activities older adults might 

perform: preparing to take the dog for a walk, taking medicine with food and water, and 
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watering the household plants. Figure 9 shows screenshots from the medicine scenario. The 

participants completed each activity once without errors and an additional three times with a 

different omission error. A summary of the activity steps and error conditions is given in 

Table 1.

When RAS detected an error, the robot detected and approached the human to offer help. 

The three assistance prompts were:

1. Watch a video of the entire activity.

2. Watch a video of the next step in the activity sequence.

3. Lead the participant to the necessary object for the next activity step.

Suggested responses to these options were counterbalanced across participants and activities 

to evaluate a variety of assistance conditions.

4.1. Evaluation of object detection

The ability of RAS to provide activity support depends in large part on its ability to detect 

both humans (in order to find and approach the smart home resident) and to detect objects 

used in daily activities (to keep track of their location and lead the resident to the object 

when needed). To train RAS for our example activities, we collected 2,433 sample pictures 

of humans and objects in the smart home testbed. Because the object detection model 

needed to be able to generalize to multiple smart home residents, we also downloaded 

human images from the Microsoft COCO dataset [54]. Using all 64,115 available online 

images would create a significant class distribution imbalance. To address this issue, we 

randomly selected 20,000 of the COCO human images and oversampled the manually 

collected images by duplicating randomly-selected images from each category until the class 

distribution was fairly uniform, as shown in Table 2. Prior to sampling, the images were split 

by class: 80% of the original images were used for sampling and training, 20% of the 

original images were held out for testing.

Before integrating object detection into RAS, we evaluated alternative convolutional neural 

networks on the object classes that we use for our current activity scenario. Because the 

networks output a bounding box for the detected object as well as an object label, a 

performance measure needs to be used that assesses the “correctness” of the area bounded 

by the box. Here we use 0.5 IoU. IoU represents the “intersection over union”, or the 

intersection of the predicted bounding box and the ground truth bounding box divided by the 

union of the two. For the network-generated bounding box to be “correct”, the intersection 

must be at least 50% of the union, or 0.5 IoU. Based on this measure, Table 2 summarizes 

object detection precision for the R-CNN, R-FCN, and SSD networks. As the table shows, 

all networks performed very well on the inanimate objects. Detecting humans is much more 

challenging due to the variation in human features and future work can focus on designing 

methods to improve detection of this category [55]. Although they perform comparably, we 

use SSD on the robot because of its smaller memory and computational resource 

requirements.
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To further evaluate the performance of the object detectors, in Figure 10 we graph the 

precision-recall curves by class for the faster R-CNN, R-FCN, and SSD networks. These 

results are consistent with the findings in Table 2 in that the curves indicate fewer false 

positives and false negatives for the inanimate objects and more difficulty in detecting the 

human within the environment.

4.2. Evaluation of robot activity support

The long-term goal of RAS is to partner smart environments and robots to provide activity 

support for individuals who need help staying functionally independent. With this in mind, 

evaluation of RAS needs to consider not only the accuracy of the components and overall 

system but also the usability of the system for its intended purpose. For each detected error, 

RAS found and approached the human, then either displayed the selected video or led the 

participant to the required object. Our experimental results are based on a pilot test of RAS 

involving a sample of 26 healthy younger adults (mean age 24 years old, 42% female). As 

represented by a mean score of 6.09 out of 7 on a technology comfort questionnaire, 

participants self-reported a high degree of daily use and comfort with technologies.

Survey data was collected to assess RAS usability with the Post-Study System Usability 

Questionnaire (PSSUQ; Likert ratings: 1 = strongly agree, 7 = strongly disagree). As seen in 

Table 3, mean ratings of the overall RAS system along with the three subscales ratings (i.e., 

4.37 – 4.83) fell within the neutral range leaning more negative (disagree). Of note, there 

was a lot of variability in participant responses to the PSSUQ usability items, suggesting 

significant individual differences, with responses spanning the entire range of strongly agree 

to strongly disagree. In contrast, the user satisfaction questionnaire (i.e., QUIS) Screen and 

Terminology subscale scores showed more universally favorable reviews of the RAS tablet 

interface (7.96 and 7.74 out of a possible 9.00, respectively).

To determine prompt type preference (guide to object, next step video and full video) for 

four separate purposes (see Table 4), participants were asked to rate each presented prompt 

type on a 1 to 5 Likert scale, with 1 representing least easy/helpful or most confusing and 5 

representing easiest/more helpful or least confusing (see Table 4). Repeated measure 

analyses of variance with prompt type as the within subject variable were conducted and 

followed by Least Significant Differences (LSD) post hoc tests. For all four prompt purpose 

questions, significant differences emerged across prompt types, Fs > 213.00, ps < .001. 

Follow-up tests revealed that compared to the full video, participants rated the next step 

video as significantly easier to imitate, F(1, 20) = 4.96, p = .04, and more helpful if unable to 

recall the next step, F(1, 21) = 6.02, p = .02. Follow-up tests also revealed that participants 

rated the next step video as likely to be both more helpful for someone with mild cognitive 

impairment (MCI) and less confusing to someone with MCI than both guidance to object, Fs 

> 5.01, ps < .05, and the full video, Fs > 5.86, p < .05. As seen in Table 5, this was further 

supported by participant choices of the most liked and helpful cues, with the next step video 

being chosen by 60% as the most liked prompt and by 52% as the most helpful prompt. 

Similarly, the full video was chosen by 80% as the least effective prompt.

Finally, correlational analyses revealed no relationship between questionnaire scores (i.e., 

PSSUQ and QUIS) and the variables of age (rs between −.09 and .17) and comfort with 
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technology (rs between −.33 and −.24). This suggests that the satisfaction with and usability 

ratings of the RAS system did not appear to differ based on participant age or technology 

comfort levels. Qualitative feedback revealed one consistent area for improvement: the 

robot’s speed, both in terms of detecting errors and moving towards the participant.

5. Discussion and Conclusions

A smart environment can use heterogeneous devices to not only monitor and assess resident 

activities but also intervene to support daily activities. In this project we introduce RAS, a 

robot activity support system that links smart environment technologies with physical robots 

to provide aid in completing daily activities. As highlighted in this paper, fully implementing 

such a system requires synergy between many components including map building, object 

detection, navigation, user interface, and activity error detection.

Results with participants in a smart home testbed indicate that such robot support can be 

usable in practical settings. The long-term benefits of providing such physical assistance for 

older adults ripples across multiple domains. Financial strain on the healthcare system may 

decrease, allowing funds to be allocated toward tailored care for individuals that cannot 

support themselves even with this type of robotic assistance. caregiver responsibilities may 

be shared with a robotic aid who can support activities around the clock. Most importantly, 

aiding functional health may preserve an older adult’s independence and quality of life.

The RAS project represents an early step toward automated care in everyday settings. 

Overall impressions of the RAS tablet interface were universally favorable. However, ratings 

of system usability were more neutral and highly variable. Questionnaire ratings were not 

systematically related to age or comfort with technology. compared to the next step video 

and guidance to object, the full script video was rated by study participants to be less helpful 

and more confusing to someone with Mci. These experiments highlighted directions for 

future research that will solidify the impact RAs can have on independent living. For 

example, there is a need to assess RAs usability specifically with older adults and 

individuals experiencing cognitive limitations. Future work can also involve these 

participants in participatory design of the RAS interface and human-robot interaction that is 

best suited to this target group.

one of the most difficult components of RAs is object detection, specifically detecting 

humans in a home environment. During development of the system, RAS experienced many 

false positive detected humans as lighting conditions changed in the home. Future research 

may improve this through incorporating additional training examples and tracking humans 

in the environment to not lose sight of them. Additionally, the current RAS system assumes 

a static environment in which objects are not moved outside of the robot field of view. In 

future work, RAS can dynamically update the map. One approach would be for RAS to 

occasionally scan the environment to ensure objects are in the stored locations. When they 

are not, RAS can systematically search the environment for the new object location.

Additionally, open-ended comments from participants included the suggestion to make the 

robot response to detected errors faster and more fluid. one source of delay is the need to 

Wilson et al. Page 12

Cogn Syst Res. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



remotely communicate between sensors, database, robot interface, and navigation system. if 

the delay between these modules requires more than a few seconds then the offer of 

assistance loses timing accuracy and is more likely to be ignored or no longer be accurate by 

the time assistance is offered. Because the robot velocity is approximately 3/4 the human’s 

walking speed, this may need to be improved as well to make assistance more timely. 

Further work is also needed to make RAS sensitive to a greater variety of activity error types 

as well as occurrence of multiple simultaneous activity errors. Existing research in 

monitoring the progression of automated plans [59] can be incorporated to facilitate this 

direction of research.

Although the current RAS design analyzes Estimote-based object use information to track 

activities and detect errors, error detection could be improved by including additional 

sensors. A next step for RAS is to include information about ambient sensors, such as 

motion, door, light, and temperature sensors, into the activity recognition and error 

detection. These sensors can also partner with the object detection module to track the 

resident’s location in the home.

A long-term goal for this research is to test RAS in home environments over days or weeks 

in realistic settings, rather than relying on scripted activities. Providing continual support in 

home settings will not only require efficient response times and robust components but a 

continuous power source as well. Although the types of activities that are monitored may be 

limited initially, this type of RAS assistance will also require a more robust approach to 

activity error detection that can detect and track alternative approaches to completing a task. 

For practical settings, robot assistants need to dock and charge themselves. Future 

extensions of RAS may also include the ability to retrieve needed items as well as keep track 

of their locations to assist individuals with physical limitations. Evaluating RAS in homes of 

older adults will determine the success of such robotic systems to truly partner with smart 

environments in a way that assists individuals with their daily routines, improving their 

quality of life and preserving their functional independence.
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Figure 1. 
RAS system overview.
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Figure 2. 
RAS software architecture. Components are located physically within a CASAS smart home 

(blue) or on a CASAS server (purple), RAS Joule (green), RAS hardware (yellow), Jetson 

(orange), or a tablet interface (red). Components communicate via a RabbitMQ (orange 

arrows) or through ROS (green arrows).
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Figure 3. 
The Turtlebot 3 is enhanced with sensors, camera, computer, navigation system, and 

Android tablet for use in RAS.
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Figure 4. 
The two RAS state machines. (left) The Go to Person SMACH. (right) The Go to Object 

SMACH.
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Figure 5. 
(left) Smart home floorplan. (right) Cartographer-generated home map. Green dots indicate 

current LiDAR scan.
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Figure 6. 
Object detection process. (upper left) Images containing objects of interest are captured from 

the home or image repositories. (upper right) Training images are preprocessed by labeling 

objects and drawing corresponding bounding boxes. (lower left) The labeled images are used 

to train a CNN. (lower right) The trained network is exported to RAS to use for real-time 

object detection in smart home environments.
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Figure 7. 
RAS user interface module connections between tablet, database, and web site.
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Figure 8. 
RAS user interface states. (from left to right) Neutral state expression is displayed while 

observing activity; questioning expression; assistance options; pleased expression.
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Figure 9. 
RAS helps s smart home resident complete the “take medicine with food and water” activity. 

(first row left) RAS robot observes activity, (first row right) resident skips “take medicine” 

step, (second row left) robot approaches resident, (second row right) robot offers help, (third 

row left) resident asks robot to show current activity step, (third row right) video shows 
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person taking medicine, (fourth row left) resident takes medicine and completes missing 

step, (fourth row right) robot interface looks pleased after step is completed.
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Figure 10. 
Precision-recall curves by class for the R-CNN, R-FCN, and SSD networks.
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Table 1.

List of steps for each activity. Participants completed each activity four times, once completely and once for 

each type of error.

Activity: Walk the dog
Tagged objects: umbrella, leash, keys, dog, front door

Retrieve umbrella from closet Error 1: skip this step

Retrieve leash from hall hook Error 2: skip this step

Retrieve keys from kitchen Error 3: skip this step

Put leash on dog

Leave home with dog and items

Activity: Take medication with food
Tagged objects: granola bar, cup, pill bottle, dining chair, sink, garbage door

Retrieve granola bar from kitchen Error 1: skip this step

Retrieve cup from kitchen

Fill cup with water from sink

Take water and granola bar to dining table

Retrieve medication from kitchen Error 2: skip this step

Take medication to dining table

Eat granola bar and put it down

Take two medicine tablets Error 3: skip this step

Drink water

Put medication bottle and water cup back, throw away wrapper

Activity: Water plants
Tagged objects: watering can, sink, coffee table plant, side table plant

Retrieve water can from living room

Fill can with water from kitchen sink Error 1: skip this step

Water plant on coffee table Error 2: skip this step

Water plant on side table Error 3: skip this step

Empty can of water and put back
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Table 2.

Class sizes and average precision for each object class for each of the object detection networks.

Object class

# examples Leash Dog Keys Cup Pill bottle Food Umbrella Plant Watering can Human

manually collected 230 457 195 556 1,509 849 389 661 725 1,347

after sampling 70,588 72,484 68,967 75,861 93,485 81,530 73,841 78,101 79,216 94,449

Object class

Network Leash Dog Keys Cup Pill bottle Food Umbrella Plant Watering can Human

R-CNN 0.99 1.00 0.90 1.00 0.96 0.69 0.98 0.99 1.00 0.47

R-FCN 0.97 1.00 1.00 1.00 0.97 0.97 1.00 0.96 1.00 0.46

SSD 1.00 1.00 1.00 1.00 0.87 0.94 0.96 0.99 1.00 0.43
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Table 3.

Participant questionnaire data (mean and standard deviation values).

Questionnaires

PSSUQ

   Overall 4.55(1.95) 1.21–6.95

   System Usefulness 4.37(1.89) 1.13–6.88

   Interface Quality 4.83 (1.94) 1.67–7.00

   Information Quality 4.66 (2.23) 1.00–7.00

QUIS

   Screen 7.96 (0.97) 6.00–9.00

   Terminology 7.74(1.42) 3.67–9.00

Notes: PSSUQ = Post-Study System Usability Questionnaire; QUIS = Questionnaire for User-Interface Satisfaction.
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Table 4.

Participant ratings (mean and standard deviation values) of each prompt type for four separate purposes.

Prompt Type

Prompt Purpose Guide to Object Next Step Video Full Video**

Ease of Imitation 3.88 (0.95) 4.08 (0.88)
a 3.50 (1.14)

Range (2–5) (1–5) (1–5)

Helpful if Unable to Recall Next Step 4.08 (0.78) 4.21 (0.66)
a 3.55 (1.22)

Range (2–5) (2–5) (1–5)

Confusing to Someone with MCI* 2.67 (1.09) 2.25 (0.90)
ab 2.86 (1.08)

Range (1–5) (1–5) (1–5)

Helpful to Someone with MCI 4.04 (0.81)
a

4.08 (0.58)
a 3.41 (1.14)

Range (2–5) (3–5) (1–5)

Notes: N = 24, the number of participants who answered these questions, unless otherwise indicated; MCI = mild cognitive impairment

*
Lower scores should be interpreted as less confusing;

**
Represents analyses completed with N= 22 participants who answered these questions;

a
Represents significant difference from full video;

b
Represents significant difference from guide to object.
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Table 5.

Proportion of participants’ ratings for most liked, most helpful and least effective prompt styles.

Prompt Type

Rating Category Guide to Object Next Step Video Full Video

Most Liked Prompt 32% 60% 8%

Most Helpful Prompt 40% 52% 8%

Least Effective Prompt 12% 8% 80%

Notes: N = 25; one participant did not answer. Chi-square tests of independence revealed significant differences among prompt preferences for each 

rating category, χ2s (2, N = 25) < 7.00, ps < .022.
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