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Abstract: This paper considers a process for the creation and subsequent firing of sequences 

of neuronal patterns, as might be found in the human brain. The scale is one of larger 

patterns emerging from an ensemble mass, possibly through some type of energy equation 

and a reduction procedure. The links between the patterns can be formed naturally, as a 

residual effect of the pattern creation itself. This paper follows-on closely from the earlier 

research, including two earlier papers in the series and uses the ideas of entropy and 

cohesion. With a small addition, it is possible to show how the inter-pattern links can be 

determined. A compact Grid form of an earlier Counting Mechanism is also demonstrated 

and may be a new clustering technique. It is possible to explain how a very basic repeating 

structure can form the arbitrary patterns and activation sequences between them, and a 

key question of how nodes synchronise may even be answerable. 

 

Index Terms: pattern creation, synchronisation, neural, grid view, link, reduction. 

 

 

1 Introduction 

This paper considers a process for the creation and subsequent firing of sequences of 

neuronal patterns, as might be found in the human brain. The scale is one of larger patterns 

emerging from an ensemble mass, possibly through some type of energy equation such as 

entropy and a reduction procedure. The links between the patterns can be formed naturally, 

as a residual effect of the pattern creation itself. If the process is valid, then the pattern 

creation can be relatively simplistic and automatic, where the neuron does not have to do 

anything particularly intelligent. The pattern interfaces become slightly abstract without 

firm boundaries and exact structure is determined more by averages or ratios. If the process 

is based on an energy equation that reduces to a more stable state, it may require less 

intentional behaviour than, for example, creating clusters in the constructive way of 
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deliberately linking between nodes. For a large-scale structure this might be preferable. This 

paper follows-on closely from the earlier research, including two earlier papers in the series 

and uses the ideas of entropy and cohesion. An example of the reactive-proactive 

comparison can be carried out using dynamic links [12] or an earlier Counting Mechanism 

[13]; but a new compact Grid form is then suggested that may be another general 

mechanism. The paper finishes with an implementation architecture, for the realisation and 

storage of knowledge and memory, as part of a general design, based on distributed neural 

components 

 

The rest of the paper is organised as follows: Section 2 describes recent and new theory 

about the linking mechanisms. Section 3 compares the cognitive architecture with other 

research. Section 4 traces though some general classifiers, to show differences in how they 

would interpret data. Section 5 suggests a repeating process that can create and activate 

patterns as part of the architecture, including pattern resonance. Section 6 introduces 

another structure that uses neuron pairing to produce a more conscious type of signal. 

Finally, section 7 gives some conclusions and discussion on the work, including some 

implementation comparisons.  

 

 

2 Linking Patterns 

A key point to the theory is that a lot of the neurons inside a pattern link with each other. It 

is not the case that there is a single path from one neuron to the next, but there are lots of 

links between all of the neurons. The test theory of [2] also used this principle and it is also 

assumed in the tests of [9]. While not every node needs to connect with every other node; if 

most nodes connect with each other, it is quite a good way of defining the pattern shape. It 

could be imagined that the nodes still have connections to other places, but when excited, 

the pattern group will reinforce itself sufficiently to make it significant, while other more 

sparsely connected sets would possibly die out. It is a well-known phenomenon, as 

described in the related work section. It would also be the case that closer ‘patterns’ would 

prefer to connect with each other. This would then also refer to more similar concepts, 

when the whole process can be more consistent with state transitions and such things. The 
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papers [9][7] have already considered the general mechanisms and used energy with 

entropy as the measures to describe how the patterns might form. This paper extends those 

equations slightly to include the inter-pattern connections. 

 

2.1 Earlier Research 

Earlier papers have also discussed pattern creation and linking, under different levels of 

complexity. The very first cognitive model [11] proposed a 3-level hierarchy of increasing 

complexity and functionality. The top level would cluster similar concepts (or neuron 

patterns) and then allow one group to trigger another group through a reinforcement link, 

created from time-based events. In Figure 1, for example, the top level of the original 

cognitive model is shown. A trigger probably means something firing in sequence instead of 

in parallel and represents a state change. This top level consists of higher level concepts, 

drawn as the octagonal shapes. They are higher level because they group together lower 

level patterns. The idea of a concept is abstract and so the term could ultimately reduce to a 

single neuron, which might not be very helpful. 

 

 

 

 
 

Figure 1. The Original Cognitive Model [11] top level clustering. 
 

 

The model has been tested a certain amount, but it became clear that the trigger link 

between the clusters was not much different to a single node link. It would be created in 

essentially the same way, through reinforcement. As shown in Figure 2, this top level was 

expanded (Figure 4 of [9], for example) so that the other models of concept trees [8] and 

the symbolic neural network [12] could be incorporated. The concept trees can be 

considered as more knowledge-based, or even static memory structures. The symbolic 

neural network again represents symbols or concepts, but performs the same function as 
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Figure 1, and would use time-based events as much as semantics, to dynamically link 

concepts. See the earlier papers for more details about this. These two structures have 

therefore been joined at a time-based events layer, where Figure 1 probably sits at that 

layer and above. This is indicated in Figure 2 with blue regions that circle the concepts that 

fire together. One can imagine a stimulus activating a number of these trees that then fire in 

parallel. This might then activate other patterns in sequence.  

 

 

 

 

Figure 2. Concept Trees with the Neural Network Structure [9].  
 

 

As the mechanisms are general, they can be repeated, depending on the scale for example, 

where a single concept is still a small pattern, and so on. A hierarchical structure is also 

assumed in most models [15], as is a difference between the physical space and the logical 

space. A hierarchy is useful because it can be a more economic structure and it can also 

perform a different function at each level, but for this paper, it is mostly about the 

structure. So Figure 2 combines dynamic experience-based at the top with static knowledge-

based at the bottom. The very top GC global nodes in the neural network represent the 

accumulated branches and can trigger other global nodes. For state changes or firing 

differences to be recognised, a time factor has to be included. Let a source stimulus activate 

groups of neurons that then fire in parallel, but a state change might require the activation 

of patterns not initially connected with the stimulus. This is then also a sequential process as 
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the energy source would come from the activated patterns and not the original stimulus, 

and could change the stimulus result. In Figure 3, for example, there are two connections 

between the patterns, which would cause activation at a slower rate than inside each 

pattern. This figure is used again in following sections. 

 

 

 

 
Figure 3. Two pattern ensembles with residual inter-pattern links between them. 

 

 

2.2 Reactive Linking 

Reactive linking may have more relevance where patterns sequentially and laterally activate 

each other, rather than try to form a hierarchy. Assume for example, that nodes in a region 

fire in some arbitrary manner. This would produce a larger mass or ensemble out of which 

distinct patterns can emerge and it is more of a reactive than a proactive process. These 

patterns are defined in physical space by the fact that their nodes have more links between 

each other than with other regions. A simplistic view of the reduction process is shown in 

Figure 3, where the patterns themselves are defined because they have more intra-pattern 

links and the inter-pattern links are the dotted lines between them.  

 

If a pattern is mostly all connected, then one scenario is a small but persistent energy input 

that eventually stimulates all of the other nodes. Another scenario is a much larger stimulus 

that is able to trigger the pattern over a much shorter period of time. Therefore, depending 

on what patterns fire and the firing strength, this can cause other patterns to be more or 

less important, and be immediately realisable or realisable only through time. 

 

 



   

6 
 

3 Related Work 

Physical systems are included in the related work, because this research is more interested 

in how global structures might change, not individual entities. Other topics are neural 

networks, bio-related and self-organising systems.  

 

3.1 Global Properties 

Weisbuch [30] describes the properties of a chaotic system inspired by statistical physics. 

One theory written about states that even if there is randomness or disorder at the local 

level, there may still be order at the global level. The disorder itself can repeat in a 

consistent way. The Physics model of percolation describes this phenomenon and allows for 

insulators or conductors between local nodes, but does not require a regular order at that 

level. He writes that: 

 

‘The simple models used by physicists are based on periodic networks, or grids, and 

simplified components of two different types are placed on the nodes, such as for 

example conductors or insulators in the problem known as percolation. These 

components are randomly distributed, and the interactions are limited to pairs of 

neighboring nodes. For large enough networks, we perceive that certain interesting 

properties do not depend on the particular sample created by a random selection, but 

of the parameters of this selection. In the case of the aforementioned 

insulator/conductor mixture, the conductivity between the two edges of the sample 

depends only on the ratio of the number of conductive sites to the number of 

insulating sites’. 

 

Therefore, the interpretation of the result is as much about ratios or percentages than fixed 

boundaries. Each single interaction becomes only a small percentage of the desired result 

and therefore, if ‘more’ of the interactions are correct than incorrect at a global level, the 

desired result can be achieved. It may also be about the type of neuron behaviour. The idea 

of ‘neurons that fire together wire together’ is the well-known doctrine of Hebb (mentioned 

in [16]) and is central to how the patterns might form. Weisbuch notes that using Hebb’s 

rule in a neural network will result in the network attractors representing the patterns. The 



   

7 
 

system reduces to the state of the attractors, which are the sequences of repeating states. 

Memories can also be created this way.  

 

Even if this research considers structure and not function, in biology, Interneurons are 

created for just that purpose [17] – for statistical connectivity and not functionality. Their 

results indicate that statistical connectivity can account for much of the specific synaptic 

patterning between neurons. Chemospecific steering is still essential and can tweak things, 

but it is non-specific – not aimed at any particular pair of neurons. They show that the exact 

positioning of neurons within their layer is not critical but that some intentional direction is 

possible. They note that the model would predict head-on collisions between neurons, 

where a chemspecific signal can steer axons and dendrites around them. The paper [23] is 

more computer-based and describes tests that show how varying the refractory (neuron 

dynamics) time with relation to link time delays (signal), can vary the transition states. They 

note that it is required to only change the properties of a small number of driver nodes, 

which have more input connections than others and these nodes can control 

synchronisation locally. 

 

3.2 Earlier Research 

Earlier research ideas that are relevant include [6] -[13] and are mostly concerned with how 

the system as a whole would work. The ReN [10] stands for Refined Neuron. It proposes an 

idea for re-balancing the network, by converting excess energy into new intermediary 

neurons. A signal from a source must activate the intermediary neurons first, before they 

activate the ‘main’ neuron, probably like the interneurons of [17]. This can refine the 

neuron signal values, because each source signal becomes fractional (not a whole 1 or 0) 

when it passes through the intermediate neurons first. With the ReN however, it is a 

proactive process, where surplus energy forces new connections to re-balance the system. 

Neurons firing together include the idea of resonance among the activated synapses 

(axons/dendrites), which then induces new paths to grow. The new neuron therefore 

represents some type of (sub)concept created by the firing group. And the process is 

necessary to re-balance the system and reduce entropy, or improve efficiency. If looking at 
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the definition of entropy as part of thermodynamics, it is stated in terms of how much 

energy in a system is no longer available for conversion into mechanical work. 

 

While pro-active mechanics can be localised, the theory of this paper also considers more 

reactive processes over a larger domain. The residual effect of a persistent general stimulus 

would keep certain patterns alive, but these can form in centres of attraction. A section of 

[7] is quite interesting and considers how the structure might be determined: ‘It is easy to 

understand tree structures getting automatically narrower, but to broaden out requires the 

deliberate addition of new nodes and links to them. Re-balancing is always an option, where 

excess signal might encourage new neurons to grow, as in a ReN. Or many neuron clusters 

can interact and link with each other, but still provide specific paths into their own 

individual set of nodes. An idea of nested patterns might also help. Smaller or less important 

patterns at the periphery can be linked to by a more common mass in the centre, for 

example, leading to a kind of tree structure. In which case, it can be less of a deliberate act 

and more the residual result of a region being stimulated in a particular way.’ 

 

3.3 Biology-Related 

Hawkins and Blakeslee [15] chapter 6, describe the brain cortex region as having 6 layers. A 

visual process, for example, uses 4 layers, where 3 layers form a hierarchy with the fourth 

(IT) layer joining this up to complete a circuit and recognise the pattern set as a significant. 

The circuit completion also helps the signal to say active. The author’s current model is at a 

slightly coarser scale than this, but it is possible to see this type of hierarchy in it. As shown 

in Figure 2, the concept trees may be the indexes to a shallow Concept Base [12] hierarchy, 

represented by the blue time-based layer. That layer could also compare with the top 

hierarchy layer in the visual cortex, for example. The closing (IT) nodes of the visual cortex 

would then be the first level of the symbolic neural network, as is shown in the figure. This is 

of course, not intentional, but at least the architectures can show some resemblance to 

each other. The columnar nature of the firing that is explained is also interesting and 

mentioned again later. 
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The work of Tkačik et.al. [26] could be relevant. It uses statistical mechanics to try to explain 

some of the mechanisms that occur in the biological brain. They note that while the brain is 

not a thermodynamic system, it exhibits some of those properties and so it can be 

measured that way. They also note that the brain is a nonequilibrium system and ask the 

question of how it then obtains equilibrium (ReN). If dealing with a critical state E, they 

suggest that you can count the number of potential states that have energy close to or less 

than E and consider those as the degrees of freedom or entropy. They then show how their 

results suggest a thermodynamic limit to the neural activity, but have no definite 

explanation of why. The limit suggests a boundary, but a more closed system can be 

maintained if activity is mostly inwards and helped if inhibitors also switch off the 

surrounding area. Their results also show that energy and entropy are linear with respect to 

each other. The equation 4 of that paper measures the entropy and it is similar in structure 

to the one used in this model ([9] section 4.1, or [7] equ. 9) to measure the activity of mostly 

inter-connected neural masses. They measured spiking events of individual neurons and so 

particular structures were not described that can be compared with, but potential states 

with slightly less energy might be like the next level in a tree. Another paper [24] further 

quantifies the pairwise correlations over larger networks and this whole biology-related 

section is important for a new structure, written about in section 6. 

 

Also interesting are the theories of Neural Oscillations and Neural Binding1. These brain 

theories are used to help to explain how the brain is able to comprehend, what it sees, for 

example and therefore overlaps with thought and consciousness. With one visual system 

theory (Gray, Singer and others [25]), synchronous oscillations in neuronal ensembles bind 

neurons representing different features of an object. Gestalt psychology is also used, where 

objects are seen independently of their separate pieces. They have an ‘other’ interpretation 

of the sub-features and not just a summed whole of them. Chen uses the idea that 

perception depends on ‘topological invariants that describe the geometrical potentiality of 

the entire stimulus configuration’. The idea here is that looking at a certain object creates a 

stimulus which in turn fires a constellation of that object, and then the object becomes 

                                                      
1 See Wikipedia, for example. 
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recognized. The rebuttal is the fact that independent constellations would require too many 

neurons and pathways [20]. Singer and Gray write that: 

  

‘Representation of a feature by a population of cells raises binding problems when 

nearby contours evoke graded responses in overlapping groups of neurons. Of the 

many simultaneous responses, those evoked by the same contour need to be 

distinguished and evaluated together to avoid interference with the responses elicited 

by neighboring contours. A similar need for response selection and binding arises in 

the context of perceptual grouping.  

… 

Essentially, one cell would be required for every distinguishable feature, for each 

higher-order feature combination, and ultimately for every distinguishable perceptual 

object. Moreover, because of its inherent lack of flexibility, such a mechanism cannot 

easily cope with the representation of new or modified patterns.’ 

 

They also note that shared patterns would have many advantages, especially with neuron 

numbers, but a flexible process is required to clearly recognise when parts of a pattern fire. 

They then go on to write: 

 

Simulation studies by Softky & Koch (1993) suggest that the interval for effective 

summation of converging inputs is only a few milliseconds in cortical neurons. Thus, if 

synchronization of discharges can be achieved with a precision in the millisecond 

range, it can define relationships among neurons with very high precision. Moreover, if 

synchrony is established rapidly and maintained only over brief intervals, different 

assemblies can be organized in rapid temporal succession. 

 

3.4 Neural Models 

Neural networks are the most obvious type of distributed model. The paper [4] is interesting 

and may even be trying to implement something similar in hardware. They note that 

electrical synapses are bi-directional, unlike the chemical ones, but this means an 

intentional signal in both directions and not an excess one. The term small-world effect [29] 
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has similarities with pattern groups connected by residual links and is described as part of 

their new Hopfield network [18][1] design: 

 

‘It is known that brain neural network is comprised of millions of neurons and their 

connections. Major connections are of short distance and the number of long-distance 

connections is less, which is acclaimed as the so-called small-world effect. Recently, 

the small-world neural network model was thus inspired and proposed. 

… 

More specifically, it has greater local interconnectivity than a random network, but the 

average path length between any pair of nodes is smaller than that of a regular 

network. The combination of large clustering and short path length makes it an 

attractive model capable of specialized processing in local neighborhoods and 

distributed processing over the entire network.’ 

 

The Hopfield neural network, and its stochastic equivalent are auto-associative or memory 

networks. With the memory networks, information is sent between the input and the 

output until a stable state is reached, when the information does not change. These are 

resonance networks, such as bidirectional associative memory (BAM), or others. But they 

can only provide a memory recall of the data that was input and are also constrained in size 

to that amount of data. If some of the input pattern is missing however, they can still 

provide an accurate recall of the whole pattern. They also prefer the data vectors to be 

orthogonal without overlap. After the different stable states have been learned, they 

represent a type of energy function. A new pattern may be associated with a set of the state 

vectors, but one state will be closer to it, which will produce the best match. 

 

Hopfield networks are also attractive because the units can operate asynchronously of each 

other. Each unit can compute its excitation at random times and change its state 

independently of the others. Also described in [22], chapter 13: 

 

Hopfield’s approach illustrates the way theoretical physicists like to think about 

ensembles of computing units. No synchronization is required, each unit behaving as a 

kind of elementary system in complex interaction with the rest of the ensemble. An 
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energy function must be introduced to harness the theoretical complexities posed by 

such an approach. 

 

But while the learning can be asynchronous, the weights and links are still very directed, 

although self-organisation and an energy function can maybe take precedence over a 

supervised learning approach. Watts and Strogatz [29] then took the bi-directional links and 

replaced it with a circular architecture to produce the small-world networks. More 

importantly, the nodes are not all linked with each other, or completely randomly linked, 

but somewhere in-between. The linking pattern would still provide more group support 

than a random setup, for example. Considering Figure 2 and Figure 3 of this paper, is it 

possible to see small-world networks at the time-based events layer? If not, then it is still 

another look-alike structure to relate to, as possibly is [23].  

 

Other types of model include Cognitive Architectures. The paper [19] is very interesting and 

uses a more knowledge-based vernacular to describe other cognitive systems. For example, 

where the current research has used the terms knowledge or experience-based, that paper 

may use the terms declarative or procedural knowledge, to mean probably the same thing. 

The paper also describes that solutions to the problem have to implement prototypes, 

exemplars and/or theory-theories structures. It shows that a number of other cognitive 

systems have implemented these artefacts and that a general theory needs to 

accommodate them. The main problems that the paper notes are the knowledge 

homogeneity problem (what heuristic to choose) and the integration of common-sense 

contextual knowledge, which are both required to allow more generality in the model. It will 

be shown in section 7.1 that the author’s model can also be described using the more 

knowledge-based sets of terms and that the current work can accommodate the required 

transformations, to allow the information to flow seamlessly, from pattern-based data into 

knowledge. 
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4 Cluster Interpretations – Global Patterns vs Unique Instances 

This example shows how even very basic reinforcement mechanisms can produce different 

interpretations of pattern sequences. Three types of count updated were tested, where the 

first two used more local count reinforcements, described by the following equations, also 

used in [7]. The idea of a pattern is the whole input set here: 

 

Ript+1 = Ript +- I        Equation 1 

CIipt+1 = CIipt + I        ((Ni  IPt)  (Ni  Pp)) Equation 2 

CGipt+1 = CGipt + G       (Ni  Pp)  ((Nj  IPt)   (Nj  Pp)) Equation 3 

 

Where: 

Ript = reinforcement or weight value for node i in pattern p, at time t. 
CIipt = total individual count for node i in pattern p, at time t. 
CGipt = total group count for node i in pattern p, at time t. 
Pp = pattern P. 
IPt = input pattern activated at time t. 
Ni = Node i. 

I = individual increment value. 

G = group increment value. 
Ng = total number of group updates or events. 
 

Consider the following example: There is a set of nodes A, B, C, D, E, F and G. Input patterns 

activate the nodes, which is then presented to the classifier as follows: 

 

1. A fires with B, C, D and E. 
2. B fires with A, C and D. 
3. C fires with A, B and D. 
4. D fires with A, B and C. 
5. E fires with A, F and G. 
6. F fires with E and G. 
7. G fires with E and F. 
 

4.1 Single Variable Reinforcement 

With basic reinforcement, a weight is incremented when a variable is present and 

decremented when it is not, and can use Equation 1 to do this. If considering each variable 

as independent without any containing structure and a decrement value of 0, then the first 

set of counts, shown in Table 1 would occur. The whole group A-G is updated as a single 
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entity and this would suggest that the best cluster group is B, C, D and E, with another one 

probably F and G, but those are not the best clusters. 

 

 

 A B C D E F G 

I 5 4 4 4 4 3 3 

 

Table 1. Count reinforcement when updating for individual variables. 
 

 

4.2 Counting Mechanism with Unique Instances 

A counting mechanism [12][13] has been suggested previously, where a weight is 

incremented when a variable is present and a group-related weight is incremented when 

any variable in the group is present, as described by Equation 2 and Equation 3. There are 

therefore two counts: the global count (G) is updated for every pattern presentation and 

the local count (I) is updated only when the variable itself is presented. If each pattern 

instance is presented separately and updated separately however, then a different result is 

shown in Table 2. Using some simple rules that measure how close the global and local 

counts are to each other - it is possible to calculate that the correct groups are A, B, C, D and 

E, F, G. Comparing the two counts shows that the difference between them is the least for 

those two groups, suggesting more coherence in those two groups.  

 

 

 A, B, C, D, E A, B, C, D E, F, G, A E, F, G 

I 1 3 1 2 

G 7 4 3 2 

 

Table 2. Counting Mechanism for unique group instances. 
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So why is this a better result than the individual reinforcement value of Table 1? Firstly, as 

the data is categorical or symbolic, it is not a problem of reducing a numerical error, but of 

matching over the data rows. Secondly, the first method does not consider the structure in 

the input patterns. If all 7 events are thought to be a single event, then the nodes B, C, D 

and E occur the most often and the same number of times. But if the rows are considered to 

be distinct, then this particular tuple does not occur very often, only once and probably also 

with A. The structure indicates that E definitely belongs with F and G. Therefore, if the input 

structure is also considered, it becomes more obvious why Table 2 is better. Why is the 

global count useful?2 It simply makes it easier to see when the distinct row occurred versus 

when only parts of it occurred and is therefore a measure of coherence. As with the residual 

links between neural patterns, there is still overlap between the two groups which is not 

very clear in Table 2. This is written about again in the conclusions. The next section shows a 

more global form of the localised counting mechanism, converting it into a grid format and 

allowing for the inter-links to be seen more clearly. 

 

4.3 Grid-Based Frequency Counts 

This section describes a new grid-based frequency count that is more global in nature. It is 

clear from the data that A, B, C and D all reinforce each other (pattern 1), as does E, F and G 

(pattern 2), but there is still an inter-pattern link between A and E (in both pattern 1 and 2). 

With a grid format, the input is represented by a single pattern group, but this time the 

counts for each individual variable and included and cross-referenced, allowing the inherent 

structure to be included, as shown in Table 3. This is in fact probably a statistical matching 

equation more than an entropy one. The grid format lists each variable both as a row and a 

column. Each time a pattern is presented, the related cell value for both the row and the 

column is incremented by 1. The grid result can then be read using the following algorithm:  

 

1. Each row displays count values representing a key variable - the row name, and its 

relation to the other variables.  

2. All cells relating to variables in the input pattern are updated each time.  

                                                      
2 Only useful not essential, because a single reinforcement value can produce a similar result, depending on 
what is updated each time. 
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a. Each row that starts with one of the variables updates the count for every other 

variable in the input pattern.  

b. Because the variable is repeated in several cells, this still leads to normal count 

values for each cell. 

3. To determine the best clusters then:  

a. For a key variable (row key value) scan across and select the other variables with 

the largest count values. That variable then considers those other variables to be 

part of its cluster. 

b. The other variables however may be more associated with a different cluster, so 

their rows can be checked for consistency. They should similarly have a largest 

count value for the other variables in the cluster. If any have different (larger or 

smaller) count values, then they probably belong to a different cluster.  

4. These different counts can still be considered for linking between patterns, where they 

have some association but belong to a different pattern. 

 

 

 
A B C D E F G 

A x 4 4 4 2 1 1 

B 4 x 4 4 1 0 0 

C 4 4 x 4 1 0 0 

D 4 4       4 x 1 0 0 

E 2 1 1 1 x 3 3 

F 1 0 0 0 3 x 3 

G 1 0 0 0 3 3 x 

 

Table 3. Display of the reinforcement between pattern presentations grouping A, B, C and D, 
plus E, F and G, with a single inter-pattern link A-E. 

 

 

With the example set of events, the nodes would also be beside each other in the grid, but 

the variable placings in the grid can be mixed-up and still produce the same result. In row A, 

for example, the counts suggest that it should be clustered with B, C and D, which is the 
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same cluster conclusion for rows B, C and D. It is probably not necessary to update a self-

reference in the grid, so the leading diagonal can be empty. This grid format is possibly a 

transposition of the counting mechanism. In the Counting Mechanism [13], the global count 

represents some global pattern, or the global count for a unique pattern bit, while with the 

grid, global structure is implicit through the cross-referenced counts. The counting 

mechanism updates instances separately, but in the model, it still tries to cluster those 

instances together. The grid starts with a full set of variables and separates them into similar 

counts, although it might be possible to add variables to the grid dynamically, which the 

counting mechanism also accommodates.  As the grid does not rely on prior classifications 

of the categories, it is really a self-organising mechanism for categorical data. 

 

4.4 Test Examples 

One use for the grid structure could be collaborative filtering, such as the Entree Chicago 

Recommendation Data Set [3][5]. With that data, the action or request of a user was coded 

and interpreted as a category. Then each user session was a group of related categories. A 

test program was then able to count the frequencies of categories that occurred together, 

as in the grid example, and create clusters of categories that more commonly occurred 

together. These can even be related back to the restaurant or user, but there are no clear 

results to compare with. Another test that did produce results was the Plants dataset [27], 

where the success was measured by regional clustering. It was used in [14] to mine for 

association rules, which are similar in the sense that the data can be seen as a set of binary 

events to associate together. With the plants dataset, different species in each state of USA 

and Canada are listed and the states were clustered on similar species. The results, given in 

Appendix A, do appear to show clustering based on geography or climate. One problem was 

highlighted. If a category ended up by itself, not clustered with any other category, then 

with the current algorithm, it is not obvious how to cluster it with another category or 

group. A more detailed examination would be required to give a good suggestion for that. 

However, the clustering process is a one-pass process and took only a few seconds to 

complete, on a standard laptop. 
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4.4.1 Comparing Grid with Counting Mechanism 

All 3 methods of this section were used to cluster the plants dataset. A first test considered 

each input pattern simply as a set of variables and updated the variable’s count each time it 

was presented. This appeared to give the least useful result, where the clustering was the 

most fragmented and included North with South, or East with West states in the same 

cluster. A second test firstly ordered the input dataset into decreasing numbers of variables 

and considered updating only from the same nested group. This helped a bit, but the 

nesting meant that most input patterns were still in a single group. The outer-most group 

would be added first and all existing variables would have their counts updated each time. 

The clustering was quite good but still with some geographic fragmentation. For the second 

test the global count was essentially redundant, because the dataset is being treated 

essentially as a single entity. A third test used the grid format and performed the best with 

regards to regional clustering, as shown in Appendix A. Basic count reinforcement (counting 

mechanism for example) would still cluster, but as well as the fragmentation in the clusters, 

it is more difficult to use, because value bands for each cluster need to be decided on 

manually, whereas with the grid, it is automatic. So with the counting mechanism, the 

suggestion is to use it more locally and create a new instance for each unique pattern that is 

presented. 

 

 

5 Repeating Structures and Sequences 

It is now clear that a general process can be described for how patterns may form and link 

with each other. It uses a structure that can repeat at different levels of granularity and can 

form in an automatic and arbitrary way. It is also completely mechanical in nature, requiring 

no sense of real intelligence. Certain themes repeat throughout the research, giving some 

confidence to their relevance. At the finest level of granularity, there can be single neurons 

with links between them. These can group together to form a pattern and weaker or 

residual sets of links can be left between patterns. If considering Figure 1, for example, it 

would be possible to replace the octagonal nodes with a pattern of neurons and the single 

links with the residual set. That whole figure can also represent a higher-level concept that 
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triggers other ones through other links. So why not make the triggers a residual set of links 

as well, but between larger concept groups.  

 

The nesting and time element in the structure is also obvious. For example, if an area of the 

brain is activated, then statistically, one pattern may fill with signal before another pattern. 

After a while, the pattern can activate an associated one through the residual set of links, 

but as that is a weaker connection, it would occur after the pattern itself is activated. The 

pattern may also throw inhibitors out into its environment, to switch off neighbouring 

patterns and make it the dominant one. It may also contain nested structures [9][7] that 

would represent sub-concepts and as the whole region fires it activates some of the sub-

regions. This is an inward activation sequence, so to be completely successful, longer lateral 

connections with other global regions are also required. Therefore, lateral links between 

pattern groups occur as well as nesting. 

 

5.1 Synchronising Nodes 

This section adds some information about the known biological phenomenon that neurons 

tend to be evenly spaced [21] and there is a very simple mathematical theory to support it 

in [9]. An even spacing makes a lot of sense when considering node synchronisation inside 

patterns. If a root node activates a number of linked nodes, then if they are at an equal 

distance from the root node, they will all fire at the same time. If they subsequently do the 

same, then the nodes that they link to will also fire at the same time. Therefore, it is not just 

the fact that closer nodes cluster together, but rather that nodes of an equal distance from 

each other cluster into patterns. It is also helpful if the linked nodes feed back into the 

pattern again, so that they can activate the other pattern nodes with the same time interval 

and the whole firing sequence will be synchronised. The feedback links would not only 

define the pattern shape but also determine the firing rates, which would help the pattern 

to resonate. With so many connections however, saturation would be likely and so that 

would need to be managed. Another set of nodes may also be evenly spaced, but at a 

different distance, when they would synchronise differently and fire at a different rate. If 

the distance between the nodes is compared with a wavelength or maybe a frequency, then 
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with different pattern groups in the same region, the brain can receive variable signals and 

the combinations could help with ideas about thought or consciousness. 

 

5.2 Hierarchy Construction 

While unique pattern instances were used previously with the neural network [12], that 

would be inefficient in a real brain model and so it may be possible to link the instances up 

thereby creating a unique hierarchy instance. For example, if nodes A-B-C-D get presented 

then they form a pattern. If A-B-C-D-E gets presented then create a new E node and link it to 

the A-B-C-D pattern. If over time, the A-B-C-D-E pattern occurs more often, then as with the 

concept trees, make it the whole pattern and remove the link. If A-B-C gets presented more 

often, then as with other papers [7], split the pattern because it is not cohesive enough. If 

something like A-F-G gets presented, then maybe create a new unique instance with a new 

‘A’ node. An energy equation could suggest that it is easier to create a new unique instance 

than try to merge with an existing pattern. Maybe only node ‘A’ of the current pattern is 

required and afterwards, the patterns tend to act as a single unit. This type of clustering is 

still consistent with Table 2, for example, where maybe pattern 5 would have produced a 

whole new set of nodes. 

 

 

6 Neuron Binding 

The author would like to introduce another structure here, shown in Figure 4, that is new to 

the model. It would be another refinement that would help with the idea of consciousness 

and the merging of distinct patterns into a more singular whole. Biology has already 

suggested theories about neural oscillations and binding that include neural pairing. The 

pairing helps to group the neurons into specific patterns that the brain can understand, 

when different features can become synchronised and oscillate together. This new structure 

also relies on pairing neurons and may be loosely related to the earlier biological research. 

With this, two neurons would be used to represent an entity. One neuron exists in a base 

ensemble that is a flat structure and the other would exist in a hierarchical structure. Neural 

duplication is well-known about, but this structure would have duplication at a very close 

range. To find this structure therefore, some of the base neurons would be activated and 
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probably realise an ensemble activation. That gives a much larger area to stimulate initially, 

when the hierarchical structure then provides more meaning to the pattern signals.  

 

 

 

 

Figure 4. Neuron Pairing that can ‘sing’ through different resonance frequencies. 
 

 

Therefore, the base ensemble fires and activates neurons. If these are paired with neurons 

in the hierarchical structure, then the tree structure is also activated. The hierarchy would 

send its signal on to somewhere else as well, such as the top-level neural network. The tree 

gives more definition and while it would be easy to see an ensemble mapping to a hierarchy 

in any brain model, the exact neuron mapping would be more difficult to explain. Some 

more details about this simple structure are given in [6]. As with general theory, the 

enclosing ensemble can re-activate parts of the neural tree. So, there can be a temporal and 

controlled element to the signalling process. The repetition of the mechanism through 

cycling, would also help to stabilise a changing signal pattern. So, to summarise: there are a 

number of local circuits that can be managed through the neuron pairs, as well as the larger 
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enclosing patterns that can consistently reinforce and sustain a signal and the hierarchy 

provides some structural meaning, while the base ensemble makes the region easier to find. 

 

6.1 Biology-Related 

The two related work papers from the statistical mechanics background [24][26] are actually 

able to provide evidence to support this type of structure. A section from Tkačik et.al. [26] is 

as follows: 

 

... we expect the distribution of activity across neurons to reveal structures of 

biological significance. In the small patch of the retina that we consider, no two cells 

have truly identical input/output characteristics (44). Nonetheless, if we count how 

many combinations of spiking and silence have a given probability in groups of N >20 

cells, this relationship is reproducible from group to group, and simplifies at larger N. 

This relationship between probability and numerosity of states is mathematically 

identical to the relationship between energy and entropy in statistical physics, and the 

simplification with increasing N suggests that we are seeing signs of a thermodynamic 

limit. If we can identify the thermodynamic limit, we can try to place the network in a 

phase diagram of possible networks. Critical surfaces that separate different phases 

often are associated with a balance between probability and numerosity: States that 

are a factor F times less probable also are a factor F times more numerous ...  

 

The larger area can therefore be defined more by probability and statistics, while the 

smaller area needs to consider exact structures. It is interesting that local spiking is distinct, 

but repeats on a larger scale. It is known that neurons are spaced evenly, but maybe small-

scale differences are important, although there are also different cell types with different 

functionality. The idea that less probable events require larger numbers of them to balance 

the entropy is interesting, but is this simply a statistical requirement for the state 

transitions? A quote from Schneidman et.al. [24] is as follows: 

 

… We conclude that weak correlations among pairs of neurons coexist with strong 

correlations in the states of the population as a whole. One possible explanation is that 
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there are specific multi–neuron correlations, whether driven by the stimulus or 

intrinsic to the network, which simply are not measured by looking at pairs of cells. 

Searching for such higher order effects presents many challenges (22–24). Another 

scenario is that small correlations among very many pairs could add up to a strong 

effect on the network as a whole. If correct, this would be an enormous simplification 

in our description of the network dynamics… 

 

It is argued by both of these papers that the sparse nature on the neural firing means that 

pairwise correlations should occur much less often than is observed. If the correlation is 

hard-coded however, then it is easy for it to occur and the pairing can make related counts 

more linear in nature, although there is still the relation between all of the neuron pairs. 

The correlation is also an oscillating electrical signal. Another interesting comparison comes 

from [15] that describes a columnar architecture in the cortex, which means that either the 

tree structure is missing or there is an equally wide base from something else. The neuron 

pairing of Figure 4 however is only an idea for realising a type of phenomenon that is not 

easily explained. It would be even better if the spiking rates were in some part due to the 

distances between each neuron in the pair. The two papers go into a lot more detail and 

were not written with this structure in mind. Reading them should provide useful 

background information. 

 

 

7 Conclusions and Discussion  

This paper has described how patterns may form and more importantly link with each other 

through a general reduction process of a larger ensemble mass. The process can make use 

basic statistics and entropy equations [7] and here, the process can consider inter-pattern 

sequences. The signal strength inside of each pattern is stronger than between patterns, 

which helps to define it. However, time can be used to build up a signal, or more or fewer of 

the connections can be firing at the same time and so ratios or percentages are key. The 

influence of the input stimulus and the desired result are also factors. To show how the 

patterns and inter-pattern links might be realised, a Grid view of a global ensemble, updated 

by a series of pattern presentations has been demonstrated. The Grid format works well 
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with event-based or categorical input and successfully clustered some plant data. The 

clustering is slightly different to the more traditional methods and so it may be a new 

general way of clustering, or specifically for this type of problem. A basic count 

reinforcement can also produce clusters in the plants dataset, but it was more fragmented 

when it came to the geographic locations. Considering the cognitive model of Figure 2: if the 

concept trees in the lower half represent rote-based learning in some way, they also 

represent distinct concepts. The time-based layer would be presented with groups of these 

and may re-cluster them into a different view that includes those time-based events. Then 

as with Gestalt theory, the experience-based neural network would receive the alternative 

view that may be more than just one (knowledge-based) concept at a time and it would 

change that view further, as it re-clustered to suit the experience-based needs. The grid 

format is making a frequency measurement over the whole dataset and not a similarity 

measure. It may therefore be an option for the time-based layer, to cluster everything into 

the second view. The counting mechanism and related methods are maybe better locally, 

with more clearly defined concepts. 

 

The pattern-forming reduction process is much less organised than the concept trees or the 

symbolic neural network, but that is OK, as it defines a larger area that uses probability to 

overcome errors on a smaller scale. The trigger that is indicated in the diagrams is similar to 

a basic link, except that it is between two sets of patterns, not single nodes. As the structure 

gets smaller however, it becomes more precise and a hierarchy can be created by repeating 

the clustering at different levels. The unique instance of earlier papers might need to be 

replaced, for economic reasons, with instances being linked together and further merged or 

separated. How exactly this might influence the more dynamic, symbolic neural network at 

the top, is yet more research. Another process that occurs in biology is also useful. If a 

neuron is firing more often, then it is more likely to create a new neuron. Therefore, the 

terms with the largest values should be realised first in the concept trees as the base nodes. 

The next largest values should form the next level and so on, where it only remains to link 

up the different levels with branches. The root nodes are therefore also statistically the 

most important. So, this process is clearly seamless and has transformed a neural mass into 

a structured tree. 
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It has also been suggested that distance between the nodes could be a vital part of 

synchronization and as with time, could help patterns to resonate their signals. The grid 

process of matching similar counts would also help here, as the linking structure between 

the nodes is then more uniform. Another structure is introduced that is a base ensemble 

repeated as a hierarchy, where both node sets are hard-coded together. If resonance can 

occur as part of the firing, it may help to produce those signals recognised as consciousness. 

Strangely, there is some biological evidence to support the structure at least. Statistical 

mechanics describes pairwise correlations and [15] describes a columnar architecture, 

rather than a widening tree-like one. As this is an automatic process, it then asks some 

questions. If pattern resonance is based simply on node distance, then why would a search 

process find it or not find it? If the construction process is automatic and some thought 

processes return the patterns, why would all thought processes not return the related 

patterns? Why is some information more difficult to find?   

 

7.1 Implementation Comparisons 

The whole design is based strongly on the distributed neural architecture of the human 

brain and as such, the author would argue that it is one of the more cognitive designs. There 

are a number of other models that use brain processes already and they are much more 

advanced than this theory. Some of these are described in [19], which explains that each 

firing sequence can be vectorised and measured. Then an ensemble mass can be 

transformed into a vector-style of structure, with weighted sets of concepts or features, but 

what appears to be missing from other designs is contextual information. The research of 

this and related ‘concept tree’ papers has dealt with the problem of context. It is also noted 

that heterogeneity in the brain is still an unknown quantity [19] and real intelligence is 

currently missing, but a modular design that works the same inside of each module, could 

be an option. As with cellular automata, the same input would produce a different result in 

each module. This would suggest that a summed and weighted total for a node is 

insufficient and it should have some other defining characteristic, as with 

phenotype/genotype in genetics. The understanding is stored in the structure that is saved, 

which is what the signal passes through. If the brain itself is modularised, the problem can 

initially become one of merging signals at boundaries, rather than making an intelligent 
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decision. The task then changes from intelligent selection to interpreting the combined 

output correctly, which is still an unanswerable question. The design can also map to 

exemplars and prototypes, which is a different set of terms to describe the problem. 

Possibly the ‘theories’ term should be placed with the symbolic neural network.  
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Appendix A 

The results of clustering the plants dataset [27] are listed here. The clusters are listed first, 

followed by the abbreviation codes for each USA or Canada state or province. 

 

Clusters 

1. fl, hi, pr. 

2. nc, va. 

3. il, in, ia, mo. 

4. ky, tn. 

5. la, tx. 

6. md, de. 

7. mi, wi. 

8. ak, yt. 

9. az, nm. 

10. ca, nv, or. 

11. co, ut, wy. 

 

12. ga, al. 

13. id, mt, wa. 

14. ny, pa, ri, vt, ns, on, nj. 

15. oh, wv, qc. 

16. ab, bc, sk. 

17. mb, nb, nt. 

18. nf, nu, pe, fraspm. 

19. ks, ne. 

20. nd, sd, dengl. 

21. ok, ar, gl. 

 

22. ct. 

23. dc. 

24. ms. 

25. sc. 

26. vi. 

27. me. 

28. ma. 

29. mn. 

30. nh. 

31. lb. 

 

 

States 

U.S. States:  

ab Alabama 

ak Alaska 

ar Arkansas 

az Arizona 

ca California 

co Colorado 

ct Connecticut 

de Delaware 

dc District of Columbia 

fl Florida 

ga Georgia 

hi Hawaii 

id Idaho 

il Illinois 

in Indiana 

ia Iowa 

ks Kansas 

ky Kentucky 

la Louisiana 

me Maine   

md Maryland 

ma Massachusetts 

mi Michigan 

mn Minnesota 

ms Mississippi 

mo Missouri  

mt Montana 

ne Nebraska 

nv Nevada 

nh New Hampshire 

nj New Jersey 

nm New Mexico 

ny New York  

nc North Carolina 

nd North Dakota 

oh Ohio 

ok Oklahoma 

or Oregon 

pa Pennsylvania 

pr Puerto Rico 

ri Rhode Island  

sc South Carolina 

sd South Dakota 

tn Tennessee 

tx Texas 

ut Utah 

vt Vermont 

va Virginia 

vi Virgin Islands 

wa Washington 

wv West Virginia 

wi Wisconsin 

wy Wyoming  

 

 

Canada: 

al Alberta 

bc British Columbia 

mb Manitoba 

nb New Brunswick  

lb Labrador  

nf Newfoundland 

nt Northwest Territories 

ns Nova Scotia 

nu Nunavut 

on Ontario  

pe Prince Edward Island 

qc Québec 

sk Saskatchewan 

yt Yukon 

 

dengl Greenland 

(Denmark) 

fraspm St. Pierre and 

Miquelon (France) 

 


