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Abstract: The work demonstrates that brain might reflect the outer world causal relationships in 

the form of a logically consistent and prognostic model of reality, which shows up as 

consciousness. The paper analyses and solves the problem of statistical ambiguity and provides a 

formal model of causal relationships as probabilistic maximally specific rules. We suppose that 

brain makes all possible inferences from causal relationships. We prove that the suggested formal 

model has a property of an unambiguous inference: from consistent premises we infer a consistent 

conclusion. It enables a set of all inferences to form a consistent model of the perceived world. 

Causal relationships may create fixed points of cyclic inter-predictable properties. We consider the 

“natural” classification introduced by John St. Mill and demonstrate that a variety of fixed points of 

the objects’ attributes forms a “natural” classification of the outer world. Then we consider notions 

of “natural” categories and causal models of categories, introduced by Eleanor Rosch and Bob 

Rehder and demonstrate that fixed points of causal relationships between objects attributes, which 

we perceive, formalize these notions. If the “natural” classification describes the objects of the 

external world, and “natural” concepts the perception of these objects, then the theory of integrated 

information, introduced by G. Tononi, describes the information processes of the brain for 

“natural” concepts formation that reflects the “natural” classification. We argue that integrated 

information provides high accuracy of the objects identification. A computer-based experiment is 

provided that illustrates fixed points formation for coded digits. 
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1. Introduction 

The work demonstrates that the human brain may reflect the outer world causality in the form 

of a logically consistent and prognostic model of reality that shows up as consciousness.  

The work analyses and solves such problem of causal reflection of the outer world as a 

statistical ambiguity (Section 2.3). The problem is solved in such a way that it is possible to obtain a 

formal model of causal relationships, which provides a consistent and prognostic model of the outer 

world. To discover these causal relationships by the brain, a formal model of neuron that is in line 

with Hebb rule (Hebb, 1949), is suggested. We suppose that brain makes all possible 

inferences/predictions from those causal relationships. We prove (see Section 2.5) that the suggested 

formal model of causal relationships has a property of an unambiguous inference/predictions, 

namely, consistent implications are drawn out from consistent premises. It enables a set of all 

inferences/predictions, which brain makes from causal relationships, to form a consistent and 

predictive model of the perceived world. What is particularly important is that causal relationships 

may create fixed points of cyclic inter-predictable properties that create a certain “resonance” of 

inter-predictions. In terms of interconnections between neurons, these are cellular assemblies of 

neurons that mutually excite each other and form the systems of highly integrated information. In 
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the formal model these are logically consistent fixed points of causal relationships. We argue 

(Section 2.1) that if attributes of the outer world objects are taken regardless of how persons perceive 

them, a complex of fixed points of the objects’ attributes forms a “natural” classification of the outer 

world. If the fixed points of causal relationships of the outer world objects, which persons perceive, 

are taken, they form “natural” concepts described in cognitive sciences (Section 2.2).  

If the “natural” classification describes objects of the external world, and “natural” concepts are 

the perception of these objects, then the theory of integrated information (Tononi, 2004, 2016,  

Ozumi, Albantakis and Tononi, 2014) describes the information processes of the brain when these 

objects are perceived. 

G. Tononi defines consciousness as a primary concept, which has the following 

phenomenological characteristics: composition, information, integration, exclusion (Ozumi, 

Albantakis and Tononi, 2014). For a more accurate determination of these properties G. Tononi 

introduces the concept of integrated information: "integrated information characterizing the 

reduction of uncertainty is the information, generated by the system that comes in a certain state 

after the causal interaction between its parts, which is superior information generated independently 

by its parts themselves" (Tononi, 2004).   

The process of reflection of causal relationships of the outer world (Fig. 1) shall be further 

considered. It includes: 

1. The objects of the outer world (cars, boats, berths) which relate to certain "natural" classes; 

2. The process of brain reflection of objects by causal relations marked by blue lines; 

3. Formation of the systems of interconnected causal relationships, indicated by green ovals.   

In G. Tononi's theory only the third point of reflection is considered. The totality of the excited 

groups of neurons form a maximally integrated conceptual structure that defined by G. Tononi as 

qualia. Integrated information is also considered as a system of cyclic causality. Using integrated 

information the brain is adjusted to perceiving "natural" objects of the outer world.  

In terms of integrated information, phenomenological properties are formulated as follows. In 

brackets an interpretation of these properties from the point of view of "natural" classification is 

given. 

1. Composition – elementary mechanisms (causal relationships) can be combined into the 

higher-order ones ("natural" classes in the form of causal loops produce a hierarchy of "natural" 

classes);  

2. Information – only mechanisms that specify “differences that make a difference” within a 

system shall be taken into account (only a system of “resonating” causal relationships, forming 

a class and “differences that make a difference” is important. See illustration in the computer 

experiment below); 

3. Integration – only information irreducible to non-interdependent components shall be taken 

into account (only system of "resonating" causal relations, indicating an excess of information 

and perception of highly correlated structures of "natural" object is accounted for); 

4. Exclusion – only maximum of integrated information counts (only values of attributes that are 

"resonating" at the fix-point and, thus, mostly interrelated by causal relationships, form a 

Figure 1. Brain reflection of causal relationships between objects attributes 



  

 

"natural" class or "natural" concept). 

These properties are defined as the intrinsic properties of the system. We consider these 

properties as the ability of the system to reflect the complexes of external objects’ causal relations, 

and consciousness as the ability of a complex hierarchical reflection of a "natural" classification of the 

outer world.  

Theoretical results on consistency of inference and consistency of fixed points of our formal 

model are supposing that a probability measure of events is known. However, if we discover causal 

relationships on the training set, and intend to predict properties of a new object out of the training 

set and belonging to a wider general population, or to recognize a new object as a member of some 

“natural” concept, there might be inconsistencies. Here, a certain criterion of maximum consistency 

is employed (see Section 2.8), which is based upon information measure, close in meaning to an 

entropic measure of integrated information (Tononi, 2004). The process of recognizing “natural” 

classes is described in Section 2.9. 

In section 3 a computer modeling of "fixed points" discovering for the coded digits is provided. 

Further we shell describe the idea of the work in more detail before the complicated 

mathematical part. 

Causality is a result of physical determinism: “for every isolated physical system some fixed 

state of a system determines all the subsequent states” (Carnap, 1966). But, an automobile accident 

shall be taken as an example (Carnap, 1966). What was the reason for it? It might be a road surface 

condition or humidity, position of sun with respect to drivers’ looks, reckless driving, psychological 

state of driver, functionality of brakes, etc. It is clear that there is no any certain cause in this case. 

In the philosophy of science causality is reduced to forecasting and explaining. “Causal relation 

means predictability … in that if the entire previous situation is known, an event may be predicted 

…, if all the facts and laws of nature, related to the event, are given” (Carnap, 1966). It is clear that 

nobody knows all the facts, which number in case of an accident is potentially infinite, and all the 

laws of nature. In case of a human being and animals, the laws are obtained by training (inductive 

reasoning). Therefore, causality is reduced to predicting pursuant to inductive-statistical (I-S) 

reasoning, which involves logical inference of predictions from facts and statistical laws with some 

probabilistic assessment. 

When discovering causal relationships and laws on real data or by training, a problem of 

statistical ambiguity appears – contradictions (contradictory predictions) may be inferred from these 

causal relationships. See example in the section 2.3. To avoid inconsistences, Hempel (1965, 1968) 

introduced a requirement of maximal specificity (see Sections 2.3, 2.4), which implies that a 

statistical law should incorporate maximum of information, related to the predictable property. 

Section 2.5 presents a solution to the problem of statistical ambiguity. Following Hempel, a 

definition of maximally specific rules is given (Section 2.4, 2.5), for which it is proved (Section 2.6) 

that (I-S) inference that uses only maximum specific rules, does not result in inconsistencies (see also 

Vityaev, 2006). A special semantic probabilistic inference is developed that discover all maximum 

specific rules, which might be considered as the most precise causal relationships (that have 

maximum conditional probability and use maximum available information). Work (Vityaev, 2013) 

shows that the semantic probabilistic inference might be considered as a formal model of neuron 

that satisfy the Hebb rule, in which the semantic probabilistic reasoning discover all most precise 

conditional relationships. A set of such neurons might create a consistent and prognostic model of 

the outer world. Causal relationships may form fixed points of cyclic inter-predictable properties 

that produce a certain “resonance” of mutual predictions. Cycles of inferences about causal 

relations, are mathematically described by the "fixed points". These points are characterized by the 

property, that using inferences with respect to considered properties they don’t predict some new 

property.  

Neuron transmits its excitation to the other neurons through multiple both excitatory and 

inhibitory synapses. Inhibitory synapses may slow down other neurons and stop their activity. It is 

important for “inhibiting” alternate perception images, attributes, properties, etc. Within our formal 

model it is accomplished by discovering “inhibitory” conditional relationships that predict absence 



  

 

of an attribute/property of the object (the perceived object shall not have the respective 

attribute/property) as compared to the other objects, where this characteristic is found. A formal 

model specifies it by predicates’ negations for corresponding attribute/property. Absence of 

inconsistencies at the fixed point means that there are no two causal relationships simultaneously 

predicting both availability of some attribute/property with an object, and its absence. 

The structure of the outer world objects was analyzed in the form of "natural" classifications 

(Section 2.1). It was noted that "natural" classes of animals or plants have a potentially infinite 

number of different properties (Mill, 1983). Naturalists, who were building "natural" classifications, 

also noted that construction of a "natural" classification was just an indication: from an infinite 

number of attributes you need to pass to the limited number of them, which would replace all other 

attributes (Smirnof, 1938). This means that in "natural" classes these attributes are strongly 

correlated, for example, if there are 128 classes, and their attributes are binary, then the independent 

"indicator" attributes among them will be about 7 attributes as 27 = 128, and others can be predicted 

based on these 7 attributes. The set of mutually predicted properties, obtained at the fixed point, 

produces some "natural" class.  

High correlation of attributes for "natural" classes was also confirmed in cognitive studies (see. 

Section 3). Eleanor Rosch formulated the principles of categorization, one of which is as follows: "the 

perceived world is not an unstructured set of properties found with equal probability, on the 

contrary, the objects of perceived world have highly correlated structure" (Rosch, 1973, 1978, Rosch 

at al. 1976). Therefore, directly perceived objects (so called basic objects) are observed and functional 

ligaments, rich with information. Later, Bob Rehder suggested a theory of causal models, in which 

the relation of an object to a category is based not on a set of attributes but on the proximity of 

generating causal mechanisms: "the object is classified as a member of a certain category to the extent 

that its properties are likely to have been generated by this category of causal laws" (Rehder, 2003). 

Thus, the structure of causal relationships between the attributes of objects is taken as a basis of 

categorization. Therefore, brain perceives a "natural" object not as a set of attributes, but as a 

"resonant" system of causal relationships, closing upon itself through simultaneous inference of the 

total aggregate of the "natural" concept features. At the same time, "resonance" occurs, if and only if 

these causal relationships reflect some integrity of some "natural" class, in which a potentially 

infinite number of attributes mutually presuppose each other. To formalize causal models, Bob 

Rehder proposed to use causal graphical models (CGMs). However, these models are based on 

«deployment» of Bayesian networks, which do not allow cycles and cannot formalize cyclic causal 

relationships. 

It should be specially noted that the "resonance" of mutual predictions of the properties of 

objects is carried out continuously in time and therefore the predicted properties are properties that 

have just been perceived as stimuli from the object. Therefore, it is always a prediction in time. The 

absence of contradictions in the predictions is also the absence of contradictions between the 

predicted stimulus and the really received stimulus.  

Here we suggest a new mathematical apparatus for formalizing cyclic causal relationships. 

2. Materials and Methods  

2.1. "Natural" classification 

The first fairly detailed philosophical analysis of "natural" classification was carried out by John 

St. Mill (1983). This analysis describes all the basic properties of "natural" classifications, which were 

later confirmed by naturalists who were building "natural" classifications and also by those 

researchers in the field of cognitive sciences, who were investigating "natural" concepts. 

According to John St. Mill (1983) "artificial" classifications differ from the "natural" ones in that 

they may be based on any one or more attributes, so that different classes differ only in inclusion of 

objects, having different values of these attributes. But if the classes of "animals" or "plants" are 

considered, they differ by such a large (potentially infinite) number of properties that they can't be 

enumerated. Furthermore, all these properties are based on statements, confirming this distinction. 



  

 

At the same time, among the properties of some "natural" classes, there are both observable and 

non-observable attributes. To take into account hidden attributes, their causal exhibitions in the 

observed attributes should be found. "For example, the natural classification of animals should be 

based mainly on their internal structure; however, it would be strange, as noted by A. Comte, if we 

were able to determine the family and specie of one or another animal, only by killing it" (Mill, 1983). 

James. St. Mill gives the following definition of "natural" classification: it is such a classification, 

which combines the objects into the groups, about which we can make the greatest number of 

common propositions, and it is based on such properties, which are causes of many others … He 

also defines an "image" of a class, which is the forerunner of "natural" concepts: "our concept of class, 

the way in which this class is represented in our mind, is the concept of some sample, having all 

attributes of this class in the highest ... degree". 

John St. Mill's arguments were confirmed by naturalists. For example, Rutkowski (1884) writes 

about inexhaustible number of general properties of the "natural" classes: "The more essential 

attributes are similar in comparable objects, the more likely they are the similar in other attributes". 

Smirnov E.S. (1938) makes a similar statement: "The taxonomic problem is in indication: "from an 

infinite number of attributes we need to pass to a limited number of them, which would replace all 

other attributes." As a result, there were formulated a problem of specifying "natural" classifications, 

which is still being discussed in the literature (Wilkins and Ebach, 2013).  

These researches are uncover a high degree of over determination of information for “natural” 

classes. If for specification of 128 classes with binary characteristics only 7 binary attributes are 

required, since 27 = 128, then for hundreds or even thousands of attributes as it is the case of 

“natural” classes, they are much more highly overdetermined. Since over determination of features 

is high, it is possible to find, for example, 20 attributes for our classes, which are identical for the 

objects of the same class and entirely different in other classes. As each class is described by the fixed 

set of values of any 7 from 20 binary attributes, then remaining 13 attributes are uniquely 

determined. It implies that there are, at least, 13* 7

20C  = 1007760 dependencies between attributes. 

This property of “natural” classification was called as “taxonomic saturation” (Kogara, 1982). For 

such systems of attributes there is no a problem of a “curse of dimensionality”, when as 

dimensionality of the attribute space increases, accuracy of Machine Learning algorithms decreases. 

Conversely it was shown in (Nedelko, 2015) that accuracy of the classification algorithm increases, if 

it properly incorporates redundancy of information. The classification and recognition algorithm in 

Sections 2.8, 2.9 incorporate this redundant information. As it is shown in the works on “natural” 

concepts in cognitive studies (see next section), human perception also incorporates this redundancy 

of information that allows identifying objects with practically with very high accuracy.   

2.2. Principles of categorization in cognitive sciences  

In the works of Eleanor Rosch (1973, 1978, Rosch at al. 1976) the principles of categorization of 

"natural" categories, confirming statements of John St. Mill and naturalists, are formulated on the 

basis of the experiments:  

“Cognitive Economy. The first principle contains the almost common-sense notion that, as an 

organism, what one wishes to gain from one's categories is a great deal of information about the 

environment while conserving finite resources as much as possible. To categorize a stimulus means 

to consider it, for purposes of that categorization, not only equivalent to other stimuli in the same 

category but also different from stimuli not in that category. On the one hand, it would appear to the 

organism's advantage to have as many properties as possible predictable from knowing any one 

property, a principle that would lead to formation of large numbers of categories with as fine 

discriminations between categories as possible».  

«Perceived World Structure. The second principle of categorization asserts that … perceived 

world – is not an unstructured total set of equiprobable co-occurring attributes. Rather, the material 

objects of the world are perceived to possess … high correlational structure. … In short, 

combinations of what we perceive as the attributes of real objects do not occur uniformly. Some 



  

 

pairs, triples, etc., are quite probable, appearing in combination sometimes with one, sometimes 

another attribute; others are rare; others logically cannot or empirically do not occur». 

It is understood that the first principle is not possible without the second one – the cognitive 

economy is not possible without a structured world. «Natural» objects (basic objects) are rich with 

information ligaments of observed and functional properties, which form a natural discontinuity, 

creating categorization. These ligaments form a "prototypes" of the objects of different classes 

("images" of John St. Mill): «Categories can be viewed in terms of their clear cases if the perceiver 

places emphasis on the correlational structure of perceived attributes … By prototypes of categories 

we have generally meant the clearest cases of category membership» (Rosch, 1973, 1978). «Rosch and 

Mervis have shown that the more prototypical of a category a member is rated, the more attributes it 

has in common with other members of the category and the fewer attributes in common with 

members of the contrasting categories» (Rosch & Mervis, at al., 1976).  

For the future the theory of "natural" concepts was suggested by Eleanor Rosch, called the 

Prototypical Theory of Concepts (Prototype Theory). Its main features are described as follows: «The 

prototype view (or probabilistic view) keeps the attractive assumption that there is some underlying 

common set of features for category members but relaxes the requirement that every member have 

all the features. Instead, it assumes there is a probabilistic matching process: Members of the 

category have more features, perhaps weighted by importance, in common with the prototype of 

this category than with prototypes of other categories» (Ross, et al., 2008). 

In further studies it was found that the models based on attributes, similarities and prototypes 

are not sufficient to describe classes. It is therefore necessary to take into account the theoretical, 

causal and ontological knowledge, relating to the objects of classes. For example, people do not only 

know that birds have wings and can fly, and build their nests in trees, but also facts, that the birds 

build their nests in trees, because they can fly, and fly because they have wings. 

Many researchers believe that the most important theoretical knowledge is the knowledge of 

causal dependencies because of its functionality. It allows the organism to interfere in external 

events and to gain control over the environment. Studies have shown that people's knowledge of 

categories isn't limited by the list of properties, and includes a rich set of causal relationships 

between these properties, which can be ranked. The importance of these properties also depends on 

the category causal relationships. It was shown in some experiments (Ahn, at al., 2000, Sloman, Love 

and Ahn, 1998), that property is more important in classification, if it is more involved in causal 

network of relationships between the attributes. In the other experiments it was shown, that the 

property is more important, if it has more reasons (Rehder & Hastie, 2001). 

Considering causal dependencies, Bob Rehder proposed the theory of causal models, according 

to which: «people’s intuitive theories about categories of objects consist of a model of the category, in 

which both the category’s features and the causal mechanisms among those features are explicitly 

represented. In other words, theories might make certain combinations of features either sensible 

and coherent … in light of the relations linking them, and the degree of coherence of a set of features 

might be an important factor determining membership in a category» (Rehder, 2003). 

In the theory of causal models, the relationship of the object to a category is based not on a set of 

attributes or similarity based on attributes, but on the basis of similarity of generating causal 

mechanisms: «Specifically, a to-be-classified object is considered a category member to the extent 

that its features were likely to have been generated by the category’s causal laws, such that 

combinations of features that are likely to be produced by a category’s causal mechanisms are 

viewed as good category members and those unlikely to be produced by those mechanisms are 

viewed as poor category members. As a result, causal-model theory will assign a low degree of 

category membership to objects that have many broken feature correlations (i.e., cases where causes 

are present but effects absent or vice versa). Objects that have many preserved correlations (i.e., 

causes and effects both present or both absent) will receive a higher degree of category membership 

because it is just such objects that are likely to be generated by causal laws» (Rehder, 2003). 

To represent causal knowledge, some researchers have used Bayesian networks and causal 

models (Cheng, 1997, Gopnik, at al., 2004, Griffiths &Tenenbaum, 2009). However, these models 



  

 

cannot simulate cyclic causality because Bayesian networks do not support cycles. In his work Bob 

Rehder (Rehder & Martin, 2011) proposed a model of causal cycles, based on a "disclosure" of causal 

graphical models. The "disclosure" is fulfilled by creating a Bayesian network which unfolds over 

time. But this work did not formalize the cycles of causality. 

Our model is directly based on cyclic causal relationships, represented by fundamentally new 

mathematical models – fixed points of predictions on causations. To formalize such fixed points, a 

probabilistic generalization of formal concepts was defined (Vityaev, et al., 2012, 2015). Formal 

concepts emerging in the Formal Concept Analysis (FCA) may be specified as fixed points of 

deterministic implications (with no exceptions) (Ganter and Wille, 1999, Ganter, 2003). We 

generalize formal concepts for probabilistic case through introducing probabilistic implications and 

defining fixed points for probabilistic implications (Vityaev, et al., 2012, 2015). Generalization is 

made so, that in certain conditions probabilistic formal concepts and formal concepts coincide. A 

computer experiment is performed (Vityaev, et al., 2012, 2015), which demonstrates that 

probabilistic formal concepts might “restore” formal concepts after superimposition of noise.  

The formalization given in the section 2.6 is more general, then in works (Vityaev, et al., 2012, 

2015). When there is a fixed set of objects, and there is no general population, for which we need to 

recognize a new object from general population as belonging to one of available formal concepts, 

formalization in section 2.6 provides probabilistic formal concepts. But when set of objects is a 

sample from the general population, and it is necessary to recognize new objects to the one of the 

probabilistic formal concepts, this formalization provides “natural” classification of the objects of 

general population. 

2.3. Statistical ambiguity problem 

A problem of inconsistent predictions obtained from inductively deduced knowledge is called 

a problem of statistical ambiguity. The classical example is the following. Suppose that we have the 

following statements.  

L1 Almost all cases of streptococcus infection clear up quickly after the administration of 

penicillin.  

L2 Almost no cases of penicillin resistant streptococcus infection clear up quickly after the 

administration of penicillin.  

C1 Jane Jones had streptococcus infection.  

C2 Jane Jones received treatment with penicillin.  

C3 Jane Jones had a penicillin resistant streptococcus infection.  

On the base of L1 and C1∧C2 one can explain why Jane Jones recovered quickly (E). The second 

argument with L2 and C2∧C3 explains why Jane Jones did not (¬E). The set of statements {C1, C2, 

C3} is consistent. However, the conclusions contradict each other, making these arguments rival 

ones. Hempel hoped to solve this problem by forcing all statistical laws in an argument to be 

maximally specific – they should contain all relevant information with respect to the domain in 

question. In our example, then, the statement C3 invalidates the first argument L1, since this 

argument is not maximally specific with respect to all information about Jane Jones. So, we can only 

explain ¬E, but not E. Let us consider the problem of statistical ambiguity the notion of maximal 

specificity in more detail. 

There are two types of predictions (explanations): deductive-nomological (D-N) and 

inductive-statistical (I-S). The employed laws in D-N predictions are supposed to be true, whereas 

in I-S predictions they are supposed to be statistical. 

Deductive-nomological model may be presented in the form of a scheme  
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where: 
1 mL , ,L  - set of laws; 

1 nC , ,C  - set of facts;  G – predicted statement; 

1 m 1 nL , ,L ,C , ,C G  ; set 
1 m 1 nL , ,L ,C , ,C   is consistent; 

1 mL , ,L G , 
1 nC , ,C G ; laws 

1 mL , ,L  contain only universal quantifiers; set of facts C1,…,Cn – quantifier-free formulas. 

Inductive-statistical model is identical to deductive-nomological with the difference that laws 

are statistical and shall meet the Requirement of Maximal Specificity (RMS), to avoid 

in-consistencies. 

Requirement of Maximal Specificity is defined by Carl Hempel (1965, 1968) as follows: 
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Rule F  G is the maximum specific with the state of knowledge K, if for each class H, for 

which both of the below statements belong to K 

x(H(x) F(x))  , H(a) 

there is a statistical law p(G; ) = r'H  in K such that r r' . RMS requirement implies that if both F 

and H contain object a, and H is a subset of F, then H has more specific information about object a, 

than F and, therefore, law p(G;H)  shall prevail over law p(G; )F . However, for maximum specific 

rules law p(G;H)  should have the same probability as law p(G; )F  and thus H not adds any 

additional information. 

The Requirement of Maximal Specificity had not been investigated by Hempel and its 

successors formally, and it had not been proved that it can avoid inconsistencies. The next section 

contains a formal definition of the maximal specificity, for which we prove that I-S inference that use 

only maximal specific rules, is consistent. 

2.4. Requirement of Maximal Specificity 

Let us introduce a language of the first order L of signature
1 k, ,   , which contains only 

unitary predicates symbols for the objects properties and stimulus description. Let ( )U   shall 

denote a set of all atomic formulas. Atomic formulas or their negations shall be called liters, and a 

multitude of all liters shall be denoted as Lit. Closure of all liters with respect to logical operations 

&,  ,   shall be called a set of sentences ( )  .  

Also we need an empirical system M A,W    of the signature   for representing the set of 

objects A and set of predicates 
1 kW P ,...,P    defined on A. Set of all M-true sentences from ( )   

shall be called a theory Th(M) of M. It shall be further supposed that theory Th(M) – is a set of 

universally quantified formulas. It is known that any set of universal formulas is logically equivalent 

to the set of rules as follows 

1 k 0 0 1 kC (A &...&A A ), k 0, A {A ,...,A }    , (1) 

where 0 1 kA ,A ,...,A  – liters. Formulas of type 0A , k 0 are considered as rules 0( T A ) , where T – 

truth. Hence, without loss of generality, it can be assumed that theory Th(M)  is a set of the (1) type 

rules.  



  

 

A rule might be true on empirical system M only because the premise of the rule is always 

false. Furthermore, a rule may also be true, since its certain “sub-rule” that involves a part of 

premise, is true on empirical system. These observations are summarized in the following theorem.  

Теорема 1 8. (Vityaev, 2006). Rule 
1 k 0C (A &...&A A )   logically follows from rules:  

1. 
1 h 0i i i(A &...&A A ) С , 

1 h 0i i i 1 k{A ,...,A ,A } {A ,...,A } , 0  h < k;  

2. 
1 hi i 0(A &...&A A ) С , 

1 hi i 1 k{A ,...,A } {A ,...,A } , 0  h < k, 

where  is prof. 

Definition 1. Sub-rule of rule C shall be any rule of 1 or 2 type, specified in theorem 1. 

Corollary 1. If sub-rule of rule C is true on M, then rule C is true on M. 

Definition 2. Any rule C, true on M, each sub-rule of which is already not true on M, shall be 

called a law of empirical system M. Rule 
0( A )  is true on M, if 

0M A . Rule 
0( A )  true on 

М, is a law on M. 

Let Law – be the set of all laws on M. Then, theory Th(M) logically follows from Law.  

Theorem 2 (Vityaev, 2006). (See prof in Appendix A). Th(M)Law  and for each rule

C Th(M) its sub-rule exists, which is a law on M. 

Statistical laws shall now be defined. For the sake of simplicity a probability shall be 

determined on empirical system     A,M W   as on a general population, where А is a set of objects 

of a general population, and W is a set of unitary predicates, defined on A.  

Probability  : A 0,1   shall be defined on A (general case is considered in Halpern, 1990): 

,( ) 1 ( ) 0,  
a A

a a Aa 


  . 

),  ( ) (
b B

B AB b 


  . 

 

( ) ( )
b B

B b 


  

 

(2) 

Probability n  on ( )nA , shall be naturally defined: 

1 1( ,..., ) ( ) ... ( )n

n na a a a     . 

Interpretation of language L shall be determined as mapping : I W , where predicate 

jP W , j  1,...,k  corresponds to each predicate symbol j  . Mapping ν :X A  of a set of 

variables X of language L to the set of objects shall be called attribution. Composition of mappings 

I  , where ( )   specifies a formula obtained from  by replacement of predicate symbols of 

by predicates W through interpretation I and replacement of variables from  with objects from A 

by attributing . Probability  of sentence φ( , , ) ( )a b    shall be defined as:  

     n

1 n 1 nη(φ) = μ ({ a ,…,a | M νIφ, ν a = a ,…,ν b = a }) .    (3) 

Definition 3. Rule 1 k 0C (A &...&A A )   of (1) type, with 1 k(A &...&A ) 0   and conditional 

probability 0 1 k( ) (A /A &...&A ) 0C    strictly higher than conditional probabilities of all its 

sub-rules, shall be called a probabilistic law on M. Conditional probability of sub-rule 0( A )C    

shall be defined as 0 0( ) (A / T) (A )C    . All rules of type 0( A ) , 0(A ) 0   are probabilistic 

laws. 

A set of all probabilistic laws shall be designated as LP. 



  

 

Definition 4. Probabilistic law
1 k 0C (A &...&A A )  , which is not a sub-rule of any other 

probabilistic law, shall be called the strongest probabilistic law (SPL-rule) on M. A set of all SPL-rules 

shall be designated as SPL.  

It shall be proved that a concept of probabilistic law generalizes a concept of a law, which is 

true on M.  

Theorem 3. (See prof in Appendix A). Law  SPL  LP. 

Definition 5 (Vityaev, 2006). A semantic probabilistic inference (SP-inference) of some SPL-rule, 

predicting liter
0A , shall be such sequence of probabilistic laws

1 2 nC C ... C , as: 

1. 
1 0C ( )A  ; 

2. 
1 2 nC ,C ,...,C LP , 

i 1 0C ( &...& )
i

i i

kA A A  , 0ik  ; 

3. 
iC  is a sub-rule of 

1iC 
, i.e. 

1

1 1

1 1{ &...& } { &...& }
i i

i i i i

k kA A A A


  , 
1i ik k  ; 

4. 
1 ) ( ) (i iC C   ; 

5. 
nC  – SPL-rule.  

(4) 

A set of all SP-inferences, predicting liter 
0A  shall be considered. This set may be presented 

as a semantic probabilistic inference tree for liter
0A . 

Lemma 2. (See prof in Appendix A). Any probabilistic law 
1 0C ( &...& )kA A A   belongs to 

some semantic probabilistic inference, which predicts liter 
0A  and, hence, to the tree of semantic 

probabilistic inference of liter
0A . 

Definition 6. A maximum specific rule 
0MS( )A  on M for predicting liter

0A shall be an SPL-rule 

that has a maximum value of conditional probability among all SPL-rules of a semantic 

probabilistic inference tree for liter
0A . If there are several rules with identical maximum value, all 

of them are maximum specific. 

A set of all maximum specific rules shall be denoted as MSR. 

Proposition 1. Law  MSR  SPL  LP.  

2.5. Resolving the problem of statistical ambiguity 

A requirement of maximal specificity shall be defined in the general case. It shall be supposed 

that statement H in the Hempel’s formulation of the requirement of maximal specificity is a 

sentence )(H    of the language L. 

Definition 7. Rule ( ) ( ) ,C F G F    , G Lit  meets the requirement of maximal 

specificity (RMS), if it follows from )(H    and )&( ) (F a H a  for some a A  that rule 

C' (F&H G)   has the same probability )/ & ( /( )G F H G F r   . 

In other words, RMS states that there is no sentence )(H   , which would increase (or 

decrease, see the Lemma below) conditional probability ( )/G F r   of the rule by adding it to the 

premise of the rule. 

Lemma 3. (See prof in Appendix A). If statement )(H    decreases probability of rule i.e. 

( ) ( )/ & /G F H G F   then the statement H  increases it and ( ) ( )/ & /G F H G F  . 

Lemma 4. (See prof in Appendix A). For each rule 1 k 0C (A &...&A A )   of form (1), there 

shall be found a probabilistic law 1 ' 0' ( &...& A )kC B B  , 'k k , on M, for which ( ') ( )C C  .  

Теорема 4 (Vityaev, 2006). (See prof in Appendix A). Any maximum specific rule 

MS( ) (F G),G    F ( ), G Lit    meets the requirement of maximal specificity. 



  

 

2.6. Fixed points of predictions based on MSR rules. Solution of a statistical ambiguity problem. 

It shall be proved that any I-S inference is consistent for any set of rules 
1 m{L , ,L } MSR  . To 

do it, an inference by MSR rules and fixed points of inference as per MSR rules shall be considered.  

Definition 8. An immediate successor operator Pr shall be defined by rules from P MSR  

with a set of liters L as follows:  

 
0 1 k 0 1 kPr ( ) = {A | C (A &...&A A ),{A ,...,A } , }P L L L С P      

Definition 9. A fixed point of operator Pr of immediate successor with respect to a set of liters 

L shall be a closure of this set of liters with respect to the immediate successor operator Pr ( )P L , 

whence it follows that Pr (Pr ( ))P P L L  . 

Definition 10. A set of liters 
1 k{ ,..., }L L L  is called a compatible set, if 

1 k(L &...& ) 0L  . 

Definition 11. A set of liters L is consistent, if it does not contain simultaneously atom G  and 

its negation G .  

Proposition 2. (See prof in Appendix A). If L is compatible, L is consistent. 

It shall be shown that an immediate prediction retains the property of compatibility. 

Теорема 5 (Vityaev and Martinovich 2015). (See prof in Appendix A). If L is compatible, Pr ( )P L  

is also compatible, P MSR .  

To prove the theorem, the following lemma shall first be proved. 

Лемма 5. (See prof in Appendix A). If for rules A = (A G) , B = (B G) , 

1A = A &...& ,kA  1B = B &...& mB , (A& B) 0   , 0k  , 0m   inequality ( / & ) ( / )G A B G A    

is valid, a rule exists that has a strictly higher conditional probability than rule A. 

Corollary 2. If L is compatible, then Pr ( )P L  is consistent for P MSR . 

Corollary 3. (Solution to a problem of statistical ambiguity). I-S inference is consistent for any 

set of laws 
1 mP = {L , ,L } MSR   and set of facts 

1{ ,..., }.nC C  

Corollary 4. Fixed points Pr ( )P L  for a compatible set of liters L are compatible and consistent. 

A set of all fixed points = Pr ( )MSRL N , obtained by all maximum specific rules on all 

compatible sets of liters N, shall be designated using Class(M). 

2.7. “Natural” classification as a fixed points of prediction by a maximum specific rules. 

Probabilistic formal concepts and “natural” classification shall be specified, using fixed points 

pursuant to maximum specific rules. If empirical system     A,M W   is defined on some fixed set of 

objects A, the below defined probabilistic formal concepts and “natural” classifications for this set 

are in agreement. It can be shown (Vityaev et al., 2005, Vityaev & Martynovich, 2015), that this 

definition of “natural” classification satisfies all the requirements, which natural scientists imposed 

on “natural” classification. 

Definition 12. Probabilistic formal concepts and “natiral” classification (Vityaev & 

Martynovich, 2015). 

1. A set of all fixed points of Class(M) shall be called a set of all probabilistic formal concepts and 

“natural” classes of this empirical system M.  

2. Each class/concept L specifies in empirical system M a set of objects, which belong to a 

class/concept ( ) {  | }bM L b A B L  , where
bB b, W    is a sub-model of model M A, W  

generated by object b A . 

3. A lawful model of class/concept ,ZLС L    shall be defined as a set of liters Class(M)L  of 

fixed point and a set of rules ZL MSR , applicable to liters from L. 



  

 

4. A generating set of some class/concept ,ZLC L   shall be such a subset of liters N L , that 

= Pr ( )MSRL N . 

5. A set S of atomic sentences j( )a , j=1,…s, s k  shall be called a system-forming, if for each 

class from Class(M) there is a generating set of liters, which are obtained from the 

system-forming set of atomic sentences by taking or not taking the negation.  

6.  A systematics shall be defined as a set (M), ,{ }
i iS L L ClassS Z Z     , where S is a system-forming 

set of atomic sentences, 
SZ  – a law of systematization, which defines an order of taking 

negations for atomic sentences from S, (M){ }
i iL L ClassZ  , a set of the rules for fixed points from 

Class(M). 

2.8. Method of “natural” data classification 

In the case of “natural” classification, an empirical system     A,M W   as a general 

population, is unknown. Only a data sampled from a general population are known. Therefore, to 

develop a method for “natural” classification, the questions of making “natural” classification and 

fixed points by data samplings should be considered. By a sampling from a general population   

we shall mean a sub-model, ,BB B W   , where B is a set of objects randomly selected from 

general population A. A frequency probability 
B  shall be specified within a sampling, by 

assuming ( ) 1/ , | |B a N N B   , according to which probability 
B  on sentences from ( )   is 

determined. On sampling ,BB B W   , as on a sub-model, a theory Th(B), a set of laws Law(B), a 

set of probabilistic laws LP(В), a set of the strongest probabilistic laws SPL(B), and a set of 

maximum specific laws MSR(B) might be obtained.  

Proposition 3. Th(M) Th(B) . 

Since each set of liters,  b bS L Lit B L   is compatible, since it is obtained on real objects, 

which have a nonzero probability, hence, a set Class(B) { = Pr ( ) | , b B}MSR bL N N S    shall be a 

set of all fixed points on sampling 
BB . Classes Class(B) shall be the analogues of probabilistic 

formal concepts (Vityaev, et al., 2012, 2015). However, a potential identification and recognition of 

“natural” classes of a general population by “natural” classes discovered on a sampling, is of 

concern, rather than probabilistic formal concepts, defined on sampling 
BB M . In this case, 

probability   of a general population is unknown, but frequency probability 
B  within a 

sampling is known.  

Maximum specific laws MSR(B) within sampling BB  may be not the same on a general 

population. They can be considered as approximations of laws MSR(M) in the following sense. 

Determining maximum specific laws using semantic probabilistic inference shall be recalled. In the 

process of inferring a premise of a rule is stepwise developed through strictly enhancing its 

conditional probability and involving as much relevant information as possible, on accordance 

with a requirement of maximal specificity, to ensure maximum probable and consistent prediction. 

Sampling BB  might facilitate building a tree of semantic probabilistic inference through 

increasing the premise and applying some statistical criteria for checking the strict increase of the 

conditional probability   on general population ,M A W   . For this purpose, an exact 



  

 

independence criterion of Fischer for contingency tables shall be used. Here, by sampling 

,BB B W    a set LP ( )M  of probabilistic laws with some confidence level  might be 

discovered, where each probabilistic inequality shall be statistically validated with confidence level 

. By the set LP ( )M , a set of the strongest probabilistic laws SPL ( )M  might be found, with 

confidence level .   

Inference by SPL ( )M  rules may be inconsistent, hence, to build fixed points by set

SPL ( )M , it is necessary to use a weaker criterion of consistency of probabilistic laws in mutual 

predictions, which assumes occurrence of inconsistencies. 

An operator of direct inference SPL (M)r (L)


   shall be defined for this case. A set of laws, 

verified within a set of liters L shall be defined  

1 k 0 1 k 0Sat(L) {C | ( ), C (A &...&A ),{A ,...,A } , A }C SPL M A L L      ,  

and a set of laws, disprovable at a set of liters L 

1 k 0 1 k 0Fal(L) { | ( ), C (A &...&A ),{A ,...,A } , A }C C SPL M A L L       , (
0 0A A  ). 

A criterion Kr of mutual consistency between laws from SPL  shall be defined on a set of 

liters L as: 

( )

( ) ( )

( ) ( ) ( )SPL M

C Sat L C Fal L

Kr L C C


 
 

   , where 
B( ) log(1 ( ))C C    . 

 

Function 
Blog(1 ( ))C   incorporates not a probability itself, but its closeness to 1, since it 

characterizes a predictive power of regularity more accurately. 

Criterion ( )SPL MKr


 specifies not only information measure of consistency between 

regularities, but also an information measure of mutual integration between causal relationships 

within a set of liters L. Therefore, this measure is very close in meaning to entropy measure of 

integrated information stated in (Tononi, 2004). 

Operator SPL (M)r (L)


   functions as follows: it either adds one of liters Lit to a set L, which is 

predicted by regularities from Sat(L) , or deletes one of liters of a set L, predictable by disprovable 

laws from Fal(L) . Here, a compatibility of laws (their information measure) applicable to a set L 

shall strictly increase, i.e. at every step an inequality shall be satisfied 

( ( )) ( )SPL SPL SPLKr r L Kr L
  
   .  

Here, that liter is added/deleted, which results in a maximum increase in the criterion 

(information measure). If adding/deleting a liter does not increase a criterion, a set L remains 

unchanged and is a fixed point. Changes in criterion, when adding/deleting an element, are, 

respectively: 

0 0

( ) 0 ( )
Pr ( ),

( ) max { ( ) ( )}
SPL

SPL M SPL M
A L A L

L Kr L A Kr L
 



 

 
   ,  

0 0

( ) 0 ( )
Pr ( ),

( ) max { ( \ ) ( )}
SPL

SPL M SPL M
A L A L

L Kr L A Kr L
 



 

 
  .  



  

 

Operator SPL (M)r (L)


   adds/deletes that element, which maximizes the value of a criterion. 

Added/deleted elements are defined as follows: 

0 ( ) 0

0 ( ) 0
Pr ( ),

( ) arg max ( ( ))
SPL M

SPL M
A L A L

A Kr L A






 

  ,  

0 ( ) 0

0 ( ) 0
Pr ( ),

( ) arg max ( ( \ ))
SPL M

SPL M
A L A L

A Kr L A






 

 . 

In each case of employing, operator SPL (M)r (L)


   adds/deletes that element, which increases 

a criterion to the maximum, i.e. adds element 
0( )A  , if ( ) ( )L L   , ( ) 0L    and deletes 

element 
0( )A  , if ( ) ( )L L   , ( ) 0L   . 

Thus, operator SPL (M)r (L)


    is determined as follows: 

0

( ) 0

( ) ( ) ( ), ( ) 0

( ) \ ( ) ( ) ( ), ( ) 0 .

,  else

SPL M

L A if L L L

r L L A if L L L

L


  

  

   

   

    
 

      
 
 

 

Fixed point ( ) ( )SPL Mr L L


    shall be obtained in the third case, when adding/deleting an 

element does not increase the criterion. A set of all such fixed points obtained on all compatible 

sets of liters L, shall be defined as a set of “natural” classes Class ( )M . 

To obtain a regular model of class Class (M)L   a set of regularities ZL
 interpredicting the 

class attributes should be specified. Regularities Sat(L)  represent such regularities. At the fixed 

point L disprovable predictions across regularities Fal(L)  are overlapped with the verified 

predictions across regularities Sat(L) . Since, theoretically, with the known measure  , there 

shouldn’t be any inconsistencies, regularities Fal(L)  shall be considered obtained due to 

randomness of sampling 
BB . Regularities from SPL ( )M  that were not included into any set 

Sat(L)  of any class Class (M)L  , are considered as obtained as a result of retraining by virtue of 

sampling 
BB  randomness, therefore, they will be deleted from SPL ( )M . 

Definition 13. A set , ( )C L Sat L    shall be called a regular model of class Class (M)L  .  

For “natural” classes, definitions of generating set, system forming set, and systematics from 

definition 12 remain unchanged. 

The functions of information measure in terms of accuracy of identifying objects of the outer 

world shall be noted: 

1. It enables to cope with retraining and exclude regularities, which are probably obtained 

due to randomness of sampling; 

2. Extraction of the maximum value of information measure facilitates extracting all 

overdetermined information, inherent in “natural” classes; 

3. Recognition of objects of the outer world using overdetermined information and makes 

this recognition maximally accurate and solves the problem of “dimensionality curse”. 

2.9. Recognition of “natural” classes 



  

 

Regular models of classes allow recognizing them on control objects, chosen from a general 

population. For this purpose, regular models of classes , ( )C L Sat L    in the form of regular 

matrices shall be defined. For each liter 
0A L  the power of its prediction shall be estimated 

pursuant to regularities from Sat(L)  and liters from L as 

1 k 0

(L) 0

( ), C (A &...&A )

( ) ( )Sat

C Sat L A

Kr A C
  

  . 

Definition 14. Regular matrix of class , ( )C L Sat L    shall be defined as a tuple

0(L) 0,{ ( )}C Sat A LM L Kr A    . 

Proposition 4. For each class , ( )C L Sat L    an equation is true 

0

( ) ( ) 0( ) ( )SPL M Sat L

A L

Kr L Kr A




  . 

Using regular matrices, new objects of a general population may be recognized and relegated 

to the “natural” classes. Pertinence of object b B  to class , ( )C L Sat L    shall be assessed. To do 

that, it shall be estimated, to what degree object b B  is conform with regularities of class ( )Sat L .  

Definition 15. Pertinence of object b B  to class , ( )C L Sat L    shall be defined as 

0 0 0

( ) 0 ( ) 0

( ) ,

( / ) ( ) ( )
b b

Sat L Sat L

A S L A L A S

Score b C Kr A Kr A
    

   . 

Recognition by regular matrices is made the same way as by weight matrices. To do that, for 

all objects of positive and negative sampling shall be calculated the ( / )Score b C  for each class, and 

a threshold value shall be computed that provides the required values of the first and second type 

errors. Then new objects of a general set might be recognized and relegated to the class, if value 

( / )Score b C  of this object is higher than the threshold value. 

3. Results 

Let's illustrate the formation of fixed points for the "natural" classes/concepts by the computer 

experiment on coded digits. Digits shall be encoded, as it is shown in Fig. 2. Attributes of digits shall 

be enumerated, as indicated in Table 1. A training set, consisting of 360 shuffled digits (12 digits of 

Fig. 2, which are duplicated in 30 copies without specifying where any digit is) shall be formed. On 

this set 55089 maximum specific rules were found by semantic probabilistic inference. They are 

general statements about the objects, mentioned by John St. Mill and W. Whewell. 



  

 

Let ( )X a  be a set of properties (stimulus) of an object а, defined by a set of predicates, and 

1 0
( &...& ) ( )

ki i iP P P MSR X   – the set of the maximum specific rules satisfied for properties X, 

1
{ ,..., }

ki iP P X  with confidential level . Then we can define operator ( )MSR Xr


   of direct 

inference. The fixed point is reached when 1

( ) ( )( ( )) ( ( ))n n

MSR X MSR Xr X a r X a
 

     , for some n, 

where ( )

n

MSR Xr


  – n multiple application of the operator. Since in each application of operator 

( )MSR Xr


   the value of criterion ( )MSR XKr


 increases and at the fixed point reaches a local 

maximum, then the fixed point, when reflecting some "natural" object, has a maximum information 

measure ( )MSR XKr


 and property of «exclusion» by G. Tononi.  

Table 1. Encoding of digital's fields. 

 

1 2 3 4 

5 6 7 8 

9 1 0 1 1 1 2 

13 1 4 1 5 1 6 

17 1 8 1 9 2 0 

21 2 2 2 3 2 4 

   Fields codes.    

 

According to these regularities, exactly 12 fixed points are discovered, accurately 

corresponding to the digits. An example of a fixed point for digit 6 is shown in Figure. 3. It shall be 

considered, what this fixed point is.  

Figure 2. Digits coding. 



  

 

The first regularity of digit 6 in Figure 3, represented in the first box after the brace, means that 

if in the square 13 (Table. 1) there is an attribute 6 (it is denote as 13-6), then it must be an attribute 2 

in square 3 (it is denote by (3-2) ). The predicted attribute is indicated by a dotted line. This 

regularity shall be written as (13-6  3-2). It is easy to see that this regularity is really implemented 

in all the digits. The second regularity means, that from the attribute (9-5) and the denial of the 

value 5 of the first attribute (1-5) (the first attribute must not be equal to 5) follows attribute (4-7). 

Denial is denoted by a dash line, as shown in the lower part of Figure 3. Thus, regularity 

(9-5&(1-5)  4-7) is obtained. The following 3 regularities in the first row of the digit 6, will be 

(13-6  4-7), (17-5&(13-5)  4-7), (13-6  16-7), respectively.  

Figure 3 shows, that these regularities and the attributes of digit 6 form a fixed point. They 

mutually predict each other. It is worth mentioning, that regularities, used in the fixed point, are 

discovered on all digits, but fixed point allocates only one digit. This illustrates the 

phenomenological property of “information” which states that “differences that make a difference”. 

Thus, the system of causal relationships perceives (is conscious of) whole object. Thus, digits are 

identified not by regularities themselves, but their system relationship. The fixed points forms a 

"prototype" by Eleanor Rosch, or "image" by John St. Mill. The program does not know in advance 

which possible combinations of attributes are correlated with each other.  

4. Discussion 

Theoretical results obtained in the paper suggest that it is possible to create a mathematically 

precise system of reflection of reality, based on the most specific rules and fixed points that use them. 

First of all, the question arises about the functioning of the neuron – is it really detects causal 

relations in accordance with the semantic probabilistic inference. Unfortunately, this is still 

impossible to verify, because connecting several contacts to one neuron is a deadly number for the 

neuron itself. However, it can be shown that the reflection of causal relationships is able to model a 

multitude of cognitive functions in accordance with existing physiological and psychological 

theories. The organization of purposeful behavior is modeled by causal relationships between 

actions and their results (Vityaev, 2015), which fully corresponds to the theory of functional systems 

(Anokhin, 1974). Fixed points adequately model the process of perception (Vityaev & Neupokoev, 

Figure 3. Fix-point for digit 6. 



  

 

2014). A set of causal relationships models expert knowledge (Vityaev, Perlovsky Kovalerchuk, 

Speransky, 2013). Therefore, the verification of this formal model for compliance with the actual 

processes of the brain seems to be an important task. 
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Appendix A. Mathematical proofs.  

Proof of the theorem 2. Rule C Th(M)   is either a law and belongs to Law, or a sub-rule 

exists for it, which is true on M. This sub-rule shall be taken, then again it is either a law, or there is 

a sub-rule for it, true on M, and so on. As a result, the law is obtained, which is a sub-rule of C. 

Then, by virtue of theorem 1, it can be deduced from this law ■ 

Proof of the theorem 3. The second exception follows from the definition. The first exception 

shall be considered. If rule C L  is of the form 0( A )C   , it belongs to LP by definition. It shall 

be supposed that rule 1 k 0C (A &...&A A )   is a law within M. It shall be proved that 

1 k(A &...&A ) 0.   If rule C is a law within M, the sub-rule 2 k 1(A &...&A A )  is not always 

true within M, and, thus, in some cases conjunction 
2 k 1A &...&A &A  is true, whence it follows that 

2 k 1(A &...&A &A ) 0  . Then conditional probabilities of all sub-rules are defined, since 

1 1(A &...&A ) ( &...& ) 0
hi i kA A    follows from 

1 1{A ,...,A } { ,..., }
hi i kA A . It shall be proved that 

( ) 1C  .    



  

 

0 1 0 1 1

0 1 0 1 0 1

( ) ( / &...& ) ( & &...& ) / ( &...& )

( & &...& ) / ( & &...& ) ( & &...& ).

k k k

k k k

C A A A A A A A A

A A A A A A A A A

   

  

  

 
 

Since rule С is true on M, there are no cases on M, when conjunction 
0 1 k( A &A &...&A )  is 

true and, hence, 
0 1 k( A &A &...&A ) 0    and ( ) 1C  .  

It shall be proved that conditional probability of each sub-rule of rule 
1 k 0C (A &...&A A )   

is strictly less than ( ) 1C  . Each sub-rule 
1

(A &...&A )
hi i L  of rule C is false on M, where L is 

either liter A , or A, for the 1st and 2nd type sub-rules. It means that 
1

(A &...&A & L) 0
hi i   . It 

follows from the last inequality that: 

 Since ( ) 1C  , rule C cannot be a sub-rule of any other probabilistic law, since in this case its 

conditional probability would be strictly less than conditional probability of this rule, what is 

impossible ■  

Proof of the lemma 2. If a probabilistic law has a form 
0C ( )A  , it shall be verified, if it is 

the strongest probabilistic law. If it is true, then a semantic probabilistic inference is found, if no, 

there is a probabilistic law, for which this probabilistic law is a sub-rule. It shall be taken as the next 

rule of semantic probabilistic inference, and it shall be again verified, if it is the strongest law, and 

so on. A sub-rule, which is a probabilistic law, shall be found for probabilistic law

1 0C ( &...& )kA A A  , 1k  . It always exists, since rule 
0C ( )A   is a probabilistic law. Since it 

is a sub-rule, its conditional probability will be less than a conditional probability of the rule as 

such. It shall be added as the previous rule of a semantic probabilistic inference, and the procedure 

shall be continued.  

Proof of the lemma 3. Designations a (G &F&H) , b (F&H) , c (G &F& H)  , 

d    (F& H)   shall be introduced. Then an original inequality (G / F&H) (G / F)   shall be 

re-written as a / b  (a   c) /(b   d),    from which it follows that 

(a   c) / (b   d) c / d (G / F) (G / F& H)        ■ 

Proof of the lemma 4. Rule 1 k 0C (A &...&A A )   is either a probabilistic law, or there is a 

sub-rule 1 ' 0( A )kR P &…&P   , ' 0k  , 
1 ' 1{ } { }k kP … P A … A     , 'k k  such, that an inequality 

( ) ( )R A    is satisfied. Similarly for rule R , it is either a probabilistic law, or there is a sub-rule 

with identical properties for it ■ 

Proof of theorem 4. It should be proved that for any sentence H ( )  , if F( ) &H( ),a a a A  is 

true on M, inequality (G / F&H) (G / F) r    is valid. From the condition of truth )&( ) (F a H a  

on M, it follows that (F&H) 0   and, hence, a conditional probability is defined.  

A case shall be considered, when H is a liter (B or B ). The opposite shall be assumed that 

(G / F&H) r  . Then, as per lemma 3, one of inequalities ( )&F B G r    or ( )&F B G r     

shall be satisfied for one of the rules ( )&F B G  or ( )&F B G  . Then, as per lemma 4, a 

probabilistic law 'C  exists, which is a sub-rule and has not lower conditional probability, then 

η(C') r . Hence, by lemma 2, probabilistic law 'C  belongs to some tree of semantic probabilistic 

inference and has a higher value of conditional probability than maximum specific rule MS( )G , 

predicting G, which contradicts to maximum specificity MS( )G . 

1 1 1

1 1 1

(L/A &...& A ) (A &...& A & ) / (A &...& A )

(A &...& A & ) / ( (A &...& A & ) (A &...& A & )) 1.
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i i i i i i

L
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  



  

 

A case shall be considered, when sentence H is a conjunction of two atoms 
1 2&B B , for which a 

theorem has already been proved. Also, the opposite shall be assumed that one of inequalities 

1 2(G/F&B & ) >B r , 
1 2(G/F&B & ) >B r  , 

1 2(G/F& B & ) >B r  , 
1 2(G/F& B & ) >B r    is valid. 

Then, by lemma 4 and lemma 2, a probabilistic law 'С  exists that belongs to the tree of a semantic 

probabilistic inference and is a sub-rule of one of these rules, and is such, as η(C') r  is valid. 

However, it is impossible, since rule (F&H G)С    is maximum specific. Hence, for all these 

inequalities only equality = or inequality < may take place. The last case is impossible due to the 

following equality 

A case, when sentence H is a conjunction of several atoms or their negations, is called an 

induction. 

In the general case, sentence H ( )   may be presented as a disjunction of conjunctions of 

atoms or their negations. To complete the proof, suffice it to consider a case, when sentence H is a 

disjunction of two non-intersecting sentences D E , (D&E)  0  , for which a theorem is already 

proved, i.e.  

(G / F&D) (G / F&E)  (G / F) r     .  

Then 
(G &F&(D ) (G &F& D) (G &F& )

(G / F&(D )
(F&(D ) (F& D) (F& )

E E
E r

E E

  


  

 
   

 
 . 

A disjunction case of multiple non-intersecting sentences is proved by induction ■ 

Proof of proposition 2. If L is compatible, atom G L  and its negation G L   cannot exist 

simultaneously, since then ( & ) ( & ) 0L G G    , where &L  is a conjunction of liters from L ■ 

Proof of the lemma 5. A conditional probability shall be written as follows 

1( / & ) ( / &( B ... B ))mG A B G A      . 

Disjunction 
1B ... Bm    shall be presented as disjunction of conjunctions 

1

(1,...1,0)

1
(0,...,0)

(B &...& B )m

i
ii

m
i




V , where 

1( ,..., )mi i i , 
1,..., {0,1}mi i   zero means that there is a negation with the 

corresponding atom, and unity means that there is no negation. Disjunction does not involve set 

(1,…,1), which corresponds to conjunction 
1B &...&Bm

.  

Then a conditional probability 1( / &( B ... B ))mG A     shall be rewritten as 

1

(1,...1,0)

1
(0,...,0)

/ ( & B &...& B )m

i
ii

m
i

G A




 
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 

V . 

It shall be proved that if ( / & ) ( / )G A B G A   , one of inequalities shall be satisfied 

1

1( / & &...& ) ( / )mii

mG A B B G A  , 1( ,..., ) (1,...,1)mi i  . 

The opposite shall be assumed: all inequalities are simultaneously true 

1

1( / & &...& ) ( / )mii

mG A B B G A  , 1( ,..., ) (1,...,1)mi i   

in those cases, when 1

1( & &...& ) 0mii

mA B B  . Since ( & ) 0A B   , there are cases, when 

1

1( & &...& ) 0mii

mA B B  . 
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Then 

1 1
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that contradicts to inequality ( / & ) ( / )G A B G A   . Therefore, this assumption is not valid, and 

there is a rule as follows 

1

1& &...& mii

mA B B G , 
1( ,..., ) (1,...,1)mi i  , 

that has a strictly higher assessment of conditional probability than A ■ 

Proof of theorem 5: It should be proved that, every time a rule from P MSR  is applied, a 

compatible set of liters is once again obtained. The opposite shall be assumed that, when applying 

some rule 
1 1A = (A &...& G),{A ,..., }k kA A L  , 1k   to a set of liters 

1 k{ ,..., }L L L , a liter G shall 

be obtained, for which 
1(L &...& & ) 0nL G  .  

Since for rules inequalities 
1(G/A &...& ) > (G)kA  , 

1(A &...& ) > 0, (G) > 0kA   are satisfied, 

then 
1 1(G&A &...& ) > (G) (A &...& ) > 0k kA A   . 

Negations of liters 1 1 1{ ,..., }={L &...& }\{A ,..., }t n kB B L A  shall be added to rule А, and rule 

1 1(A &...& & ( &...& ) G)k tA B B   shall be obtained. The following designations shall be made 

1 1&A = A &...& , & &...&i k j tA B B B , 
1&L = L &...& nL . 

As it was assumed, 1(L &...& & ) 0nL G   and (&A &(& )) = (&L) > 0i jB  . It shall be proved 

that in this case (&A & (& )) 0i jB   . The opposite shall be assumed that (&A & (& )) 0i jB   , 

then 

(G&(&A )& (& )) (&A & (& )) = 0.i j i jB B     

Whence it follows that 

1 1

0 (&L & ) (G&(&A )&(& )) (G&(&A ) (G&(&A )& (& ))) =

(G&A &...& ) > (G) (A &...& ) > 0.
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A comtradiction is obtained. Then 
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Then, by virtue of lemmas 2, 4, 5, it shall be found that there exists a probabilistic law with a higher 

conditional probability than rule A, which contradicts to a maximum specificity of rule A ■ 

  


