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Abstract

We present Hierarchical Deep Q-Network (HDQfD) that won first place in the
MineRL competition. The HDQfD works on imperfect demonstrations and utilizes
the hierarchical structure of expert trajectories. We introduce the procedure of
extracting an effective sequence of meta-actions and subgoals from the demonstra-
tion data. We present a structured task-dependent replay buffer and an adaptive
prioritizing technique that allow the HDQfD agent to gradually erase poor-quality
expert data from the buffer. In this paper, we present the details of the HDQfD
algorithm and give the experimental results in the Minecraft domain.

1 Introduction

Deep reinforcement learning (RL) has achieved compelling success on many complex sequential
decision-making problems, especially in simple domains. In such examples as AlphaStar Vinyals
et al. [2019], AlphaZero Silver et al. [2017], OpenAI Five human or superhuman performance was
attained. However, RL algorithms usually require a huge amount of environment-samples required
for training to reach good performance Kakade et al. [2003]. Learning from demonstration is a
well-known alternative, but until now, this approach has not achieved any considerable success in
complex non-single-task environments. This was largely due to the fact that obtaining high-quality
expert demonstrations in a sufficient quantity in sample-limited, real-world domains is a separate
non-trivial problem.

Minecraft as a compelling domain for the development of reinforcement and imitation learning
based methods was recently introduced by Guss et al. [2019b]. Minecraft presents unique challenges
because it is a 3D, first-person, open-world game where the agent should gather resources and create
structures and items to achieve a goal. Due to its popularity as a video game it turned out to be
possible to collect a large number of expert trajectories in which individual subtasks are solved. This
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allowed the appealing MineRL competition to run. The organizers have released the largest-ever
dataset of human demonstrations on a Minecraft domain. The primary goal of the competition is to
foster the development of algorithms that can efficiently leverage human priors to drastically reduce
the number of samples needed to solve complex, hierarchical, and sparse environments.

The main difficulty in solving the MineRL problem was the imperfection of demonstrations and the
presence of hierarchical relationships of subtasks. In this paper we present hierarchical Deep Q-
Network from Demonstrations (HDQfD) that allowed us to win first place in the MineRL competition
proposed by Guss et al. [2019a]. The HDQfD works on imperfect demonstrations and utilize a
hierarchical structure of expert trajectories extracting effective sequence of meta-actions and subgoals.
Each subtask is solved by its own simple strategy, which extends the DQfD approach proposed
by Gao et al. [2018] and relies on a structured buffer and gradually decrease the ratio of poor-quality
expert data. In this paper, we present the details of our algorithm and provide the results that allow
the HDQfD agent to play Minecraft at the human level.

2 Background

One way to explore the domain with the use of expert data is to do behavioral cloning (BC). Pure
supervised learning BC methods suffer from a distribution shift, because the agent greedily imitates
the demonstrated actions, it can drift away from the demonstrated states due to error accumulation.
Another way to use expert data in search for the exploration policy is to use conventional RL methods
like PPO, DDDQN, etc. and guide exploration through enforcing occupancy measure matching
between the learned policy and current demonstrations.

The main approach is to use demonstration trajectories sampled from an expert policy to guide the
learning procedure by either putting the demonstrations into a replay buffer or using them to pre-train
the policy in a supervised manner.

The organizers of the MineRL competition provided a few baselines. Standard DQfD presented
by Hester et al. [2018] get the max score of 64 after 1000 episodes, the PPO gets the max of 55 after
800 episodes, the rainbow also gets the max of 55 after 800 episodes of training.

Our best solution exploits the method of injecting expert data into the agent replay buffer. The DQfD,
which our method is based on, is an advanced approach to reinforcement learning with additional
expert demonstrations. The main idea of the DQfD is to use an algorithm called Deep Q-Network
(DQN) and combine loss function J(Q), with the main component JE(Q):

J(Q) = JDQ(Q) + λ1Jn(Q) + λ2JE(Q) + λ3JL2(Q). (1)

The loss function JDQ(Q) is a standard TD-error:

JDQ(Q) =
(
R(s, a) + γQ(st+1, a

max
t+1 ; θ

′)−Q(s, a; θ)
)2
. (2)

The loss function Jn(Q) is the so-called N-step return, which allows the agent to extend the utility of
trajectories to several steps, which lead to a better strategy:

Jn(Q) = rt + γrt+1 + · · ·+ γn−1rt+n−1 +maxaγ
nQ(st+n, a). (3)

The main part JE(Q) is a margin loss function. It is responsible for copying expert behavior and
gives a penalty to the agent for performing actions other than those of the experts:

JE(Q) = max
a∈A

[Q(s, a) + l(aE , a)]−Q(s, aE). (4)

Finally, JL2(Q) is L2 regularization added to prevent overfitting.

The problem of suboptimal demonstrations is considered by Nair et al. [2018], who attempted to
develop an approach closely related to ours. The authors use the BC loss as a margin loss only for
expert data. The key idea of the suggested approach is Q-Filter, which applies the BC loss only to the
states where the critic determines that the action of the demonstrator is better than that of the actor.
The use of expert demonstrations depends on the quality of the critic, which can lead to difficulties
in the case of sparse rewards. For such tasks, the authors of Nair et al. [2018] propose resets to the
demonstration states technique for Hindsight Experience Replay Andrychowicz et al. [2017]. In
contrast to the Q-filter, the HDQfD is suitable for solving a wide range of problems related to the
quality of demonstrations. In this paper, our approach shows an ability to learn from expert data to
which a change in the action space is applied.
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3 Hierarchical Deep Q-Network from Demonstrations

Action and state space

To make the demonstration data convenient for the RL agent we used action discretization and some
techniques for state space preparation, in particular a frameskip and a framestack. The frameskip
technique repeats the action selected by the agent over several steps. The framestack technique
replaces the current state with the concatenation of the current and several previous states of the
environment. In the MineRL simulator, the agent could choose between 10 actions (see Table 1). The
expert action is mapped to the agent’s action in the order shown in Table 1. For example, “turn the
camera right 10 degrees, turn the camera up 5 degrees, run forward” will be mapped with the first
action, i.e., turn the camera right 5 degrees and attack. All “move”-actions (back, forward, left, right)
were allowed because the experts used mostly them to direct the camera to the tree block.

Table 1: Discretization of actions used for all subtasks with frameskip 4. The expert action is mapped
to the agent’s action in the order shown in this table. The rotation angle is determined using the sum
of 4 frames. For other actions, the most frequent was selected.

actions a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

pitch +5 +
pitch -5 +
yaw +5 +
yaw -5 +
forward + +
left +
right +
back +
jump + +
attack + + + + + + + + + +

Adaptive ration of expert data

Despite this action, the space discretization allowed making good behavior cloning as there was
some noise in the demonstrations due to which the agent could not improve it strategy above a
certain threshold. We solved this problem by adding an ability to change the ratio of the expert
data. The demonstrations and the agents’ trajectories were stored separately in Aggregating Buffer,
which controls the proportion of demonstrations in mini-batches. The proportion decreases linearly
depending on the number of episodes (see picture 1).

Figure 1: Training log agent. The aggregated buffer is used to store expert and agent trajectories.
The amount of data in the mini-batch sampled from the demo replay buffer is gradually decreasing.
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Extracting hierarchical subtask structure

We examined each expert’s trajectory separately and considered the time of appearance of the items
in the inventory in a chronological order. An example of a possible order of obtaining items is shown
in 2. In addition, this sequence can be considered as a semantic network with two types of nodes:
certain agent’s actions and subtasks defined for the agent’s inventory. We consider each subtask node
in this network as a mandatory sub-goal that the agent must complete to move on. We train a separate
strategy for the agent to achieve each sub-goal, and it can be considered as a set of individual agents.
The task of such agents is to obtain the necessary number of the items in the inventory.

Figure 2: Example of expert’s trajectory from demonstrations. Action nodes highlighted in red.
Subtask nodes highlighted in blue. Additionally, the number of items for each subtask indicated.

The agent that solves the subtask is divided into two agents that take actions at the same time (see 3):
the agent performing basic actions in the environment (POV or item agent) and the agent interacting
with semantic actions – sequentially perform the action denoted in the corresponding node of the
semantic network. The training scheme for the item agents is presented in 4. During the training
process, all the expert data from the ObtainIronPickaxe environment of the MineRL simulator is
used.

Figure 3: Separation of the agent types (policies) for the subtasks and specific actions to craft and
obtain the items.

The frames of a mini-batch that correspond to the currently trained item agent are considered as
expert data. All the other frames are considered as additional data and their rewards are nullified.
This approach allows both training the agent to move from solving one subtask to another in addition
to the effective use of available data.

4 Experiments

Here we report our results from Round 2 of the MineRL Competition. All the agents except for the
log agent were trained on the expert data gathered from the ObtainIronPickaxeDense dataset. A
summary of all the submissions is presented in Table 2.

In the first submit, the HDQfD agent was trained using only expert data. Each of the item agents was
pre-trained using 104 steps. The Log agent learned on the Treechop environment data. The final
result was 20.72.

In the 2nd and the 3rd submissions we used interaction with the environment to train the log agent.
The log agent was trained 200 episodes on the Treechop environment data, and then on 300 episodes
of the ObtainDiamondDense environment data (see dynamics in the 5). The difference was in the
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Figure 4: Training item agents. For the item agents each trajectory is divided into expert and
non-expert segments. The item agent learns to solve one subtask using the data from the other
subtasks that it considers as non-expert.

Table 2: Round 2 Submissions
Log agent: Treechop⇒ ObtainDiamondDense

Treechop episodes Reward Episodes Reward Pre-training Evaluation

Submit 1 - - - - 104 steps 20.72
Submit 2 200 53.22 300 16.31 104 steps 55.08
Submit 3 200 53.83 300 19.19 5× 104 steps 61.61

number of pre-training steps. The final results were 55.08 and 61.61, respectively. In addition, in
Table 3 we provide a comparison of the algorithms that we tested for the Treechop environment.

Table 3: Comparison of the algorithms implemented for the Treechop environment.
Demonstrations Discretization Embeddings Episodes Reward

SAC 300 5
GAIL + + + 150 30
RnD + + 1000 35
PPO + + 1000 35
Pretrained PPO + + + 150 50
HDQfD + + 200 60

5 Conclusion

In this paper we introduce a novel approach to learn from imperfect demonstrations. This hierarchical
Deep Q-Network from Demonstrations won first place in the MineRL competition and received 61.61
score. In our further work, we plan to train all item agents for full hierarchical end-to-end architecture.
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Figure 5: Log agent results for the Treechop (left) and ObtainDiamondDense environments (right).

Besides, for these agents we plan to ensure access to all demonstrations from all substasks with
respect to the agent’s inventory for additional performance.
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