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Abstract

Style Transfer has been proposed in a number of fields: fine arts, natural language processing, and

fixed trajectories. We scale this concept up to control policies within a Deep Reinforcement Learning

infrastructure. Each network is trained to maximize the expected reward, which typically encodes the

goal of an action, and can be described as the content. The expressive power of deep neural networks

enables encoding a secondary task, which can be described as the style. The Neural Policy Style Transfer

(NPST)1 algorithm is proposed to transfer the style of one policy to another, while maintaining the content

of the latter. Different policies are defined via Deep Q-Network architectures. These models are trained

using demonstrations through Inverse Reinforcement Learning. Two different sets of user demonstrations are

performed, one for content and other for style. Different styles are encoded as defined by user demonstrations.

The generated policy is the result of feeding a content policy and a style policy to the NPST algorithm.

Experiments are performed in a catch-ball game inspired by the Deep Reinforcement Learning classical Atari

games; and a real-world painting scenario with a full-sized humanoid robot, based on previous works of the

authors. The implementation of three different Q-Network architectures (Shallow, Deep and Deep Recurrent

Q-Network) to encode the policies within the NPST framework is proposed and the results obtained in the

experiments with each of these architectures compared.

Keywords: Style Transfer, Deep Reinforcement Learning, Robotics, Deep Learning.

1. Introduction

The concept behind Style Transfer is to transform the style of a certain input without changing it’s

original content. This content is often referred as the what, whereas the style as the how. Style Transfer has

been applied essentially to three main fields: computer vision with fine arts, relating objects and shapes with

painting techniques; natural language processing, relating the meaning of a text with the specific selection

1NPST: Neural Policy Style Transfer
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Figure 1: Neural Policy Style Transfer training: “Grid-world paint” scenario with TEO the humanoid robot.

of words; and, finally, fixed trajectories for animation, relating the final motion with the manner or emotion

with which the trajectory is performed.

Early works in computer graphics, specifically in the area of creating trajectories for animating figures,

apply “moods” or “emotions” (style) to “base motion” actions (content) by a weighted addition in the

frequency-phase domain [21]. This method generates fixed trajectories, which are a kind of actions, but do

not involve feedback with respect to the state of an agent. Additionally, it relies on periodicity, which in the

human domain limits actions to locomotion tasks. Further literature includes the incorporation of signal

processing techniques [2], and Hidden Markov Model representations as well as statistical modelling [4].

The first works to coin the terms style and content are in the context of computer vision, concretely in

the area of optical character recognition. An explicit bilinear model was used to separate the style, which

corresponds to the used font or calligraphy, while the content is given by the actual letters or graphemes

[20]. Further works include multilinear modelling techniques, which employ the N-mode singular value

decomposition (SVD) tensor extension of the conventional matrix SVD to transform collections of images

into spaces where the same bilinear model can be applied.

The model known as AlexNet [13] demonstrated the potential of Deep Neural Networks (DNN) for

computer vision image classification tasks, and a large variety of alternative DNN models spawned:

On the one hand, VGG [19] became particularly popular for image classification. The VGG-19 network,

pretrained on the ImageNet dataset, was used by Gatys et al [10] to develop Style Transfer for images,

which marked the beginning of its application to fine arts. In this case, Style Transfer is developed as an

optimization process where the pretrained weights of the VGG-19 network remain constant throughout all

the iterations. Three images are used as the input of the network: These are the content image, the style
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image, and the generated image. The generated image is the result of optimizing a loss function consisting

on a weighted sum of content loss and style loss. The content loss is obtained as the difference between the

outputs of the high level features of the network corresponding to the content and the generated image. The

style loss is defined using the “Gram matrix” of the style and generated image, which is based on monitoring

the activation values across channels and through different layers. Following the ideas proposed by Gatys

et al, several works have been proposed in different areas. Dumoulin et al. [6] proposed the introduction

of a parametric generalizable DNN for Style Transfer in images able to encode multiple styles. Fu et al.

[9] proposed two different algorithms using Autoencoders to introduce Style Transfer in natural language

processing without using parallel data. In Lee et al. [14], a Style Transfer method encoding the style as

a noise introduced in the text is proposed. Two neural models are trained, one to introduce the style and

other to remove the style and generate the clean text. Other applications include: the introduction and

merging of new elements in artistic images [15]; portrait Style Transfer using soft masks [24] [25]; and fixed

trajectory generation for animation as proposed by [11].

On the other hand, Deep Reinforcement Learning (DRL) [16] also arose as part of the trend, applying

DNN to Reinforcement Learning, where agents learn control policies to maximize perceived rewards. Initial

applications were video-game oriented, and the rewards were equivalent to the obtained scores. Temporal

aspects of the actions were taken into consideration using as input a concatenation of k images corresponding

to the last k time steps. DRL marks the beginning of DNN applied to control policies, using the network to

represent the Q-value function of the Reinforcement Learning problem statement. Modern DRL approaches

include Deep Q-Networks (DQN), Trust Region Policy Optimization, Generative Adversarial Imitation

Learning, and Asynchronous Advantage Actor-Critic [3].

Drawing inspiration from the two main previously stated sources, emerged from the outbreak of DNN,

this paper presents a Neural Policy Style Transfer (NPST) algorithm. NPST is proposed with the goal to

improve the generalization capabilities of robots with the introduction of styles as a way to achieve action

adaptation. The same base action can be adapted to be used in different contexts with the introduction

of different recorded styles. In addition to this, a wide range of applications can be derived from the

contributions proposed by this paper and summarized in the following three points:

• The introduction of Inverse Reinforcement Learning (IRL) algorithms to encode the content and style

using DQN as defined by human demonstrations.

• Proposal of the Neural Policy Style Transfer (NPST) algorithm to perform Style Transfer between

policies, applicable to Q-value functions expressed as DQN.

• Two different experimental scenarios: the “Catch-ball” scenario inspired by the Deep Reinforcement

Learning classical Atari games, where a ball must be caught by a side-by-side moving paddle; and
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the “Grid-world paint” scenario, a painting scenario with a full-sized humanoid robot, which builds

upon previous experiments in evolutionary cognitive robotics [7] [8] and is equivalent to a grid-world

problem in the real world.

The remainder of this paper is organized as followed: Section 2 provides a Reinforcement Learning

background. Section 3 describes the proposed Style Transfer algorithm. Sections 4, 5, and 6 depict the

experiments performed in this paper. Finally, conclusions are drawn in Sections 7 and 8.

2. Background

Let a Markov Decision Process (MDP) be defined using the tuple M = {S,A, T, γ,D,R}, where S repre-

sents the state space, A the action space, T = {Psa} the transition probabilities defined by the environment,

where Psa is the state transition distribution upon taking action a in state s, γ ∈ [0, 1] is the discount factor,

D is the initial state distribution, and R : S → A the reward function. An optimal policy π∗(s) can be

found such as the reward obtained by the agent is maximized over a full execution of the problem. This

policy defines the behavior of the agent mapping actions with states. A Q-learning approach [22] defines

this policy π∗(s) using the Q-value function defined in Eq. 1.

Q(St, At) = Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, A)−Q(St, At)] (1)

where t can be any time step, α is the learning rate, and Q(St, At) defines the expected reward obtained

over a full episode starting from the state s with an action a and following a greedy policy. In DQN, this

Q-function is encoded using a DNN.

The definition of a proper reward function is a critical step of Reinforcement Learning architectures that

defines the behavior of the obtained agent. Inverse Reinforcement Learning (IRL) is proposed as a way to

define the reward function R using a set of m expert demonstrations E = {s(i)0 , s
(i)
1 , ...}mi=1.

The IRL algorithm, as defined by Abbeel et al [1], assumes that a k-dimensional feature vector ϕ(s) ∈ [0, 1]

exists in S such that R can be defined as R(s) = w ·ϕ(s), where w ∈ Rk[0, 1] is defined as the weight feature

vector to optimize. While the feature vector ϕ(s) can be hand-crafted by the designer, some approaches

have been proposed for its selection to be automated [23].

The expert feature expectation µ̂E can be defined as in Eq. 2:

µ̂E =
1

m

m∑
i=1

∞∑
t=0

γtϕ(s
(i)
t ) (2)

This expert feature expectation µ̂E depicts a measure of the degree of desirability of the different features

for the demonstrator. This provides an intuition of which features are related to larger and lower rewards

and, therefore, allows the estimation of the reward as a function of these features.
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Given an MDP where the reward function R(s) is unknown, the objective of the IRL algorithm is to find

an optimal policy π∗, defined by R(s), such that it satisfies Eq. 3:

||µ(π∗)− µ̂E ||2 < ϵ (3)

where µ(π∗) is defined as in Eq. 4:

µ(π∗) = E

[ ∞∑
t=0

γtϕ(st)

∣∣∣∣∣π∗

]
∈ Rk (4)

Based on these premises, several approaches have been proposed to solve the IRL problem. In this paper,

we use the Maximum Entropy IRL approach [26], where the IRL algorithm is reduced to the maximization

of a likelihood distribution defined as in Eq. 5:

L(w) = logP (E,w|R) = LE + Lw (5)

where LE and Lw are, respectively:

LE = logP (E|R) (6)

Lw = logP (w) (7)

Wulfmeier et al [23] adapted the distribution defined by Eq. 5 to work with DNN by defining the gradient

of the reward function with respect to the weights obtained using backpropagation as in the Eq. 9 extracted

from Eq. 8:

δL
δw

=
δLE

δw
+

δLw

δw
(8)

where
δLE

δw
is given by Eq. 9:

δLE

δw
=

δLE

δR
· δR
δw

= (µ̂E −
1

m

m∑
i=1

∞∑
t=0

P (s
(i)
t |R)) · δR

δw
(9)

The gradient of the expert demonstration term LE with respect to the model parameters of a linear

function is equal to the feature expectation difference along the expert trajectories [26]. The used DNN

model and the Style Transfer algorithm is described in the following section.

3. Neural Policy Style Transfer

Let C and S be two different DQN encoding two different actions defined via user demonstrations, which

in turn define their control policies πc and πs. The input must correspond to the observation or state space,

and the output must express the Q-value function.
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Figure 2: Neural Policy Style Transfer framework. The framework is composed by three Deep Q-Networks with the same
architecture. The content DQN is trained using the content demonstrations. The style DQN is trained using the style
demonstrations. The Generated DQN is generated using the output of the Content DQN and the weights of the Style DQN.

Let G be the DQN that encodes the generated action, the output of the Neural Policy Style Transfer

(NPST) algorithm, which in turn defines the control policy πg. G can be defined as a combination of the

content and style defined by the two base DQN, C and S. The content can be defined as the high level

features of C encoding the goal of the action. The style can be defined as the weights of S defining the

“mood” or “emotion” as defined by user demonstrations.

An approach analogous to the one proposed by Gatys et al [10] would involve optimizing to minimise a

weighted sum of a content loss and a style loss. However, there are significant differences in the meaning of

each element involved. Caution must be taken so at least one of these losses is clearly separated from the

other, to avoid straying into a simple mix of actions.

The content transfer is performed by training G based on the high-level features of C, corresponding to

the Q-value output. A backpropagation step is performed over G using the output of C as the true label. A

Mean Squared Error (MSE) function is used as the loss function for the backpropagation algorithm. This

is equivalent to defining the content loss Lcontent for a single output as in Eq. 10:

Lcontent(G, C) = ||qG − qC ||2 (10)

Where qG and qC are the high level features of G and C. These are the DQN outputs of G and C for a

given state.
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Its counterpart, the style transfer of the algorithm is implemented via an optimization that depends on

the style loss Lstyle, which is defined as in Eq. 11:

Lstyle(G,S) = ||wG − wS ||2 (11)

where wG and wS correspond to the weights of the models that represent G and S, respectively.

The assumption here is that by introducing the style transfer through the weights of the network, the

framework is giving preference to the outputs preferred by the content. The style is introduced as a secondary

task in the content execution.

Algorithm 1 Neural Policy Style Transfer (NPST)

1: procedure NPST(C,S, env, N)

2: Initialise:
3: G ← S
4: wS ← S.get weights()
5: env.init()
6: state← env.observe()

7: for n=1:N do
8: Update Environment:
9: qG ← G.predict(state)

10: aG ← argmaxa(qG)
11: env.step(aG)
12: state← env.observe()

13: Content Transfer:
14: qC ← C.predict(state)
15: qG ← G.predict(state)
16: G.backprop(qG , qC)

17: Style Transfer:
18: wG ← G.get weights()
19: wG ← l-bfgs-b(||wG − wS ||2)
20: G.set weights(wG)
21: end for

22: end procedure

The DQN G is initialized as a copy of S, both in model as in pre-computed weights. The environment

is initialized and its state is observed. G is updated for N iterations:

1. The environment is updated using the action defined by G.

7



2. The values qC and qG , which represent the high-level features of C and G respectively, are obtained for

the current state. A backpropagation step is then performed over the model of G.

3. The weights of G are updated using a box-constrained limited-memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS-B) algorithm to minimise the style loss as presented in Eq. 11.

The full algorithm is shown in Alg. 1.

4. Experiments

Three different neural network architectures are introduced in the experiments to measure the perfor-

mance of the NPST algorithm. The first architecture is a DQN with the same architecture as the one

proposed by Mnih et al [17]. The second architecture, referred as Shallow Q-Network (SQN), is a smaller

version of the first DQN architecture. In SQN, the second and third Convolutional Layers (CL) of the DQN

architecture are removed. The same Fully Connected (FC) layers are used for both architectures. The last

architecture introduced in the experiments is a Deep Recurrent Q-Learning Network (DRQN), referred as

DRQN, with the same architecture as the one proposed by Brejl et al. [5]. The size of all the architectures

is the same and corresponds to the size of the layers defined by Mnih et al. [17]. The Long Short-Term

Memory (LSTM) layer defined with the DRQN architecture is composed by 256 nodes.

Two different experimental scenarios are proposed to measure the performance of these three archi-

tectures with the NPST algorithm. The “Catch-ball” experimental scenario is inspired by classical DRL

scenarios using Atari games. The “Grid-world” paint scenario is designed to work with a humanoid robot

and based on previous works of the authors [7] [8].

5. “Catch-ball” experiment

The first experiment consists in a “Catch-ball” game scenario, similar to the Pong arcade game. A ball

is released from a random location from the top of the screen, and falls vertically. The agent can move a

paddle horizontally at the bottom of the screen. The agent wins if it catches the ball with the paddle before

it falls off the screen.

5.1. Experimental setup

Three different sets of five expert demonstrations are performed in these experiments. These sets corre-

spond to three different actions: one content action, and two different style actions (“nervous” and “fall”).

The content action aims to win the game by fulfilling the goal of catching the falling ball by using the

paddle. Both demonstrated style actions ignore the position of the ball. The first style imitates a “nervous”

behaviour or mood, tending to perform small moves around the same position. The second style imitates a

“fall” movement, always tending towards the left side of the screen.
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The reward functions that define these actions are obtained using the Maximum Entropy Deep IRL

algorithm presented in section 2. These reward functions are used to train the networks that are introduced

in the NPST algorithm. For the training of the IRL algorithm, a hand-crafted feature vector ϕ(s) and latent

state space s are selected for the three sets of demonstrations. In the case of the content demonstrations,

s is defined as a function of ball and paddle positions, and ϕ(s) classifies if the paddle and ball positions

are aligned. In the case of the style demonstrations, the same latent state space s was used for both styles.

This space is defined using the last three paddle positions, corresponding to the last three time steps of the

paddle. The feature vector ϕ(s) used for the styles encodes the spatial-temporal information of the paddle.

In the case of the “nervous” style, ϕ(s) classifies if a movement was performed with the same starting and

ending position. In the case of the “fall” style, ϕ(s) classifies if a movement to the left was performed.

For the content demonstrations, 5 iterations of the IRL algorithm were performed, while 2 iterations

were used for the style demonstrations. The IRL discount factor (γ) used was 0.9 with a learning rate of

0.01 for all the actions. Three reward functions R(s) are obtained corresponding to the three base actions

(content, “nervous” and “fall”). For each of these base actions, three neural networks, corresponding to the

three architectures proposed, are trained using the same R(s). These networks are trained using Q-learning

and referred in the experimental results as the Vanilla neural networks. These Vanilla neural networks are

the base neural networks that will later be used to define the content and style in the NPST framework.

Experimental results obtained with these Vanilla networks are added as a baseline. The same Vanilla

Content neural networks are introduced for the transferring of both of the styles. The input of the networks

is the raw 80x80 pixel image of the screen, and the outputs correspond to the Q-values assigned to the three

possible actions (stay still, go left, and go right).

The hyperparameters used for training the networks and performing the NPST algorithm are depicted

in Table 1. The results for the generated NPST actions depicted in the next section are the average of 10

repetitions of the NPST algorithm.

5.2. Results

The results obtained with the NPST algorithm are depicted in Table 2 for the case of transferring

the “nervous” style and Table 3 for the case of transferring the “fall” style. The Lcontent and Lstyle are

computed following Eq. 10 and Eq. 11 respectively and are the average of the full NPST execution. Results

between different architectures in terms of obtained losses may not be comparable due to differences in the

architecture (i.e. the number of nodes). The Nervous Moves parameter measures the number of times the

agent changed its direction. This parameter was introduced as a way to measure the dynamic behavior of

the agent to differentiate the “fall” and “nervous” styles. Finally, the Wins(%) parameter measures the

percentage of wins obtained by the agent.

A clear increase in the number of Nervous Moves performed by the agent was measured when trans-
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Table 1: Hyperparameters for the “Catch-ball” scenario.

Hyperparameter Setting
Shared between architectures

Activation ReLU [18]
Initialization Normal distribution

DQN architecture
Layers (CL, CL, CL, FC, FC)
Layers Configuration (Size, Kernel, Strides) ((32,8,4),(64,4,2),(64,3,1),(512,-,-),(3,-,-))

SQN architecture
Layers (CL, FC, FC)
Layers Configuration (Size, Kernel, Strides) ((32,8,4),(512,-,-),(3,-,-))

DRQN architecture
Layers (CL, CL, CL, LSTM, FC)
Layers Configuration (Size, Kernel, Strides) ((32,8,4),(64,4,2),(64,3,1),(256,-,-),(3,-,-))

Q-learning and NPST
Image size 80x80
Number of input time steps 4 (1 for DRQN)
Optimizer Adam [12]
Loss function Mean Squared Error
Number of actions 3
Discount (γ) 0.99
Experience Replay size 5000

Q-learning
Learning Rate 1e-6
Initial Epsilon 0.1
Final Epsilon 1e-5
Epsilon gradient Lineal
Batch size 32
Exploration Epochs 100
Training Epochs 1000

NPST
Learning Rate 0.01
Number of iterations (N) One full Catch-ball episode
Batch size 100
L-BFGS-B internal iterations 1

ferring the “nervous” style with respect the Vanilla Content and Vanilla Fall networks. At the same time,

the number of wins decreased when introducing the styles with respect the Vanilla Content networks but

increased with respect the Vanilla Style networks. The resulting generated control policy combines the

results obtained by the content and style policies.

Fig. 3 and Fig. 4 depict the number of times each position was visited by the paddle. The depicted

results are the cumulative results of the ten repetitions. These figures depict the preferred states of the agent

during the experiments. The background image of the game is introduced as reference. The “nervous” style

transferred policies show a preference for the positions in the center. The “fall” style transferred policies

show a preference for the positions in the borders. This tendency is clear in the case of the DQN architecture
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Table 2: Experimental results for the “Catch-ball” action introducing the “nervous” style.

Actions Lcontent Lstyle Nervous
Moves

Wins(%)

Vanilla Content DQN — 32857.59 75 100
Vanilla Content SQN — 16805.58 73 100

Vanilla Content DRQN — 33766.86 28 30
Vanilla Nervous Style DQN 1.51 — 280 20
Vanilla Nervous Style SQN 1.70 — 298 20

Vanilla Nervous Style DRQN 1.77 — 45 20
NPST Nervous Generated DQN 0.17 0.97 160 60
NPST Nervous Generated SQN 0.32 3.03 166 40

NPST Nervous Generated DRQN 0.17 1.61 57 30

Table 3: Experimental results for the “Catch-ball” action introducing the “fall” style.

Actions Lcontent Lstyle Nervous
Moves

Wins(%)

Vanilla Content DQN — 16816.59 73 100
Vanilla Content SQN — 32837.50 82 50

Vanilla Content DRQN — 33753.42 28 30
Vanilla Fall Style DQN 1.21 — 2 30
Vanilla Fall Style SQN 2.19 — 14 0

Vanilla Fall Style DRQN 1.33 — 10 0
NPST Fall Generated DQN 0.20 0.94 48 50
NPST Fall Generated SQN 0.34 3.81 63 50

NPST Fall Generated DRQN 0.16 2.54 44 20

where the most visited position is at the left of the screen. This corresponds with the behavior shown by

the Vanilla Fall networks.

Fig. 5 depicts intermediate time steps defined by the NPST generated policy. The screenshots, in the

first and third row of the figure, depict the state of the game corresponding to some randomly chosen time

steps. These game states were generated following the generated policy. The same time steps were chosen

for both styles. The bar graphs compare the Q-values obtained using the Vanilla Content DQN and the

NPST Generated DQN for each of the intermediate states and styles.

6. “Grid-world paint” experiment

The second set of experiments consists in a “Grid-world paint” scenario. The physical agent is the

humanoid robot TEO, as shown in Fig. 1, which can move its end-effector vertically and horizontally in

the Cartesian space. A large monitor emulates painting by changing large pixel colors upon presence of the

robot end-effector. These pixels form a 16x16 grid. The goal is to reach a target pixel defined in the vertical

center at the right side of the monitor.
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DRQN

Vanilla Content Vanilla Style "nervous" NPST Generated "nervous"

Figure 3: Paddle positions histograms for the case of transferring the “nervous” style. Each row corresponds to a different
network architecture. Each column corresponds to a different action. The Y-axis depicts the number of times each position
is visited. All Y-axis are scaled in the range [0, 250]. The X-axis depicts the possible paddle positions within the game
environment.
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DRQN

Vanilla Content Vanilla Style "fall" NPST Generated "fall"

SQN

DQN

Figure 4: Paddle positions histograms for the case of transferring the “fall” style. Each row corresponds to a different network
architecture. Each column corresponds to a different action. The Y-axis depicts the number of times each position is visited.
All Y-axis are scaled in the range [0, 250]. The X-axis depicts the possible paddle positions within the game environment.

6.1. Experimental setup

Three different sets of five expert demonstrations are performed. These sets correspond to three different

actions: one content action, and two different style actions (“nervous” and “fall”). The content action aims

12



Figure 5: Results generated by the NPST algorithm with “nervous” style (top) and “fall” style (bottom). Red bars represent
the outputs given by the original content network. Blue bars represent the output given by each of the networks obtained with
the NPST algorithm. The game screenshots are the results of executing the NPST generated policy.

to win the game by fulfilling the goal of reaching the target pixel. The first style imitates a “nervous”

behaviour or mood, tending to perform moves of one pixel around the same position. The second style

imitates a “fall” movement, always tending towards the bottom side of the monitor.

The Maximum Entropy Deep IRL algorithm presented in section 2 is again used to obtain the reward

functions that define these actions. These reward functions are then used to train the networks that are

used with the NPST algorithm. For the IRL algorithm, a hand-crafted feature vector ϕ(s) and latent state

space s are selected. In the case of the content demonstrations, s is a 256 element vector resulting from

performing a flatten operation over the 16x16 pixel grid, and ϕ(s) classifies if the current pixel is the target

pixel. The same latent state space s is used with the “fall” style demonstrations. Here, ϕ(s) classifies if the

pixel belongs to the bottom row of the grid. In the case of the “nervous” style demonstrations, the latent

state space s is a 163 element vector, where 16 is the number of possible vertical positions of the pixels, and

3 is the last three time steps. The feature vector ϕ(s) classifies if a movement was performed with the same

starting and ending pixel.

For each of the three sets of demonstrations, 5 iterations of the IRL algorithm are executed. An IRL

discount factor (γ) of 0.9 is used with a learning rate of 0.01. Three reward functions R(s) are obtained
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corresponding to the three base actions proposed (content, “nervous” and “fall”). For each of these base

actions, three different neural networks, corresponding to the three architectures proposed, are trained using

the same R(s). These networks are trained using Q-learning and referred in the experiments as the Vanilla

neural networks. These Vanilla neural networks are the base neural networks that will later be used to

define the content and style in the NPST step. Experimental results obtained with these Vanilla networks

are added as a baseline. The same Vanilla Content neural networks are introduced for the transferring of

both of the styles. The input of the networks is the raw 16x16 pixel grid of the monitor, and the outputs

correspond to the Q-values assigned to the three possible actions (stay still, go left, and go right).

Table 4: Hyperparameters for the “Grid-world paint” scenario.

Hyperparameter Setting
Shared between architectures

Activation ReLU [18]
Initialization Normal distribution

DQN architecture
Input shape (16, 16, 4)
Layers (CL, CL, CL, FC, FC)
Layers configuration (Size, Kernel, Strides) ((32,8,4),(64,4,2),(64,3,1),(512,-,-),(4,-,-))

SQN architecture
Input shape (16, 16, 4)
Layers (CL, FC, FC)
Layers configuration (Size, Kernel, Strides) ((32,8,4),(512,-,-),(4,-,-))

DRQN architecture
Input shape (16, 16, 1)
Layers (CL, CL, CL, LSTM, FC)
Layers configuration (Size, Kernel, Strides) ((32,8,4),(64,4,2),(64,3,1),(256,-,-),(4,-,-))

Q-learning and NPST
Grid-map size 16x16
Number of input time steps 4 (1 for DRQN)
Optimizer Adam [12]
Loss function Mean Squared Error
Number of actions 4
Discount (γ) 0.99
Experience Replay size 50000

Q-learning
Learning Rate 1e-6
Initial Epsilon 0.9
Final Epsilon 0.01
Epsilon gradient Lineal
Batch size 32
Exploration Epochs 100
Training Epochs 5000

NPST Algorithm
Learning Rate 0.01
Number of iterations (N) One full Grid-world episode
Batch size 100
L-BFGS-B internal iterations 1
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The hyperparameters used for training the neural networks and performing the NPST algorithm are

depicted in Table 4. The results for the generated NPST actions depicted in the following section are the

average of 10 repetitions of the NPST algorithm.

Table 5: Experimental results for the “Grid-world paint” action introducing the “nervous” style.

Actions Lcontent Lstyle Nervous
Moves

Average
Steps

Wins(%) Partial
Wins(%)

Vanilla Content DQN — 1064.41 0 15 100 100
Vanilla Content SQN — 1370.71 0 37 50 100

Vanilla Content DRQN — 2205.27 0 15 100 100
Vanilla Nervous Style DQN 20.41 — 580 60 0 0
Vanilla Nervous Style SQN 31.34 — 299 60 0 0

Vanilla Nervous Style DRQN 22.67 — 599 60 0 0
NPST Nervous Generated DQN 127.08 3.20 46 58 20 80
NPST Nervous Generated SQN 14.50 3.75 28 60 0 60

NPST Nervous Generated DRQN 1.66 5.16 19 55 20 100

Table 6: Experimental results for the “Grid-world paint” action introducing the “fall” style.

Actions Lcontent Lstyle Nervous
Moves

Average
Steps

Wins(%) Partial
Wins(%)

Vanilla Content DQN — 1068.48 0 15 100 100
Vanilla Content SQN — 1380.58 0 37 50 100

Vanilla Content DRQN — 2209.30 0 15 100 100
Vanilla Fall Style DQN 115.50 — 0 60 0 0
Vanilla Fall Style SQN 78.63 — 0 60 0 0

Vanilla Fall Style DRQN 72.28 — 0 60 0 0
NPST Fall Generated DQN 14.03 3.05 43 60 0 40
NPST Fall Generated SQN 10.14 3.47 46 58 20 50

NPST Fall Generated DRQN 2.60 4.43 10 51 40 100

6.2. Results

The results obtained with the NPST algorithm are depicted in Table 5 for the case of transferring the

“nervous” style and Table 6 for the case of transferring the “fall” style. In these experiments, the Nervous

Moves parameter measures the number of times the agent performed a full vertical direction swap (i.e. going

upwards then downwards then upwards again). The Average Steps parameter measures the average number

of steps performed by the agent per episode. Finally, the Partial Wins(%) parameter measures the number

of times the agent ended the episode in the same column as the target. This parameter was introduced to

complement the Wins(%) parameter due to the low tolerance of error defined by the environment.

The number of Nervous Moves performed was increased when introducing the “nervous” style in the

DQN and DRQN architectures with respect the Vanilla Content and Vanilla Fall networks. One hypothesis

behind the high number of Nervous Moves obtained in the “fall” networks is due to the combination of the
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“fall” style and content. The “fall” style tries to constantly reach the bottom while the content tries to bring

up the agent to the middle position where the target is located. This provokes multiple vertical direction

changes. Similar to what happened in the “Catch-ball” game scenario, the number of wins decreased when

introducing the styles with respect the Vanilla Content networks but increased with respect the Vanilla Style

networks. The Lcontent obtained with the NPST algorithm using the DQN architecture was unusually high

due to some outliers produced in the first steps of the NPST execution with unusually high Lcontent values.

As in the “Catch-ball” scenario, the results obtained with the generated control policy are a combination of

the content and style policies.

SQN

DRQN

Vanilla Content Vanilla Style "nervous" NPST Generated "nervous"

DQN

Figure 6: Robot end-effector heatmap results for transferring the “nervous” style. Each row corresponds to a different network
architecture. Each column corresponds to a different action. Warm colors represent monitor pixels that are recurrently visited.
Cold colors represent the less visited pixels. The graphs show the cumulative results over the 10 repetitions performed. The
color scale of the heatmap goes from 0 to 50. Pixels with values higher than 50 are capped to this value

Fig. 6 and Fig. 7 are heatmaps representing the most visited states for each of the generated policies.

Warmest colors depict the most recurrently visited pixels, and the coldest colours represent the least visited

pixels. As expected, in these figures, the policies transferred with the “fall” style show a clear preference for

the bottom states in the case of the DQN and DRQN architecture. The same preference is also depicted for

the DRQN architecture while transferring the “nervous” style. The rest of the policies do not depict any

relevant preference in terms of vertical position.
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SQN

DRQN

Vanilla Content Vanilla Style "fall" NPST Generated "fall"

DQN

Figure 7: Robot end-effector heatmap results for transferring the “fall” style. Each row corresponds to a different network
architecture. Each column corresponds to a different action. Warm colors represent monitor pixels that are recurrently visited.
Cold colors represent the less visited pixels. The graphs show the cumulative results over the 10 repetitions performed. The
color scale of the heatmap goes from 0 to 50. Pixels with values higher than 50 are capped to this value.

7. Discussion

One of the first ideas that has to be taken in account when studying the results proposed in this paper is

that by introducing Style Transfer a new optimization problem is defined. With Style Transfer, the goal is

not to find the optimal policy for the execution of the content action, but to find the optimal policy that is

able to execute the content action with the selected style. This is relevant in the case of the results obtained

in the experiments proposed. Here, the percentage of wins was reduced with the introduction of the two

proposed styles. This reduction, however, came with a decrease in the total Style Transfer loss depicting a

more optimal policy for the Style Transfer problem. The reduction in the percentage of wins can be therefore

depicted as an expected or even desired behavior. Players with some emotional bias are expected to have a

lower performance when executing the action that players without it.

The qualitative and quantitative results obtained in this paper show how NPST is able to transfer and

combine the behavior of different policies into new ones. This allows the introduction of future applications

introducing styles in robotic actions. For social robot applications, these styles can be defined as different

human emotions. More pragmatic applications may define these styles as a way to improve the performance

of the robot using only a set of demonstrated expert trajectories that can be generalized to the full range of

robotic actions.

The formulation of the NPST algorithm presents the limitation of requiring to perform a new execution
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each time a new trajectory has to be generated. The generated policy is defined by the output of the NPST

execution. At the same time, the NPST algorithm presents some relevant advantages with respect other

State of the Art methods. One critical advantage is that the NPST algorithm works without requiring an

additional loss network. The same network is used to generate the trajectory and perform the loss extraction.

This reduces computational times and the overall complexity of the Style Transfer process. In addition to

this, the NPST framework is designed to work with robots. Within the authors knowledge, this is the first

time Style Transfer is introduced within a Reinforcement Learning framework for the generation of style

control policies and its execution with robotic actions.

8. Conclusions

Style Transfer aims to transform a certain input, adapting it via a certain style without changing the

original content. It has been proposed and succesfully introduced in a number of fields (fine arts, natural

language processing, and fixed trajectories). By means of this work, a Neural Policy Style Transfer (NPST)

algorithm has been proposed to perform Style Transfer with control policies.

The control policies are defined by neural networks that express Reinforcement Learning Q-value func-

tions. The generated action is initialized to have the same model and number of parameters as the style

action. The input must correspond to the observation or state space, and the output must express the

Q-value function. The base neural networks are trained via Maximum Entropy Deep IRL algorithms that

learn reward functions, taught by human demonstrators and NPST-ready.

Two sets of experiments were performed in this paper, each corresponding to the two scenarios presented.

The “Catch-ball” game is inspired by the Deep Reinforcement Learning classical Atari games; and the

“Grid-world paint” scenario includes a full-sized humanoid robot, equivalent to a grid-world problem in the

real world, based on previous works of the authors. In both sets of experiments, the results show a clear

influence in the execution of the policies after transferring each of the styles. Three different architectures

were introduced to test the NPST algorithm. The results show a clear influence of the transferred style in

the generated action while keeping the content goal. The resulting control policy introduces elements of

both the proposed style and the defined content.
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