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Abstract

Researchers studying the correspondences between Deep Neural Networks (DNNs) and humans

often give little consideration to severe testing when drawing conclusions from empirical findings,

and this is impeding progress in building better models of minds. We first detail what we mean

by severe testing and highlight how this is especially important when working with opaque models

with many free parameters that may solve a given task in multiple different ways. Second, we

provide multiple examples of researchers making strong claims regarding DNN-human similarities

without engaging in severe testing of their hypotheses. Third, we consider why severe testing is

undervalued. We provide evidence that part of the fault lies with the review process. There is

now a widespread appreciation in many areas of science that a bias for publishing positive results

(among other practices) is leading to a credibility crisis, but there seems less awareness of the

problem here.
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On the importance of severely testing deep learning models of cognition

Introduction 1

Modelling in neuroscience has increasingly involved deep neural networks. But this line of 2

research, sometimes called “neuroconnectionism” (Doerig et al., 2022) or “neuroAI” (Zador et al., 3

2023), suffers from many conceptual and methodological problems that contribute to unwarranted 4

conclusions and claims regarding brain representations and processes (see Bowers et al., 2022, for 5

an extended community discussion). Problems include logical fallacies (Guest & Martin, 2023), 6

overclaiming (e.g., Rawski & Baumont, 2022), unchecked degrees of freedom (e.g., Schaeffer, 7

Khona, & Fiete, 2022), naive empiricism and inadequate theorizing (cf. van Rooij & Baggio, 8

2021), mismatch between measurements and interpretations (e.g., Dujmović, Bowers, Adolfi, & 9

Malhotra, 2023). In this article we focus on another problem that has has not received enough 10

attention, namely, the lack of appropriate testing of empirical claims. As detailed below, it is 11

becoming increasingly evident that many prominent claims regarding DNN-human similarities do 12

not stand up to closer scrutiny, and in order to address this problem, we argue that the 13

philosophy of severe testing is needed. 14

The unique challenges of research comparing DNNs to humans 15

All empirical sciences rely on carrying out experiments to test hypotheses and evaluate 16

models of natural systems, such as brains. But there are some unique features of DNNs as models 17

of brains that make empirical testing of claims especially challenging. 18

Consider DNNs as models of human vision. Compared to all previous models, DNNs have 19

the property that they can recognize naturalistic images of objects at a similar rate to humans 20

(sometimes better) on some image datasets, such as ImageNet (Deng et al., 2009). This has led 21

researchers to hypothesize that DNNs may also identify objects in a similar way to humans. And 22

indeed, there is now a large literature of empirical results comparing DNNs to humans, and many 23

findings have been taken to suggest that models do indeed learn similar representatiwons to 24

brains. For example, the observation that activation patterns of units in DNNs are better at 25

predicting neuron activations in visual cortex compared to other models is often used to argue 26

that DNNs are the “current best” models of biological vision. 27
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However, there are reasons to be skeptical regarding these claims. The first reason to be 28

cautious is the opaqueness and expressivity of DNNs. In contrast to other types of cognitive 29

models that consist of a handful of parameters with clear conceptual meaning, deep learning 30

models consist of millions of parameters which are by and large uninterpretable. In fact, more 31

recent systems—such as Vision Transformers and Large Language Models—have several billion 32

parameters. This gives these systems high expressivity and multiple realizability. That is, there 33

are many possible ways in which a deep learning system can learn to map a set of inputs to their 34

outputs. 35

This high expressivity coupled with the opaqueness inherent in the large number of 36

parameters makes it challenging to understand how a given input is transformed (mapped) to an 37

output. In the absence of this understanding, it becomes difficult to provide in-principle 38

explanations for how a model accounts for a given psychological phenomenon, and whether the 39

model is using similar mechanisms to the visual system. For example, there are recent 40

demonstrations that some DNNs rely on shape rather than texture when classifying objects 41

(Hermann, Chen, & Kornblith, 2020), similar to humans. But when a DNN learns a shape-bias, is 42

it because shape features are more predictive in the training dataset, or because they are easier to 43

extract from a typical stimulus or because of an architectural property of the system? The mere 44

fact that a DNN shows a shape-bias does not provide much evidence that the DNN identifies 45

objects like humans as there are many different ways this outcome may have been realized, many 46

of which will be unrelated to how or why a human shows a shape bias. 47

The second reason to be skeptical is that there is very little reason, a priori, to believe 48

that DNNs will be good models of human cognition. Some researchers interested in drawing 49

parallels between the two systems emphasize the architectural or mechanistic overlaps between 50

DNNs and the primate brain—e.g., units in DNNs are often convolutional, just like simple cells in 51

the primary visual cortex, that learning in both systems occurs in the weights (synapses) between 52

neurons (units) that are hierarchically organized to encode more and more complex features. But 53

beyond these basic similarities, DNNs and brains are different in countless ways, including the fact 54

that (1) neurons in the cortex vary dramatically in their morphology whereas units in DNNs tend 55

to be the same apart from their connection weights and biases, and (2) neurons fire in spike trains 56
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where the timing of action potentials matter greatly whereas there is no representation of time in 57

feed-forward or recurrent DNNs other than processing steps. Similarly, current DNNs learn based 58

on algorithms and loss-functions (back-propagation, ReLU units, dropout, batch-normalization) 59

that also have very little psychological / biological grounding. This no doubt relates to the fact 60

that current DNNs need much more supervised training to support a task compared to humans. 61

In combination with the high expressivity of DNNs, there is no reason to assume that DNNs 62

converge onto the same human solution when trained to perform a task such as object recognition. 63

To further complicate matters, claims regarding DNN-human correspondences frequently 64

rely on the concept of emergence — that is, training a network to do one task (e.g., 65

object-recognition) leads to a known psychological phenomenon (e.g., shape-bias). It is important 66

to note how this reliance on emergence contrasts with typical models in psychology and 67

neuroscience, where models embody specific hypotheses and it is comparatively clearer to the 68

researcher exactly the predictions the model will make. In contrast, researchers comparing DNNs 69

to humans frequently do not understand the mechanism through which an observed phenomenon 70

emerges. Due to this opaqueness of the models, researchers rely heavily on testing the models 71

empirically. But if these empirical tests are not carried out rigorously, they may lead to incorrect 72

inferences at several stages in this research pipeline. First of all, it is possible that DNNs perform 73

a task (e.g., object-recognition) like humans on some dataset, but their performance is entirely 74

unlike humans on other datasets (e.g., when noise is added to images; Geirhos et al., 2018). 75

Secondly, it is possible that the hypothesised emerged phenomenon (e.g., shape-bias) only 76

emerges under some very limited conditions. Finally, it is possible that even though a 77

hypothesised phenomenon emerges, it differs qualitatively or quantitatively from the 78

phenomemon of interest in humans. For example, it is possible that both DNNs and humans show 79

shape-bias, but the properties of this shape-bias are qualitatively (Malhotra, Dujmović, & 80

Bowers, 2022; Malhotra, Dujmović, Hummel, & Bowers, 2023) and quantitatively (Geirhos et al., 81

2019) different between the two systems. 82

The above considerations emphasize the importance of carrying out rigorous tests that 83

avoid the incorrect inferences listed above. A proper grasp of what conditions make empirical 84

tests appropriate for drawing these conclusions is crucial here. In this article, we argue that this is 85
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precisely where current approaches are falling substantially short of the minimum requirements. 86

We will illustrate these problems with a series of examples. 87

Why is there so little severe testing in this domain? We argue that part of the problem 88

lies with the peer-review system that incentivizes researchers to carry out research designed to 89

highlight DNN-human similarities and minimize differences. We substantiate this claim with 90

examples that illustrate how reviewers and editors undervalue the contribution of studies that 91

rigorously test hypotheses related to deep learning approaches to cognition. But before we do 92

this, we begin by describing what counts as a rigorous test. In particular, we describe the notion 93

of severe testing (Mayo, 2018) and argue that following the principles of severe testing is likely to 94

steer empirical deep learning approaches to brain and cognitive science onto a more constructive 95

direction. 96

What counts as severe testing 97

The notion of severe testing (Mayo, 2018) allows us to conceptually1 sort out what it 98

means for a claim (e.g., that a certain algorithmic model uses the same features as humans to 99

categorize images) to be supported by evidence (e.g., the outcome of an experiment presenting 100

images to algorithmic implementations and humans). Contrary to the a model comparison 101

approach that is popular in deep learning applications to cognitive/neural modeling (see, for 102

example, Schrimpf et al., 2018), it will be argued that the mere advantage of one model over the 103

other in predicting domain-relevant data is wholly insufficient even as the weakest evidentiary 104

standard. 105

An entry point to the severe testing idea is through the weak severity requirement. Put 106

simply, it asks the researcher to reject the possibility that there is evidence for a claim if nothing 107

has been done to uncover ways in which the claim might be false. For instance, if certain data 108

agree with a certain claim but the test method is practically guaranteed to find such agreement, 109

and had little or no capability of finding flaws with the claim in the case they exist, then 110

1 For our purposes, it will be sufficient to consider the conceptual scaffolding around the severe testing idea

independent of its ramifications in the philosophy of statistics where it originates. Hence, we make no claims

regarding, for example, Frequentist vs Bayesian statistical approaches to data analysis. Our discussion is concerned

with rigorous testing of claims regardless of what approach to data analysis is favored.
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according to the severity requirement we have no evidence at hand. This is the basic principle 111

that disabuses researchers of the notion that empirical tests, never mind their inadequacies, 112

provide confirmation of a claim at least to a certain extent. 113

This first aspect of severe testing warns us not to mistake the outcomes of inadequate 114

tests for evidence. The second aspect of severe testing tackles what it means to have evidentiary 115

support for a claim. It says that we only have evidence for a particular claim to the extent that 116

the latter survives a stringent scrutiny. If the claim passes a test whose procedure was highly 117

capable of finding departures from the claim where none or few are found, then we have evidence 118

at hand. That is, for a certain empirical test outcome to warrant a claim, it is required not just 119

that the claim agrees with the outcome. It is crucially required that it be very unlikely the claim 120

would have passed the test if it were false. 121

Many questions arise as we attempt to unfold what severity requirements mean in 122

practice. How many tests are enough? How stringent should they be? What are the relevant 123

dimensions of stringency? How many flaws are too many? We acknowledge from the outset that 124

these are difficult questions that research communities will only find partial answers to, tailored 125

to specific domains. At the same time, it is important to note that current testing does not even 126

come close to any reasonable severity requirement (cf. Bowers et al., 2022, and the following 127

sections). Therefore, it is important to encourage the community to reflect on the notions of 128

severe testing explained here and to adopt a more self-critical approach to empirical claims. 129

The severity requirements stated above imply that to have any evidence at all, even a 130

mere indication, we must have more than just a boost in data predictivity under some condition 131

relative to others (e.g., architecture change, training dataset modification, etc.). We require 132

instead a minimum threshold of severity to be met by our tests. In the next section, we will 133

present some common patterns found across this area of research which illustrate how a lack of 134

severe testing manifests itself. 135

How lack of severe testing plays out: some illustrative examples 136

To illustrate how the practice of severe testing has played out in recent research, we focus 137

two important lines of research used to support the conclusion that DNNs and humans share 138

similar visual representations, but briefly consider additional examples in the domain of vision, 139
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memory, and language as well. 140

First, multiple studies have compared the patterns of unit activations in DNNs to neuron 141

activations in visual cortex (Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf et al., 2018; Yamins 142

et al., 2014). There are multiple measures that have been used to make these comparisons and we 143

focus on two: representational similarity analysis (RSA) and fitting regression models to predict 144

neural activity from internal activations of DNNs. To employ RSA, one first has to collect neural 145

recordings (e.g., fMRI, EEG, single cell recordings in case of monkeys) and internal activations 146

from DNNs in response to a set of stimuli. Then, pair-wise distances for each pair of stimuli are 147

computed (e.g., 1-Pearson’s r between activation vectors for a pair of images) both for humans 148

and DNNs. This results in two representational dissimilarity matrices (RDMs), one for each 149

system being compared. The RDM represents the relative distances between representations of 150

objects in the dataset for a given system (see Figure 1). Finally, the correspondence between 151

RDMs is assessed, usually as a rank-order correlation between them. 152

The second measure uses DNN activations as predictors for neural activity in a regression 153

model and measures the amount of explained variance (Schrimpf et al., 2018; Yamins et al., 154

2014). While these two methods are different, the claim that was made early on, based on both 155

methods, was that early layers of DNNs correspond better to neural activity in early areas of 156

vision (e.g., V1) while deeper layers correspond better to later visual processing (e.g., IT). For 157

example, Figure 2 shows results from Khaligh-Razavi and Kriegeskorte (2014), where this claim of 158

hierarchical correspondence was based on RSA. Another early observation was that better 159

performance in classification was associated with better neural predictivity Yamins et al. (2014). 160

The general assumption of this work has been that the better the brain prediction the better the 161

DNN-human correspondence. For example, Brain Score website Schrimpf et al. (2018) includes a 162

leader-board that ranks models in terms of their correspondence to “core object recognition” 163

based on their overall regression predictivity of a number of brain datasets as well as their 164

performance on a number of behavioural benchmarks. 165

A number of more recent brain-predictivity studies have been carried out that investigate 166

properties of models (architectures, learning algorithms, loss functions, etc.) and training datasets 167

that impact on correspondence between primate visual representations and DNNs as measured by 168
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Figure 1

RSA calculation. Stimuli from a set of categories (or conditions) are used as inputs to two

different systems (for example, a human brain and a primate brain). Activity from regions of

interest is recorded for each stimulus. Pair-wise distances in activity patterns are calculated to get

the representational geometry of each system. This representational geometry is expressed as a

representational dissimilarity matrix (RDM) for each system. Finally, an RSA score is

determined by computing the correlation between the two RDMs. It is up to the resercher to make

a number of choices during this process including the choice of distance measure (e.g., 1-Pearson’s

r, Euclidean distance etc.) and a measure for comparing RDMs (e.g., Pearson’s r, Spearman’s ρ,

Kendall’s τ , etc.). Figure adapted from Dujmović et al. (2023)

these metrics. For example, Mehrer, Spoerer, Jones, Kriegeskorte, and Kietzmann (2021) show 169

that this correspondence can be increased by training DNNs on a more ecological image dataset. 170

In another study, Zhuang et al. (2021) showed that comparable (though not quite as high) 171

correspondence can also be shown by some self-supervised models. 172

It should be noted, however, that few studies have attempt to falsify or conduct a severe 173

test on the hypothesis that DNNs and primary visual cortex learn similar representations (but see 174

paper on controversial stimuli from Golan, Raju, and Kriegeskorte (2020)). Ignoring for a 175

moment that claims regarding "core object recognition" are far too expansive and unconstrained 176
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Figure 2

RSA scores of AlexNet layers with neural activity from human IT (A) and V1 (B).

RSA scores between AlexNet layers and human neural fMRI patterns were computed as the

Kendall τ between RDMs. The shaded region represents the estimated noise ceiling (expected

human to human RSA scores). The figure was adapted from Khaligh-Razavi and Kriegeskorte

(2014).

given the nature of the predictivity measures, the overarching goal has been to increase the 177

alignment between models and neural representations as measured through prediction scores. In 178

fact, many of these studies rely on a small number of neuro-imaging datasets that have presented 179

a curated set of objects and categories to a small number of primates and humans. For example, 180

the entire suite of 5 IT benchmarks in Brain Score comes from neural data of 5 macaques 181

observing very similar stimuli. If, instead, the goal was to do a severe test, studies would have 182

varied properties of datasets in order to verify whether central observations—such as a 183

hierarchical correspondence between activations of DNNs and visual cortex—bear out. In a recent 184

study, Xu and Vaziri-Pashkam (2021) carried out such a controlled test. They observed that the 185

claim of a hierarchical correspondence between the ventral visual cortex and layers of DNN did 186
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not hold up when properties of the input stimuli were changed (see Figure 3), directly 187

undermining previous claims. Similarly, when Sexton and Love (2022) used a different metric to 188

measure correspondence—instead of RSA, their method substituted the activity of a layer with an 189

activity of a brain region—they also observed no hierarchical correspondence between DNN and 190

brain activity. More worryingly, Dujmović et al. (2023) show that previous observations of 191

correlations using RSA could plausibly be due to confounds present in datasets, rather than a 192

mechanistic similarity between the two systems. 193

Figure 3

DNN to human correspondence as a function of network layer and brain region from

Xu and Vaziri-Pashkam (2021). Contrary to the claim that early layers of DNNs correspond

better to early areas of visual processing (e.g., V1) compared to later layers which correspond

better to later areas (e.g., ventral occipito-temporal - VOT), results from Xu and Vaziri-Pashkam

(2021) show that there is no such hierarchical correspondence.

In the second line of research there has been focus on a more specific claim regarding 194

visual DNN-human similarities, namely, whether DNNs and humans share a similar shape 195

shape-bias. It has been long known to both vision scientists (Biederman & Ju, 1988; Cooper, 196

Biederman, & Hummel, 1992; Riesenhuber & Poggio, 1999) and developmental psychologists 197

(Landau, Smith, & Jones, 1988; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002) that 198

human object recognition depends heavily on the shape of objects, more so than other features, 199

such as colour, texture, size, etc. There could hardly be a more basic fact about human object 200

recognition. As Hummel (2013) put it: "..the study of object recognition consist largely (although 201

not exclusively) of the study of the mental representation of object shape, and the vast majority 202
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of theories of object recognition are, effectively, theories of the mental representation of shape". 203

Accordingly, it might be expected that DNN models that perform well on predicting brain 204

activations in visual cortex should also recognize objects largely based on shape. 205

However, in 2019, Geirhos et al. conducted a severe test of this hypothesis and showed 206

that some of the same DNNs that do a good job in predicting brain activations in visual cortex 207

exhibit a strong texture-bias rather than a shape-bias. In order to demonstrate this they 208

presented DNNs with (a) photographs of images taken from ImageNet, (b) “texture” images that 209

only included the texture of an object, and (c) and “style transfer” images in which the texture of 210

one object was combined with the shape of another, as illustrated in Figure 4. The DNNs tended 211

to classify the style transfer images on their texture rather than shape. In other words, DNNs 212

trained on large image datasets were able to predict brain activations while relying on very 213

different features of images compared to humans. 214

Figure 4

Style-transfer training stimuli from Geirhos et al. (2019) An image from the ImageNet

dataset (left) and 10 with the same shape/content but different texture/style (right).

This Geirhos et al. (2019) study nicely highlights the importance of carrying out severe 215

tests before drawing inferences about DNN-human similarities. This research also motivated 216

future studies attempting to improve DNN-human correspondences with regards to shape bias, 217

but again, strong conclusions have been drawn without severe testing. The first attempt was 218

made by Geirhos et al. (2019) themselves, who used the style-transfer (Gatys, Ecker, & Bethge, 219

2016) to train DNNs to classify images. That is, DNNs were trained on image datasets where 220

shape but not texture was diagnostic of category. Geirhos et al. (2019) found that DNNs trained 221
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in this way increased their shape-bias when classifying held-out style-transfer images. While this 222

is an interesting machine learning solution to the problem as viewed from an engineering 223

standpoint, there can be no doubt about its ecological (in)validity in terms of cognitive science. 224

Not only do human infants not learn object recognition based on a set of labelled examples — a 225

problem with all supervised learning models — they also do not learn based on examples where 226

the texture of one category is superimposed on the shape of another category. This work inspired 227

a related and more plausible solution by Hermann et al. (2020), who hypothesised that the 228

texture-bias of DNNs may be due to the aggressive cropping of images for the sake of data 229

augmentation during training. This cropping was thought to make texture more diagnostic than 230

shape when classifying images. Indeed, Hermann et al. (2020) showed that decreasing the amount 231

of cropping increased the shape-bias of DNNs. However, once again, no severe test was performed 232

on whether the representations of shape or, indeed, the nature of shape-bias correspond to human 233

shape-bias. Nevertheless, Hermann et al. (2020) write: "Our results indicate that apparent 234

differences in the way humans and ImageNet-trained DNNs process images may arise not 235

primarily from differences in their internal workings, but from differences in the data that they 236

see” (Abstract). Much like the benchmark in Brain Score (Schrimpf et al., 2018), different models 237

now compete on which one manages to show the most shape-bias on a style-transfer dataset. One 238

of the leading models at the moment is a Vision Transformer with nearly 22 billion parameters, 239

trained on a dataset of 4 billion images (Dehghani et al., 2023). 240

But showing that DNNs can be trained to classify style transfer images according to shape 241

rather than texture is a weak test of the hypothesis that DNNs encode shape in a human-like way. 242

Indeed, there are a wide variety of findings regarding how humans process shape for the sake of 243

object identification, and current models fail to account for many of them (e.g., Baker & Elder, 244

2022; Baker, Lu, Erlikhman, & Kellman, 2018; German & Jacobs, 2020; Malhotra et al., 2023). 245

Consider the study by Malhotra et al. (2022) who demonstrate that even when networks are 246

trained to show shape-bias, the nature of this bias is different to humans in a critical way. The 247

authors trained DNNs and humans to classify a set of novel objects that had both shape and 248

non-shape features diagnostic of object category. Humans classified the novel objects based on 249

their shapes and ignored highly predictive non-shape features. By contrast, DNNs did the 250
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opposite, and focused on the non-shape features. Critically, even when DNNs were pretrained 251

trained to have a shape-bias (trained on the style transfer images), and even when almost all the 252

weights were frozen (e.g., 49 out of 50 layers of ResNet50), the DNNs switched to learning based 253

on the non-shape predictive feature of the novel objects. This result suggests that, unlike DNNs 254

that show shape-bias, human shape-bias is not simply an artifact of learning the most predictive 255

feature. 256

Figure 5

Example of an object and modified variants from Malhotra et al. (2023). The basis

object was modified to create two variants. (Rel) The first modification consisted of a categorical

change of a relation between parts of the object. (Cood) The second modification preserved all

relations but coordinates of some elements were shifted.

In another study, Malhotra et al. (2023) go further and examine the nature of shape 257

representations in DNNs that have a shape-bias and compare these to human shape 258

representations. Humans have been shown to be sensitive to changes in relations between object 259

parts (Stankiewicz & Hummel, 1996). Robust findings show that relation preserving changes 260

often go unnoticed by human observers, while changes in relations between object parts are 261

routinely noticed and interpreted as an important change either of the object or even the object 262

category (Figure 5). In a series of simulations and experiments, Malhotra et al. (2023) tested 263

DNNs (both standard and trained on the Stylized Images dataset) in order to determine whether 264

DNN representations of shape share this property with humans. Performance measures as well as 265

internal representations in this study indicated that DNNs do not share sensitivity to relational 266

changes with humans. Malhotra et al. (2023) hypothesised that these differences between humans 267

and DNNs originate from a difference in the goals of the two systems: while DNNs aim to classify 268
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their retinal images, humans aim to infer properties of distal objects that cause the retinal image. 269

We have focused on these two lines of research that have been particularly important with 270

regards to claims regarding DNN-human similarities in the domain of vision, but this pattern of 271

avoiding severe tests is widespread. For example, Zhou and Firestone (2019) claimed that there 272

was a similarity between how humans and DNNs interpret adversarial images — i.e., nonsense 273

images that were designed to fool the networks to confidently classify them. However, when this 274

claim was rigorously tested by Dujmović, Malhotra, and Bowers (2020), it turned out that, for the 275

vast majority of images and participants, there were significant differences in which these images 276

were interpreted by DNNs and humans. Similarly, several researchers have posited that grid-cells 277

— similar to those found in the entorhinal-hippocampal circuit — emerge as a result of training 278

DNNs on path-integration (Banino et al., 2018; Cueva & Wei, 2018; Sorscher, Mel, Ganguli, & 279

Ocko, 2019). However, when this claim was more severely tested by Schaeffer et al. (2022), they 280

found that RNNs trained on path-integration almost never learn grid-like representations. 281

Rather, the emergence of grid-like representations highly depends on a long list of specific 282

decisions such as highly specific tuning of hyperparameters and design choices. Schaeffer et al. 283

state: “...effectively baking in grid-cells into the task-trained networks. It is highly improbable 284

that DL models of path integration would have produced grid cells as a novel prediction from task 285

training, had grid cells not already been known to exist”. 286

In some cases, the authors own findings do not support the conclusions they draw. For 287

example, in the case of language, Schrimpf et al. (2021) report that transformer models predict 288

nearly 100% of explainable variance in neural responses to written sentences and suggest that “a 289

computationally adequate model of language processing in the brain may be closer than 290

previously thought”. However, the explainable variance is between 4-10% of the overall variance 291

in three of the four datasets they analyze, and DNNs not only predict brain activation of 292

language areas, but also non-language areas. Accordingly, it is not clear that these weak 293

similarities have anything to do with language. 294

While severe testing of DNNs undermines many of the strong claims regarding 295

DNN-human correspondences, it has not (yet) led to DNNs that do survive severe testing. 296

Nevertheless, these studies provide critical insights into the nature of correspondence between 297
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DNNs and humans and bring into focus broader issues around measuring similarity of 298

representations between different systems. And most importantly, a better characterization of 299

DNN-human similarities is a prerequisite for building better models of brains and minds. 300

How the peer-review process may contribute to the lack of severe testing 301

If severe testing has the potential to uncover critical insights about the relation between 302

neural network models and human cognition, why is it frequently overlooked by the field? One of 303

the reasons may be a bias against publishing negative results — that is, results highlighting 304

dissimilarities between DNNs and humans. 305

It is certainly our impression that there are more published articles highlighting 306

DNN-human similarities compared to differences. To see if this impression has any validity, we 307

looked for articles published in three high-profile journals (PNAS, Nature Communications, and 308

PLOS Computational Biology) from 2020 to present using a Google Scholar search that contained 309

at least one of the following terms “DNN” or “DNN” or “DNNs” or “DNNs” as well as contained 310

both “brain” and “object recognition” somewhere in the text. We then read the abstracts to 311

confirm whether the papers were comparing DNNs to human vision (in some cases the articles 312

returned from this search did not). Our judgements are somewhat subjective, and a few articles 313

might be classified differently, but we expect there would be reasonable agreement in the following 314

numbers: 15 hits in PNAS, with 10 out of 12 highlighting similarities, 26 hits in Nature 315

Communications, with 10 out of 11 highlighting similarities, 29 hits in PLOS Computational 316

Biology, with 14 of 16 highlighting similarities. See the Appendix where we go into these numbers 317

in some more detail. 318

Of course, the observation that most published research highlights similarities rather than 319

differences may have multiple causes. First, it may reflects the fact that DNNs are indeed similar 320

to brains and that the published studies identify important similarities. However, this is unlikely, 321

given (a) the numerous observations of differences in behaviour and internal representations 322

highlighted by recent research (Bowers et al., 2022; Serre, 2019), (b) differences in architecture, 323

learning algorithms, cost functions, learning environments, etc, and (c) the frequency with which 324

conclusions are undermined by severe testing. Second, it is possible that researchers are excited 325

about the promise of DNNs as models of brains given their phenomenal engineering successes and 326
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this biases researchers to focus on the similarities and ignore differences. Third, and relatedly, 327

there may be a bias amongst reviewers and editors to publish results highlighting similarities and 328

reject studies that highlight differences (similar to a bias of reporting significant effects and 329

rejecting null results in psychology and many other disciplines; e.g., Simmons, Nelson, and 330

Simonsohn (2011)). These latter two possibility may well interact: A bias to publishing "positive" 331

results would likely incentivize researchers to look for DNN-human similarities and avoid severe 332

testing that might make publishing more difficult. 333

In order to gain some insight into the possibility of a publication bias, we searched 334

openreview.net and neurips.cc, which publish articles alongside openly accessible commentary 335

from reviewers and editors for leading machine learning and AI conferences such as NeurIPS, 336

ICML and ICLR. In reviewing these commentaries, we came across two types of objections that 337

reviewers and editors frequently make in relation to studies empirically comparing DNNs and 338

human cognition: 339

1. Reviewers feel that a negative result is not surprising as we already know that DNNs are 340

not like humans. This type of comment places a premium on identifying results that are 341

surprising over results that identify important differences between DNNs and human 342

cognition. Here are some examples of this type of comment: 343

Example 1.1: “I find the overall conclusions unsurprising. It is to be expected that

DNNs will perform quite poorly on data for which they were not trained. While a close

comparison of the weakness of humans and DNNs would be very interesting, I feel the

present paper does not include much analysis beyond the observation that new types of

distortion break performance.” (Reviewera comment on Geirhos et al. (2018))

a Our intention here is not to pick on any particular reviewer but to reflect biases present in the field.

Therefore, all examples chosen by us have anonymous reviewers.
344

openreview.net
neurips.cc
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Example 1.2: “...DNNs and human visual system are completely different systems,

so it seems obvious at best to conclude that they may solve problems ‘in a different

manner’ from each other.” (Reviewer comment on Malhotra et al. (2022))
345

Example 1.3: “In this empirical study, the authors attempt to identify a minimal

entropy version of an image such that the image may be correctly classified by a hu-

man or computer... While identifying that humans are less sensitive to a reduction in

resolution, this result is not terribly surprising given that networks are known to suffer

from aliasing artifacts...” (Reviewer comment on Carrasco, Hogan, and Pérez (2020)).
346

There are many other examples we could point to. For example, in their commentary on 347

Bowers et al. (2022), Love and Mok (2023) write: “...we do not share [the authors’] 348

enthusiasm for falsifying models that are a priori wrong and incomplete”. Similarly, Tarr (in 349

press) in his commentary, writes: "As a field we should have a productive discussion about 350

what inferences we can draw from DNNs and other computational models (Guest and 351

Martin, 2023). However, such discussions should involve less hyperbole... and less 352

handwringing about what current models can’t do; instead, they should focus on what 353

DNNs can do". 354

It is difficult to know how frequent these types of comments are, but the fact that these 355

comments exist at all shows that at least some reviewers see little value in reporting 356

negative results while comparing DNNs and humans. And when negative results are 357

published, the bar for getting these studies through the peer-review process seems to be 358

higher. In Example 1.1, for example, the reviewer argues that it is not sufficient to show 359

that DNN behaviour is different from humans, authors should also analyse why the 360

behaviour differs. In contrast, we have many examples of positive results that have been 361

reported in the literature (see for example Cadena et al., 2019; Cadieu et al., 2014; 362

Eickenberg, Gramfort, Varoquaux, & Thirion, 2017; Güçlü & van Gerven, 2015; 363

Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf et al., 2018; Yamins et al., 2014; Zhuang et 364

al., 2021) where studies report a correlation between DNN and a human / primate without 365
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identifying why this correlation exists. 366

In addition to the problems with incentivizing surprising results that we noted above, 367

another problem with these comments is that they betray a lack of understanding of the 368

value of negative results. Negative results do not just identify differences between DNNs 369

and human cognition, they also frequently identify how the two systems differ. An 370

investigation of this how question is non-trivial and, as we have argued in the previous 371

section, has the potential to provide real insight into both human cognition and DNNs. By 372

undervaluing such studies, the field risks ignoring key data points to guide future research. 373

Fortunately, the Geirhos et al. (2019) study referred to in Example 1.1 has now been cited 374

over 2000 times (according to Google Scholar) and provides a key constraint that guides 375

existing results in developing DNNs better aligned to human visual system. 376

2. Reviewers feel that a study lacks novelty because it is an empirical study and does not 377

suggest a new model that overcomes the observed dissimilarities. Here are some examples: 378

Example 2.1: “[Authors] are only showing that the solution selected by the RNN

does not follow the one that seems to be used by humans... [The] paper would really

produce a more significant contribution [if] the authors can include some ideas about

the ingredients of a RNN model, a variant of it, or a different type of model, must

have to learn the compositional representation suggested by the authors.” (Reviewer

comment on Lake and Baroni (2018))
379

Example 2.2: “Overall, I think that the study can help to uncover systematic differ-

ences in visual generalization between humans and machines... The paper would have

been much stronger if the first elements of algorithms that can counteract distortions

were outlined. Although the empirical part is impressive and interesting, there was no

theoretical contribution.” (Reviewer comment on Geirhos et al. (2018), NeurIPS)
380
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Example 2.3: Reviewer: “This work demonstrates failures of relational networks on

relational tasks, which is an important message. At the same time, no new architec-

tures are presented to address these limitations.”

Editor: “While this paper does not propose solutions, it does present interesting “nega-

tive results” that should get some visibility in the workshop track.” (Editor & Reviewer

comments on Kim, Ricci, and Serre (2018))
381

Example 2.4: “An elaborate human evaluation of two tasks, face identification and

verification, has been conducted... AC agrees with the reviewers that albeit it’s an

important study, limited technical contribution (how to resolve existing model failures)

and a narrow application domain (the paper studies face recognition and bias in face

recognition) are two critical issues that place the contributions below the acceptance

bar.” (Editor comment on Dooley et al. (2023))
382

Again, we have come across many other examples of this type of comment in our own 383

work (see the following NeurIPS workshop talk by Bowers (2022) that provides multiple examples 384

of reviewers and editors stating that falsification is not enough and that it is necessary to find 385

“solutions” to make DNNs more like humans to publish: https://slideslive.com/38996707/ 386

researchers-comparing-dnns-to-brains-need-to-adopt-standard-methods-of-science.) 387

These comments again betray a clear preference for constructing a model—even a bad 388

model—to a study that identifies an important limitation of existing models. In Example 2.3, for 389

example, the paper is relegated to a workshop track because showing a critical failure of relational 390

networks on relational tasks is deemed not worthy of the main conference. Publishing papers only 391

if they report a new model creates a hurdle for reporting negative results. In view of these 392

comments, it will not be surprising if many interesting observed differences between DNNs and 393

humans go unreported. 394

A healthy back and forth within a field of research is to be expected. Indeed, if we look at 395

the history of vision research, we will find opposing claims being tested by multiple research 396

groups over years or even decades. Nuanced research, refining theories, severe testing – these are 397

https://slideslive.com/38996707/researchers-comparing-dnns-to-brains-need-to-adopt-standard-methods-of-science
https://slideslive.com/38996707/researchers-comparing-dnns-to-brains-need-to-adopt-standard-methods-of-science
https://slideslive.com/38996707/researchers-comparing-dnns-to-brains-need-to-adopt-standard-methods-of-science
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all necessary in order to push a field forward. However, the trend we described through examples 398

above does not follow that healthy pattern. Rather, we see many examples of strong claims based 399

on weak tests, while nuanced studies more severely testing these claims are under-represented in 400

the literature. From the reviewer / editor comments we have highlighted above, it also seems 401

clear that (at least some) reviewers do not view reporting negative results as valuable as 402

constructing new models—a worrying trend for anyone interested in the benefits and limitations 403

of using DNNs to understand human cognition. 404

Discussion 405

We make two general points in this paper that have a number of implications for the field 406

of neuroAI. First, we highlight how the empirical research comparing DNNs to humans often fails 407

to include severe testing of hypotheses, and this is leading to many unjustified conclusions. In our 408

view, researchers need to modify their methods to include severe testing and consumers of 409

research need to be more aware of these limitations when evaluating the research findings. 410

Second, we consider why the field has largely avoided severe testing. Here we argue that the 411

current review process is incentivising researchers to look for DNN-human similarities and 412

downplay their differences. It will be important for reviewers and editors to evaluate the extent to 413

which research includes severe testing of hypotheses in order to ensure claims regarding 414

DNN-human similarities are well motivated. 415

With regards to the research, we have (i) elaborated on what such severe testing involves, 416

and (ii) illustrated how the lack of severe testing characterises research comparing DNN and 417

human vision in two separate lines of research. We could have focused on many other examples, 418

and indeed, at the time of writing, there is much excitement regarding Large Language Models 419

(LLMs), where we believe comparisons are being made with human cognition (Caucheteux, 420

Gramfort, & King, 2022; Mahowald et al., 2023; Piantadosi, 2023; Schrimpf et al., 2021; Tuckute 421

et al., 2023) without rigorously testing these claims. We simply focused on two lines of research in 422

the domain of vision and object recognition that is closely related to our own work that illustrate 423

the problems quite concretely. 424

It is important to be aware of the many different ways the lack of severe testing manifests 425

itself. In some cases, severe tests have simply not been carried out and strong claims are made 426
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simply based on the observation of a correlation (see Bowers et al., 2022, for a number of 427

examples). But in other cases, authors claim to have carried out strong tests of hypotheses but 428

these tests fall short of the severe tests standard identified above. This happens in at least three 429

forms. First, authors make a strong claim but, in reality, test a much weaker claim. For example, 430

authors might claim that humans can decipher how DNNs classify adversarial images, but only 431

test whether DNNs and humans agree in their classification of a small subset of these images 432

under some limited experimental conditions. When the claims are tested more severely they are 433

falsified (see Dujmović et al., 2020). Second, authors sometimes argue that their procedure 434

represents a “strong test” that a model is similar to humans, but note in the Discussion or 435

Appendix important qualifications that dramatically weaken the conclusions that should be 436

drawn. For example, emphasizing in the body of the article that large language models account 437

for 100% explainable variance of human BOLD signals, and noting in Appendix that explainable 438

variance is extremely small and that similar BOLD prediction success occurs in non-language 439

areas (Schrimpf et al., 2021). Third, authors may argue that an observed phenomenon emerges 440

due to some feature of the training conditions, while in reality there are many other features of 441

the training conditions (hyper-parameters, specific training dataset, etc.) that are required to 442

observe the emergent phenomenon (Schaeffer et al., 2022). In each case, the authors (and readers) 443

may fall prey to a kind of motte-and-bailey fallacy (Shackel, 2005), making a strong claim that is 444

unwarranted by data and retreating to a more modest claim when challenged. 445

With regards to the incentives of the field that discourage severe testing, we argue that 446

the current peer-review culture may be playing a role. Not only do most articles published in high 447

profile journals make strong claims regarding DNN-human similarities, we provide examples of 448

reviewers and editors undervaluing studies that challenge these conclusions through severe testing. 449

Indeed, reviewers and editors often claim that “negative results” — i.e., results that falsify strong 450

claims of similarity between humans and DNNs — are not enough and that “solutions” — i.e., 451

models that report DNN-human similarities – are needed for publishing in the top venues (see 452

example 2.1–2.4 quotes). Again, for many more examples, see Bowers et al. (2022). 453

Interestingly, similar issues have been raised in an engineering context in which there is no 454

consideration of whether DNNs are like humans. In a NeurIPS talk, Kilian Weinberger 455
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(https://slideslive.com/38938218/the-importance-of-deconstructionpoints) criticizes 456

the common practice of publishing models based on their performance without acting like a 457

scientist and deconstructing the models to determine what aspects of the model are responsible 458

for their success. He details three examples where his research team developed a complex model 459

that solved an important task, but when they deconstructed the success of the model, it turned 460

out that the key innovation was often trivial and not what they expected. Importantly, 461

Weinberger highlights how the incentive structure in academia does not encourage this approach 462

to research: before deconstruction, the paper was easily publishable, and after additional work 463

that identifies the causal mechanisms of the success, the paper is more difficult to sell. Despite 464

the obvious similarity to the situation with neuroAI, it is also important to emphasize an 465

important difference. The main objective of the engineer is to solve a problem, and a complicated 466

black box that solves an interesting problem may still be useful. By contrast, the main objective 467

of researchers comparing DNNs to humans is to better understand the brain through DNNs. If 468

apparent DNN-human similarities are mediated by qualitatively different systems, then the claim 469

that DNNs are good models of brains is simply wrong. 470

More generally, there is now a widespread appreciation in many areas of science that a 471

strong bias for publishing positive results (among other practices) is leading to a credibility crisis. 472

Central to fixing this crisis is modifying the peer review process so that null results can be more 473

easily published. Of course, the problem persists, but at least there is extensive discussion of the 474

broader issues in the literature (e.g., see the special issue introduced by (Proulx & Morey, 2021), 475

and concrete steps to better understand the problems and their root causes have been made (e.g., 476

Buzbas, Devezer, & Baumgaertner, 2023; Devezer, Navarro, Vandekerckhove, & Buzbas, 2021; 477

van Rooij & Baggio, 2021). Some solutions have been proposed, such as the Reproducibility 478

Project: Psychology (https://osf.io/ezcuj/) where researchers attempt to replicate past 479

findings (and where null results are commonplace), and the introduction of registered reports in 480

some journals where manuscripts are accepted or rejected prior to carrying out the research to 481

prevent a bias against negative outcomes, and multiple papers highlighting the problem. The 482

specific solutions in psychology and other areas may not be appropriate to the current context, 483

but there needs to be a similar recognition of the problems and active attempts to improve the 484

https://slideslive.com/38938218/the-importance-of-deconstructionpoints
https://osf.io/ezcuj/
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processes by which papers are assessed. Of course, there is some recognition of these issues and 485

some attempts to address the problems (e.g., the “I can’t believe it’s not better workshop” at 486

NeurIPS that invites papers that report unexpected null findings or criticisms of standard 487

practices), but the field is far behind others in this respect. Consequently, it is quite likely that 488

many published claims regarding DNN-human similarities are false. We hope this article helps to 489

fuel this conversation as it is needed for the development of better models of brains and mind that 490

even the critics are hoping to see. 491
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Appendix 679

In Google Scholar we used the search terms (1) “DNN” or “DNN” or “DNNs” or “DNNs”; 680

(2) “brain” and "object recognition"; and (3) a specific journal or conference proceeding. We then 681

read the abstract to assess whether indeed the paper was assessing the similarity of a DNN to 682

human (or monkey) vision. In the case of searching the journal Proceedings of the National 683

Academy of Sciences we obtained 14 hits. 684

1. Mehrer et al. (2021) - An ecologically motivated image dataset for deep learning yields 685

better models of human vision. 686

2. Golan et al. (2020) - Controversial stimuli: Pitting neural networks against each other as 687

models of human cognition. 688

3. Sorscher, Ganguli, and Sompolinsky (2022) - The neural architecture of language: 689

Integrative modeling converges on predictive processing. 690

4. Firestone (2020) - Performance vs. competence in human–machine comparisons. 691

5. Sablé-Meyer et al. (2021) - Sensitivity to geometric shape regularity in humans and 692

baboons: A putative signature of human singularity. 693

6. Schrimpf et al. (2021) - The neural architecture of language: Integrative modeling converges 694

on predictive processing. 695

7. Zhuang et al. (2021) - Unsupervised neural network models of the ventral visual stream. 696

Proceedings of the National Academy of Sciences. 697

8. Hannagan, Agrawal, Cohen, and Dehaene (2021) - Emergence of a compositional neural 698

code for written words: Recycling of a convolutional neural network for reading. 699

9. Michaels, Schaffelhofer, Agudelo-Toro, and Scherberger (2020) - A goal-driven modular 700

neural network predicts parietofrontal neural dynamics during grasping. 701

10. Saxena, Shobe, and McNaughton (2022) - Learning in deep neural networks and brains with 702

similarity-weighted interleaved learning. 703
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11. Jozwik et al. (2022) - Face dissimilarity judgments are predicted by representational 704

distance in morphable and image-computable models. 705

12. Jagadeesh and Gardner (2022) - Texture-like representation of objects in human visual 706

cortex. 707

13. Liu et al. (2020) - Stable maintenance of multiple representational formats in human visual 708

short-term memory. 709

14. Tsao and Tsao (2022) - A topological solution to object segmentation and tracking. 710

Articles 13 and 14 can be excluded as they are not addressing the relation between DNNs and 711

human vision. Of the 12 remaining relevant studies, all emphasize the similarities of DNNs and 712

human vision or the promise of DNNs as models of human vision, with the partial exception of 713

articles 2 and 5. Article 2 highlights the value of designing a new type of stimulus (controversial 714

stimuli) that provide a more severe tests of DNN-human vision correspondences (much in line 715

with the approach adopted here). The authors reported lower RSA scores for models tested with 716

these images. Article 5 shows that human vision is sensitive the geometric shape regularities 717

whereas baboon vision and feed-forward DNNs are not. The authors suggest that symbolic 718

processes may be missing from current DNNs. 719

More briefly, a similar outcome was obtained when we used the same search terms for 720

Nature Communications, with 29 hits, and after reading the abstracts we identified 11 papers 721

that assess the similarity of DNNs and human vision, with 10 papers emphasizing similarities. 722

The one clear exception highlights how RSA scores are much smaller than past reports with a 723

new fMRI dataset: 724

• Xu and Vaziri-Pashkam (2021) - Limits to visual representational correspondence between 725

convolutional neural networks and the human brain. 726

Adopting a somewhat looser criterion you might note that the article by Jacob, Pramod, Katti, 727

and Arun (2021). also highlighted some limitations of DNNs as models of vision: 728

• Jacob et al. (2021) - Qualitative similarities and differences in visual object representations 729

between brains and deep networks. 730
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But the later authors are clearly highlighting the promise of DNNs, concluding the abstract with: 731

“These findings indicate sufficient conditions for the emergence of these phenomena in brains and 732

deep networks, and offer clues to the properties that could be incorporated to improve deep 733

networks”. 734

Similarly, using the same search terms, we obtained 30 hits in PLOS Computational 735

Biology and estimate that 14 out of 16 studies highlight the promise of DNNs as models of human 736

vision, the two exceptions being: 737

• Malhotra et al. (2022) - Feature blindness: a challenge for understanding and modelling 738

visual object recognition. 739

• Bornet, Doerig, Herzog, Francis, and Van der Burg (2021) - Shrinking Bouma’s window: 740

How to model crowding in dense displays. 741

The first article highlights how current DNNs do not have the same inductive biases to rely on 742

shape when learning to classify novel stimuli. The second article shows that DNNs cannot 743

account for the phenomena of “uncrowding”, although they did find some non-DNN models could, 744

including Capsule networks (Sabour, Frosst, & Hinton, 2017). 745
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