

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 30, 2024

Enforcing globally dependent flow policies in message-passing systems

Li, Ximeng; Nielson, Flemming; Nielson, Hanne Riis

Published in:
Journal of Computer Languages

Link to article, DOI:
10.1016/j.cola.2019.100904

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Li, X., Nielson, F., & Nielson, H. R. (2019). Enforcing globally dependent flow policies in message-passing
systems. Journal of Computer Languages, 54, Article 100904. https://doi.org/10.1016/j.cola.2019.100904

https://doi.org/10.1016/j.cola.2019.100904
https://orbit.dtu.dk/en/publications/e942b36f-72af-4213-a3aa-1b7a4173256e
https://doi.org/10.1016/j.cola.2019.100904

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/333636914

Enforcing Globally Dependent Flow Policies in Message-Passing Systems

Article in Journal of Computer Languages · June 2019

DOI: 10.1016/j.cola.2019.100904

CITATIONS

0
READS

23

3 authors, including:

Ximeng Li

Capital Normal University

25 PUBLICATIONS 23 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ximeng Li on 26 September 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/333636914_Enforcing_Globally_Dependent_Flow_Policies_in_Message-Passing_Systems?enrichId=rgreq-d5b85a40ba73d5ac8a382dff5c8a6c9a-XXX&enrichSource=Y292ZXJQYWdlOzMzMzYzNjkxNDtBUzo4MDc0MTMwOTk3OTQ0MzNAMTU2OTUxMzY5MjkzMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/333636914_Enforcing_Globally_Dependent_Flow_Policies_in_Message-Passing_Systems?enrichId=rgreq-d5b85a40ba73d5ac8a382dff5c8a6c9a-XXX&enrichSource=Y292ZXJQYWdlOzMzMzYzNjkxNDtBUzo4MDc0MTMwOTk3OTQ0MzNAMTU2OTUxMzY5MjkzMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d5b85a40ba73d5ac8a382dff5c8a6c9a-XXX&enrichSource=Y292ZXJQYWdlOzMzMzYzNjkxNDtBUzo4MDc0MTMwOTk3OTQ0MzNAMTU2OTUxMzY5MjkzMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ximeng_Li3?enrichId=rgreq-d5b85a40ba73d5ac8a382dff5c8a6c9a-XXX&enrichSource=Y292ZXJQYWdlOzMzMzYzNjkxNDtBUzo4MDc0MTMwOTk3OTQ0MzNAMTU2OTUxMzY5MjkzMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ximeng_Li3?enrichId=rgreq-d5b85a40ba73d5ac8a382dff5c8a6c9a-XXX&enrichSource=Y292ZXJQYWdlOzMzMzYzNjkxNDtBUzo4MDc0MTMwOTk3OTQ0MzNAMTU2OTUxMzY5MjkzMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Capital_Normal_University?enrichId=rgreq-d5b85a40ba73d5ac8a382dff5c8a6c9a-XXX&enrichSource=Y292ZXJQYWdlOzMzMzYzNjkxNDtBUzo4MDc0MTMwOTk3OTQ0MzNAMTU2OTUxMzY5MjkzMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ximeng_Li3?enrichId=rgreq-d5b85a40ba73d5ac8a382dff5c8a6c9a-XXX&enrichSource=Y292ZXJQYWdlOzMzMzYzNjkxNDtBUzo4MDc0MTMwOTk3OTQ0MzNAMTU2OTUxMzY5MjkzMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ximeng_Li3?enrichId=rgreq-d5b85a40ba73d5ac8a382dff5c8a6c9a-XXX&enrichSource=Y292ZXJQYWdlOzMzMzYzNjkxNDtBUzo4MDc0MTMwOTk3OTQ0MzNAMTU2OTUxMzY5MjkzMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Enforcing Globally Dependent Flow Policies
in Message-Passing Systems

Ximeng Li1?, Flemming Nielson2, and Hanne Riis Nielson2

1 Beijing Key Laboratory of Electronic System Reliability and Prognostics,
Capital Normal University, China,

6642@cnu.edu.cn
2 Department of Applied Mathematics and Computer Science,

Technical University of Denmark, Denmark,
{fnie|hrni}@dtu.dk

Abstract. The flow of information in a computing system is a crucial
indicator for the security of the system. In a system of multiple message-
passing processes, the flow of information could depend on the states of
different processes. We devise a type-based verification technique for flow
policies with such multi-process (global) dependencies, to provide confi-
dentiality guarantees. In this technique, the confidentiality requirements
for the presence and content of messages are dealt with separately. We
develop a pair of synergetic static analyses to over-approximate the po-
tential sets of values of the variables depended upon by the flow policies
– covering global value correspondence between the variables of different
processes. We significantly improve the permissiveness of security typing
by exploiting information about which variables are live, and by special-
izing the flow policies using the conditional expressions of branching and
looping constructs. We prove the soundness of our verification technique,
provide a proof-of-concept implementation of it, and illustrate its effec-
tiveness at an example system where the flow of information depends on
how the headers of the messages from different processes correlate.

Keywords: Information Flow Security, Dependent Flow Policies, Secu-
rity Type System, Static Analysis

1 Introduction

The flow of information in a computing system is a key factor in assessing how
secure the system is. Confidentiality, for instance, requires that sensitive infor-
mation may only flow to the parties that are authorized to access it. The flow of
information in a system is often articulated by an information-flow policy [49].

Practical information-flow policies are often content-dependent. Content-dep-
endent information-flow policies specify information flow to different sinks of
a system with different content of data (e.g., the content of a variable or a

? Part of the work was done while Ximeng Li was at the Technical University of
Denmark.

communication channel). For instance, in a run of a communication protocol, a
message from a party can be transmitted to different parties depending on the
state of any of the parties.

In the general setting of a system with multiple components, the information-
flow policy for the data of one component may depend on the data content of
a different component. Still taking a protocol run for example, the information
from some party, say A, may flow to different parties, depending on the current
state of any non-A party. We refer to information-flow policies with such (non-
local) content-dependency as globally dependent flow policies.

A considerable amount of prior effort has been poured into the enforcement
of content-dependent information-flow policies [53, 8, 3, 9, 2, 31, 34, 42, 29, 28, 41,
37, 26, 10]. Among these developments, only [37] addresses the enforcement of
information-flow policies with global content-dependency. This development tar-
gets shared-memory communication between the different components of a sys-
tem. More concretely, the information-flow policy of a variable may depend on
any variable that is shared between all the threads of a concurrent program.

In today’s IT systems, the use of shared-memory communication is comple-
mented by the use of message-passing communication. To name a few, prime
examples of message-passing communication are: socket-based communication
in networked systems, port-based communication between partitions of OS ker-
nels [56], communicator-based communication between MPI processes [24], and
rendezvous-based communication in parallel computing (e.g., [44]).

Despite the widespread use of message-passing communication in IT sys-
tems, the enforcement of content-dependent information-flow policies in message-
passing systems has attracted much less attention in comparison to their memory-
sharing counterpart. In particular, global content-dependency has hitherto not
been addressed for message-passing systems. To enforce globally dependent flow
policies in message-passing systems, the following two problems (non-existing in
the shared-memory case) are to be resolved:

1. The correspondence between the variables of different processes is implicitly
formed via sending and receiving messages over the communication channels
that bridge the processes. Since an information-flow policy can be dependent
jointly on the variables of multiple processes, it takes an explicit analysis of
the inter-process correspondence of variables to find out about the targets
of information disclosure as permitted by the flow policies.

2. Oftentimes, the confidentiality requirement for the content of a communica-
tion is different than that for the presence of the communication. Hence, the
presence and content of communication are to be considered as separate as-
pects in formulating and enforcing content-dependent information-flow poli-
cies in message-passing systems (see, e.g., [48, 46, 27] for the non-content-
dependent case).

In this paper, we address the problem of verifying information-flow secu-
rity under globally dependent flow policies, in systems with message-passing
processes. Our solution consists of a security type system [54] and two static
analyses. The security type system is aided by the two static analyses to provide

2

confidentiality guarantees wrt. a formal security property [32]. The two static
analyses are:

1. a global analysis about the values of variables, and the most recent branching
decisions made, when reaching different program points, and

2. a local analysis providing the association of the values of variables in each
process and the most recent branching decisions made by the same process.

When combined, the two analyses provide over-approximative information about
the values of variables (i.e., which values the variables may have) with high
precision. This information helps the security type system evaluate the targets
of information disclosure as permitted by the content-dependent flow policies,
and thereby increases the precision of the security type system.

In security type systems for dependent flow policies, the security types of
variables are dependent on their values. This dependency could cause changes
of security types due to value changes. Such type changes could render a sys-
tem without information leakage un-typable. We develop two methods to mit-
igate this effect. Firstly, we design our security type system such that only
the changes in the security types of live variables can affect the typability of
a message-passing system. Secondly, for a security type that specifies different
sets of information-flow destinations depending on a conditional expression in
the program, we specialize the type to a concrete set of destinations according
to the evaluation result of the conditional. Hence, changes of the type inside a
conditional branch or a loop body are avoided by the removal of content depen-
dency in the scope of the conditional branch or the loop. Both methods improve
the permissiveness of the security type system without affecting its soundness.

To summarize, the following technical contributions are made in this article:

1. a sound information-flow type system for enforcing globally dependent flow
policies in message-passing systems,

2. the utilization of liveness information and the scoped specialization of vari-
able types that result in substantial permissiveness gain in security typing,

3. the combination of a global analysis and a local analysis that provides in-
formation about the values of variables with high precision, in support of
security typing, and

4. soundness proofs for the security type system and the static analyses.

Accompanying our technical development, we show how the building blocks
of our solution play together, to prove the information-flow security of a message-
passing system, where two parties communicate under the regulation of a stateful
packet filter. In this system, the flow of information depends on how the headers
of the most recent messages from the two parties correlate. We provide a proof-
of-concept implementation3 of our solution in the OCaml language [1], using the
SMT solver Z3 to solve the value constraints [14].

3 The implementation is accessible at https://github.com/lixm/gdif_checker

3

cli fil srv

cusr

capp

cau

Fig. 1. The Scenario of Stateful Packet Filtering

Structure. This article is structured as follows. In Section 2, we outline the
key problems to be addressed in enforcing globally dependent flow policies in
message passing systems. In Section 3, we formally define the computation model
of message passing systems. In Section 4, we formally define globally dependent
flow policies. In Section 5, we present the security type system for enforcing
globally dependent flow policies in message-passing systems. In Section 6, we
formally define the security property enforced by the security type system, and
present the soundness theorem of the type system (wrt. the static analyses in
Section 7). In Section 7, we present the global and local static analyses supporting
the security type system. In Section 8, we discuss related work in detail. In
Section 9, we conclude our work. In Appendix A, we explain our use of notation
in detail, and provide the formal definitions that are omitted from the main text.
In Appendix B and Appendix C, we present proofs of our theoretical results.

2 Motivating Scenario

To explicate the challenges in enforcing globally dependent flow policies in mess-
age-passing systems, we consider a concrete scenario of stateful packet filtering.

As illustrated in Fig. 1, a client module cli communicates with a server module
srv under the regulation of a filter module fil. In the filter module, each message
from the client (originally received from the user via the communication channel
cusr) is checked against the current state of the filter. If the check is passed, then
the message is forwarded as is to the server side. Otherwise, information about
the failed check on the message is communicated to an auditing module au. The
same happens to each message from the server module (originally received from
a server-side application via the communication channel capp) to the client.

To make things more concrete, we consider the case where the check at the
filter ensures a numbering scheme on the headers of the messages between the
client and the server. We capture this numbering scheme by the formula φ(h1, h2),
where h1 and h2 are the headers of the messages received from cusr and from
capp, respectively. That is, information about the payload of each message from
the client is revealed to the server-side application if φ(h1, h2) holds, and is
revealed to the auditing module if φ(h1, h2) does not hold. We formally express
this statement as

(φ(h1, h2) . {app}) f (¬φ(h1, h2) . {au}) (1)

The aforementioned statement is an information-flow policy. The symbolsf
and . can be understood as conjunction and implication, except that they are

4

used to form a policy, rather than a logical formula. The policy explains how
the flow of information is regulated in the system. It also mandates that the
user’s information is not always revealed to the auditing module – this happens
only when the numbering of messages goes wrong. In this policy, the targets of
information disclosure are dependent on the content of the variables h1 and h2.
These two variables belong to two different components of the system. Hence,
this content-dependency is global.

To verify that the disclosure of the payload over the channel cusr indeed
follows the policy, the following two problems have to be addressed:

1. To obtain whether information may be disclosed to the application or the
auditing module, it has to be found out when φ(h1, h2) holds and when it
does not hold. Hence, the correspondence between the variables of different
components (such as h1 and h2) is to be identified. This correspondence is
established at runtime via the communication between the different compo-
nents. The correspondence has to be analyzed statically, to support static
information-flow verification.

2. The presence of communication from the client to the filter is easily revealed
to both the server-side application and the auditing unit – if this communi-
cation does not happen, subsequent ones (whether to the application or to
the auditing unit) will not happen either. For the policy (1), the information
subject to protection (wrt. confidentiality) is the content of the messages
from the client. The leakage of their presence does not harm the protec-
tion of sensitive information possessed by the user. Hence, the content of
communication has to be considered separately from its presence.

The two problems above are specific to the enforcement of globally dependent
flow policies in message-passing systems (as opposed to shared-memory systems).
In this article, we propose a solution of both problems, that consists of a security
type system and two static analyses.

Scoped Specialization of Security Types. For the example scenario, messages
from the client to the server are temporarily stored in the program variables of
the filter module. Correspondingly, the flow policy (1) is used as the security
types for the relevant variables. In our security type system, this security type
is specialized into {app} throughout the scope where φ(h1, h2) holds in the filter
module, and into {au} throughout the scope where φ(h1, h2) does not hold. Here,
{app} constantly restricts information flow to the server-side application only,
while {au} constantly restricts information flow to the auditing unit only. We
term this feature of specializing security types throughout complete scopes the
scoped specialization of security types. For this example, scoped specialization
removes the dependencies of the security type (1) on h1 and h2 for continuous
code regions. Hence, updates of h1 and h2 in these code regions cannot change
the actual security types on the data sent by the client from {app} to {au}, or
in the other direction (such changes are undesirable since they would violate the
restriction on information flow imposed by the original security type). This is

5

an advantage over the more traditional approach of specializing security types
only at individual actions such as assignments (e.g., [29, 37, 26]).

Before discussing our security type system and its supportive static analyses,
we formally define the model of message-passing systems (Section 3) and globally
dependent flow policies (Section 4).

3 Computation in a Message-Passing System

We consider systems each consisting of processes communicating with each other
and with the environment of the system through synchronous message passing.

3.1 Structure of a System

Each process executes a statement under a principal. We denote the set of state-
ments by Stmt . We denote the set of principals by Pr . Each process has a (local)
memory. We denote the set of memories by Mem = Var → Val . Here, Var is
the set of variables, and Val is the set of values.

We model the communication lines of the processes of a system as polyadic
channels. The set of polyadic channels is PCh. Each polyadic channel has a set
of indexed channel components. For a polyadic channel c, the number of channel
components of c is denoted by |c|, and the i-th component of c is denoted by
c.i. We denote the set of all channel components by Ch = {c.i | c ∈ PCh ∧ i ∈
{1, . . . , |c|}}. We model the set of communication lines that can be used to com-
municate with outside the system by the set EPCh of external communication
channels. We denote the set PCh \EPCh by IPCh, which comprises the internal
communication channels.

We model the state of a system by a global configuration. The set of global
configurations is GCnf = (Pr×Stmt×Mem)∗. Hence, a global configuration is a
list of triples, each consisting of a principal, a statement, and a memory. Given a
global configuration 〈〈p1, S1,m1〉, . . . , 〈pn, Sn,mn〉〉, the state of the i-th process
is modeled by 〈pi, Si,mi〉. We call this triple a local configuration. The set of
local configurations is LCnf = Pr × Stmt ×Mem.

3.2 Execution of a System

We distinguish between different kinds of execution steps performed by a system
by considering a set of actions Act . This set contains actions α of the form c!~v,
representing an output of the list ~v of values over the polyadic channel c, actions
of the form c?~v, representing an input of the list ~v of values over the polyadic
channel c, and actions of the form τ , representing an internal communication
between two processes in the system. Further actions in the set Act are to be
introduced later in this section.

We model the execution of a system by a trace. The set of traces is Tr =
GCnf (Act × GCnf)∗. A trace is thus a non-empty alternating list of global
configurations and actions, that starts and ends with global configurations.

6

last(tr) = 〈. . . , lcnf 1, . . . , lcnf 2, . . .〉
lcnf 1

c!~v−−→ lcnf ′1 lcnf 2
c?~v−−→ lcnf ′2

tr −→ξ tr .τ.〈. . . , lcnf ′1, . . . , lcnf ′2, . . .〉
if ξ(tr) = (prin-of (lcnf 1), prin-of (lcnf 2))

last(tr) = 〈. . . , lcnf 1, . . . , lcnf 2, . . .〉
lcnf 1

c?~v−−→ lcnf ′1 lcnf 2
c!~v−−→ lcnf ′2

tr −→ξ tr .τ.〈. . . , lcnf ′1, . . . , lcnf ′2, . . .〉
if ξ(tr) = (prin-of (lcnf 1), prin-of (lcnf 2))

last(tr) = 〈. . . , lcnf , . . .〉 lcnf
α−→ lcnf ′

tr −→ξ tr .α.〈. . . , lcnf ′, . . .〉
if ∃ci : ξ(tr) = (prin-of (lcnf), ci)

∧match(α, ci)

¬(∃gcnf , α : α 6= � ∧ tr −→ξ tr .α.gcnf)

tr −→ξ tr . � .last(tr)

Fig. 2. The Calculus Rules for the Judgment tr −→ξ tr ′

We model the environment of a system by a strategy [55]. The set of strategies
is Ξ = Tr → II . Here, II = ((Pr × CI) ∪ (Pr × Pr)) is the set of interaction
intents of the environment, and CI = {c!~v, c?· | c ∈ EPCh ∧ ~v ∈ Val∗} is the set
of communication intents of the environment. More specifically, a c!~v models an
attempt of the environment to output the list ~v of values to the system over c,
while a c?· models an attempt of the environment to input from the system over
c. For a strategy ξ and a trace tr , the case where ξ(tr) is a principal paired with
a communication intent models the situation where the environment schedules
the process of principal p for execution, attempting to communicate with the
system according to the communication intent. The case where ξ(tr) is a pair of
principals models the situation where the environment schedules the processes
of the principals for internal communication.

We model a single execution step of the system by the judgment tr −→ξ tr ′.
Intuitively, the trace tr is extended after a step of the system into the trace tr ′,
under the strategy ξ. We specify the calculus rules for this judgment in Fig. 2
In these rules, instances of the judgment lcnf

α−→ lcnf ′ are used. This latter
judgment models a single execution step of a process with local configuration
lcnf , resulting in the local configuration lcnf ′, performing the action α.

Intuitively, if two scheduled processes can perform an output and an input,
respectively, over the same channel, then the two processes can communicate
internally with each other (first and second rules). If a scheduled process lo-
cally performs an action α, and α matches the communication intent of the
environment, then the system performs the same action, and the local config-
uration of the process is updated correspondingly (third rule). The predicate
match : Act × CI → {tt ,ff } is defined as

match(α, ci) ,∃c ∈ EPCh : ∃~v ∈ Val∗ : α = c!~v ∧ ci = c?· ∨
∃c ∈ EPCh : ∃~v ∈ Val∗ : α = c?~v ∧ ci = c!~v ∨
α 6∈ {c!~v, c?~v | c ∈ PCh ∧ ~v ∈ Val∗}

7

〈p, ıskip,m〉 τ−→ 〈p, ιf stop,m〉
〈p, x := ıe,m〉 τ−→ 〈p, ιf stop,m[x 7→ JeKm]〉

〈p, S1,m〉
α−→ 〈p, S′1,m′〉

〈p, S1;S2,m〉
α−→ 〈p, S′1;S2,m

′〉
if S′1 6= ιf stop

〈p, S1,m〉
α−→ 〈p, ιf stop,m′〉

〈p, S1;S2,m〉
α−→ 〈p, S2,m

′〉

〈p, ıif e then S1 else S2 fi,m〉 brtp,ı−−−→ 〈p, S1,m〉 if JeKm = tt

〈p, ıif e then S1 else S2 fi,m〉 brfp,ı−−−→ 〈p, S2,m〉 if JeKm = ff

〈p, ıwhile e do S od,m〉 brtp,ı−−−→ 〈p, S; ıwhile e do S od,m〉 if JeKm = tt

〈p, ıwhile e do S od,m〉 brfp,ı−−−→ 〈p, ιf stop,m〉 if JeKm = ff

〈p, ısend(c, ~e),m〉 c!~v−−→ 〈p, ιf stop,m〉 if J~eKm = ~v

〈p, ırecv(c, ~x),m〉 c?~v−−→ 〈p, ιf stop,m[(xj 7→ vj)j]〉

Fig. 3. The Semantics of Processes

If the system can perform no ordinary action, then the system can take an empty
step as represented by � (last rule).

We model the program code executed by a system by a concurrent state-
ment CS = p1 : S1|| . . . ||pn : Sn. The set of traces of a system executing this
concurrent statement is

traces-of ξ(CS) = {tr ∈ Tr | 〈〈p1, S1,m?〉, . . . , 〈pn, Sn,m?〉〉 →∗ξ tr}

Here, m? = λx.0 is the initial memory mapping all variables to 0.

3.3 Programming Language

We introduce the syntax and semantics of our programming language for the
statements of a message-passing system. This is a While language augmented
with synchronous communication.

We denote the set of expressions by Exp. We denote the set of program points
by Pt . We specify the statements in the set Stmt by the following syntax, where
~e ∈ Exp∗, ~x ∈ Var∗, and ı ∈ Pt .

S ::= ıskip | x := ıe | ısend(c, ~e) | ırecv(c, ~x) | S;S |
ıif e then S else S fi | ıwhile e do S od | ıstop

The derivability of the judgment lcnf
α−→ lcnf ′ is specified by a small-step

semantics [43] (with semantic rules given in Fig. 3). The statement ıskip ter-
minates without effects, the statement x := ıe assigns the value of e to x, the
statement ısend(c,~e) sends the list of values resulting from the evaluation of
~e over c, the statement ırecv(c, ~x) receives the next list of values over c, the
statement ıif e then S1 else S2 fi branches to either S1 or S2 depending on the
evaluation result of e, the statement ıwhile e do S od enters the statement S or
terminates depending on the evaluation result of e, and the statement ıstop is

8

an indication of termination. Note that ıstop is not in the surface syntax. It is
introduced to avoid having both triples and pairs for the local configurations.

We completely specify the set Act of actions by the following syntax.

α ::= c!~v | c?~v | τ | � | brtp,ı | brfp,ı

The first four actions have already been introduced. The action brtp,ı represents a
conditional branching to the true branch at the program point ı in the statement
of the principal p. The action brfp,ı represents a conditional branching to the false
branch at the program point ı in the statement of the principal p. These two
actions for branching are used to formulate the correctness conditions for our
static analyses supporting the security type system. On the other hand, no action
for joining control flow branches is needed.

In Fig. 3, the communication and branching actions of appropriate types are
specified for the execution of different language constructs. The ιf represents the
final program point of the statement executed. We assume ιf is different from
any program point explicitly annotated in the statement, and that ιf may only
be used to annotate a stop.

3.4 Program Graphs

We model the possible executions of a concurrent statement with synchronization
between different processes by a program graph.

The vertices of a program graph record the potentially reachable program
points of the constituent sequential statements of the concurrent statement, and
the edges of the program graph record the actions of the sequential statements.

Formally, the program graph of a concurrent statement CS is a pair (VCS ,
ECS), where VCS is the set of nodes, and ECS is the set of edges. Here, VCS ⊆
Pt |CS |, and ECS ⊆ VCS × P(N× SAct)× VCS . In particular, SAct is the set of
syntactical actions whose elements are given by

sa ::= sk | x← e | c!~e | c?~x | brt | brf

In the above, sk represents the action of a skip, x← e represents an assignment
of the expression e to the variable x, c!~e represents an output of the list ~e of
expressions over the polyadic channel c, c?~x represents an input from the polyadic
channel c into the list ~x of variables, and brt and brf represent true and false
branching decisions, respectively. For a syntactical action sa, we write upd(sa)
for the set of variables (syntactically) updated in sa. That is, upd(x← e) , {x},
upd(c?~x) , {~x}, and upd(sa) , ∅ otherwise.

We define (VCS , ECS) as the least pair satisfying the set of inference rules
in Fig. 4. The first rule says that the combination of the initial program points
of the various processes are always jointly reachable. Hence, the list of these
initial program points constitute a node of the program graph. The function
fst : Stmt → Pt gives the initial program point of each statement. This function
is formally defined in Appendix A. The second rule deals with synchronous
communication inside the system. More concretely, if the i-th process takes one
step from the program point ıi to the program point ı′i with the syntactical

9

fst(CS(1))...fst(CS(n)) ∈ VCS

where n = |CS |

~ı ∈ VCS (ıi, c!~e, ı
′
i) ∈ succ(CS [i], ιf) (ıj , c?~x, ı

′
j) ∈ succ(CS [j], ιf)

~ı[i 7→ ı′i][j 7→ ı′j] ∈ VCS (~ı, {(i, c!~e), (j, c?~x)},~ı[i 7→ ı′i][j 7→ ı′j]) ∈ ECS

~ı ∈ VCS c ∈ EPCh (ıi, c!~e, ı
′
i) ∈ succ(CS(i), ιf)

~ı[i 7→ ı′i] ∈ VCS (~ı, {(i, c!~e)},~ı[i 7→ ı′i]) ∈ ECS

~ı ∈ VCS c ∈ EPCh (ıi, c?~x, ı
′
i) ∈ succ(CS(i), ιf)

~ı[i 7→ ı′i] ∈ VCS (~ı, {(i, c?~x)},~ı[i 7→ ı′i]) ∈ ECS

~ı ∈ VCS (ıi, sa, ı′i) ∈ succ(CS(i), ιf) sa 6∈ Output ∪ Input

~ı[i 7→ ı′i] ∈ VCS (~ı, {(i, sa)},~ı[i 7→ ı′i]) ∈ ECS

Fig. 4. The Inference Rules for the Derivation of Program Graphs

action c!~e, and the j-th process takes one step from the program point ıj to
the program point ı′j with the syntactical action c?~x, then the system of the
concurrent statement CS takes one step, changing (only) the program points of
the i-th and the j-th processes. On the inferred edge, syntactical actions of the
i-th process and the j-th process are recorded, respectively. The function succ
used in the premises of the rule is formally defined in Appendix A. The next two
rules concerns communication with the environment. The last rule describes the
case where one single process may perform an internal computation step.

4 Flow Policies with Global Content-Dependency

Information enters and leaves a system through the communication channels
of the system. These communication channels are subject to protection under
content-dependent information-flow policies. The syntax for these information-
flow policies is

P ::={p1, ..., pn} | φ . P | PfP

φ ::=true | t cop t | ¬φ | φ ∧ φ
t ::=n | x@p | c.j | g(t, ..., t)

A policy P can be a set of principals to whom the disclosure of information is
restricted, an implicative policy φ . P that imposes the policy P only when the
logical formula φ holds, or a conjunctive policy P1fP2 that jointly imposes the
policies P1 and P2. We shall use ? as shorthand notation for the policy that is the
set of all principals. In a policy, the formula φ can be the formula true for logical
truth, the comparison of two terms, the negation of a formula, or the conjunction
of two formulas. A term t can be a numeral, a variable of (the statement of) a
principal x@p, a channel component c.j or a function application on terms.

We use the restricted syntax P ::= {p1, . . . , pn} for the flow policies governing
the presence of communication over the polyadic channels, while the full syntax

10

J{p1, . . . , p2}Kgcnf ,δ , {p1, . . . , p2}

Jφ . P Kgcnf ,δ ,

{
JP Kgcnf ,δ if JφKgcnf ,δ = tt

Pr otherwise

JP1fP2Kgcnf ,δ , JP1Kgcnf ,δ ∩ JP2Kgcnf ,δ

. . .

Jx@pjK〈...,〈pj ,S,m〉,...〉,δ , m(x)

Jc.jKgcnf ,δ , δ(c.j)

. . .

Fig. 5. The Semantics of Content-Dependent Information-Flow Policies

is permitted for the flow policies governing the content of communication over
the channel components. Hence, content dependency (that is potentially global)
is permitted for the flow policies on the content of communication. Furthermore,
the flow policies of different channel components of a polyadic channel may admit
different content dependency.

The semantics of a policy is the set of principals to which information may be
disclosed according to the policy. This set of principals results from interpreting
the policy under a global configuration gcnf and a partial function δ ∈ Ch ⇀
Val . Here, gcnf carries information about the contents of variables, and δ carries
information about the contents communicated over polyadic channels.

The key part of the definition on the interpretation of policies is given in
Fig. 5 (with the complete definition given in Fig. 12 of Appendix A). The def-
inition meets the intuitive meaning of policies given when introducing them.
The interpretation of formulas φ is omitted, while the interpretation of terms
t is partially presented. The interpretation of a variable of (the process of) a
principal gives the value of the variable in the memory of that principal. The
interpretation of a channel component gives the value of the channel component
according to the partial function δ.

Let Pol be the set of content-dependent information-flow policies. We intro-
duce a relation v ⊆ Pol × Pol to capture the relative levels of confidentiality
required by different policies.

Definition 1. P1 v P2 , ∀gcnf , δ : JP1Kgcnf ,δ ⊇ JP2Kgcnf ,δ

Intuitively, P1 v P2 says that less principals are allowed to (directly or indirectly)
access information under P2 than under P1. Hence, P2 requires a higher level of
confidentiality than P1 does.

In an information-flow analysis, policies are compared syntactically. For two
policies of the form

c
i(φi . Ri) where Ri ∈ P(Pr) for each i (the so-called

Implication Normal Form, or INF), we define the relation �INF∈ Pol × Pol .

Definition 2.
c
i(φi . Ri) �INF

c
j(φ
′
j . R

′
j) iff ∀i : ∀p 6∈ Ri : ∃j : φi ⇒ φ′j ∧ p 6∈ R′j

For policies in INF, it is not difficult to show that the relation �INF is sound
wrt. the semantic ordering v.

We define the function inf that gives the implication normal form of each
given policy in Fig. 6.

11

inf (P) ,



P if P is in INF

true . {p1, . . . , pn} if P = {p1, . . . , pn}

c
1≤j≤n(φ ∧ φj . Rj) if ∃P ′ : P = (φ . P ′)∧

inf (P ′) =
c

1≤j≤n(φj . Rj)

(φ11 . R11)f. . .f(φ1m . R1m) if ∃P1, P2 : P = P1fP2 ∧
f(φ21 . R21)f. . .f(φ2n . R2n) inf (P1) =

c
1≤j≤m(φ1j . R1j)

inf (P2) =
c

1≤j≤n(φ2j . R2j)

Fig. 6. The Definition of the Function inf

Lemma 1. For all policies P , inf (P) is well-defined and is in the implication
normal form. Furthermore, it holds that ∀gcnf , δ : JP Kgcnf ,δ = Jinf (P)Kgcnf ,δ.

To syntactically compare two arbitrary policies, we define the relation �⊆
Pol × Pol .

Definition 3. P1 � P2 iff inf (P1) �INF inf (P2)

The relation � is sound wrt. the semantic ordering v.

Lemma 2. If P1 � P2, then P1 v P2.

Thus, we have a sound way to syntactically check the semantic ordering between
arbitrary globally dependent flow policies via transformation of policies into
the Implication Normal Form. In the next section, we develop a type-based
information-flow analysis where the security types take the form of the flow
policies. The way of comparing flow policies developed in the above applies
directly to the comparison of these security types.

5 Security Type System

We devise an information-flow type system that can be used to statically ver-
ify the security of a system under globally-dependent information-flow policies.
Three kinds of information leakage are detected by the security type system:
explicit leakage, implicit leakage, and internal timing leakage [51]. Explicit leak-
age is information leakage caused by assigning confidential data directly to a
public sink. Implicit leakage is information leakage caused by reaching an as-
signment to a public sink depending on confidential information. Internal timing
leakage is information leakage caused by different timing of reaching multiple
assignments to the same public sink in concurrent processes. For a system with
message-passing communication, information can be leaked through not only
assignments, but also communications to public sinks.

12

5.1 Environments for the Security Type System

Environments for Security Types. Our security type system is used to enforce
end-to-end information-flow security under flow policies for the polyadic com-
munication channels. All channels and variables are given security types. The
security types for a channel include the security type for the presence of com-
munication over the channel, and the security types for the content of commu-
nication over the components of the channel. Furthermore, the security type for
the presence of communication over a channel is the same as the flow policy
for the presence of communication over the channel, while the security type for
the content of communication over each channel component is the same as the
flow policy for the content of communication over the channel component. On
the other hand, the security types for variables are a subset of the flow policies
(c.f. Section 4) that contain all the flow policies without dependency on channel
components – i.e., the security types for variables may only depend on variables.
The security types for variables are used to enforce the flow policies on channels.

Formally, we introduce the channel type environment C : (PCh ∪Ch)→ Pol .
For each c ∈ PCh, C(c) is the security type for the presence of communication
over c. For each c ∈ PCh and j ∈ {1, . . . , |c|}, C(c.j) is the security type for the
content communicated over the channel component c.j. We introduce for each
statement a variable type environment V : Var → Pol . For each variable x of
the statement, V(x) is the security type for x.

Remark 1. The security types of variables do not depend on channel components
because channel components do not always have current valuations. Hence, if the
security types of variables depended on channel components, the values commu-
nicated over channel components in the history or the future would be needed
to evaluate the security type of a variable.

Environments for Values and Live Variables. In security type checking, informa-
tion about the values of program variables is used to refine the security types for
the polyadic channels and variables. We introduce for each statement an asser-
tion environment Φ : Pt → Asst that records the value assertion at each program
point. The environment Φ provides an over-approximation of the computation
in the sense that the values of variables satisfying the assertions recorded in Φ
constitute supersets of the values actually arising in the computation.

The security type system relies on the condition that if the execution of
the given concurrent statement CS could reach some global configuration gcnf ,
such that the k-th statement Sk can take one further step from gcnf , then the
assertion in Φ at the first program point of Sk is satisfied in gcnf .

We define may-step(CS ,~ı, k) to state that the k-th process admits a further
step, when all the processes are jointly at the program points ~ı, in the execution
of the concurrent statement CS 4.

4 Note that according to the semantics, an action can always be performed locally
by a process that has not terminated, although the action can be impossible at the
system-level due to the environment.

13

Definition 4. may-step(CS ,~ı, k) , ∃A,~ı′, sa : (~ı, A, ~ı′) ∈ ECS ∧ (k, sa) ∈ A

We then define the aforementioned condition on Φ below.

Definition 5. We define asst(Φ,CS , k) to express if tr ∈ traces-of ξ(CS) for
some ξ ∈ Ξ, last(tr) = gcnf = 〈〈p1, S′1,m1〉, . . . , 〈pn, S′n,mn〉〉, and it holds that
may-step(CS , fst(S′1) . . . fst(S′n), k), then we have JΦ(fst(S′k))Kgcnf = tt.

In Section 7, we devise static analyses to compute a vector ~Φ of assertion envi-
ronments such that asst(Φk,CS , k) holds for all k.

The security types for variables are used to enforce the flow policies for
polyadic channels because the variables pass information from input to output.
In fact, only the live variables [40] are essential in this process. We introduce for
each statement a live variables environment Λ : Pt → P(Var) that records the
set of live variables at each program point.

The design of the security type system is also based on the condition that the
environment Λ for a statement S (in the concurrent statement CS to be typed)
properly records the set of semantically live variables [39] at each program point
of S. Intuitively, a variable is semantically live if varying its value does affect the
subsequent execution, or the computation result. We denote this condition by
live(Λ, S), which is formally defined in Appendix A. The satisfaction of live(Λ, S)
can be ensured by using a standard live variables analysis (e.g., [40]) on S to
infer Λ. For self-containedness, we present such an analysis in Appendix A.

5.2 Typing Judgments and Typing Rules

Typing Judgment and Typing Rules for Statements.

The typing judgment for a statement S is

C,V `Φ,Λp (l,X) S (l′, X ′) : ı

The judgment says: S is well-typed under the channel type environment C, the
variable type environment V, the assertion environment Φ, the live variables en-
vironment Λ, the pre-context (l,X), and the post-context (l′, X ′). To understand
the use of the pre-context and the post-context, note that the reaching of a pro-
gram point may rely on the presence of certain communications, as well as the
evaluation of certain conditional expressions to specific Boolean values. The l in
the pre-context is used to maintain an upper bound on the confidentiality levels
for the presence of communications that contributes to reaching the beginning of
S (hence, the presence of these communications could be inferred from the fact
that the beginning of S has been reached). The X in the pre-context is used to
maintain a superset of the variables in the conditional expressions whose specific
evaluation results contribute to reaching the beginning of S (hence, information
about these variables could be inferred from the fact that the beginning of S
has been reached). The role of l′ and X ′ is like that of l and X, except that l′

and X ′ are used to record information relating to reaching the program point
immediately after S (as opposed to the program point in the beginning of S).

14

The pre-context and the post-context are used to obtain an upper bound on
the confidentiality level for the source of implicit information flow. Their role
resembles that of the PC label in classical security type systems (e.g., [49]).

We introduce a few pieces of notation that allow for a concise presentation
of our security typing rules. For a function f of type U → Pol where U ⊆
Var ∪Ch ∪ PCh, we write φ . f for the function λx.(φ . f(x)), and if X ⊆ Var ,
we write f [X] for the security type

c
x∈X f(x), which is ? if X = ∅. For such a

function f , we also write f [x 7→ P] for the function that is as f except that x
is mapped to the security type P , write f [(uj 7→ Pj)j] for the function that is
as f except that each uj ∈ Var ∪ Ch is mapped to the security type Pj , write
f [e/x] for the function that maps each variable x′ to the security type resulting
from applying the substitution e/x on the formulas in the security type f(x′),
and write f [(ej/uj)j] for the function that maps each variable x′ to the security
type resulting from applying a series of substitutions ej/uj on f(x′). For two
functions f1 and f2 of type U → P where U ⊆ Var ∪ Ch ∪ PCh, we write
f1 �U f2 for the condition ∀u ∈ dom(f1) ∩ dom(f2) ∩ U : f1(u) � f2(u).

The typing rules for statements are given as a calculus for the judgment
C,V `Φ,Λp (l,X) S (l′, X ′) : ı in Fig. 7.

The rule for ıskip says that ıskip is always typable, and the fact of reaching
the completion point of this statement has the same level of confidentiality as
the fact of reaching the starting point of this statement does.

The rule for x := ı e requires the condition (Φ(ı) . lfV[X ∪ fvs(e)]) �
V(x)[[e]@p/x@p] for the variable x subject to the assignment. With fvs(e) on
the left of the constraint, explicit information leakage from e to x is prevented.
With l and X on the left of the constraint, implicit information leakage caused
by leaking the fact of reaching the assignment through the value of x after the
assignment is prevented. By imposing the pre-condition Φ(ı) (which holds in
the beginning of the assignment), the left-hand side of the constraint is made
less confidential in general and the overall constraint is relaxed. With the sub-
stitution [[e]@p/x@p] on the right of the constraint, the security type of x is
interpreted in the state reached after the assignment rather than before it. For
a variable x′ 6= x, if x′ is live at the end of the assignment, then it is required
that Φ(ı) . V(x′) � V(x′)[[e]@p/x@p] (because of the decoration of � with the
set Λ(ı′) of live variables at ı′). With this requirement, it is ensured that the live
variables do not leak information when their security types are weakened due to
any change in the value of x.

Example 1 (Detection of Explicit Leakage). Let V = [x 7→ {p}, x′ 7→ {p′}],
Φ = [1 7→ true, ιf 7→ true], and Λ = [1 7→ {x′}, ιf 7→ ∅]. The assignment x := 1x′

causes information flow from the variable x′ to the variable x. According to
the security type of x′, the only principal permitted to access the information
in x′ is p′. However, the information flow from x′ to x gives p (in addition to
p′) access to some of this information. Hence, the assignment induces explicit
information leakage. This leakage is detected by the typing rule for assignments.
Formally, it is impossible to establish C,V `Φ,Λp (?, ∅) x :=1x′ (?, ∅) : ιf using
this rule. The premise of this rule requires Φ(1).V[x 7→ ?fV[∅ ∪ fvs(x′)]] �∅∪{x}

15

C,V `Φ,Λp (l,X) ıskip (l,X) : ı′

Φ(ı) . V[x 7→ lfV[X ∪ fvs(e)]] �Λ(ı′)∪{x}V[[e]@p/x@p]

C,V `Φ,Λp (l,X) x := ıe (l,X) : ı′

lf(Φ(ı) . V[X]) � C(c) � l′
Φ(ı) . V[(c.j 7→ V[fvs(ej) ∪X])j] �Λ(ı′)∪{c.1,...,c.|c|} (V] C)[([ej]@p/c.j)j]

C,V `Φ,Λp (l,X) ısend(c, ~e) (l′, X) : ı′

lf(Φ(ı) . V[X]) � C(c) � l′
Φ(ı) . V[(xj 7→ C(c.j)fV[X])j] �Λ(ı′)∪{~x}V[(c.j/xj@p)j]

C,V `Φ,Λp (l,X) ırecv(c, ~x) (l′, X) : ı′

C,Vp,el′,X′,ı′ `
Φ,Λ
p (l,X∪fvs(e)) S1 (l′, X ′) : ı′

C,Vp,¬el′,X′,ı′ `
Φ,Λ
p (l,X∪fvs(e)) S2 (l′, X ′) : ı′

C,V `Φ,Λp (l,X) ıif e then S1 else S2 fi (l′, X ′) : ı′

X ∪ fvs(e) ⊆ X ′ C,Vp,el,X′,ı `
Φ,Λ
p (l,X ′) S (l,X ′) : ı

C,V `Φ,Λp (l,X) ıwhile e do S od (l,X ′) : ı′

C,V `Φ,Λp (l,X) S1 (l′′, X ′′) : fst(S2)
C,V `Φ,Λp (l′′, X ′′) S2 (l′, X ′) : ı′

C,V `Φ,Λp (l,X) S1;S2 (l′, X ′) : ı′

C,V `Φ,Λp (l′1, X
′
1) S (l′2, X

′
2) : ı′

l1 � l′1 l′2 � l2 X1 ⊆ X ′1 X ′2 ⊆ X2

C,V `Φ,Λp (l1, X1) S (l2, X2) : ı′

Fig. 7. The Information Flow Type System

V[[x′]@p/x@p]. For x, this requirement boils down to true . (?f{p′}) � {p},
which does not hold. In a slightly more involved program, the data in x′ could
be received from a channel before the assignment, and the data in x could be
sent to another channel after the assignment. Thus, explicit leakage from the
input channel to the output channel could be induced via the assignment. ut

In the rule for ısend(c,~e), the condition lf(Φ(ı) . V[X]) � C(c) ensures that
no confidential information about reaching ı may be leaked through the presence
of communication over c. The condition C(c) � l′ ensures that no confidential
information about the presence of communication over c may be leaked through
observing the completion of the statement. The second condition of the typing
rule for ısend(c,~e) can be understood by an analogy of the statement with the
imaginary assignments c.1 := e1, . . . , c.n := en, where n = |c|. On the right-
hand side of this condition, the environment V]C is formed because the security
types of the destinations c.1, . . . , c.n of information flow are needed.

16

In the rule for ırecv(c, ~x), the first condition provides similar guarantees to
those provided by the first condition of the rule for ısend(c,~e). The second con-
dition can be understood by an analogy of the statement with the imaginary
assignments x1 := c.1, . . . , xn := c.n.

The rules for the if and while statements implement the scoped specialization
of security types: the conditions in the security types of variables can be turned
into logical truth or falsehood in the whole branches of the if or the complete
body of the while, after considering the conditional expression of the if or while.
This operation mitigates the problem that changes of the values of variables in
the scope of a if or while could cause changes of a security type that in turn
render the system un-typable. Below, we define the specialization of a single
security type in the INF form with a conditional expression in the statement of
a specific principal.

Definition 6. The specialization of the security type
c
j(φj . Rj) under the

Boolean expression e of principal p is given by

(
k

j

(φj . Rj))
p,e

,
k

j

(φ′j . Rj) where for each j, φ′j =


true if [e]@p⇒ φj

false if unsat([e]@p ∧ φj)
φj otherwise

In the definition, [e]@p represents the expression that is as e except that each
variable x of e is replaced with x@p. For each conjunct in the security type
(in INF form) with condition φj , if [e]@p implies φj , then the condition of the
conjunct is replaced with true. If [e]@p and φj cannot be satisfied at the same
time, then the condition of the conjunct is replaced with false. Otherwise, the
condition of the conjunct is left unchanged.

Example 2 (Specialization of Security Types). We have (x@p<0 . {p, p′})p, x<−1
= (true . {p, p′}). This is because we have [x < −1]@p⇒ (x@p < 0). ut

We lift the type specialization operation to type environments.

Definition 7. The specialization of the variable type environment V under ex-
pression e of principal p, l ∈ P(Pr), X ∈ P(Var), and ı ∈ Pt, is given by

Vp,el,X,ı(x) ,

{
(inf (V(x)))p,e if x 6∈ Λ(ı) ∧ l ∩

⋂
x∈X frs(V(x)) = Pr

V(x) otherwise

In this definition, frs(P) represents
⋂
k Rk, where the Rk’s satisfy

c
k(.Rk) =

inf (P). Hence, the specialization of a variable type environment V under ex-
pression e of principal p, l ∈ P(Pr), X ∈ P(Var), and ı ∈ Pt , is a new variable
type environment V ′. The variable type environment V ′ maps each variable x
to its specialized security type (wrt. p and e) only if x is not live at ı, and all
principals are constantly in l and are constantly readers of x. Here, ı represents
the program point at the end of the scope in which the specialized security types
are used, and l and X indicate the confidentiality of reaching ı. Hence, the con-
dition required for the specialization of the security types of variables ensures
that the security type of each live variable is unaffected when recovering from

17

specialized security types to the original security types, and that the recovery
to the original security types does not depend on confidential information. This
avoids information leakage caused by exiting the scope in which the specialized
type environment is used.

In the rule for ıif e then S1 else S2 fi, the branches S1 and S2 are typed using
X ∪ fvs(e) to capture that the level of confidentiality for reaching S1 and S2 is
higher than the level of confidentiality for e. This reflects the fact that knowing
which branch is executed reveals information about the evaluation result of e
(known as implicit information leakage). In addition, each variable in fvs(e) is
kept inside the X ′ that is a part of the post-context for the if. This avoids internal
timing leakage incurred by the racing of processes in concurrent execution.

Example 3 (Detection of Implicit Leakage). Let V = [x 7→ {p}, x′ 7→ {p′}], Φ be
the assertion environment that maps all program points to true, and Λ = [1 7→
{x′}, 2 7→ ∅, 3 7→ ∅, ιf 7→ ∅]. The execution of 1if x′ > 0 then x :=22 else 3skip fi
causes an information flow from the variable x′ to the variable x. As a result,
implicit information leakage is incurred according to the security types of x and
x′. This leakage is detected by the typing rule for if. Formally, it is impossible to
establish C,V `Φ,Λp (?, ∅) 1if x′ > 0 then x :=22 else 3skip fi (l′, X ′) : ιf by this

typing rule, for any l′ and X ′. The premises of the rule require C,Vp,x
′>0

l′,X′,ιf
`Φ,Λp

(?, {x′}) x :=2 2 (l′, X ′) : ιf , which cannot be established due to the existence of
x′ in the pre-context. ut

Example 4 (Detection of Internal Timing Leakage). Let V = [x 7→ {p}, x′ 7→
{p′}], Φ be the assertion environment that maps all program points to true,
and Λ be the live variables environment that maps the program point 1 to {x′}
and all the other program points to ∅. Consider the system that consists of two
processes – executing the statement 1if x′ > 0 then 2skip; 3skip else 4skip fi;x :=52
and the statement x := 6 1, respectively. If the system is scheduled by a round-
robin scheduler with time slice 3, then the final value of x is 2 if the initial value
of x′ is positive, and the final value of x is 1 otherwise. This information flow
from x′ to x causes an internal timing leakage due to the security types of the
two variables. This leakage is detected by the typing rules for if, assignments,
and sequential composition. More concretely, the variable x′ is included in the
post-context for the if statement, due to the typing rule for if. Hence, x′ is also
included in the pre-context for the assignment x := 5 2, as is mandated by the
rule for sequential composition. However, this assignment cannot be typed with
such a pre-context, according to the rule for assignments. ut

In the rule for ıwhile e do S od, l and X ′ constitute an invariant for the
level of confidentiality for the control flow. That is, after each round of the
loop, the level of confidentiality for the presence of communications and for the
conditional expressions that contribute to the completion of the round stays
at what is captured by l and X ′. Like the rule for ıif e then S1 else S2 fi, the
body of the loop is typed with fvs(e) as part of its pre-context, which avoids
implicit information leakage. In addition, fvs(e) is made part of the post-context
for ıwhile e do S od, which avoids internal timing leakage.

18

The last rule in Fig. 7 is a sub-typing rule. The rule says that if a statement
S has a way of being typed that reflects a higher level of confidentiality for
reaching S, and a lower level of confidentiality for completing S, then S has a
way of being typed that reflects a lower level of confidentiality for reaching S,
and a higher level of confidentiality for completing S. The use of this rule is
illustrated using the example below.

Example 5 (Subtyping). Consider the case where V = [x 7→ {p}, x′ 7→ {p′}],
Φ = [1 7→ true, ιf 7→ true], Λ = [1 7→ ∅, ιf 7→ ∅]. Using the typing rule for
assignments, it can be derived that C,V `Φ,Λp ({p}, {x}) x :=12 ({p}, {x}) : ιf .
This is because

true . V[x 7→ {p}fV[{x} ∪ ∅]] �∅∪{x} V[[2]@p/x@p] (2)

Using the sub-typing rule, it can be derived, e.g.,

C,V `Φ,Λp ({p, p′}, ∅) x :=12 ({p}, {x}) : ιf

In the above, the pre-context ({p, p′}, ∅) captures a lower level of confidentiality
than the pre-context ({p}, {x}) does. This is in line with the fact that replacing
the {p} and {x} on the left side of (2) with {p, p′} and ∅, respectively, makes the
constraint more easily satisfied. This relaxation of the pre-context can be used
when typing a sequential composition where the assignment is the second com-
ponent, or a conditional branching or loop statement containing the assignment.

Using the sub-typing rule, it can also be derived, e.g.,

C,V `Φ,Λp ({p}, {x}) x :=12 (∅, {x, x′}) : ιf

In the above, the post-context (∅, {x, x′}) captures a higher level of confiden-
tiality than the post-context ({p}, {x}) does. This is in line with the fact that
the l′ in the post-context is an upper bound on the confidentiality level for the
presence of communications that contributes to reaching ιf , and the X ′ in the
post-context is a superset of the variables in the conditional expressions whose
evaluation contributes to reaching ιf . ut

Typing Judgment and Typing Rules for Concurrent Statements.

The typing judgment for a concurrent statement CS is of the form

C, ~V `~Φ~Λ CS

This judgment says: the concurrent statement CS is well-typed under the chan-
nel type environment C, the list ~V of variable type environments, the list ~Φ of
assertion environments, and the list ~Λ of live variables environments, where each
Vi (resp. Φi, Λi) is for the i-th sequential statement in the concurrent statement.

The only calculus rule for the aforementioned judgment is

∀i : C,Vi `Φi,Λipi (?, ∅) Si (li, Xi) : ιf

C, ~V `~Φ~Λ p1 : S1|| . . . ||pn : Sn
if nip(C, ~V) ∧ no-upd(||i pi : Si, ~V, ~Λ, ~X)

Hence, the well-typedness of a concurrent statement requires the well-typedness
of all its sequential components under the initial context (?, ∅), and two addi-
tional conditions. The initial context (?, ∅) reflects that no confidential informa-
tion is leaked by starting the execution of each sequential statement.

19

The condition nip(C, ~V) prevents information leakage via security types –
the values of variables or channel components depended upon by a security type
could be leaked into the concrete set of principals resulting from the evaluation
of the security type. The condition nip(C, ~V) is formulated via the following
auxiliary condition that the security type

c
1≤j≤n(φj .Rj) in INF does not leak

information.

nip(C, ~V,
k

1≤j≤n

(φj . Rj)) , (Pr \ (
⋂

1≤j≤n

Rj)) ⊆
⋂

1≤j≤n

⋂
u∈fvs(φj)

frs-cv(C, ~V, u)

where frs-cv(C, ~V, u) ,

{
frs(Vj(x)) if u = x@pj

frs(C(c.j)) if u = c.j

In the above, frs-cv(C, ~V, u) syntactically characterizes a set of principals that
are always allowed as readers of u. Here, u is either of the form x@pj or a

channel component. Overall, the condition nip(C, ~V,
c

1≤j≤n(φj .Xj)) says: Each
principal not in all the Rj ’s must be constantly allowed as a reader by the security
types of all the variables in all the φj ’s. Hence, the observation that a principal
makes about its own observational privilege according to a security type P , does
not leak information about the variables or channel components in P .

Using the condition nip(C, ~V,
c

1≤j≤n(φj . Rj)), the condition nip(C, ~V) is
formulated as

nip(C, ~V) , (∀x ∈ Var : nip(C, ~V, inf (V(x)))) ∧

(∀c, j s.t. c.j ∈ Ch : nip(C, ~V, inf (C(c.j))))

Hence, it is required that the security type of each variable and each channel
component must not leak information.

The condition no-upd(CS , ~V, ~Λ, ~X) is used to avoid the weakening of the
security types governing the data flow or the control flow of a process by the
concurrent update of variables. This condition is defined by

no-upd(CS , ~V, ~Λ, ~X) , ∀j 6= i : ∀x, x′,~ı :


(
x ∈ Λj(ıj) ∨
x ∈ Xj ∧ frs(Vj(x)) 6= Pr

)
∧ x′@pi ∈ fvs(Vj(x))


⇒ no-upd-var(CS ,~ı, i, x′)

no-upd-var(CS ,~ı, i, x′) , ∀~ı′, A, sa : (~ı, A, ~ı′) ∈ ECS ∧ (i, sa) ∈ A ⇒ x′ 6∈ upd(sa)

In the above, the auxiliary condition no-upd -var(CS ,~ı, i, x′) represents that the
variable x′ of the i-th statement in CS is not updated in the next execution
step when the processes are jointly at the program points in ~ı. The condition
no-upd(CS , ~V, ~Λ, ~X) says: (1) no concurrent update of any variable in the se-
curity type of a live variable (i.e., a member of Λj(ıj) for some j) may happen
in any potential execution of the concurrent statement CS ; (2) no concurrent
update of any confidential variable in the context (i.e., Xj for some j) of a
statement may happen in any potential execution of the concurrent statement

20

CS . Hence, the weakening of the security types of the confidential variables or
confidential control flow (by remotely updating variables in policies) is avoided.

The information-flow analysis realized by our security type system is com-
positional for its main part. This is because the well-typedness of a concurrent
statement can be deduced (conditionally) from the well-typedness of the indi-
vidual sequential components of the concurrent statement.

5.3 Typing the Stateful Packet Filtering System

We concretize the stateful packet filtering scenario in Section 2 by implementing
each module of the system in the programming language of Section 3.3. This
implementation is shown in Fig. 8. The state of the filter is maintained in the
variable s. The numbering scheme realized (via s) is such that

– messages from the client arrive properly at the server if and only if
h1@cli = (h2@srv + 1)%N holds, and

– messages from the server arrive properly at the client if and only if
h2@srv = (h1@cli + 1)%N holds.

The realization of the numbering scheme is mainly achieved through the condi-
tions at the program points 3 and 8 in the statement of fil.

cli : fil : srv :
1while true do 1while true do 1while true do

2recv(cusr, h1, pl1); 2recv(c1, h1, pl1); 2recv(c2, h1, pl1);
3send(c1, h1, pl1); 3if h1 = (s+ 1)%N 3send(c′app, h1, pl1);
4recv(c′1, h2, pl2); then s :=4h1; 4recv(capp, h2, pl2);
5send(c′usr, h2, pl2) 5send(c2, h1, pl1) 5send(c′2, h2, pl2)

od else6send(cau, h1, pl1) od
fi;

7recv(c′2, h2, pl2);
8if h2 = (s+ 1)%N

then s :=9h2;
10send(c′1, h2, pl2)

else11send(cau, h2, pl2)
fi

od

Fig. 8. The Concurrent Statement CSSPF for the Stateful Packet Filtering System

We use our security type system to verify that the system is information
flow secure under globally dependent flow policies of the kind that is informally
introduced in Section 2. To avoid tediousness, we only discuss the part of the
typing that reflects the key technical elements of our security type system.

We use the policy ? for the presence of communication over all polyadic
channels, and for the content of the first components of all polyadic channels.
That is, information about the presence of communication over all polyadic
channels and all message headers may be revealed to all principals in the system.

21

C(cusr.2) = (cusr.1 = (h2@srv + 1)%N . {app})f(cusr.1 6= (h2@srv + 1)%N . {au})
C(c1.2) = (c1.1 = (h2@srv + 1)%N . {app})f(c1.1 6= (h2@srv + 1)%N . {au})
C(c2.2) = C(c′app.2) = {app}
C(capp.2) = (capp.1 = (h1@cli + 1)%N . {usr})f(capp.1 6= (h1@cli + 1)%N . {au})
C(c′2.2) = (c′2.1 = (h1@cli + 1)%N . {usr})f(c′2.1 6= (h1@cli + 1)%N . {au})
C(c′1.2) = C(c′usr.2) = {usr}
C(cau.2) = {au}

V1(pl1) = (h1@cli = (h2@srv + 1)%N . {app})f(h1@cli 6= (h2@srv + 1)%N . {au})
V2(pl1) = (h1@fil = (s@fil + 1)%N . {app})f(h1@fil 6= (s@fil + 1)%N . {au})
V3(pl1) = {app}
V1(pl2) = {usr}
V2(pl2) = (h2@fil = (s@fil + 1)%N . {usr})f(h2@fil 6= (s@fil + 1)%N . {au})
V3(pl2) = (h2@srv = (h1@cli + 1)%N . {usr})f(h2@srv 6= (h1@cli + 1)%N . {au})
V2(s) = ?

Fig. 9. The Security Types Used to Type-check the Stateful Packet Filtering System

The rest of the policy assignment for channels is reflected by the channel type
environment C as specified in Fig. 9 (recall that the security types for channels
are the same as their flow policies). The security types for variables are specified
in the variable type environment V in the same figure. As is shown in Fig. 9,
the payload of messages over cusr, capp, c1, and c′2 is under the protection of
globally dependent flow policies. The security types for the variable pl1 of the
client and the filter, and the variable pl2 of the filter and the server, also admit
content-dependency.

We then illustrate the key points of the security typing with three examples.
In the security type system, the environments ~Φ and ~Λ are needed. Since a full
specification of them is tedious (with ~Φ containing complex formulas), we only
partially describe these environments in our examples.

Example 6. For 3send(c1, h1, pl1) in the statement of cli, it can be established

that C,V1 `Φ1,Λ1

cli (?, ∅) 3send(c1, h1, pl1) (?, ∅) : 4 using the typing rule for output.
The first premise of the rule amounts to ?f(Φ1(3) . V1[∅]) � ? � ?. With the
definition of�, this condition holds, irrespective of the value of Φ1(3). The second
premise of the rule amounts to

Φ1(3) . V1[c1.1 7→ V1[{h1} ∪ ∅]][c1.2 7→ V1[{pl1} ∪ ∅]]
�Λ1(4)∪{c1.1,c1.2} (V1] C)[h1@cli/c1.1][pl1@cli/c1.2]

We have Λ1(4) = ∅. Hence, the condition above amounts to

(Φ1(3) . V1[{h1} ∪ ∅]) � C(c1.1)[h1@cli/c1.1][pl1@cli/c1.2]

(Φ1(3) . V1[{pl1} ∪ ∅]) � C(c1.2)[h1@cli/c1.1][pl1@cli/c1.2]

22

It is not difficult to verify the validity of both conditions above. ut

Example 7. For 2recv(c1, h1, pl1) in the statement of fil, it can be established

that C,V2 `Φ2,Λ2

fil (?, ∅) 2recv(c1, h1, pl1) (?, ∅) : 3 using the typing rule for input.
The first premise of the rule amounts to ?f(Φ2(2) .V2[∅]) � ? � ?. The validity
of this condition can be verified using the definition of �, irrespective of the
value of Φ2(2). The second premise of the rule amounts to

Φ2(2) . V2[h1 7→ C(c1.1)fV2[∅]][pl1 7→ C(c1.2)fV2[∅]]
�Λ2(3)∪{h1,pl1} V2[c1.1/h1@fil][c1.2/pl1@fil]

We have Λ2(3) = {h1, pl1, s}. Hence, the condition can be turned into

(Φ2(2) . C(c1.1)f?) � V2(h1)[c1.1/h1@fil][c1.2/pl1@fil]

(Φ2(2) . C(c1.2)f?) � V2(pl1)[c1.1/h1@fil][c1.2/pl1@fil]

(Φ2(2) . V2(s)) � V2(s)[c1.1/h1@fil][c1.2/pl1@fil]

It is trivial to check that the first and third conditions above are satisfied. The
second condition can be turned into(Φ2(2) ∧ c1.1 = (h2@srv + 1)%N . {app})

f(Φ2(2) ∧ c1.1 6= (h2@srv + 1)%N . {au})
f(Φ2(2) ∧ true . ?)


�INF

(
(c1.1 = (s@fil + 1)%N . {app})
f(c1.1 6= (s@fil + 1)%N . {au})

)
We have Φ2(2)⇒ h2@srv = s@fil (which can be found out using our analyses to
be presented later in this article). Therefore, the validity of the condition above
can be verified. ut

Example 8. For the if statement whose conditional expression is at program
point 3 in the statement of fil, we have

(V2)
fil,h1=(s+1)%N

?,∅,7 = [{s, h1, h2} 7→ true . ?, pl1 7→ true . {app}, pl2 7→ inf (V2(pl2))]

(V2)
fil,h1 6=(s+1)%N

?,∅,7 = [{s, h1, h2} 7→ true . ?, pl1 7→ true . {au}, pl2 7→ inf (V2(pl2))]

Here, the mapping of a set of variables is shorthand for the mapping of each
individual variable in the set to the same image. Let the two type environments

(V2)
fil,h1=(s+1)%N
?,∅,7 and (V2)

fil,h1 6=(s+1)%N
?,∅,7 be denoted by Vt and Vf , respectively.

For the assignment s := 4h1 in the statement of fil, it can be established that
C,Vt `Φ2,Λ2

fil (?, {s, h1}) s := 4h1 (?, {s, h1}) : 4. With Λ2(5) = {s, h1, pl1}, the
only premise of the rule for assignments amounts to

Φ(4) . Vt[s 7→ ?fVt[{s, h1}]] �{s,h1,pl1} Vt[[h1]@fil/s@fil] (3)

Analogously to the examples above, it is not difficult to verify the validity of
this condition. ut

23

Permissiveness Enabled by Scoped Specialization. Note that with the baseline
security type V2(pl1) for pl1, the assignment s := 4h1 in Example 8 cannot
be typed. After this assignment, h1@fil = (s@fil + 1)%N does not hold, and
V2(pl1) allows information disclosure to {au}. This disclosure is not allowed
by V2(pl1) before the assignment (when h1@fil = (s@fil + 1)%N holds), and,
hence, information leakage is caused. The scoped specialization of the security
type V2(pl1) avoids this change in the allowed target of information disclosure.
This scoped specialization is a key enabler of the typing of the if statement in
Example 8.

Permissiveness Enabled by Liveness Information. Note also that without ex-
ploiting information about the live variables, the assignment s := 4h1 in Exam-
ple 8 cannot be typed. Replacing the set {s, h1, pl1} with the set of all variables
in (3), the following would be required.

(Φ(4) . Vt(pl2)) � Vt(pl2)[[h1]@fil/s@fil]

We have Vt(pl2) = V2(pl2) (i.e., the type specialization at the if has no effect on
the security type of pl2). Plugging in the value of V2(pl2), it can be seen that the
condition above does not hold. This demonstrates the additional permissiveness
of security typing as enabled by the exploitation of liveness information.

Fact 1 Let ~Φ be such that Φ2(2)⇒ h2@srv = s@fil, and Φ2(7)⇒ h1@cli = s@fil.

Let ~Λ be in accordance with the following tables.

Λ1(1) Λ1(2) Λ1(3) Λ1(4) Λ1(5)

∅ ∅ {h1, pl1} ∅ {h2, pl2}
Λ3(1) Λ3(2) Λ3(3) Λ3(4) Λ3(5)

∅ ∅ {h1, pl1} ∅ {h2, pl2}

Λ2(1) Λ2(2) Λ2(3) Λ2(4) Λ2(5) Λ2(6)

{s} {s} {h1, pl1, s} {h1, pl1} {h1, pl1, s} {h1, pl1, s}
Λ2(7) Λ2(8) Λ2(9) Λ2(10) Λ2(11)

{s} {h2, pl2, s} {h2, pl2} {h2, pl2, s} {h2, pl2, s}

Then, there exist C and ~V such that C, ~V `~Φ~Λ CSSPF can be established. Moreover,

it holds that C(cusr) = C(c′usr) = C(capp) = C(c′app) = ?, C(cusr.1) = C(c′usr.1) =
C(capp.1) = C(c′app.1) = ?, C(c′app.2) = {app}, C(c′usr.2) = {usr}, and

C(cusr.2) =(cusr.1=(h2@srv+1)%N . {app}) f(cusr.1 6=(h2@srv+1)%N . {au})
C(capp.2) =(capp.1=(h1@cli+1)%N . {usr})f(capp.1 6=(h1@cli+1)%N . {au})

We have now illustrated that the stateful packet filtering system is well-typed
(under proper auxiliary information about values and live variables). We next
articulate the security guarantees provided by well-typedness.

6 Soundness of Security Typing for Noninterference

We show that our security type system enforces information-flow security that
is formulated as a noninterference-like property [13, 18]. More concretely, this

24

property takes the shape of nondeducibility on strategies [55, 46]. The key idea
is, the confidential behaviors and data of the strategies of the environment cannot
be distinguished by observing differences in the execution of the system.

In a series of definitions, we formulate the observation of executions, the in-
distinguishability of strategies, and the information-flow security of systems. We
use the symbol } to represent the presence of some action that is unobservable.
We use the symbol � to represent some value that is unobservable.

Definition 8. The observation of the element in the list ~v of values that is
communicated over the j-th channel component of the polyadic channel c, by the
group G of principals, in the global configuration gcnf , denoted by bc,~v, jcGgcnf ,
is defined as

bc, ~v, jcGgcnf ,

{
vj if JC(c.j)Kgcnf ,[(c.j 7→vj)j] ∩ G 6= ∅
� otherwise

Hence, if the content policy of the j-th component of the channel c is evaluated
into a set of principals some of which are in G, then the observation of the value
is the value itself. This captures that the value is properly observed by some
principals in G. On the other hand, if none of the principals in the set resulting
from the evaluation is in G, then the observation of the value (�) does not reveal
any information about the value.

Definition 9. The observation of the action α by the group G of principals in
the global configuration gcnf , denoted by bαcGgcnf , is defined as

bcρ~vcGgcnf ,

{
cρ [bc, ~v, 1cGgcnf , . . . , bc, ~v, nc

G
gcnf] if C(c) ∩ G 6= ∅

} otherwise

bαcGgcnf , } if α is not a communication

Hence, for a communication over the polyadic channel c, if the presence of com-
munication over c may be revealed to some principals in G according to the
presence policy of c, then the observation of the communication consists of the
polyadic channel c, the polarity of the communication, and the observation of
the communicated values. This captures the proper observation of the presence
of the communication by some of the principals in G. On the other hand, if no
principal in G is allowed to observe the presence of communication over c, then
the observation (}) does not reveal any information about the presence of the
communication. In our model, the security interface of a system consists only of
the communications performed between the system and its environment. Hence,
the actions that are not communication actions are masked by }.

Definition 10. The observation of the trace tr by the group G of principals,
denoted by btrcG, is inductively defined as

bgcnf cG , ε

btr ′.α.gcnf cG , btr ′cG .bαcGlast(tr′)

25

Hence, the observation of a trace consists of the observation of all the actions in
the trace in the same order. Each action is observed in the global configuration
where the action takes place.

Definition 11. The observation of the communication intent ci by the group G
of principals in the global configuration gcnf , denoted by bcicGgcnf , is defined as

bcicGgcnf ,


bc!~vcGgcnf if ci = c!~v

c?· if ci = c?· ∧ C(c) ∩ G 6= ∅
} otherwise

Hence, for a communication intent over the polyadic channel c, if the presence of
communication over c may be revealed to some principals in G, then the observa-
tion of the communication intent consists of the polyadic channel c, the polarity
of the communication intent, and the observation of the values communicated
by the environment in case the communication intent is an output (performed
by the environment). On the other hand, if no principal in G may observe the
presence of communication over c, then the observation (}) does not reveal any
information about the communication intent.

Definition 12. The observation of the interaction intent ii by the group G of
principals in the global configuration gcnf , denoted by biicGgcnf , is defined as

b(p, ci)cGgcnf , (p, bcicGgcnf), and b(p1, p2)cGgcnf , (p1, p2).

Hence, the observation of an interaction intent consists of the observed parts of
the constituent communication intent, if any, and the principals in the interaction
intent. This reflects that the scheduling decisions are known to the observer.

Definition 13. Two strategies ξ1 and ξ2 are indistinguishable for the group G
of principals, denoted by ξ1

G
= ξ2, iff

∀tr1, tr2 : btr1cG = btr2cG ⇒ bξ1(tr1)cGlast(tr1)
= bξ2(tr2)cGlast(tr2)

Two strategies are indistinguishable if the observable differences in any two
traces do not result in observable differences in the behaviors of the two strate-
gies. Hence, the observable parts of the interaction intents of the environment
do not reveal any confidential information about the communications performed
by the system.

Definition 14. A concurrent statement CS is information-flow secure under
the channel policy environment C and the set Ξ of strategies, denoted by SecCΞ(CS),
iff

∀ξ1, ξ2 ∈ Ξ : ∀G ∈ P(Pr) : ξ1
G
= ξ2 ⇒

∀tr1 ∈ traces-of ξ1(CS) :

∃tr2 ∈ traces-of ξ2(CS) : btr1cG = btr2cG

Hence, a concurrent statement is information flow secure, if under indistinguish-
able strategies, the observations of its traces are identical. That is, under an

26

environment that may contain confidential information, but does not leak confi-
dential information by itself (as expressed by the indistinguishability of the two
given strategies), the execution of the system in the environment does not leak
the confidential information obtainable from the environment.

We have the following theorem on the soundness of our security type system.

Theorem 1. For CS = p1 : S1|| . . . ||pn : Sn, ~Φ satisfying ∀k ∈ {1, . . . , n} :

asst(Φk,CS , k), and ~Λ satisfying ∀k ∈ {1, . . . , n} : live(Λk,CS [k]), if C, ~V `~Φ~Λ CS

can be derived, then we have SecCΞ(CS) for each set Ξ of strategies.

The proof of this theorem can be found in Appendix C. The theorem says: If a
concurrent statement is well-typed with proper knowledge of the values arising
in the execution of the concurrent statement, and the live variables, then the
concurrent statement is information-flow secure. That is, the execution of the
concurrent statement does not leak information beyond what is permitted by
the globally dependent flow policies for the communication lines.

7 Static Analyses of Values

We devise two static analyses that provide proper information about the values
of program variables to our security type system. More concretely, the analyses
provide the appropriate assertion environments for the security type system that
guarantee the soundness of the type system:

– The first analysis gathers global information about the values of variables,
and about the branching decisions that have most recently been taken.

– The second analysis generates local information associating the most recent
branching decisions of a process with logical assertions about the values of
variables of that process.

– An assertion environment is then obtained by combining the global informa-
tion and the local information provided by the two analyses, respectively.

7.1 Global Analysis

The core of the global analysis computes two mappings E : Pt∗ → P(EqCS) and
B : Pt∗ → K → P({tt ,ff , ?}). The types of E and B are explained below.

The mapping E provides information about the set of equalities of the form
x@p = [e]@p′ that must hold at each combination of program points of the
different processes (as represented by a list of program points). An equality of this
form represents that the variable x of the process running on behalf of principal
p is equal to the expression e of the process running on behalf of principal p′.
The set of all such equalities of concern, EqCS , consists of the equalities between
expressions potentially sent in a communication and the corresponding receiving
variables, as formalized in the middle part of Table 1.

The mapping B provides information about the branching decision that may
have been made at each program point, when the processes are jointly at program

27

~ı = fst(S1) . . . fst(Sn)

(E(~ı), B(~ı)) w (Eq?CS , λκ.{?})

(~ı, {(i, c!~e), (j, c?~x)}, ~ı′) ∈ ECS

(E(~ı′), B(~ı′)) w ([E(~ı)]
pj
c?~x ∪

⋃
r{xr@pj = [er]@pi}, B(~ı))

(~ı, {(i, brt)}, ~ı′) ∈ ECS

(E(~ı′), B(~ı′)) w (E(~ı), B(~ı)[ıi@pi 7→ {tt}])
(~ı, {(i, brf)}, ~ı′) ∈ ECS

(E(~ı′), B(~ı′)) w (E(~ı), B(~ı)[ıi@pi 7→ {ff }])

(~ı, {(i, sa)}, ~ı′) ∈ ECS sa 6∈ {brt, brf}
(E(~ı′), B(~ı′)) w ([E(~ı)]pisa , B(~ı))

EqCS , {xk@pj = [ek]@pi | 1 ≤ k ≤ |~x| ∧ ∃i, j, c,~ı, ~ı′ : (~ı, {(i, c!~e), (j, c?~x)}, ~ı′) ∈ ECS}
Eq?CS , EqCS ∩ {x@p = [e]@p′ | m?(x) = JeKm?}

[Eq]psa , {φ ∈ Eq | ∀x ∈ upd(sa) : x@p 6∈ fvs(φ)}
fvs(x@p = [e]@p′) , {x@p} ∪ {x′@p′ | x′ is a variable in e}

upd(sa) ,


{x} if sa = x← e

{~x} if sa = c?~x

∅ otherwise

Table 1. The Derivation of the Constraints for the Analysis of Available Equalities

points in a given list. The value tt represents a branching decision to the true
branch of a conditional or looping statement. The value ff represents a branching
decision to the false branch of a conditional or looping statement. The value ?
represents that no branching decision is made at a program point because it has
not been reached. The set K , {ı@p | ı ∈ Pt ∧ p ∈ Pr} is the set of program
points decorated with principals. These principals are used for the technical
purpose of distinguishing between the program points of different statements.

The computation of the mappings E and B is performed by computing the
least solution of a set of constraints – the least set of constraints that can be
derived using the inference rules in the top part of Table 1. In Table 1, the
relation w is defined on pairs in the set P(EqCS) × (K → P({tt ,ff , ?})), as
subset inclusion for the first component, and pointwise superset inclusion for
the second component.

In Table 1, the first rule constrains the equalities that hold when all processes
are in their initial program points to the equalities in EqCS that hold in the initial
memory. This set of equalities is denoted by Eq?CS . The second rule expresses
that after an inter-process communication, the equalities containing potentially
updated variables are killed, while the equalities between these variables and

28

the expressions whose values they newly receive are generated. In this rule, the
notation [Eq]psa is used. This notation (as formally defined in the bottom part of
Table 1) represents the subset of equalities in Eq that do not contain variables
updated in the syntactical action sa. The two rules on the third row state that
after the syntactical action brt (resp. brf) at the program point ıi, taking the true
branch (resp. false branch) becomes the (only possible) most recent branching
decision at ıi. The last rule expresses that after an action that is performed
by one single process, the equalities containing variables that are potentially
updated are killed. No equalities are generated, because the global analysis does
not keep information about the new values of the updated variables (this is
impossible, e.g., when the update is by receiving values from the environment).
The lost precision is partly recovered by our local analysis in the next section,
because detailed information about values is kept track of in the local analysis.

The mappings E and B are parameterized over lists of program points. We
define the mapping ACS ,k

G that gives information about values and most recent
branching decisions at each single program point in the k-th statement.

ACS,k
G (ı) ,

⊔
{(E(~ı′), B(~ı′)) | ı′k = ı ∧may-step(CS , ~ı′, k)}

Hence, ACS ,k
G (ı) is defined as the least upper bound of all pairs (E(~ı′), B(~ı′))

such that the k-th program point in ~ı′ is ı, and a further step can be taken by
the k-th process, when the processes in an execution of CS are jointly at the
program points in ~ı′.

For the formulation of a correctness result of the global analysis, we use
the function last-at : Act∗ × Pr × Pt → {tt ,ff , ?} to retrieve the most recent
branching decisions in a list of actions. We define last-at(α1 . . . αn, p, ı) as tt if
∃k ∈ {1, . . . , n} : αk = brtp,ı ∧ ∀i ∈ {k + 1, . . . , n} : αi 6∈ {brtp,ı, brfp,ı}, as ff if
∃k ∈ {1, . . . , n} : αk = brfp,ı ∧ ∀i ∈ {k + 1, . . . , n} : αi 6∈ {brtp,ı, brfp,ı}, and as ?
if ∀k ∈ {1, . . . , n} : αi 6∈ {brtp,ı, brfp,ı}.

We have the following theorem about the correctness of the analysis.

Lemma 3. If CS = p1 : S1|| . . . || pn : Sn, tr ∈ traces-of ξ(CS) for some ξ ∈ Ξ,
last(tr) = 〈〈p1, S′1,m′1〉, . . . , 〈pn, S′n,m′n〉〉, may-step(CS , fst(S′1) . . . fst(S′n), k),

and ACS ,k
G (fst(S′k)) = (Eq , f), then

– if (x@pi = [e]@pj) ∈ Eq, then we have m′i(x) = JeKm′j , and

– ∀ı ∈ Pt : last-at(acts-of (tr), pk, ı) ∈ f(ı@pk).

This lemma says that each equality collected by the global analysis holds in
the actual execution, and each (most recent) branching decision in the analysis
result faithfully reflects the actual (most recent) branching decision. The proof
of this lemma can be found in Appendix B.1.

7.2 Local Analysis

We define a local analysis that associates most recent branching decisions with
assertions about the values of variables. In our analysis, a set of pairs (µ, ϕ) is

29

Ψ ` D, ıskip, D if Ψ(ı) = D

Ψ ` {(µ, ϕ[e/x]) | (µ, ϕ) ∈ D}, x := ıe,D if Ψ(ı) = {(µ, ϕ[e/x]) | (µ, ϕ) ∈ D}

Ψ ` D, ısend(c, ~e), D if Ψ(ı) = D

Ψ ` {(µ,∀~v.ϕ[~v/~x]) | (µ, ϕ) ∈ D}, ırecv(c, ~x), D if Ψ(ı) = {(µ, ∀~v.ϕ[~v/~x]) | (µ, ϕ) ∈ D}

Ψ ` D,S1, D
′′ Ψ ` D′′, S2, D

′

Ψ ` D,S1;S2, D
′

Ψ ` {(µ[ı 7→ tt], ϕ ∧ e) | (µ, ϕ) ∈ D}, S1, D1

Ψ ` {(µ[ı 7→ ff], ϕ ∧ ¬e) | (µ, ϕ) ∈ D}, S2, D2

Ψ ` D, ıif e then S1 else S2 fi, D1 ∪D2

if Ψ(ı) = D

Ψ ` {(µ[ı 7→ tt], ϕ ∧ e) | (µ, ϕ) ∈ D}, S,D
Ψ ` D, ıwhile e do S od, {(µ[ı 7→ ff], ϕ ∧ ¬e) | (µ, ϕ) ∈ D}

if Ψ(ı) = D

Ψ ` D′1, S,D′2
Ψ ` D1, S,D2

if D1 ; D′1 ∧ D′2 ; D2

where D1 ; D2 iff

{µ | ∃ϕ : (µ, ϕ) ∈ D1} ⊆ {µ | ∃ϕ : (µ, ϕ) ∈ D2}∧
∀µ, ϕ1 :((µ, ϕ1) ∈ D1 ⇒ ∃ϕ2 : (µ, ϕ2) ∈ D2 ∧ ϕ1 ⇒ ϕ2)

Fig. 10. Association of Branching Decisions with Value Assertions

identified at each program point. Here, µ : Pt → {tt ,ff , ?} maps each program
point to a single branching decision. On the other hand, ϕ is an assertion about
the values of program variables.

The syntax for assertions is given below.

ϕ ::= true | tm cop tm | ¬ϕ | ϕ ∧ ϕ
tm ::= n | x | f(tm, ..., tm)

An assertion is true for logical truth, a comparison of two terms tm cop tm,
the negation of an assertion, or the conjunction of two assertions. A term is a
numeral n, a variable x, or a function application on terms. We denote the set
of all assertions by Asst .

The local analysis is specified by a set of inference rules (Fig. 10) for the
judgment Ψ ` D1, S,D2. Here, Ψ : Pt → P((Pt → {tt ,ff , ?})×Asst) is the
environment recording the analysis data at each program point, S is a statement,
and D1 and D2 are the analysis data before and after the statement S. In more
detail, D1 and D2 are both sets of pairs (µ, ϕ).

In each rule of Fig. 10 whose conclusion contains an explicit program point
ı, it is specified that the analysis data Ψ(ı) obtained from the environment Ψ
is equal to the analysis data before the statement at ı. In the analysis data,
the second component of each pair obeys standard Hoare logic rules. The first

30

component of each pair in the analysis data is updated in the beginning of each
true branch of an if statement, mapping the program point of the if statement
to tt . This records a most recent branching decision at ı of taking the true
branch. Note that the recording of this branching decision is accompanied by a
transformation of the assertion ϕ. In the beginning of each false branch of an if
statement, an analogous treatment mapping the program point of the if to ff is
applied. The first component of each pair in the analysis data is updated in the
beginning of each loop body, mapping the program point of the loop (identifying
the conditional test of the loop) to tt . Finally, the first component of each pair
in the analysis data is updated in the end of each loop, mapping the program
point of the loop to ff .

We say that the mapping ASL is a result of the local analysis for the statement
S if there exists some Ψ such that Ψ ` {(λı.?, ϕ)}, S,D is derivable, with ϕ
holding in the initial memory m?, ASL(ı) = Ψ(ı), and ASL(ιf) = D.

Lemma 4. If ASL is a result of the local analysis for S, and for each i ∈
{1, . . . , n}, it can be derived that 〈p, Si−1,mi−1〉

αi−1−−−→ 〈p, Si,mi〉, where S0 =
S and m0 = m?, then there exist some µ, and some ϕ, such that (µ, ϕ) ∈
ASL(fst(Sn)), ∀ı : µ(ı) = last-at(α0 . . . αn−1, p, ı), and the assertion ϕ holds in
the memory mn.

This lemma says that the pairs (µ, ϕ) resulting from the local analysis at different
program points is a sound over-approximation of the actual computation, and
the association of both components of these pairs is correct. The proof of this
lemma can be found in Appendix B.2.

7.3 Combining the Global and Local Analyses

We show that an appropriate assertion environment guaranteeing the soundness
of our security type system (cf. Section 5) can be obtained by combining the
results of the global analysis and the local analysis.

Theorem 2. For all concurrent statements CS = p1 : S1|| . . . ||pn : Sn, k ∈
{1, . . . , n}, and Φ ∈ Pt → Asst, if for each ı ∈ Pt, it holds that Φ(ı) = (

∧
Eq)∧

(
∨
{ [ϕ]@pk | ∃µ : (µ, ϕ) ∈ D ∧ ∀ı′ : µ(ı′) ∈ f(ı′@pk)}), where Eq, f , and D

satisfy ACS ,k
G (ı) = (Eq , f) and ASkL (ı) = D, then we have asst(Φ,CS , k).

According to the theorem, an assertion environment guaranteeing the soundness
of the security type system is one that asserts all the equalities known to hold at
each program point, as well as the disjunction of all the local assertions paired
with the branching decisions that are possible for the program point. The proof
of this theorem can be found in Appendix B.3.

Hence, the analyses developed in this section can be used to infer correct
information about the values of variables that supports sound security typing
under globally dependent flow policies. It can be seen from Φ(ı) in Theorem 2
that the information about the most recent branching decisions as obtained
from the global analysis constrains the local assertions that are possible, thereby
improving the precision of the overall analysis about values.

31

Fact 2 For the concurrent statement CSSPF of the stateful packet filtering sys-
tem, the list ~Φ (with |~Φ| = 3) of assertion environments produced by our static
analyses satisfies the condition required in Fact 1.

Hence, our static analyses providing information about the values of variables
are not only sound, but also sufficiently precise for supporting the security typing
of the stateful packet filtering system. This results in an overall analysis of the
system proving that it is information-flow secure under the globally dependent
flow policies to be enforced.

8 Related Work

8.1 Dependent Information-Flow Policies

Numerous attempts have been made to enforce information-flow policies depen-
dent on values, permissions, or other security parameters – to address the needs
for security in diverse practical scenarios. In [53], a security type system is pro-
posed to enforce policies in the Decentralized Label Model [38] that may depend
on run-time principals. In [8–10], security policies depending on lock variables
that reflect roles and access rights are enforced. In [3, 2], value-dependent flow
policies are supported by a combination of value assertions and relational as-
sertions. In [30, 31], type-based enforcement of value-dependent flow policies is
developed for database-like systems. In [42, 29, 41], message-passing systems are
considered, where the security policy of a message field may depend on the other
fields of the same message, and the security policy of a variable may depend on
the other variables of the same process. In [28], flow policies dependent on the
future values of program variables are considered. In [34], a symbolic executor is
developed to enforce flow policies depending on the computation history. In [37,
36], a security type system is developed for flow-sensitive, value-dependent poli-
cies in a shared-memory concurrent language, such that global value-dependency
is permitted. In [26], a two-pass approach is developed to enforce flow and value-
sensitive policies in a sequential language, where a transformation enables the
treatment of flow-sensitive policies in a flow-insensitive manner, and increases
the precision of specifying value-dependency. In [12], a security type system is
developed to enforce information-flow policies dependent on permissions in a
sequential language with function calls and explicit branching on permissions.

Most of the developments above have been carried out on sequential lan-
guages, with the exception of [37, 42, 29, 41]. The developments [42, 29, 41] are
carried out for message-passing systems, without enabling global dependencies
in the flow policies. The security type system of [37] enforces flow policies de-
pendent on the values of any variables in a shared-memory concurrent program.
In addition, flow-sensitive security types [22] are supported – the policies may
vary at different program points in a sequential composition. In comparison with
[37], we enforce globally dependent flow policies in message-passing concurrent
systems. The policy of a message field may depend on the other fields of the
message, as well as on variables of any process, and the policy of a variable may

32

depend on variables of any process. We differentiate between the presence and
content of message-passing communication, and we obtain how variables across
processes relate (due to communication) through dedicated static analyses. We
do not support flow-sensitive policies (in the style of [22]) like [37] does. On
the other hand, we enable the specialization of flow policies at conditional tests
(which is termed the scoped specialization of flow policies), such that the flow
policies may alter on entrance to a conditional branch or a loop. In addition, we
permit a high level of precision in security type checking by exploiting the live
variables information at each program point.

In [26], a form of liveness information is exploited in the information-flow
analysis, increasing the precision of the analysis. Whereas the liveness analysis
needed for our development is a standard live variables analysis (e.g., [40]), the
liveness analysis required in [26] regards all variables in the policy of a live
variable as live (which results in enlarged sets of live variables). Whereas our
security typing rule for assignments explicitly requires the security policies of all
live variables not to be weakened, the typing rule for assignments in [26] requires
the variable being assigned not to be depended upon by the policies of any live
variables. While the latter difference has roots in similar rationale, our use of
liveness information seems to result in more overall permissiveness in security
typing. However, we do not support flow-sensitive policies like [26] does.

We cater for interactive programs (e.g., [46]) by a seamless integration of
environment strategies (that synchronously communicate with processes of the
system) in our model of computation. Information-flow security under explicit
environment strategies is not addressed in any of the aforementioned develop-
ments enforcing dependent flow policies.

8.2 Information-Flow Security for Concurrent Systems

One of the main features for which our development differs from most prior
work on the enforcement of dependent flow policies is concurrency. For two
decades, concurrency has been a crucial feature to be addressed in information-
flow security research. The following discussion is non-exhaustive about prior
work on information-flow security for concurrent systems.

In [51], it is observed that concurrent programs admit an additional class of
information leakage (later known as internal timing leakage) than their sequential
counterparts, and the first sound security type system for concurrent programs
is developed. In [50], a probabilistic security property is proposed to cater for the
scheduling of threads, and a possibilistic property is identified and enforced, to
enforce the probabilistic property under all secure schedulers. In [7], syntactical
scheduler models (expressed in program code) are considered. In [35], distributed
systems are considered, where all threads at the same place share variables. In
[33, 4], rely-guarantee-style reasoning is developed for the information-flow secu-
rity of concurrent programs, resulting in sound compositional reasoning about
information-flow security with high precision. In [23], a type-and-effect system is
developed to secure concurrent programs against internal timing leakage, while
permitting benign races on the public variables. Apart from the aforementioned

33

work that deals with the interleaving semantics of concurrency, treatment of true
concurrency exists. For instance, in [6] and [5], expressive security policies and
properties are studied for Petri nets and event structures, respectively.

8.3 Information-Flow Security for Message-Passing Systems

Our work deals with value-dependent flow policies in message-passing systems.
Although value-dependency is rarely addressed for message-passing systems, the
information-flow security of such systems in general has been extensively studied.
The following discussion of related work in this regard is again non-exhaustive.

In [47, 15–17, 27], security properties are studied for confidentiality and in-
tegrity in process calculi. In [20, 45, 25, 21], security type systems are developed
for variants of the π-calculus. In [11], a fine-grained information-flow type sys-
tem is developed for a language with session-based communication [52]. In [48],
a security property and a security type system are developed for a concurrent
language with asynchronous message-passing communication, with support for
compositional reasoning under arbitrary environments of systems. In [19], com-
positional reasoning techniques are developed for the information-flow security of
component-based systems where the components communicate via synchronous
message-passing. The potential environments of each component is explicitly
considered in secure composition.

9 Conclusion

In answer to the challenge of securing concurrent, message-passing systems under
information-flow policies with global dependencies, we develop a solution con-
sisting of a security type system and two supportive static analyses. The security
guarantee of our solution is articulated via a noninterference-like property for
open systems, and established via formal proofs. The security type system and
the static analyses are implemented in a proof-of-concept tool. Our verification
technique is illustrated using the example of a stateful packet filtering system
where the flow of information depends on how the headers of the messages from
different modules of the system correlate.

Our solution targets a computation model rich enough to cover both inter-
process communication à la concurrent programs and environmental interaction
à la interactive programs. The solution features improvement in precision/per-
missiveness in multiple aspects. In the security type system, the strength of the
security policies is required to be preserved only for the live variables (as op-
posed to all variables). The policies for variables are specialized when entering
the branches of a if statement, or the body of a while loop, which reduces the
potential changes of the policies that could negatively affect the permissiveness
of the type system. Finally, the two supportive static analyses are coupled via
information about the most recent branching decisions in the execution of a
system, improving the precision of their combination.

34

Directions for future work include support for type inference with the use of
globally dependent flow policies, and support for a richer programming language
for the individual processes in a system.

Acknowledgement. This work was partially supported by the National Nat-
ural Science Foundation of China (61876111, 61572331, 61602325), and the Na-
tional Key R&D Plan of China (2017YFC0806700).

References

1. The OCaml programming language. http://ocaml.ocamlpro.com/.
2. Torben Amtoft, Josiah Dodds, Zhi Zhang, Andrew W. Appel, Lennart Beringer,

John Hatcliff, Xinming Ou, and Andrew Cousino. A certificate infrastructure for
machine-checked proofs of conditional information flow. In Proceedings of the First
International Conference on Principles of Security and Trust (POST), pages 369–
389, 2012.

3. Torben Amtoft, John Hatcliff, Edwin Rodŕıguez, Robby, Jonathan Hoag, and
David A. Greve. Specification and checking of software contracts for conditional
information flow. In FM 2008: Formal Methods, 15th International Symposium on
Formal Methods, pages 229–245, 2008.

4. Aslan Askarov, Stephen Chong, and Heiko Mantel. Hybrid monitors for concur-
rent noninterference. In Proceedings of IEEE 28th Computer Security Foundations
Symposium (CSF), pages 137–151, 2015.

5. Paolo Baldan, Alessandro Beggiato, and Alberto Lluch-Lafuente. Many-to-many
information flow policies. In Coordination Models and Languages - 19th IFIP WG
6.1 International Conference (COORDINATION), pages 159–177, 2017.

6. Luca Bernardinello, Görkem Kilinç, and Lucia Pomello. Non-interference notions
based on reveals and excludes relations for petri nets. T. Petri Nets and Other
Models of Concurrency, 11:49–70, 2016.

7. Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs and
thread systems. Theoretical Computer Science, 281(1-2):109–130, 2002.

8. Niklas Broberg and David Sands. Flow locks: Towards a core calculus for dynamic
flow policies. In Programming Languages and Systems, 15th European Symposium
on Programming (ESOP), pages 180–196, 2006.

9. Niklas Broberg and David Sands. Paralocks: Role-based information flow control
and beyond. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 431–444, 2010.

10. Niklas Broberg, Bart van Delft, and David Sands. Paragon - practical programming
with information flow control. Journal of Computer Security, 25(4-5):323–365,
2017.

11. Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Typing ac-
cess control and secure information flow in sessions. Information and Computation,
238:68–105, 2014.

12. Hongxu Chen, Alwen Tiu, Zhiwu Xu, and Yang Liu. A permission-dependent
type system for secure information flow analysis. In 31st IEEE Computer Security
Foundations Symposium (CSF), pages 218–232, 2018.

13. Ellis S. Cohen. Information transmission in computational systems. In Proceedings
of the Sixth Symposium on Operating System Principles (SOSP), pages 133–139,
1977.

35

14. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems, 14th Inter-
national Conference (TACAS), pages 337–340, 2008.

15. Riccardo Focardi and Roberto Gorrieri. Classification of security properties (part
I: information flow). In Foundations of Security Analysis and Design, Tutorial
Lectures (FOSAD), pages 331–396, 2000.

16. Riccardo Focardi and Sabina Rossi. Information flow security in dynamic contexts.
Journal of Computer Security, 14(1):65–110, 2006.

17. Simon N. Foley. A nonfunctional approach to system integrity. IEEE Journal on
Selected Areas in Communications, 21(1):36–43, 2003.

18. Joseph A. Goguen and José Meseguer. Security policies and security models. In
1982 IEEE Symposium on Security and Privacy (S&P), pages 11–20, 1982.

19. Simon Greiner and Daniel Grahl. Non-interference with what-declassification in
component-based systems. In IEEE 29th Computer Security Foundations Sympo-
sium (CSF), pages 253–267, 2016.

20. Matthew Hennessy and James Riely. Information flow vs. resource access in the
asynchronous pi-calculus. ACM Transactions on Programming Languages and Sys-
tems, 24(5):566–591, 2002.

21. Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information
flow. ACM Transactions on Programming Languages and Systems, 29(6):31, 2007.

22. Sebastian Hunt and David Sands. On flow-sensitive security types. In Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 79–90, 2006.

23. Aleksandr Karbyshev, Kasper Svendsen, Aslan Askarov, and Lars Birkedal. Com-
positional non-interference for concurrent programs via separation and framing.
In Proceedings of the 7th International Conference on Principles of Security and
Trust, (POST), pages 53–78, 2018.

24. George E. Karniadakis and Robert M. Kirby. Parallel Scientific Computing in C++
and MPI - A Seamless Approach to Parallel Algorithms and their Implementation.
Cambridge University Press, 2003.

25. Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4-5):291–347, 2005.

26. Peixuan Li and Danfeng Zhang. Towards a flow- and path-sensitive information
flow analysis. In 30th IEEE Computer Security Foundations Symposium (CSF),
pages 53–67, 2017.

27. Ximeng Li, Flemming Nielson, and Hanne Riis Nielson. Factorization of behavioral
integrity. In Proceedings of the 20th European Symposium on Research in Computer
Security (ESORICS), pages 500–519, 2015.

28. Ximeng Li, Flemming Nielson, and Hanne Riis Nielson. Future-dependent flow
policies with prophetic variables. In Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security (PLAS@CCS), pages 29–42,
2016.

29. Ximeng Li, Flemming Nielson, Hanne Riis Nielson, and Xinyu Feng. Disjunctive
information flow for communicating processes. In Proceedings of the 10th Interna-
tional Symposium on Trustworthy Global Computing (TGC), pages 95–111, 2015.

30. Lúısa Lourenço and Lúıs Caires. Information flow analysis for valued-indexed
data security compartments. In Trustworthy Global Computing - 8th International
Symposium (TGC), pages 180–198, 2013.

31. Lúısa Lourenço and Lúıs Caires. Dependent information flow types. In Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 317–328. ACM, 2015.

36

32. Heiko Mantel. Information flow and noninterference. In Encyclopedia of Cryptog-
raphy and Security, 2nd Ed., pages 605–607. 2011.

33. Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions and guarantees
for compositional noninterference. In Proceedings of the 24th IEEE Computer
Security Foundations Symposium (CSF), pages 218–232, 2011.

34. Kristopher K. Micinski, Jonathan Fetter-Degges, Jinseong Jeon, Jeffrey S. Foster,
and Michael R. Clarkson. Checking interaction-based declassification policies for
android using symbolic execution. In Proceedings of the 20th European Symposium
on Research in Computer Security (ESORICS), pages 520–538, 2015.

35. Stefan Muller and Stephen Chong. Towards a practical secure concurrent lan-
guage. In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
57–74, 2012.

36. Toby C. Murray, Robert Sison, Edward Pierzchalski, and Christine Rizkallah.
Compositional security-preserving refinement for concurrent imperative programs.
Archive of Formal Proofs, 2016.

37. Toby C. Murray, Robert Sison, Edward Pierzchalski, and Christine Rizkallah. Com-
positional verification and refinement of concurrent value-dependent noninterfer-
ence. In Proceedings of the IEEE 29th Computer Security Foundations Symposium
(CSF), pages 417–431, 2016.

38. Andrew C. Myers. Mostly-static decentralized information flow control. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1999.

39. Flemming Nielson. Program transformations in a denotational setting. ACM
Transactions on Programming Languages and Systems (TOPLAS), 7(3):359–379,
1985.

40. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program
analysis. Springer, 1999.

41. Hanne Riis Nielson and Flemming Nielson. Content dependent information flow
control. Journal of Logic and Algebraic Methods in Programming, 87:6–32, 2017.

42. Hanne Riis Nielson, Flemming Nielson, and Ximeng Li. Hoare logic for disjunctive
information flow. In Programming Languages with Applications to Biology and
Security, pages 47–65, 2015.

43. Gordon D. Plotkin. A structural approach to operational semantics. Lecture notes,
DAIMI FN-19, Aarhus University, Denmark, 1981. Reprinted 1991.

44. Amir Pnueli and Willem P. de Roever. Rendezvous with ADA. Technical report,
Rijksuniversiteit Utrecht, 07 1982.

45. François Pottier. A simple view of type-secure information flow in the pi-calculus.
In 15th IEEE Computer Security Foundations Workshop (CSFW), pages 320–330,
2002.

46. Willard Rafnsson, Daniel Hedin, and Andrei Sabelfeld. Securing interactive pro-
grams. In Proceedings of the 25th IEEE Computer Security Foundations Sympo-
sium (CSF), pages 293–307, 2012.

47. A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In
Proceedings of the 12th IEEE Computer Security Foundations Workshop, (CSFW),
pages 228–238, 1999.

48. Andrei Sabelfeld and Heiko Mantel. Securing communication in a concurrent
language. In Proceedings of the 9th International Symposium on Static Analysis
(SAS), pages 376–394, 2002.

49. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

37

50. Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded
programs. In Proceedings of the 13th IEEE Computer Security Foundations Work-
shop (CSFW), pages 200–214, 2000.

51. Geoffrey Smith and Dennis M. Volpano. Secure information flow in a multi-
threaded imperative language. In Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages
355–364, 1998.

52. Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language
and its typing system. In PARLE ’94: Parallel Architectures and Languages Eu-
rope, 6th International (PARLE), pages 398–413, 1994.

53. Stephen Tse and Steve Zdancewic. Run-time principals in information-flow type
systems. In Proceedings of the 2004 IEEE Symposium on Security and Privacy
(S&P), pages 179–193, 2004.

54. Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system
for secure flow analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

55. J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic sys-
tems. In Proceedings of the 1990 IEEE Computer Society Symposium on Research
in Security and Privacy (S&P), pages 144–161, 1990.

56. Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu. Reasoning about
information flow security of separation kernels with channel-based communication.
In Proceedings of the 22nd International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 791–810, 2016.

38

A Additional Definitions and Specifications

Notation. In this article, we write [a1, . . . , an] for a list whose elements are
a1, . . . , an, and use ~a as shorthand notation for such a list. For a list l =
[a1, . . . , an] where n ≥ 1, and i ∈ {1, . . . , n}, we write l[i 7→ b] for the list
[a1, . . . , ai−1, b, ai+1, . . . , an], write last(l) for the element an, and write |l| for
the length n of l. For two lists l1 and l2, we write l1.l2 for the concatenation of l1
and l2. For an element a and a list l, we abuse notation to write a.l and l.a for [a].l
and l.[a], respectively. For a function f : A→ B, we write f [a 7→ b], where a ∈ A
and b ∈ B, for the function f ′ with f ′(x) = f(x) whenever x 6= a, and f ′(a) = b,
and write f [(ai 7→ bi)i∈{1,...,n}], where ∀i ∈ {1, . . . , n} : ai ∈ A ∧ bi ∈ B, for the
function ((f [a1 7→ b1]) . . .)[an 7→ bn], omitting the range of i in the subscript
when this is unimportant for the discussion or clear from the context.

Definition of the Function fst . The function fst : Stmt → Pt (used e.g.,
in Fig. 4) is defined by fst(ıskip) = ı, fst(x := ıe) = ı, fst(ısend(c,~e)) =
ı, fst(ırecv(c, ~x)) = ı, fst(S1;S2) = fst(S1), fst(ıif e then S1 else S2 fi) = ı,
fst(ıwhile e do S od) = ı, and fst(ıstop) = ı.

Definition of the Successor Relation. In Fig. 11, we define the local suc-
cessor relation succ(S, ı′) used to generate the program graph of a concurrent
statement (cf. Section 7 and Fig. 4), where S is a labeled statement, and ı′ is
the program point immediately after S.

succ(ıskip, ı′) , {(ı, sk, ı′)}

succ(ıx := e, ı′) , {(ı, x← e, ı′)}

succ(ısend(c, ~e), ı′) , {(ı, c!~e, ı′)}

succ(ırecv(c, ~x), ı′) , {(ı, c?~x, ı′)}

succ(S1;S2, ı
′) , succ(S1, fst(S2)) ∪ succ(S2, ı

′)

succ(ıif b then S1 else S2 fi, ı′) , {(ı, brt, fst(S1)), (ı, brf, fst(S2))}∪
succ(S1, ı

′) ∪ succ(S2, ı
′)

succ(ıwhile b do S od, ı′) , {(ı, brt, fst(S))} ∪ {(ı, brf, ı′)} ∪ succ(S, ı)

Fig. 11. The Definition of succ

Definition of the Interpretation of Globally Dependent Flow Policies.
The complete definition of the interpretation of globally dependent flow policies
is given in Fig. 12. Part of this definition is presented in Section 4. In Fig. 12,
the semantics JcopK and JgK of comparative operators cop and functions g are
unspecified. This allows for a good level of generality. We require, however, that
JcopK and JgK should be total, for all policies to have their interpretation.

Results of the Local Analysis on the Filtering Module. The local analysis
of Section 7.2 admits the results for the filtering module in the stateful packet
filtering system as shown in Fig. 13. 39

J{p1, . . . , p2}Kgcnf ,δ , {p1, . . . , p2}

Jφ . P Kgcnf ,δ ,

{
JP Kgcnf ,δ if JφKgcnf ,δ = tt

Pr otherwise

JP1fP2Kgcnf ,δ , JP1Kgcnf ,δ ∩ JP2Kgcnf ,δ

JtrueKgcnf ,δ , tt

Jt1 cop t2Kgcnf ,δ , JcopK(Jt1Kgcnf ,δ, Jt2Kgcnf ,δ)

J¬φKgcnf ,δ ,

{
ff if JφKgcnf ,δ = tt

tt if JφKgcnf ,δ = ff

Jφ1 ∧ φ2Kgcnf ,δ ,

{
tt if Jφ1Kgcnf ,δ = tt and Jφ2Kgcnf ,δ = tt

ff otherwise

JnKgcnf ,δ , JnK
Jx@pjK〈...,〈pj ,S,m〉,...〉,δ , m(x)

Jc.jKgcnf ,δ , δ(j)

Jg(t1, . . . , tn)Kgcnf ,δ , JgK(Jt1Kgcnf ,δ, . . . , JtnKgcnf ,δ)

Fig. 12. The Semantics of Globally Dependent Flow Policies

Semantic Liveness and Live Variables Analysis.

Definition 15. We define m1
X
= m2 to express ∀x ∈ X : m1(x) = m2(x).

Definition 16. We define in-vars(S) by in-vars(recv(c, ~x)) , {~x}, in-vars(S1;
S2) , in-vars(S1) and in-vars(S) = ∅ otherwise.

Definition 17 (Semantic Liveness). We define live(Λ, S) to express if

〈p, S,m?〉
α1−−→ . . .

αn−−→ 〈p, S′,m′〉 (n ≥ 0)

〈p, S′,m′1〉
α−→ 〈p, S′′,m′′1〉, and m′1

Λ(fst(S′))∪in-vars(S′)
= m′2, then there exists some

m′′2 such that 〈p, S′,m′2〉
α−→ 〈p, S′′,m′′2〉 and m′′1

Λ(fst(S′′))
= m′′2 .

We next define a live variables analysis for a given statement S via the
smallest set of equations that can be derived using the following rule.

(ı1, sa, ı2) ∈ succ(S, ιf)

Λ(ı1) = (Λ(ı2) \ kill(sa)) ∪ gen(sa)
(4)

The kill(sa) and gen(sa) in the above are defined below.

kill(sk) = ∅
kill(x← e) = {x}

kill(c!~e) = ∅
kill(c?~x) = {~x}
kill(brt) = ∅
kill(brf) = ∅

gen(sk) = ∅
gen(x← e) = fvs(e)

gen(c!~e) =fvs(e)

gen(c?~x) =∅
gen(brt) =∅
gen(brf) =∅

The analysis is such that if Λ is a solution of the set of equations derived
using (4), then live(Λ, S) holds.

40

{(1tt3tt8tt , s = h2), (1tt3ff 8tt , s = h2), (1tt3tt8ff , tt), (1tt3ff 8ff , tt),

(1?3?8?, s = h2)}
1while true do

{(1tt3?8?, s = h2), (1tt3tt8tt , s = h2), (1tt3tt8ff , tt),

(1tt3ff 8tt , s = h2), (1tt3ff 8ff , tt)}
2recv(c1, h1, pl1);

{(1tt3?8?, s = h2), (1tt3tt8tt , s = h2), (1tt3tt8ff , tt),

(1tt3ff 8tt , s = h2), (1tt3ff 8ff , tt)}
3if h1 = (s+ 1)%N then

{(1tt3tt8?, h1 = (s+ 1)%N), (1tt3tt8tt , h1 = (s+ 1)%N),

(1tt3tt8ff , h1 = (s+ 1)%N)}
s :=4h1;

{(1tt3tt8?, s = h1), (1tt3tt8tt , s = h1), (1tt3tt8ff , s = h1)}
5send(c2, h1, pl1)

else

{(1tt3ff 8?, h1 6= (s+ 1)%N), (1tt3ff 8tt , h1 6= (s+ 1)%N),

(1tt3ff 8ff , h1 6= (s+ 1)%N)}
6send(cau, h1, pl1)

fi;

{(1tt3tt8?, s = h1), (1tt3tt8tt , s = h1), (1tt3tt8ff , s = h1),

(1tt3ff 8?, tt), (1tt3ff 8tt , tt), (1tt3ff 8ff , tt)}
7recv(c′2, h2, pl2);

{(1tt3tt8?, s = h1), (1tt3tt8tt , s = h1), (1tt3tt8ff , s = h1),

(1tt3ff 8?, tt), (1tt3ff 8tt , tt), (1tt3ff 8ff , tt)}
8if h2 = (s+ 1)%N then

{(1tt3tt8tt , h2 = (s+ 1)%N), (1tt3ff 8tt , h2 = (s+ 1)%N)}
s :=9h2;

{(1tt3tt8tt , s = h2), (1tt3ff 8tt , s = h2)}
10send(c′1, h2, pl2)
else

{(1tt3tt8ff , h2 6= (s+ 1)%N), (1tt3ff 8ff , h2 6= (s+ 1)%N)}
11send(cau, h2, pl2)

fi
od

Fig. 13. Result of the Analysis Associating Branching Decisions with Value Assertions
for the Filtering Statement

41

B Proof of Theorem 2

In this appendix, we present the proof of Theorem 2 on the correctness of the
assertion environment defined using the results of the global analysis and the
local analysis. In Appendix B.1 and Appendix B.2, we give the proofs of Lemma 3
and Lemma 4, respectively. In Appendix B.3, we give the proof of Theorem 2
using Lemma 3 and Lemma 4.

B.1 Proof of Lemma 3

Lemma 5. If (ı, sa, ı′) ∈ succ(S, ı′′), and ı′ 6= ı′′, then for all ı′′′ 6∈ pts(S), it
holds that (ı, sa, ı′) ∈ succ(S, ı′′′).

Lemma 6. If (ı, sa, ı′) ∈ succ(S, ı′), and ı′ 6∈ pts(S), then (ı, sa, ı′′) ∈ succ(S, ı′′)
for all ı′′ 6∈ pts(S).

The proof of these two lemmas is by induction on the structure of S.

Lemma 7. If 〈p, S,m〉 α−→ 〈p, S′,m′〉, and 〈p, S′,m′〉 α′−→, then for all ı′ 6∈
pts(S), it holds that succ(S′, ı′) ⊆ succ(S, ı′).

The proof of this lemma is by induction on the derivation of 〈p, S,m〉 α−→
〈p, S′,m′〉.

Lemma 8. If for all i ∈ {1, . . . , n+ 1}, we have 〈p, Si−1,mi−1〉
αi−→ 〈p, Si,mi〉,

and α = αn+1, then there exists some sa such that (fst(Sn), sa, fst(Sn+1)) ∈
succ(S0, ιf), and it holds that

(∃c, ~v, ~e : α = c!~v ∧ sa = c!~e ∧ J~eKmn = ~v)

∨ (∃c, ~v, ~x : α = c?~v ∧ sa = c?~x ∧mn+1(~x) = ~v)

∨ α = brtp,fst(Sn) ∧ sa = brt

∨ α = brfp,fst(Sn) ∧ sa = brf

∨ α = τ ∧ (sa = sk ∨ ∃v : ∃e : sa = (v ← e))

Proof. We perform an induction on the number of the derivation steps.

– Base case – suppose the number of derivation steps is 1.

We have n = 0, i ∈ {1}, and

〈p, S0,m0〉
α−→ 〈p, S1,m1〉 (5)

We perform an induction on the derivation of (5). We only display the three
representative cases below.

• Case (5) is derived with the rule for an assignment x := ıe. We have
α = τ and sa = (x← e) for which the conclusion holds.

42

• Case (5) is derived with the first rule for the sequential composition

Sa;Sb, due to 〈p, Sa,m0〉
α−→ 〈p, S′a,m1〉.

By the induction hypothesis (for the inner induction), we have some
sa with (fst(Sa), sa, fst(S′a)) ∈ succ(Sa, ιf) such that α, sa, m0 and m1

satisfy the final condition of the lemma. Since fst(S′a) 6= ιf , and fst(Sb) 6∈
pts(Sa), we have

(fst(Sa), sa, fst(S′a)) ∈ succ(Sa, fst(Sb))

by Lemma 5. Hence, (fst(Sa;Sb), sa, fst(S′a;Sb)) ∈ succ(Sa;Sb, ιf) with
α, sa, m0 and m1 satisfying the final condition of the lemma.

• Case (5) is derived using the second rule for the sequential composition

Sa;Sb, due to 〈p, Sa,m0〉
α−→ 〈p, ιf stop,m1〉.

By the induction hypothesis (for the inner induction), we have some sa
with (fst(Sa), sa, ιf) ∈ succ(Sa, ιf) such that α, sa, m0 and m1 satisfy
the final condition of the lemma. We have ιf 6∈ pts(Sa), and fst(Sb) 6∈
pts(Sa). Hence, we have

(fst(Sa), sa, fst(Sb)) ∈ succ(Sa, fst(Sb))

by Lemma 6. Therefore, we have (fst(Sa;Sb), sa, fst(Sb)) ∈ succ(Sa;Sb, ιf)
with α, sa, m0 and m1 satisfying the final condition of the lemma.

– Inductive case – suppose the number of derivation steps is k (k ≥ 2).
We have n = k−1. There are k−1 steps from 〈p, S1,m1〉 to 〈p, Sn+1,mn+1〉.
By the induction hypothesis, there is some sa such that

(fst(Sn), sa, fst(Sn+1)) ∈ succ(S1, ιf)

and α, sa, mn, and mn+1 satisfy the final condition of the lemma.

We have 〈p, S0,m0〉
α1−→ 〈p, S1,m1〉 from the hypotheses of the lemma.

From 〈p, S1,m1〉, it is known that there is a further step. Hence, we have
succ(S1, ιf) ⊆ succ(S0, ιf) by Lemma 7.
Therefore, we have (fst(Sn), sa, fst(Sn+1)) ∈ succ(S0, ιf) with α, sa, mn and
mn+1 satisfying the final condition of the lemma.

The induction above completes the proof of this lemma. ut

We next prove Lemma 3 from the main text as follows.

Proof (of Lemma 3). We have

ACS,k
G (fst(S′k)) = (Eq , f) =

⊔
{(E(~ı′), B(~ı′)) | ı′k = fst(S′k) ∧may-step(CS , ~ı′, k)}

We perform an induction on the length of tr to show if

last(tr) = 〈〈p1, S′1,m′1〉, . . . , 〈pn, S′n,m′n〉〉
may-step(CS , fst(S′1) . . . fst(S′n), k)

then it holds that

– if (x@pi = [e]@pj) ∈ E(fst(S′1) . . . fst(S′n)), then m′i(x) = JeKm′j , and

– ∀ı ∈ Pt : last-at(acts-of (tr), pk, ı) ∈ B(fst(S′1) . . . fst(S′n))(ı@pk).

43

The conclusion of this lemma directly follows from the conditions above due to
the definition of ACS ,k

G (fst(S′k)).
The induction proof is as follows.

1. Suppose tr = gcnf 0 where gcnf 0 = 〈〈p1, S1,m?〉, . . . , 〈pn, Sn,m?〉〉. We have
S′1 = S1, . . . , S′n = Sn, and m′1 = m?, . . . , m′n = m?.
From the constraints of the global analysis, we have E(fst(S1) . . . fst(Sn)) ⊆
Eq?CS . Hence, for each equality (x@pi = [e]@pj) ∈ E(fst(S′1) . . . fst(S′n)),
we have (x@pi = [e]@pj) ∈ Eq?CS . Hence, we have m?(x) = JeKm? by the
definition of Eq?CS . Therefore, we have m′i(x) = JeKm′j .
From the constraints of the global analysis, we have for all κ,

? ∈ B(fst(S1) . . . fst(Sn))(κ)

We have last-at(acts-of (gcnf 0), pk, ı) =?. Hence, we have

last-at(acts-of (gcnf 0), pk, ı) ∈ B(fst(S1) . . . fst(Sn))(κ)

Therefore, for all ı, it holds that

last-at(acts-of (tr), pk, ı) ∈ B(fst(S′1) . . . fst(S′n))(ı@pk)

2. Suppose tr = tr ′.α.gcnf , where last(tr ′) = 〈〈p1, S′′1 ,m′′1〉, . . . , 〈pn, S′′n,m′′n〉〉.
By the induction hypothesis, we have

∀i, j, x, e : (x@pi = [e]@pj) ∈ E(fst(S′′1) . . . fst(S′′n)) ⇒ m′′i (x) = JeKm′′j (6)

∀ı ∈ Pt : last-at(acts-of (tr ′), pk, ı) ∈ B(fst(S′′1) . . . fst(S′′n))(ı@pk) (7)

We make a case analysis on the last derivation step for tr (cf. Fig. 2).
– The case where α = � is straightforward.

– Suppose tr is derived from tr ′ due to 〈pi, S′′i ,m′′i 〉
c!~v−−→ 〈pi, S′i,m′i〉 and

〈pj , S′′j ,m′′j 〉
c?~v−−→ 〈pj , S′j ,m′j〉, with α = τ . Using Lemma 8, we have

(fst(S′′i), c!~e′, fst(S′i)) ∈ succ(Si) for some ~e′, and (fst(S′′j), c?~x′, fst(S′j)) ∈
succ(Sj) for some ~x′. It is not difficult to derive fst(S′′1) . . . fst(S′′n) ∈ VCS ,
because tr ′ ∈ traces-of ξ(CS). Hence, we have

(fst(S′′1) . . . fst(S′′n), {(i, c!~e′), (j, c?~x′)}, fst(S′1) . . . fst(S′n)) ∈ ECS

We therefore have the constraints

E(fst(S′1) . . . fst(S′n)) ⊆ [E(fst(S′′1) . . . fst(S′′n))]
pj

c?~x′

∪
⋃
r

{x′r@pj = [e′r]@pi} (8)

∀κ : B(fst(S′1) . . . fst(S′n))(κ) ⊇ B(fst(S′′1) . . . fst(S′′n))(κ) (9)

Pick arbitrary equality (x@ph = [e]@ps) ∈ E(fst(S′1) . . . fst(S′n)).
If (x@ph = [e]@ps) ∈ [E(fst(S′′1) . . . fst(S′′n))]

pj

c?~x′
, then we have (x@ph =

[e]@ps) ∈ E(fst(S′′1) . . . fst(S′′n)) and no variable in x@ph = [e]@ps is

updated by c?~x′. Using (6), it can be deduced that m′′h(x) = JeKm′′s . By
the non-updatedness of x@ph = [e]@ps, we have m′h(x) = JeKm′s .

44

If (x@ph = [e]@ps) ∈
⋃
r{x′r@pj = [e′r]@pi}, then we have m′h(x) =

JeKm′s by the semantics.

Pick arbitrary ı. We have

last-at(acts-of (tr), pk, ı) = last-at(acts-of (tr ′), pk, ı)

because α = τ . Hence, we have

last-at(acts-of (tr), pk, ı) ∈ B(fst(S′′1) . . . fst(S′′n))(ı@pk)

by (7). Therefore, we have

last-at(acts-of (tr), pk, ı) ∈ B(fst(S′1) . . . fst(S′n))(ı@pk)

by (9).

– Suppose tr is derived from tr ′ due to 〈pi, S′′i ,m′′i 〉
α−→ 〈pi, S′i,m′i〉 for

some i. Using Lemma 8, we obtain (fst(S′′i), sa, fst(S′i)) ∈ succ(Si) for

some syntactical action sa, such that α = c!~v and sa = c!~e′ for some
~e′, α = c?~v and sa = c?~x′ for some ~x′, α = brtpi,fst(S′′i) and sa = brt,

α = brfpi,fst(S′′i) and sa = brf, or α = τ and sa = τ ∨ ∃x′ : ∃e′ : sa =
x′ ← e′. It is not difficult to deduce that fst(S′′1) . . . fst(S′′n) ∈ VCS . By

〈pi, S′′i ,m′′i 〉
α−→ 〈pi, S′i,m′i〉 and the correspondence between α and sa, we

have that if sa is a (syntactical) communication over a polyadic channel
c, then c ∈ EPCh. Hence, we have

((fst(S′′1) . . . fst(S′′n)), (i, sa), (fst(S′1) . . . fst(S′n))) ∈ ECS

We make a case analysis on sa.

• Case sa = brt. We have α = brtpi,fst(S′′i).
In the global analysis, we have the constraints

E(fst(S′1) . . . fst(S′n)) ⊆ E(fst(S′′1) . . . fst(S′′n)) (10)

∀κ : B(fst(S′1) . . . fst(S′n))(κ) ⊇
B(fst(S′′1) . . . fst(S′′n))[fst(S′′i)@pi 7→ {tt}](κ) (11)

It is straightforward, using (10) and (6), to show that for each equal-
ity x@ph = [e]@ps, it holds that m′h(x) = JeKm′s .
Pick an arbitrary ı. We make a case analysis on whether ı@pk =
fst(S′′i)@pi.

∗ Case ı@pk 6= fst(S′′i)@pi.
We have last-at(acts-of (tr), pk, ı) = last-at(acts-of (tr ′), pk, ı).
Hence, we have

last-at(acts-of (tr), pk, ı) ∈ B(fst(S′′1) . . . fst(S′′n))(ı@pk)

by (7). Hence, we obtain

last-at(acts-of (tr), pk, ı) ∈ B(fst(S′1) . . . fst(S′n))(ı@pk)

using (11).

45

∗ Case ı@pk = fst(S′′i)@pi.
We haveB(fst(S′′1) . . . fst(S′′n))[fst(S′′i)@pi 7→ {tt}](ı@pk) = {tt}.
Hence, tt ∈ B(fst(S′1) . . . fst(S′n))(ı@pk) by (11). We have

last-at(acts-of (tr), pk, ı) = tt

Hence, we have

last-at(acts-of (tr), pk, ı) ∈ B(fst(S′1) . . . fst(S′n))(ı@pk)

• Case sa = brf.
The reasoning is analogous to that of the previous case.

• Case sa 6∈ {brt, brf}.
In the global analysis, we have

E(fst(S′1) . . . fst(S′n)) ⊆ [E(fst(S′′1) . . . fst(S′′n))]pisa (12)

∀κ : B(fst(S′1) . . . fst(S′n))(κ) ⊇ B(fst(S′′1) . . . fst(S′′n))(κ) (13)

It is not difficult to establish the two goals of the induction proof with
reasoning analogous to that of the case of internal communication.

This completes the induction proof, and in turn, the proof of this lemma. ut

B.2 Proof of Lemma 4

Lemma 9. If Ψ ` D1, S,D2 and 〈p, S,m〉 α−→ 〈p, S′,m′〉 can be derived, tr ∈ Tr,
and there exist µ and ϕ such that (µ, ϕ) ∈ D1, ∀ı : µ(ı) = last-at(acts-of (tr), p, ı),
and ϕ holds at m, then

– if S′ 6= ιf stop, then there exists some D′1 such that Ψ ` D′1, S′, D2 can be
derived, and there exist µ′ and ϕ′ such that (µ′, ϕ′) ∈ D′1, ∀ı : µ′(ı) =
last-at(acts-of (tr).α, p, ı), and ϕ′ holds at m′, and

– if S′ = ιf stop, then there exist some µ′ and ϕ′ such that (µ′, ϕ′) ∈ D2,
∀ı : µ′(ı) = last-at(acts-of (tr).α, p, ı), and ϕ′ holds at m′.

Proof. The proof is by induction on the derivation of Ψ ` D1, S,D2. Only se-
lected cases are presented.

– Case ırecv(c, ~x). We have S′ = ιf stop. Assume for µ0 and ∀~v.ϕ0[~v/~x] with
(µ0, ϕ0) ∈ D2 we have ∀ı : µ0(ı) = last-at(acts-of (tr), p, ı) and ∀~v.ϕ0[~v/~x]
holds at m. Hence, we have ∀ı : µ0(ı) = last-at(acts-of (tr).α, p, ı) because

α = c?~v′ for some ~v′. We have ϕ0[~v/~x] holds at m[(vj 7→ aj)j] for all a1, . . . ,
a|~x| because ∀~v.ϕ0[~v/~x] holds at m. Hence, ϕ0 holds at m[(vj 7→ aj)j][(xj 7→
m[(vj 7→ aj)j](vj))j]. Hence, ϕ0 holds at m[(xj 7→ aj)j] for all a1, . . . , a|~x|.
Hence, ϕ0 holds at m′.

– Case S1;S2. We have 〈p, S1,m〉
α−→ 〈p, S′1,m′〉 from 〈p, S1;S2,m〉

α−→ 〈p, S′,m′〉.
We have Ψ ` D1, S1, D

′ and Ψ ` D′, S2, D2 from Ψ ` D1, S1;S2, D2. We
make a case analysis on S′1.

46

• Suppose S′1 6= ιf stop. By the induction hypothesis, there exist D′1 such
that Ψ ` D′1, S′1, D′ and there exist µ′ and ϕ′ such that (µ′, ϕ′) ∈ D′1, ∀ı :
µ′(ı) = last-at(acts-of (tr).α, p, ı), and ϕ′ holds at m′. Hence, we have
Ψ ` D′1, S′1;S2, D2 with D′1, m′ and α satisfying the required condition
in the conclusion of the lemma.

• Suppose S′1 = ιf stop. By the induction hypothesis, there exist some µ′

and ϕ′ such that (µ′, ϕ′) ∈ D′, ∀ı : µ′(ı) = last-at(acts-of (tr).α, p, ı),
and ϕ′ holds at m′. This directly gives the desired conclusion because
S′ = S2.

– Case ı0 if e then Sa else Sb fi. We make a case analysis on JeKm.
• Case JeKm = tt . We have S′ = Sa, m′ = m, α = brtp,ı0 , and D′1 =
{(µ[ı0 7→ tt], ϕ ∧ e) | (µ, ϕ) ∈ D1}.
Assume for some µ0 and ϕ0, it holds that (µ0, ϕ0) ∈ D1, ∀ı : µ0(ı) =
last-at(acts-of (tr), p, ı), and ϕ0 holds in m.
Pick µ′ = µ0[ı0 7→ tt], and ϕ′ = ϕ0 ∧ e. We have (µ′, ϕ′) ∈ D2. Pick an
arbitrary ı. If ı = ı0, then we have µ′(ı0) = last-at(acts-of (tr).α, p, ı0) =
tt . If ı 6= ı0, then we have µ′(ı) = µ0(ı) = last-at(acts-of (tr), p, ı) =
last-at(acts-of (tr).α, p, ı). We have ϕ′ holds in m′ because ϕ0 holds in
m, JeKm = tt , and m′ = m.

• Case JeKm = ff . The reasoning is analogous to that of the case JeKm = tt .
– Case subsumption. The reasoning is by a cases analysis on whether S′ is

ιf stop, and using the induction hypothesis in each of the two cases.

This induction completes the proof of this lemma. ut

Lemma 10. If Ψ ` D1, S,D2, then D1 ; Ψ(fst(S)).

Proof. The proof is by a straightforward induction on the derivation of Ψ `
D1, S,D2, using fst(S1;S2) = fst(S1), and the transitivity of ;. ut

Lemma 11. If Ψ ` {(λı.?, ϕ0)}, S,D for some ϕ0 that holds in m?, and for

each i ∈ {1, . . . , n}, it can be derived that 〈p, Si−1,mi−1〉
αi−1−−−→ 〈p, Si,mi〉, where

S0 = S and m0 = m?, then

– if Sn 6= ιf stop, then there exists some D′ such that Ψ ` D′, Sn, D can be
derived, and there exist some µ and ϕ, such that (µ, ϕ) ∈ D′, ∀ı : µ(ı) =
last-at(α0 . . . αn−1, p, ı), and ϕ holds in mn, and

– if Sn = ιf stop, then there exist some µ and ϕ, such that (µ, ϕ) ∈ D, ∀ı :
µ(ı) = last-at(α0 . . . αn−1, p, ı), and ϕ holds in mn.

Proof. We perform an induction on n.

– Case n = 0. We have S 6= ιf stop because Ψ ` {(λı.?, ϕ0)}, S,D can be
derived. We have D′ = {(λı.?, ϕ0)}. Pick an arbitrary ı, we have (λı.?)(ı) =
last-at(ε, p, ı) =?. We have ϕ0 holds in m?, which is m0.

– Case n = k (k > 0). We have Sk−1 6= ιf stop. Hence, using the induction
hypothesis, we obtain that there exists some D′ such that Ψ ` D′, Sk−1, D
can be derived, and there exist some µ and ϕ such that (µ, ϕ) ∈ D′, ∀ı :

47

µ(ı) = last-at(α0 . . . αk−2, p, ı), and ϕ holds in mk−1. We have the local step

〈p, Sk−1,mk−1〉
αk−1−−−→ 〈p, Sk,mk〉. The conclusion of this lemma can now be

derived based on this step, using Lemma 9.

The induction above completes the proof of this lemma. ut

The proof of Lemma 4 is as follows.

Proof (of Lemma 4). By the definition of ASL , we have Ψ ` {(λı.?, ϕ0)}, S,D for
some ϕ0 that holds in m?, such that for all ı 6= ιf , it holds that ASL(ı) = Ψ(ı),
and AιfL = D.

We make a case analysis on Sn.

– Case Sn 6= ιf stop. We have some D′ such that Ψ ` D′, Sn, D and some µ
and ϕ, such that (µ, ϕ) ∈ D′, ∀ı : µ(ı) = last-at(α0 . . . αn−1, p, ı), and ϕ
holds in mn, by Lemma 11. We have D′ ; Ψ(fst(Sn)) by Lemma 10. Hence,
D′ ; ASL(fst(Sn)). The conclusion of the lemma can now be derived using
the definition of ;.

– Case Sn = ιf stop. The conclusion of the lemma can be directly deduced using
the definition of ASL and Lemma 11.

This completes the proof. ut

We next give the proof of Theorem 2 based on Lemma 3 and Lemma 4.

B.3 Proof of Theorem 2 Using Lemma 3 and Lemma 4

Proof. Assume tr ∈ traces-of ξ(CS),

last(tr) = gcnf = 〈〈p1, S′1,m1〉, . . . , 〈pn, S′n,m′n〉〉

and may-step(CS , fst(S′1) . . . fst(S′n), k) holds.

Assume thatACS ,k
G (fst(S′k)) = (Eq , f) for some Eq and f , andASkL (fst(S′k)) =

D for some D.
By Lemma 3, we have for each equality in Eq , say denoted by φEQ, that

JφEQKgcnf = tt . Hence, we have J
∧

EqKgcnf = tt .
Suppose the derivation of tr is attributed to the following sequence of ac-

tions performed by the k-th process (excl. the actions resulting in an over-
all � at the system level): α1

k.α
h
k . There exist some µ and ϕ such that

(µ, ϕ) ∈ ASkL (fst(S′k)), ∀ı : µ(ı) = last-at(α1
k.α

h
k , pk, ı), and ϕ holds in m′k,

according to Lemma 4. We have ∀ı : last-at(α1
k.α

h
k , pk, ı) = last-at(tr , pk, ı).

We have ∀ı : last-at(tr , pk, ı) ∈ f(ı@pk) by Lemma 3. Hence, we have ∀ı : µ(ı) ∈
f(ı@pk). We have J[ϕ]@pkKgcnf = tt because ϕ holds in m′k. Hence, we have
J
∨
{ [ϕ]@pk | ∃µ : (µ, ϕ) ∈ D ∧ ∀ı′ : µ(ı′) ∈ f(ı′@pk)}Kgcnf = tt .
Therefore, it holds that JΦ(fst(S′k))Kgcnf = tt . This completes the proof of

the theorem. ut

48

C Proof of Theorem 1

Our proof of Theorem 1 is outlined as follows. An augmented programming lan-
guage is first defined where a statement can be annotated with the conditional
expressions whose scopes cover the statement. A security type system is then
defined for this augmented language (with most parts analogous to our security
type system in Section 5). This makes it possible to keep track of the condi-
tional expressions used in specializing the security types at different points in
a statement. Using this security type system, a notion of syntactical highness
for a process, a notion of low-equivalence for two processes, and a notion of
low-equivalence for two systems are then defined. In these definitions, “high”
and “low” are conceptualized wrt. a group G of principals, and wrt. the special-
ized security types for variables. On this basis, a two-run property for systems
composed of augmented statements is proven (Lemma 29). Finally, this two-run
property is shown to give rise to the soundness of our security type system (for
the non-augmented language). The augmented language and its security type
system are presented in Appendix C.1, and the remaining part of the proof of
Theorem 1 is presented in Appendix C.2.

C.1 Augmented Language, and Security Type System

Syntax of the Augmented Language. To keep track of the specialization of
globally dependent flow policies with conditional expressions under scoped spe-
cialization, we augment the syntactical category of statements in our program-
ming language with statements annotated with ı{e}. Here, e is a conditional
expression, and the annotation is called a conditional block. We thus obtain the
syntax for augmented statements AS as shown in Fig. 14.

AS ::= ıskip | x := ıe | ısend(c, ~e) | ırecv(c, ~x) | AS ; AS |
ıif e then AS else AS fi | ıwhile e do AS od | ıstop | C AS

C ::= ı{e}

Fig. 14. The Syntax of Augmented Statements

We next define a series of utility functions and predicates on augmented
statements. We define the predicate afst : AStmt → Pt by afst(ıskip) = ı,
afst(ıstop) , ı, afst(x := ıe) , ı, afst(ısend(c,~e)) , ı, afst(ırecv(c, ~x)) , ı,
afst(ıif e then AS 1 else AS 2 fi) , ı, afst(ıwhile e do AS od) , ı, afst(ı{e}AS) ,
afst(AS), and afst(AS 1; AS 2) , afst(AS 1).

49

We define fvs-cond : AStmt → P(Var) to retrieve the set of free variables of
all conditional blocks and conditional expressions in an augmented statement.

fvs-cond(AS1; AS2) , fvs-cond(AS1) ∪ fvs-cond(AS2)

fvs-cond(ıif e then AS1 else AS2 fi) , fvs(e) ∪ fvs-cond(AS1) ∪ fvs-cond(AS2)

fvs-cond(ıwhile e do AS od) , fvs(e) ∪ fvs-cond(AS)

fvs-cond(ı{e}AS) , fvs(e) ∪ fvs-cond(AS)

fvs-cond(AS) , ∅ if AS is not one of the above

We define the predicate atoms : AStmt → P(Stmt) by

atoms(ıif e then AS1 else AS2 fi) , atoms(AS1) ∪ atoms(AS2)

atoms(ıwhile e do AS od) , atoms(AS)

atoms(AS1; AS2) , atoms(AS1) ∪ atoms(AS2)

atoms(ı{e}AS) , atoms(AS)

atoms(AS) , {AS} if AS is not one of the above

We define the function upd -next : AStmt → P(Var) by

upd-next(x := ıa) , {x}

upd-next(ırecv(c, ~x)) , {~x}

upd-next(AS1; AS2) , upd-next(AS1)

upd-next(ı{e}AS1) , upd-next(AS1)

upd-next(AS) , ∅ if AS is not one of the above

We inductively define strip-stmt(AS) to remove the conditional blocks in
augmented statements.

strip-stmt(ıskip) , ıskip

strip-stmt(x := ıe) , x := ıe

strip-stmt(ısend(c, ~e)) , ısend(c, ~e)

strip-stmt(ırecv(c, ~x)) , ırecv(c, ~x)

strip-stmt(AS1; AS2) , strip-stmt(AS1); strip-stmt(AS2)

strip-stmt(ıif e then AS1 else AS2 fi) , ıif e then strip-stmt(AS1)

else strip-stmt(AS2)

strip-stmt(ıwhile e do AS od) , ıwhile e do strip-stmt(AS) od

strip-stmt(ı{e}AS) , strip-stmt(AS)

Replacing each statement by a corresponding augmented statement in a con-
current statement, we obtain an augmented concurrent statement ACS = p1 :
AS 1|| . . . ||pn : ASn.

50

〈p, ıskip,m〉 τ−→ 〈p, ιf stop,m〉

〈p, x := ıe,m〉 τ−→ 〈p, ιf stop,m[x 7→ JeKm]〉

〈p,AS1,m〉
α−→ 〈p,AS ′1,m

′〉
〈p,AS1; AS2,m〉

α−→ 〈p,AS ′1; AS2,m
′〉

if ¬(∃~C : AS ′1 = blks(~C, ιf stop))

∃~C : 〈p,AS1,m〉
α−→ 〈p, blks(~C, ιf stop),m′〉

〈p,AS1; AS2,m〉
α−→ 〈p,AS2,m

′〉

〈p, ıif e then AS1 else AS2 fi,m〉 brtp,ı−−−→ 〈p, ı{e}AS1,m〉 if JeKm = tt

〈p, ıif e then AS1 else AS2 fi,m〉 brfp,ı−−−→ 〈p, ı{¬e}AS2,m〉 if JeKm = ff

〈p, ıwhile e do AS od,m〉 brtp,ı−−−→ 〈p, (ı{e}AS); ıwhile e do AS od,m〉 if JeKm = tt

〈p, ıwhile e do AS od,m〉 brfp,ı−−−→ 〈p, ιf stop,m〉 if JeKm = ff

〈p, ısend(c, ~e),m〉 c!~v−−→ 〈p, ιf stop,m〉 if J~eKm = ~v

〈p, ırecv(c, ~x),m〉 c?~v−−→ 〈p, ιf stop,m[(xj 7→ vj)j]〉

〈p,AS ,m〉 α−→ 〈p,AS ′,m′〉
〈p, ı{e}AS ,m〉 α−→ 〈p, ı{e}AS ′,m′〉

Fig. 15. The Semantics of Augmented Statements

Semantics of the Augmented Language. We call configurations of the form
〈p,AS ,m〉 augmented local configurations. They are like local configurations ex-
cept that they contain augmented statements instead of statements. Analogously,
if a configuration is like a global configuration except that it contains augmented
statements instead of statements, it is called an augmented global configuration.
Furthermore, if a sequence is like a trace except that it contains exclusively aug-
mented global configurations instead of global configurations, the sequence is
called an augmented trace. We denote the set of augmented traces by ATr .

For an augmented local configuration alcnf = 〈p,AS ,m〉, we write astmt-of
(alcnf) for the augmented statement AS , and prin-of (alcnf) for the principal p.
For an augmented global configuration agcnf = 〈〈p1,AS 1,m1〉, . . . , 〈pn,ASn,mn〉〉,
we write acstmt-of (agcnf) for the augmented concurrent statement p1 : AS 1||
. . . ||pn : ASn.

To remove the conditional blocks in augmented global configurations, we
define strip-gcnf (agcnf) by

strip-gcnf (〈〈p1,AS1,m1〉, . . . , 〈pn,ASn,mn〉〉) ,
〈〈p1, strip-stmt(AS1),m1〉, . . . , 〈pn, strip-stmt(ASn),mn〉〉

To remove the conditional blocks in augmented traces, we inductively define
strip-tr(atr) by

strip-tr(agcnf) , strip-gcnf (agcnf)

strip-tr(atr .α.agcnf) , strip-tr(atr).α.strip-gcnf (agcnf)

51

last(atr) = 〈. . . , alcnf 1, . . . , alcnf 2, . . .〉
alcnf 1

c!~v−−→ alcnf ′1 alcnf 2
c?~v−−→ alcnf ′2

atr −→ξ atr .τ.〈. . . , alcnf ′1, . . . , alcnf ′2, . . .〉
if ξ(strip-tr(atr)) = (prin-of (alcnf 1), prin-of (alcnf 2))

last(atr) = 〈. . . , alcnf 1, . . . , alcnf 2, . . .〉
alcnf 1

c?~v−−→ alcnf ′1 alcnf 2
c!~v−−→ alcnf ′2

atr −→ξ atr .τ.〈. . . , alcnf ′1, . . . , alcnf ′2, . . .〉
if ξ(strip-tr(atr)) = (prin-of (alcnf 1), prin-of (alcnf 2))

last(atr) = 〈. . . , alcnf , . . .〉 alcnf
α−→ alcnf ′

atr −→ξ atr .α.〈. . . , alcnf ′, . . .〉
if ∃p, ci : ξ(strip-tr(atr)) = (p, ci)

∧ p = prin-of (alcnf) ∧ match(α, ci)

¬(∃agcnf , α : α 6= � ∧ atr −→ξ atr .α.agcnf)

atr −→ξ atr . � .last(atr)

Fig. 16. The Semantics for Augmented Concurrent Statements

For the augmented statements, we formulate a semantics with the judgment
〈p,AS ,m〉 α−→ 〈p,AS ′,m′〉, and with the calculus rules in Fig. 15. In this figure,

blks(~C,AS) is written for the augmented statement

C1(C2(. . . (Cn AS) . . .))

We introduce the judgment atr −→ξ atr ′ for an execution step of an aug-
mented concurrent statement (with information about conditional blocks recorded).
The calculus rules for this judgment are given in Fig. 16.

Given an augmented concurrent statement ACS = p1 : AS 1|| . . . ||pn : ASn,
we write atraces-of ξ(ACS) for the set of augmented traces of ACS under the
strategy ξ. That is,

atraces-of ξ(ACS) , {atr ∈ ATr | 〈〈p1,AS1,m?〉, . . . , 〈pn,ASn,m?〉〉(→ξ)
∗atr}

We have the following two lemmas on the transparency of the augmentation
of statements.

Lemma 12. If S = strip-stmt(AS), then the following two statements hold

– If 〈p, S,m〉 α−→ 〈p, S′,m′〉, then there exists some AS ′ such that 〈p,AS ,m〉 α−→
〈p,AS ′,m′〉, and S′ = strip-stmt(AS ′).

– If 〈p,AS ,m〉 α−→ 〈p,AS ′,m′〉, then 〈p, S,m〉 α−→ 〈p, strip-stmt(AS ′),m′〉.

The proof of this lemma is straightforward via induction on the derivation of
〈p, S,m〉 α−→ 〈p, S′,m′〉 (for the first direction) and of 〈p,AS ,m〉 α−→ 〈p,AS ′,m′〉
(for the second direction).

Lemma 13. If tr = strip-tr(atr), then the following two statements hold

– If tr −→ξ tr ′, then there exists some atr ′ such that atr −→ξ atr ′ and tr ′ =
strip-tr(atr ′).

– If atr −→ξ atr ′, then tr −→ξ strip-tr(atr ′).

52

Proof. Assume arbitrary tr and atr such that tr = strip-tr(atr) holds.
If tr −→ξ tr ′, then according to the semantic rules, it must be the case that

tr ′ = tr .α.gcnf with some α and some gcnf . The case where α 6= � can be
resolved by case analysis on the derivation of tr −→ξ tr ′, using Lemma 12. Due
to the involvement of negation in the semantic rule for α = �, we defer the proof
of this case.

If atr −→ξ atr ′, then according to the semantic rules, it must be the case
that atr ′ = atr .α.agcnf with some α and agcnf . The case where α 6= � can be
resolved by case analysis on the derivation of atr −→ξ atr ′, using Lemma 12. We
defer the case where α = � to the end.

We turn to the case α = � in the first direction. We show that there does not
exist any agcnf , α 6= � such that atr −→ξ atr .α.agcnf . Assume per absurdum
that such agcnf and α 6= � exist. Then from what has been shown, there exist
gcnf and α 6= � such that tr −→ξ tr .α.gcnf . But this means that tr −→ξ tr ′ is
impossible and we have a contradiction with the hypothesis.

The case α = � can be resolved analogously with a contradiction. ut

We define the set of well-formed augmented statements AStmtWF as the least
set satisfying the following rules. The intuition is that all augmented statements
reachable in the execution of a (plain) statement must be well-formed.

AS ∈ AStmtWF S ∈ Stmt ∀ı : ıstop 6∈ atoms(AS) ∪ atoms(S)

AS ;S ∈ AStmtWF

AS ∈ AStmtWF ı 6= ιf
ı{e}AS ∈ AStmtWF

S ∈ Stmt (∃ı : ıstop ∈ atoms(S))⇒ S = ιf stop

S ∈ AStmtWF

It can be deduced that AStmtWF ⊆ AStmt .

Lemma 14. If AS ∈ AStmtWF, and ıstop ∈ atoms(AS) for some ı, then it

holds that ∃~C : AS = blks(~C, ιf stop).

Proof. The proof of this lemma is by induction on the derivation of AS ∈
AStmtWF.

– Suppose AS ∈ AStmtWF is derived with the first rule applied last. We
have AS = AS ′;S for some AS ′ and S. Assume ıstop ∈ atoms(AS). Then,
ıstop ∈ atoms(AS ′) ∪ atoms(S). We have a contradiction with the premise.

– Suppose AS ∈ AStmtWF is derived with the second rule applied last. We
have AS = ı{e}AS ′ for some ı, e, and AS ′. Assume ıstop ∈ atoms(AS).
Then ıstop ∈ atoms(AS ′). By the induction hypothesis, there exists some
~C such that AS ′ = blks(~C, ιfstop). Hence, we have ~C ′ = ı{e}~C such that

AS = blks(~C ′, ιf stop).
– Suppose AS ∈ AStmtWF is derived with the third rule applied last. This

case can be resolved by using the premise of the rule directly.

This completes the proof. ut

53

Lemma 15. If AS ∈ AStmtWF, and 〈p,AS ,m〉 α−→ 〈p,AS ′,m′〉 can be derived,
then AS ′ ∈ AStmtWF.

Proof. The proof is by induction on the derivation of 〈p,AS ,m〉 α−→ 〈p,AS ′,m′〉.
Only selected cases of this induction are presented.

– Case 〈p,AS 1; AS 2,m〉
α−→ 〈p,AS ′1; AS 2,m

′〉 due to 〈p,AS 1,m〉
α−→ 〈p,AS ′1,m

′〉
and ¬(∃~C : AS ′1 = blks(~C, ιf stop)). We make a case analysis on how AS 1; AS 2

∈ AStmtWF is derived.
• Suppose the derivation of AS 1; AS 2 ∈ AStmtWF is by the first rule.

We have AS 1 ∈ AStmtWF, AS 2 ∈ Stmt , and ∀ı : ıstop 6∈ atoms(AS 1) ∪
atoms(AS 2). By the induction hypothesis, we have AS ′1 ∈ AStmtWF. By

Lemma 14, for all ı′, if ı
′
stop ∈ atoms(AS ′1) then AS ′1 = blks(~C, ιf stop)

for some ~C. By the side condition of the semantic rule, this is not the
case. Hence, ı

′
stop 6∈ atoms(AS ′1) for any ı′. It can be derived that ı

′
stop 6∈

atoms(AS ′1) ∪ atoms(AS 2) for any ı′. Hence, AS ′1; AS 2 ∈ AStmtWF.
• Suppose the derivation of AS 1; AS 2 ∈ AStmtWF is by the third rule.

Then, AS 1 ∈ Stmt , and AS 2 ∈ Stmt . Using the premise of the rule,
it can be deduced that ı′stop 6∈ atoms(AS 1; AS 2) for any ı′. Hence,
ı′stop 6∈ atoms(AS 1). We have AS 1 ∈ AStmtWF. We also have ı′stop 6∈
atoms(AS 1) ∪ atoms(AS 2). Hence, the reasoning from here can be per-
formed analogously to that of the previous case.

– Case 〈p, ıwhile e do AS 1 od,m〉 brtp,ı−−−→ 〈p, (ı{e}AS 1); ıwhile e do AS 1 od,m〉.
For brevity, we use the shorthand notation wh for ıwhile e do AS 1 od. From
wh ∈ AStmtWF, we have wh ∈ Stmt and ı′stop 6∈ wh for any ı′. Hence,
AS 1 ∈ Stmt and ı′stop 6∈ AS 1 for any ı′. Hence, AS 1 ∈ AStmtWF can be
deduced using the third rule. We obtain ı{e}AS 1 ∈ AStmtWF using the
second rule. That ı{e}AS 1; wh ∈ AStmtWF can now be deduced using the
first rule.

– Case 〈p, ıwhile e do AS 1 od,m〉 brfp,ı−−−→ 〈p, ιf stop,m〉. Trivial.

– Case 〈p, ı{e}AS 1,m〉
α−→ 〈p, ı{e}AS ′1,m

′〉 due to 〈p,AS ,m〉 α−→ 〈p,AS ′,m′〉.
From how ı{e}AS 1 could have been derived, we have AS 1 ∈ AStmtWF and
ı 6= ιf . By the induction hypothesis, we have AS ′1 ∈ AStmtWF. Hence,
ı{e}AS ′1 ∈ AStmtWF can be established using the second rule.

This induction completes the proof of the lemma. ut

Security Type System for the Augmented Language. We devise a secu-
rity type system for augmented statements. The typing judgment is

C,V,Ctx `Φ,Λp (l,X) AS (l′, X ′) : ı′

Here, Ctx is a context such that for each program point ı, if the augmented
statement AS ′ at ı in AS is a conditional branch or a loop, then Ctx (ı) =
(l′, X ′, ı′) where ı′ is the program point right after the branches or the loop
body of AS ′, and l′ and X ′ constitute the post-context at ı′. If the augmented
statement at ı is not a conditional branch or a loop, then Ctx (ı) = ⊥. If ı is not

54

C,V,Ctx `Φ,Λp (l,X) ıskip (l,X) : ı′
if Ctx (ı) = ⊥

Φ(ı) . V[x 7→ lfV[X ∪ fvs(e)]] �Λ(ı′)∪{x}V[[e]@p/x@p]

C,V,Ctx `Φ,Λp (l,X) x := ıe (l,X) : ı′
if Ctx (ı) = ⊥

lf(Φ(ı) . V[X]) � C(c) � l′
Φ(ı) . V[(c.j 7→ V[fvs(ej) ∪X])j] �Λ(ı′)∪{c.1,...,c.|c|} (V] C)[([ej]@p/c.j)j]

C,V,Ctx `Φ,Λp (l,X) ısend(c, ~e) (l′, X) : ı′
if Ctx (ı) = ⊥

lf(Φ(ı) . V[X]) � C(c) � l′
Φ(ı) . V[(xj 7→ C(c.j)fV[X])j] �Λ(ı′)∪{~x}V[(c.j/xj@p)j]

C,V,Ctx `Φ,Λp (l,X) ırecv(c, ~x) (l′, X) : ı′
if Ctx (ı) = ⊥

C,Vp,el′,X′,ı′ ,Ctx `Φ,Λp (l,X ∪ fvs(e)) AS1 (l′, X ′) : ı′

C,Vp,¬el′,X′,ı′ ,Ctx `Φ,Λp (l,X ∪ fvs(e)) AS2 (l′, X ′) : ı′

C,V,Ctx `Φ,Λp (l,X) ıif e then AS1 else AS2 fi (l′, X ′) : ı′
if Ctx (ı) = (l′, X ′, ı′)

X ∪ fvs(e) ⊆ X ′ C,Vp,el,X′,ı,Ctx `Φ,Λp (l,X ′) AS (l,X ′) : ı

C,V,Ctx `Φ,Λp (l,X) ıwhile e do AS od (l,X ′) : ı′
if Ctx (ı) = (l,X ′, ı)

C,V,Ctx `Φ,Λp (l,X) AS1 (l′′, X ′′) : fst(AS2) C,V,Ctx `Φ,Λp (l′′, X ′′) AS2 (l′, X ′) : ı′

C,V,Ctx `Φ,Λp (l,X) AS1; AS2 (l′, X ′) : ı′

C,Vp,el′,X′,ı′ ,Ctx `Φ,Λp (l,X ∪ fvs(e)) AS (l′, X ′) : ı′

C,V,Ctx `Φ,Λp (l,X) ı{e}AS (l′, X ′) : ı′
if Ctx (ı) = (l′, X ′, ı′)

C,V,Ctx `Φ,Λp (l′1, X
′
1) AS (l′2, X

′
2) : ı′ l1 � l′1 l′2 � l2 X1 ⊆ X ′1 X ′2 ⊆ X2

C,V,Ctx `Φ,Λp (l1, X1) AS (l2, X2) : ı′

Fig. 17. Selected Rules of the Type System that Records Context Information

in AS , then Ctx is unconstrained at ı. The remaining elements in the judgment
have analogous intuition to that of the corresponding elements of our typing
judgment for (plain) statements in Section 5.

The typing rules for augmented statements are shown in Fig. 17. Each rule
with an explicit program point ı in the conclusion contains a side condition that
specifies the value of Ctx (ı). The rule for the augmented statement {e}AS says:
If AS can be typed with the specialized type environment Vp,el′,X′,ı′ , and the set
X ∪ fvs(e) of variables as part of the pre-context, then the augmented statement
{e}AS can be typed with the original type environment V, and the set X of
variables as part of the pre-context. The remaining elements of the typing rules
are analogous to those of the typing rules presented in Section 5.

We establish Lemma 16 and Lemma 17 about the security type system for
the augmented programming language.

55

Lemma 16. If C,V,Ctx `Φ,Λp (l,X) AS (l′, X ′) : ı′, then X ∪ fvs-cond(AS) ⊆
X ′.

Proof. The proof is by induction on the derivation of

C,V,Ctx `Φ,Λp (l,X) AS (l′, X ′) : ı′

In the cases where AS is ıskip, x := ıe, ısend(c,~e), or ırecv(c, ~x), we have
fvs-cond(AS) = ∅, X ′ = X. Hence, it holds that X ∪ fvs-cond(AS) ⊆ X ′.
The remaining cases are resolved as follows.

– Case ıif e then AS 1 else AS 2 fi. We refer to ıif e then AS 1 else AS 2 fi as if.
By the typing of if, we have C,Vp,el′,X′,ı′ ,Ctx `Φ,Λp (l,X ∪ fvs(e)) AS 1 (l′, X ′) :

ı′, and C,Vp,¬el′,X′,ı′ ,Ctx `Φ,Λp (l,X ∪ fvs(e)) AS 2 (l′, X ′) : ı′. Hence, we have
X ∪ fvs(e) ∪ fvs-cond(AS 1) ⊆ X ′ and X ∪ fvs(e) ∪ fvs-cond(AS 2) ⊆ X ′

using the induction hypothesis. Hence, we have X∪ fvs(e)∪ fvs-cond(AS 1)∪
fvs-cond(AS 2) ⊆ X ′. Hence, we have X ∪ fvs-cond(if) ⊆ X ′.

– Case ıwhile e do AS 1 od. We refer to ıwhile e do AS 1 od as wh. From the
typing of wh and the induction hypothesis, we obtain X ∪ fvs(e) ⊆ X ′, and
X ′ ∪ fvs-cond(AS 1) ⊆ X ′. Hence, we have X ∪ fvs(e)∪ fvs-cond(AS 1) ⊆ X ′.
Hence, we have X ∪ fvs-cond(AS 1) ⊆ X ′.

– Case AS 1; AS 2. From the typing of AS 1; AS 2 we have

C,V,Ctx `Φ,Λp (l,X) AS1 (l′′, X ′′) : fst(AS2)

C,V,Ctx `Φ,Λp (l′′, X ′′) AS2 (l′, X ′) : ı′

Hence, we have X ∪ fvs-cond(AS 1) ⊆ X ′′, and X ′′ ∪ fvs-cond(AS 2) ⊆
X ′ using the induction hypothesis. Hence, we have X ∪ fvs-cond(AS 1) ∪
fvs-cond(AS 2) ⊆ X ′. Hence, we have X ∪ fvs-cond(AS 1; AS 2) ⊆ X ′.

– Case ı{e}AS 1. From the typing of ı{e}AS 1, we have C,Vp,el′,X′,ı′ ,Ctx `Φ,Λp
(l,X ∪ fvs(e)) AS 1 (l′, X ′) : ı′. Hence, we have X ∪ fvs(e)∪ fvs-cond(AS 1) ⊆
X ′. Hence, we have X ∪ fvs-cond(ı{e}AS 1) ⊆ X ′.

– Case sub-typing. It is straightforward to establish the desired result from
the typing of AS and using the induction hypothesis.

The induction above completes the proof of this lemma. ut

Lemma 17. If C,V,Ctx `Φ,Λp (l,X) AS (l′, X ′) : ı′, ı ∈ pts(AS), and Ctx (ı) =
(l1, X1, ı1), then l � l1 and X ⊆ X1.

The proof of this lemma is by induction on the derivation of C,V,Ctx `Φ,Λp
(l,X) AS (l′, X ′) : ı′.

C.2 Soundness of Security Typing

To lighten the presentation of the remaining part of the soundness proof, we
adopt the notational convention described as follows. For a formula φ, we write
JφKagcnf for JφKstrip-gcnf (agcnf). For a policy P ∈ Pol , we write JP Kagcnf for

JP Kstrip-gcnf (agcnf). In a similar spirit, we write bαcGagcnf for bαcGstrip-gcnf (agcnf),

56

bcicGagcnf for bcicGstrip-gcnf (agcnf), and batrcG for bstrip-tr(atr)cG . Moreover, we

take the channel policy environment C to be a global constant, and we avoid
explicit parameterization of further definitions over C.

Lemma 18. Let agcnf be 〈. . . , 〈p,AS ,m〉, . . .〉, and P be a policy in the impli-
cation normal form. The following two statements hold

– If JeKm = tt, then JP p,eKagcnf = JP Kagcnf .

– If JeKm = ff , then JP p,¬eKagcnf = JP Kagcnf .

Proof. We prove the first statement, and the proof of the second statement is
analogous.

Let P be
c
j(φj.Rj). Then, P p,e is

c
j(φ
′
j.Rj) where φ′j = true if [e]@p⇒ φj ,

φ′j = false if unsat([e]@p ∧ φj) and φ′j = φj otherwise.

Pick arbitrary i. With a case analysis, we show JφiKagcnf = Jφ′iKagcnf , which
directly establishes the validity of the first statement in the lemma.

– Suppose [e]@p ⇒ φi, and φ′i = true. We have J[e]@pKagcnf = tt . Hence,
JφiKagcnf = tt . Hence, JφiKagcnf = Jφ′iKagcnf .

– Suppose unsat([e]@p ∧ φi), and φ′i = false. Because J[e]@pKagcnf = tt , we
have JφiKagcnf = ff . Hence, JφiKagcnf = Jφ′iKagcnf .

– The case where φ′i = φi is trivial.

This completes the proof. ut

We define the specialization of a policy with a given augmented statement
and a given context as follows.

Vp,AS1;AS2
Ctx , Vp,AS1

Ctx

Vp,
ı{e}AS

Ctx , (Vp,eCtx(ı))
p,AS

Ctx
if ¬(∃ı′ : ı

′
stop ∈ atoms(AS))

Vp,AS
Ctx , V if AS is not one of the above

We define the syntactical “highness” for a process.

Definition 18 (Syntactically high processes).

– highV,Ctx ,G
Φ,Λ,X (agcnf , i,X, l′, X ′, ı′) if and only if for p = prin-of (agcnf [i]) and

AS = astmt-of (agcnf [i]), it holds that

X ⊆ X ∧ ∃l : C,V,Ctx `Φ,Λp (l,X) AS (l′, X ′) : ı′ ∧

(l ∩ G = ∅ ∨ ∃x ∈ X : JVp,AS
Ctx (x)Kagcnf ∩ G = ∅)

– highV,Ctx ,G
Φ,Λ,X (agcnf , i, l′, X ′, ı′) if and only if

∃X : highV,Ctx ,G
Φ,Λ,X (agcnf , i,X, l′, X ′, ı′).

– highV,Ctx ,G
Φ,Λ,X (agcnf , i) if and only if ∃l′, X ′, ı′ : highV,Ctx ,G

Φ,Λ,X (agcnf , i, l′, X ′, ı′)

57

Intuitively, a process is syntactically high wrt. the group G of principals if the
augmented statement of the process can be typed with a pre-context that cap-
tures unobservability by any principal in G.

We next define the low-equality of the states of two processes, the low-
equivalence of two processes, and the low-equivalence of two systems. We write
lvars(V,G) for the set {x ∈ Var | frs(V(x)) ∩ G 6= ∅}. Hence, lvars(V,G) is the
set of all variables that have a security type in INF where all the reader sets
contain at least one principal in G. A variable in lvars(V,G) is always observable
by some principal in G.

Definition 19 (Low-equality of process states). For augmented global con-

figurations agcnf 1 and agcnf 2, agcnf 1
V,Ctx ,G

=
Φ,Λ,i

agcnf 2 holds if and only if there

exist n with i ∈ {1, . . . , n}, p1, . . . , pn, AS 11, . . . , ASn1, AS 12, . . . , ASn2, m11,
. . . , mn1, m12, . . . , mn2, such that agcnf 1 = 〈〈p1,AS 11,m11〉, . . . , 〈pn,ASn1,mn1〉〉,
agcnf 2 = 〈〈p1,AS 12,m12〉, . . . , 〈pn,ASn2,mn2〉〉, and

∀x∈Var : (JVpi,ASi1
Ctx (x)Kagcnf 1∩ G = ∅ ⇔ JVpi,ASi2

Ctx (x)Kagcnf 2∩ G = ∅)

∧


x ∈ Λ(afst(AS i1)) ∩ Λ(afst(AS i2))

∪ lvars(V,G)

∧ JVpi,ASi1
Ctx (x)Kagcnf 1∩ G 6= ∅

⇒ mi1(x) = mi2(x)


Hence, the states of the i-th processes in the augmented global configurations
agcnf 1 and agcnf 2 are low-equal wrt. the group G of principals if each variable
has the same confidentiality level wrt. G in agcnf 1 and agcnf 2, and each variable
that is low and live, or that is in lvars(V,G), has the same value in agcnf 1 and
in agcnf 2.

Definition 20 (Low-equivalence of processes).

agcnf 1

V,Ctx ,G
=

Φ,Λ,i
agcnf 2

prin-of (agcnf 1[i]) = p = prin-of (agcnf 2[i])

highV,Ctx ,G
Φ,Λ,X (agcnf 1, i, l

′
1, X

′
1, ιf) ∧X ′1 ⊆ X ∨ ιf stop ∈ atoms(astmt-of (agcnf 1[i]))

highV,Ctx ,G
Φ,Λ,X (agcnf 2, i, l

′
2, X

′
2, ιf) ∧X ′2 ⊆ X ∨ ιf stop ∈ atoms(astmt-of (agcnf 2[i]))

agcnf 1

V,Ctx ,G
≈

Φ,Λ,X ,i
agcnf 2

agcnf 1

V,Ctx ,G
=

Φ,Λ,i
agcnf 2

prin-of (agcnf 1[i]) = p = prin-of (agcnf 2[i])
astmt-of (agcnf 1[i]) = AS = astmt-of (agcnf 2[i])

C,V,Ctx `Φ,Λp (l,X) AS (l′, X ′) : ιf ∧X ′ ⊆ X ∨ ιf stop ∈ atoms(AS)

¬highV,Ctx ,G
Φ,Λ,X (agcnf 1, i, l

′, X ′, ιf) ¬highV,Ctx ,G
Φ,Λ,X (agcnf 2, i, l

′, X ′, ιf)

agcnf 1

V,Ctx ,G
≈

Φ,Λ,X ,i
agcnf 2

Hence, the i-th processes in the augmented global configurations agcnf 1 and
agcnf 2 are low-equivalent wrt. the group G of principals if the following two
conditions are met:

58

1. the states of the i-th processes in agcnf 1 and agcnf 2 are low-equal wrt. G,
2. both processes either are high or have terminated, or neither process is high

and both processes have the same augmented statement.

Definition 21 (Low-equivalence of systems).

∀i : agcnf 1

Vi,Ctxi,G≈
Φi,Λi,Xi,i

agcnf 2 nip(C, ~V)

no-upd(cstmt-of (strip-gcnf (agcnf 1)), ~V, ~Λ, ~X)

no-upd(cstmt-of (strip-gcnf (agcnf 2)), ~V, ~Λ, ~X)

agcnf 1

~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
agcnf 2

Hence, two systems represented by the augmented global configurations agcnf 1

and agcnf 2 are low-equivalent if the i-th processes in agcnf 1 and agcnf 2 are
low-equivalent for each i, and the conditions nip and no-upd are satisfied. In
the above, cstmt-of (gcnf) is the concurrent statement of gcnf , for any global
configuration gcnf .

Lemma 19. If agcnf [i] = alcnf , alcnf
α−→ alcnf ′, α ∈ {c!~v, c?~v | C(c) ∩ G =

∅ ∧ ~v ∈ Val∗}, C,V,Ctx `Φ,Λp (l,X) astmt-of (alcnf) (l′, X ′) : ı′, and X ′ ⊆ X ,

then we have ∃X0 ⊇ X : highV,Ctx ,G
Φ,Λ,X (agcnf , i,X0, l

′, X ′, ı′).

The proof of this lemma is by induction on the derivation of C,V,Ctx `Φ,Λp
(l,X) astmt-of (alcnf) (l′, X ′) : ı′.

Lemma 20. For all agcnf 1 and agcnf 2 such that agcnf 1[j] = 〈pj ,AS 1,m1〉 and

agcnf 2[j] = 〈pj ,AS 2,m2〉, if nip(C, ~V) holds, for all k, and x ∈ lvars(Vk,G), it

holds that Jx@pkKagcnf 1
= Jx@pkKagcnf 2

, and (Vj)pj ,AS1

Ctx (x) = (Vj)pj ,AS2

Ctx (x),

then ∀x ∈ Var : J(Vj)pj ,AS1

Ctx (x)Kagcnf 1
∩ G = ∅ ⇔ J(Vj)pj ,AS2

Ctx (x)Kagcnf 2
∩ G = ∅.

Proof. If G = ∅, then the conclusion of the lemma obviously holds. In the fol-
lowing, we assume that G 6= ∅.

Pick an arbitrary x ∈ Var . Let inf (Vj(x)) be denoted by P . Let (Vj)pj ,AS1

Ctx (x)
be denoted by P ′. Then, P = (φ1 . R1)f. . .f(φn . Rn) for some n, φ1, . . . , φn,
R1, . . . , Rn. Furthermore, P ′ is of the form (φ′1 . R1)f . . .f(φ′n . Rn), where
φ′i ∈ {φi, true, false} for each i ∈ {1, . . . , n}.

Assume per absurdum, that JP ′Kagcnf 1
∩G and JP ′Kagcnf 2

∩G differ in empti-
ness. Further assume, w.l.o.g., that JP ′Kagcnf 1

∩ G = ∅. Then, there is an index
set I, such that (

⋂
i∈I Ri) ∩ G = ∅. Since G 6= ∅, there exists some principal p

such that p ∈ G, and p ∈ Pr \ (
⋂
i∈I Ri). Hence, p ∈ Pr \ (

⋂
1≤i≤nRi). Hence, we

have p ∈
⋂

1≤j≤n
⋂
u∈fvs(φj)

frs-cv(C, ~V, u). Hence, for each j ∈ {1, . . . , n}, and

each y@ph ∈ fvs(φj), we have frs(Vh(y))∩G 6= ∅. Hence, for each j ∈ {1, . . . , n},
and each y@ph ∈ fvs(φ′j), we have y ∈ lvars(Vh,G). Hence, for each y@ph in
the conditions of P ′, we have Jy@phKagcnf 1

= Jy@phKagcnf 2
according to the

hypothesis of the lemma. Since policies of variables depend only on variables
(but not on channel components, as specified in Section 5.1), we must have
JP ′Kagcnf 1

∩ G = JP ′Kagcnf 2
∩ G. This contradicts the differing emptiness of

JP ′Kagcnf 1
∩ G and JP ′Kagcnf 2

∩ G. This completes the proof of the lemma. ut

59

Lemma 21. The following two statements hold for all G 6= ∅.

1. If l ∩ G = ∅ ∨ ∃x ∈ X : JVp,AS
Ctx (x)Kagcnf ∩ G = ∅, then Vp,el,X,ı = V for all e.

2. If highV,Ctx ,G
Φ,Λ,X (agcnf , i), AS = astmt-of (agcnf [i]), then Vp,AS

Ctx = V.

Proof. We first show item 1 of the lemma. If l∩G = ∅, and G 6= ∅, then we have
l 6= Pr , and thus l ∩

⋂
x∈X frs(V(x)) 6= Pr . On the other hand, if there exists

some x0 ∈ X such that JVp,AS
Ctx (x0)Kagcnf ∩ G = ∅, and G 6= ∅, then we have

frs(V(x0)) 6= Pr . Hence, we also have l ∩
⋂
x∈X frs(V(x)) 6= Pr . Hence, for each

variable y, Vp,el,X,ı(y) = V(y). Hence, we have Vp,el,X,ı = V.

We next show item 2 of the lemma. Assume per absurdum that Vp,AS
Ctx 6= V.

Then, there exists some program point ı ∈ pts(AS), and some expression e in
AS , such that Ctx (ı) = (l′, X ′, ı′), and Vp,el′,X′,ı′ 6= V. We have l′ ∩ G = ∅ ∨ ∃x ∈
X ′ : JVp,AS

Ctx (x)Kagcnf ∩ G = ∅, because of highV,Ctx ,G
Φ,Λ,X (agcnf , i), ı ∈ pts(AS),

Ctx (ı) = (l′, X ′, ı′), and Lemma 17. Then, we have Vp,el′,X′,ı′ = V due to item 1
of the lemma, and we have a contradiction. ut

Lemma 22. If AS ∈ AStmtWF, JΦ(afst(AS))Kagcnf = tt, nip(C, ~V), X ′ ⊆ X ,

highVi,Ctx ,G
Φ,Λ,X (agcnf , i,X, l′, X ′, ı′), agcnf [i] = 〈p,AS ,m〉, 〈p,AS ,m〉 α−→ 〈p,AS ′,m′〉,

and agcnf ′ = agcnf [i 7→ 〈p,AS ′,m′〉], then

1. ∀x ∈ Var : J(Vi)p,AS ′

Ctx (x)Kagcnf ′ ∩ G = ∅ ⇔ J(Vi)p,AS
Ctx (x)Kagcnf ∩ G = ∅,

2. if α = c!~v or α = c?~v for some c and ~v, then C(c) ∩ G = ∅,
3. ∀x ∈ upd-next(AS) : J(Vi)p,AS ′

Ctx (x)Kagcnf ′ ∩ G = ∅, and
4. ιf stop ∈ atoms(AS ′) or there exists some X0 ⊇ X for which it holds that

highVi,Ctx ,G
Φ,Λ,X (agcnf ′, i,X0, l

′, X ′, ı′).

Proof. By highVi,Ctx ,G
Φ,Λ,X (agcnf , i,X, l′, X ′, ı′), there exists some l such that

X ⊆ X (14)

C,Vi,Ctx `Φ,Λp (l,X) AS (l′, X ′) : ı′ (15)

l ∩ G = ∅ ∨ ∃x ∈ X : J(Vi)p,AS
Ctx (x)Kagcnf ∩ G = ∅ (16)

We perform an induction on the derivation of (15). Only selected cases of
this induction are presented below.

– Case ırecv(c, ~x). From (15), we have

lf(Φ(ı) . Vi[X]) � C(c) (17)

∀j : Φ(ı) . C(c.j)fVi[X] � Vi(xj)[(c.j/xj@p)j] (18)

We have C(c)∩G = ∅ by (16), (17), and JΦ(ı)Kagcnf = tt , thereby establishing
condition 2 of the lemma. Hence, JC(c.j)Kagcnf ∩ G = ∅ because the content
of communication is no less confidential than the presence of communication

for each polyadic channel. Hence, we have ∀j : J(Vi)p,
ιf stop

Ctx (xj)Kagcnf ′ ∩G = ∅
because of (18). This establishes condition 3 of the lemma.

60

Pick an arbitrary y ∈ lvars(Vi,G). We have J(Vi)p,
ιf stop

Ctx (y)Kagcnf ′ ∩ G 6= ∅.
Hence, we have y 6∈ {~x}, and it holds that Jy@pKagcnf = Jy@pKagcnf ′ . We

also have (Vi)p,
ırecv(c,~x)

Ctx = (Vi)p,
ιf stop

Ctx . Hence, we can obtain

∀x′ ∈ Var : J(Vi)p,
ιf stop

Ctx (x′)Kagcnf ′ ∩ G = ∅ ⇔ J(Vi)p,
ırecv(c,~x)

Ctx (x′)Kagcnf ∩ G = ∅

using Lemma 20, thereby establishing condition 1 of the lemma.
Condition 4 of the lemma trivially holds.

– Case ıif e then AS 1 else AS 2 fi.
Condition 2 and condition 3 of the lemma vacuously hold.
In the following, we write if as a shorthand notation for

ıif e then AS1 else AS2 fi

We have AS 1 ∈ Stmt and AS 2 ∈ Stmt because if ∈ AStmtWF.
Assume w.l.o.g. JeKm = tt . We have AS ′ = ı{e}AS 1.

Pick an arbitrary x ∈ Var . We show J(Vi)p,AS ′

Ctx (x)Kagcnf ′ = J(Vi)p,ifCtx (x)Kagcnf

with a case analysis on whether (Vi)p,AS ′

Ctx (x) = (Vi)p,ifCtx (x).

• Suppose (Vi)p,AS ′

Ctx (x) = (Vi)p,ifCtx (x) holds. Because agcnf ′ has the same

memory states as those of agcnf , we directly have J(Vi)p,AS ′

Ctx (x)Kagcnf ′ =

J(Vi)p,ifCtx (x)Kagcnf .

• Suppose (Vi)p,AS ′

Ctx (x) 6= (Vi)p,ifCtx (x). Let P , inf ((Vi)p,ifCtx (x)). We have

P = inf (Vi(x)). Hence, (Vi)p,AS ′

Ctx (x) = P p,e. We have JVip,ifCtx (x)Kagcnf =
JP Kagcnf by Lemma 1. We have JP Kagcnf = JP p,eKagcnf by Lemma 18

and JeKm = tt . We have J(Vi)p,AS ′

Ctx (x)Kagcnf = J(Vi)p,AS ′

Ctx (x)Kagcnf ′ be-
cause agcnf and agcnf ′ have the same memory states. Hence, we have

J(Vi)p,AS ′

Ctx (x)Kagcnf ′ = J(Vi)p,ifCtx (x)Kagcnf .
The reasoning above shows

∀x ∈ Var : J(Vi)p,AS ′

Ctx (x)Kagcnf ′ ∩ G = ∅ ⇔ J(Vi)p,ifCtx (x)Kagcnf ∩ G = ∅ (19)

From (15), we have C, (Vi)p,el′,X′,ı′ ,Ctx `Φ,Λp (l,X ∪ fvs(e)) AS 1 (l′, X ′) : ı′.

Hence, we have C,Vi,Ctx `Φ,Λp (l,X) AS ′ (l′, X ′) : ı′. We have l ∩ G =

∅ ∨ ∃x ∈ X : J(Vi)p,AS ′

Ctx (x)Kagcnf ′ ∩ G = ∅ because of (16) and (19). Hence,

we have highVi,Ctx ,G
Φ,Λ,X (agcnf ′, i,X, l′, X ′, ı′).

– Case AS 1; AS 2.
From (15), we have

C,Vi,Ctx `Φ,Λp (l,X) AS1 (l′′, X ′′) : afst(AS2) (20)

C,Vi,Ctx `Φ,Λp (l′′, X ′′) AS2 (l′, X ′) : ı′ (21)

From AS 1; AS 2 ∈ AStmtWF, we have AS 1 ∈ AStmtWF. We have X ′′ ⊆ X ′

by (21) and Lemma 16. Hence, we have X ′′ ⊆ X . Let agcnf 1 = agcnf [i 7→
AS 1]. Then, agcnf 1 and agcnf have the same memory states. We have

highVi,Ctx ,G
Φ,Λ,X (agcnf 1, i,X, l

′′, X ′′, afst(AS 2)) because of (20), (14), (16), and

J(Vi)p,AS
Ctx Kagcnf = J(Vi)p,AS1

Ctx Kagcnf 1

61

We have 〈p,AS 1,m〉
α−→ 〈p,AS ′1,m

′〉.
Let agcnf ′1 = agcnf 1[i 7→ 〈p,AS ′1,m

′〉]. By the induction hypothesis, we
have

∀x ∈ Var : J(Vi)p,AS ′1
Ctx (x)Kagcnf ′1

∩ G = ∅ ⇔ J(Vi)p,AS1
Ctx (x)Kagcnf 1 ∩ G = ∅ (22)

(∃c, ~v : α = c!~v ∨ α = c?~v)⇒ C(c) ∩ G = ∅ (23)

∀x ∈ upd-next(AS1) : J(Vi)p,AS ′1
Ctx (x)Kagcnf ′1

∩ G = ∅ (24)

ιf stop ∈ atoms(AS ′1) ∨ ∃X1 ⊇ X ∧ highVi,Ctx ,G
Φ,Λ,X (agcnf ′1, i,X1, l

′′, X ′′, afst(AS2))

(25)

Condition 2 of the lemma is established using (23).
To show conditions 1, 3, and 4 of the lemma, we make a case analysis on
whether ∃~C : AS ′1 = blks(~C, ιf stop).

• Suppose ¬(∃~C : AS ′1 = blks(~C, ιf stop)).
We have AS ′ = AS ′1; AS 2, and the reasoning is straightforward by using
the conditions (22), (24), and (25).

• Suppose ∃~C : AS ′1 = blks(~C, ιf stop).
We have AS ′ = AS 2. It holds that AS 2 ∈ Stmt because AS 1; AS 2 ∈
AStmtWF.
In case G = ∅, it is straightforward to establish conditions 1, 3, and 4 of
the lemma. Hence, we assume G 6= ∅ below.

We have (Vi)
p,AS ′1
Ctx = Vi because ∃~C : AS ′1 = blks(~C, ιf stop).

Hence, for an arbitrary variable x ∈ Var , we have

J(Vi)p,AS ′

Ctx (x)Kagcnf ′ ∩ G = ∅

⇔ J(Vi)p,AS ′

Ctx (x)Kagcnf ′1
∩ G = ∅

⇔ JVi(x)Kagcnf ′1
∩ G = ∅ (because AS ′ = AS2 ∈ Stmt)

⇔ J(Vi)p,AS ′1
Ctx (x)Kagcnf ′1

∩ G = ∅ (because of (Vi)p,AS ′1
Ctx = Vi)

⇔ J(Vi)p,AS1
Ctx (x)Kagcnf 1 ∩ G = ∅ (because of (22))

⇔ J(Vi)p,AS
Ctx (x)Kagcnf 1 ∩ G = ∅

⇔ J(Vi)p,AS
Ctx (x)Kagcnf ∩ G = ∅

This establishes condition 1 of the lemma.
Pick an arbitrary x ∈ upd -next(AS). We have x ∈ upd -next(AS 1). We

have J(Vi)
p,AS ′1
Ctx (x)Kagcnf ′1

∩ G = ∅ because of (24). From the reasoning

above that establishes condition 1, we have J(Vi)p,AS ′

Ctx (x)Kagcnf ′ ∩ G = ∅,
establishing condition 3 of the lemma.
We have l � l′′ and X ⊆ X ′′ by (20) and Lemma 16.
We have previously shown X ′′ ⊆ X ′. Hence, we have X ′′ ⊆ X because
of X ′ ⊆ X . From (16), either l∩G = ∅, in which case we have l′′∩G = ∅,
or ∃x ∈ X : J(Vi)p,AS

Ctx (x)Kagcnf ∩ G = ∅, in which case we have ∃x ∈
X ′′ : J(Vi)p,AS ′

Ctx (x)Kagcnf ′ ∩ G = ∅ because of X ⊆ X ′′ and condition 1 of

the lemma. Hence, we can establish highVi,Ctx ,G
Φ,Λ,X (agcnf ′, i,X ′′, l′, X ′, ı′)

based on (21).

62

– Case ı{e}AS 1. We have 〈p,AS 1,m〉
α−→ 〈p,AS ′1,m

′〉, and AS ′ = ı{e}AS ′1.
Let agcnf 1 = agcnf [i 7→ 〈p,AS 1,m〉]. By (15), we have C, (Vi)p,el′,X′,ı′ ,Ctx `Φ,Λp
(l,X ∪ fvs(e)) AS 1 (l′, X ′) : ı′. Hence, we have X ∪ fvs(e) ⊆ X ′, because of
Lemma 16. Hence, we have X ∪ fvs(e) ⊆ X because of X ′ ⊆ X . Let V ′ =

(Vi)p,el′,X′,ı′ . We have l∩G = ∅∨∃x ∈ X ∪ fvs(e) : J(V ′)p,AS1

Ctx (x)Kagcnf 1
∩G = ∅

because of (16), the fact that agcnf 1 and agcnf have the same memory states,

and the definition of (Vi)p,AS
Ctx . Hence, we have highV

′,Ctx ,G
Φ,Λ,X (agcnf 1, i,X ∪

fvs(e), l′, X ′, ı′). We have JΦ(afst(AS 1))Kagcnf 1
= tt because of JΦ(afst(AS))K

agcnf = tt , AS = ı{e}AS 1, the definition of afst , and the fact that agcnf 1

and agcnf have the same memory states. Hence, by the induction hypothesis,
we have

∀x ∈ Var : J(V ′)p,AS ′1
Ctx (x)Kagcnf ′1

∩ G = ∅ ⇔ J(V ′)p,AS1

Ctx (x)Kagcnf 1 ∩ G = ∅ (26)

(∃c, ~v : α = c!~v ∨ α = c?~v)⇒ C(c) ∩ G = ∅ (27)

∀x ∈ upd-next(AS1) : J(V ′)p,AS ′1
Ctx (x)Kagcnf ′1

∩ G = ∅ (28)

ιf stop ∈ atoms(AS ′1) ∨ ∃X1 ⊇ X ∪ fvs(e) : highV
′,Ctx ,G

Φ,Λ,X (agcnf ′1, i,X1, l
′, X ′, ı′)

(29)

where agcnf ′1 = agcnf ′[i 7→ 〈p,AS ′1,m
′〉].

We have (V ′)p,AS ′1
Ctx = (Vi)

p,ı{e}AS ′1
Ctx . If ιf stop 6∈ atoms(AS ′1), then this equal-

ity can be established directly. Otherwise, we can obtain V ′ = Vi by us-
ing Lemma 21, and this equality can be shown by observing that AS ′1 =

blks(~C ′, ιf stop) for some ~C ′ (since it can be shown that ı{e}AS ′1 ∈ AStmtWF).

Condition 1 of the lemma can be established by the use of (26), (V ′)p,AS ′1
Ctx =

(Vi)
p,ı{e}AS ′1
Ctx , (V ′)p,AS1

Ctx = (Vi)p,
ı{e}AS1

Ctx , and the fact that agcnf (resp. agcnf ′)
and agcnf 1 (resp. agcnf ′1) have the same memory states. Condition 2 of the
lemma can be established using (27). Condition 3 of the lemma can be estab-

lished using (28), upd -next(AS) = upd -next(AS 1), (V ′)p,AS ′1
Ctx = (Vi)

p,ı{e}AS ′1
Ctx ,

and the fact that agcnf ′ and agcnf ′1 have the same memory states.
From (29), either ιf stop ∈ atoms(AS ′1) or there exists some X1 ⊇ X ∪ fvs(e),

such that highVi,Ctx ,G
Φ,Λ,X (agcnf ′1, i,X1, l

′, X ′, ı′). In the former case, we have
ιf stop ∈ atoms(AS ′). In the latter case, there exists some l1 such that

X1 ⊆ X

C,V ′,Ctx `Φ,Λp (l1, X1) AS ′1 (l′, X ′) : ı′

l1 ∩ G = ∅ ∨ ∃x ∈ X1 : J(V ′)p,AS ′1
Ctx (x)Kagcnf ′1

∩ G = ∅

Hence, we have C,Vi,Ctx `Φ,Λp (l1, X1) AS ′ (l′, X ′) : ı′, and l1∩G = ∅∨∃x ∈
X1 : J(Vi)p,AS ′

Ctx (x)Kagcnf ′ ∩ G = ∅. Hence, we have

highVi,Ctx ,G
Φ,Λ,X (agcnf ′, i,X1, l

′, X ′, ı′)

where X1 ⊇ X. Condition 4 of the lemma is now established.
– Case subtyping. The reasoning for this case is straightforward using the

induction hypothesis.

63

This induction completes the proof of the lemma. ut

Lemma 23. For agcnf 1 and agcnf 2, if agcnf 1[i] = 〈pi,AS 1,m1〉, agcnf 2[i] =
〈pi,AS 2,m2〉, agcnf ′1 = agcnf 1[i 7→ 〈pi,AS ′1,m1〉], agcnf ′2 = agcnf 2[i 7→ 〈pi,
AS ′2,m2〉], j 6= i, and agcnf 1

V,Ctx ,G
≈

Φ,Λ,X ,j
agcnf 2, then agcnf ′1

V,Ctx ,G
≈

Φ,Λ,X ,j
agcnf ′2.

Proof. By Definition 19 and Definition 20, the i-th augmented statement is un-

used in deciding ·
V,Ctx ,G
≈

Φ,Λ,X ,j
· for two arbitrary augmented global configurations,

if j 6= i. Hence, for agcnf ′1 and agcnf ′2 that differ from agcnf 1 and agcnf 2, re-

spectively, only in the i-th augmented statement, relatedness in ·
V,Ctx ,G
≈

Φ,Λ,X ,j
· is

preserved. ut

Lemma 24. If nip(C, ~V) holds, ∀k : agcnf 1
Vk,Ctxk,G

=
Φk,Λk,k

agcnf 2, agcnf 1[i]
α−→

〈pi,AS ′i1,m
′
i1〉, ∀x ∈ upd-next(AS i1) : J(Vi)

pi,AS ′i1
Ctx (x)Kagcnf ′1

∩ G = ∅, agcnf ′1 =

agcnf 1[i 7→ 〈pi,AS ′i1,m
′
i1〉], then ∀j 6= i : agcnf ′1

Vj ,Ctxj ,G
=

Φj ,Λj ,j
agcnf 2.

Proof. Pick an arbitrary k, and x ∈ lvars(Vk,G). If k 6= i, then we have
Jx@pkKagcnf ′1

= Jx@pkKagcnf 1
because agcnf ′1 and agcnf 1 have the same mem-

ory states for the k-th process. Assume k = i. We have J(Vk)
pk,AS ′k1
Ctx (x)Kagcnf ′1

∩
G 6= ∅, because x ∈ lvars(Vk,G). Hence, we have x 6= upd -next(AS i1). Hence,
we have Jx@pkKagcnf ′1

= Jx@pkKagcnf 1
. Hence, we have ∀x ∈ lvars(Vk,G) :

Jx@pkKagcnf ′1
= Jx@pkKagcnf 1

for all k.
Pick an arbitrary j 6= i, we have

∀x ∈ Var : J(Vj)
pj ,AS ′j1
Ctxj

(x)Kagcnf ′1
∩ G = ∅ ⇔ J(Vj)

pj ,ASj1
Ctxj

(x)Kagcnf 1 ∩ G = ∅ (30)

where AS ′j1 = astmt-of (agcnf ′1[j]), AS j1 = astmt-of (agcnf 1[j]), by Lemma 20.

We have AS ′j1 = AS j1. By ∀k : agcnf 1
Vk,Ctxk,G

=
Φk,Λk,k

agcnf 2, we have

∀x ∈ Var : J(Vj)
pj ,ASj1
Ctxj

(x)Kagcnf 1 ∩ G = ∅ ⇔ J(Vj)
pj ,ASj2
Ctxj

(x)Kagcnf 2 ∩ G = ∅ (31)

where AS j2 = astmt-of (agcnf 2[j]). By (30) and (31), we have

∀x ∈ Var : J(Vj)
pj ,AS ′j1
Ctxj

(x)Kagcnf ′1
∩ G = ∅ ⇔ J(Vj)

pj ,ASj2
Ctxj

(x)Kagcnf 2 ∩ G = ∅

Pick an arbitrary x ∈ Λj(afst(AS ′j1))∩Λj(afst(AS j2))∪ lvars(Vj ,G) and as-

sume J(Vj)
pj ,AS ′j1
Ctxj

(x)Kagcnf ′1
∩G 6= ∅. We have x ∈ Λj(afst(AS j1))∩Λj(afst(AS j2))

∪lvars(Vj ,G) because AS ′j1 = AS j1. We deduce J(Vj)pj ,ASj1
Ctxj

(x)Kagcnf 1
∩ G 6= ∅

using (30). Hence, we have mj1(x) = mj2(x), where mj1 and mj2 are the mem-
ory states of the j-th processes in agcnf 1 and agcnf 2, respectively. Let m′j1 and

m′j2 be the memory states of the j-th process in agcnf ′1 and agcnf 2, respectively.
We have m′j1(x) = m′j2(x) because m′j1 = mj1, and m′j2 = mj2.

This completes the proof of this lemma. ut

64

Definition 22. The predicate no-upd-next is defined as

no-upd-next(ACS , i, ~V, ~Λ, ~X) ,

∀j 6= i : ∀x, x′ :


(
x ∈ Λj(afst(ACS [j])) ∨
x ∈ Xj ∧ frs(Vj(x)) 6= Pr

)
∧ x′@pi ∈ fvs(Vj(x))

 ⇒ x′ 6∈ upd-next(ACS [i])

Lemma 25. If nip(C, ~V), ∀j 6= i : agcnf ′1[j] = agcnf 1[j], ∀j 6= i : agcnf ′2[j] =
agcnf 2[j], ∀j : astmt-of (agcnf 1[j]) ∈ AStmtWF, ∀j : astmt-of (agcnf 2[j]) ∈
AStmtWF,

no-upd-next(acstmt-of (agcnf 1), i, ~V, ~Λ, ~X),

no-upd-next(acstmt-of (agcnf 2), i, ~V, ~Λ, ~X),

∀k : agcnf 1

Vk,Ctxk,G≈
Φk,Λk,Xk,k

agcnf 2, ∀y ∈ lvars(Vi,G) : Jy@piKagcnf ′1
= Jy@piKagcnf ′2

,

then it holds that ∀j 6= i : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2.

Proof. Pick an arbitrary j 6= i, and assume agcnf 1[j] = 〈pj ,AS j1,mj1〉 and
agcnf 2[j] = 〈pj ,AS j2,mj2〉 for some pj , AS j1, AS j2, mj1 and mj2.

We make a case analysis on how agcnf 1

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2 is established.

– Suppose agcnf 1

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2 is established by the first rule for the rela-

tion. If G = ∅, the proof is straightforward. Hence, we assume G 6= ∅ below.
We have for some l′1, l′2, X ′1, and X ′2, that

agcnf 1

Vj ,Ctxj ,G
=

Φj ,Λj ,j
agcnf 2 (32)

high
Vj ,Ctxj ,G
Φj ,Λj ,Xj (agcnf 1, j, l

′
1, X

′
1, ιf) ∧X ′1 ⊆ Xj ∨ ιf stop ∈ atoms(AS j1) (33)

high
Vj ,Ctxj ,G
Φj ,Λj ,Xj (agcnf 2, j, l

′
2, X

′
2, ιf) ∧X ′2 ⊆ Xj ∨ ιf stop ∈ atoms(AS j2) (34)

We have (Vj)pj ,ASj1
Ctxj

= Vj from (33), AS j1 ∈ AStmtWF, G 6= ∅, and Lemma 21.

We have (Vj)pj ,ASj2
Ctxj

= Vj from (34), AS j2 ∈ AStmtWF, G 6= ∅, and Lemma 21.

Hence, we have (Vj)pj ,ASj1
Ctxj

= (Vj)pj ,ASj2
Ctxj

.

We next show agcnf ′1
Vj ,Ctxj ,G

=
Φj ,Λj ,j

agcnf ′2.

Pick an arbitrary x ∈ Var . We have for all j 6= i, and y ∈ lvars(Vj ,G), that

Jy@pjKagcnf ′1
= Jy@pjKagcnf ′2

, because agcnf 1

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2, agcnf ′1[j] =

agcnf 1[j], and agcnf ′2[j] = agcnf 2[j]. Hence, for all k, and y ∈ lvars(Vk,G),

we have Jy@pkKagcnf ′1
= Jy@pkKagcnf ′2

. Hence, we have J(Vj)pj ,ASj1
Ctxj

(x)Kagcnf ′1
∩

G = ∅ ⇔ J(Vj)pj ,ASj2
Ctxj

(x)Kagcnf ′2
∩ G = ∅ by Lemma 20, nip(C, ~V), and

(Vj)pj ,ASj1
Ctxj

= (Vj)pj ,ASj2
Ctxj

. Next assume x ∈ Λj(afst(AS j1))∩Λj(afst(AS j2))∪

65

lvars(Vj ,G), and it holds that J(Vj)pj ,ASj1
Ctxj

(x)Kagcnf ′1
∩ G 6= ∅. We then have

J(Vj)pj ,ASj1
Ctxj

(x)Kagcnf 1
∩G 6= ∅ using no-upd -next(acstmt-of (agcnf 1), i, ~V, ~Λ, ~X)

and x is either in Λj(afst(AS j1)) or in lvars(Vj ,G). Hence, we have mj1(x) =

mj2(x) using (32). It has thus been established that agcnf ′1
Vj ,Ctxj ,G

=
Φj ,Λj ,j

agcnf ′2.

We have

high
Vj ,Ctxj ,G
Φj ,Λj ,Xj (agcnf ′1, j, l

′
1, X

′
1, ιf) ∧X ′1 ⊆ Xj ∨ ιf stop ∈ atoms(AS j1)

high
Vj ,Ctxj ,G
Φj ,Λj ,Xj (agcnf ′2, j, l

′
2, X

′
2, ιf) ∧X ′2 ⊆ Xj ∨ ιf stop ∈ atoms(AS j2)

using (33), (34), and

no-upd-next(acstmt-of (agcnf 1), i, ~V, ~Λ, ~X)

no-upd-next(acstmt-of (agcnf 2), i, ~V, ~Λ, ~X)

Hence, we can establish agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2.

– Suppose agcnf 1

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2 is established by the second rule.

We have AS j1 = AS j2. Hence, (Vj)pj ,ASj1
Ctxj

= (Vj)pj ,ASj2
Ctxj

. By reasoning anal-

ogous to that of the previous case, it can be shown that agcnf ′1
Vj ,Ctxj ,G

=
Φj ,Λj ,j

agcnf ′2. We have ¬high
Vj ,Ctxj ,G
Φj ,Λj ,Xj (agcnf ′1, j) and ¬high

Vj ,Ctxj ,G
Φj ,Λj ,Xj (agcnf ′2, j), be-

cause of ¬high
Vj ,Ctxj ,G
Φj ,Λj ,Xj (agcnf 1, j), ¬high

Vj ,Ctxj ,G
Φj ,Λj ,Xj (agcnf 2, j), and

no-upd-next(acstmt-of (agcnf 1), i, ~V, ~Λ, ~X)

no-upd-next(acstmt-of (agcnf 2), i, ~V, ~Λ, ~X)

Hence, we can establish agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2.

The case analysis above completes the proof of the lemma. ut

Definition 23. We define asst-now(Φ, agcnf , i) to express JΦ(afst(AS))Kagcnf =
tt, where AS = astmt-of (agcnf [i]).

Definition 24. We define lv-now(Λ,AS , ı′) to express if

〈p,AS ,m1〉
α−→ 〈p,AS ′,m′1〉

and m1
Λ(afst(AS))∪in-vars(strip-stmt(AS))

= m2, then there exists some m′2 such that

〈p,AS ,m2〉
α−→ 〈p,AS ′,m′2〉

and m′1
Λ(afst(AS ′[ı′/ιf]))= m′2.

Let RCI be the set {c!~v, c?· | c ∈ PCh ∧ ~v ∈ Val} of relaxed communication
intents. The difference with the set CI of communication intents is in that both
external and internal polyadic channels can be used in the relaxed communi-
cation intents. The intention is to enable compositional proof for the case of
synchronous communication, where the output and the input are regarded as
separate communication actions with the (imaginary) environment.

66

Definition 25. We define the predicate rmatch by

rmatch(α, rci) ,∃c ∈ PCh : ∃~v ∈ Val∗ : α = c!~v ∧ rci = c?· ∨
∃c ∈ PCh : ∃~v ∈ Val∗ : α = c?~v ∧ rci = c!~v ∨
α 6∈ {c!~v, c?~v | c ∈ PCh ∧ ~v ∈ Val∗}

Definition 26. We define the following notion of a modified step of a process

alcnf
α
_rci alcnf ′ : ı′

,




∃alcnf ′′ :alcnf

α−→ alcnf ′′ ∧ rmatch(α, rci)∧(
afst(astmt-of (alcnf ′′)) 6= ιf ∧ alcnf ′ = alcnf ′′ ∨
afst(astmt-of (alcnf ′′)) = ιf ∧ alcnf ′ = alcnf ′′[ı′/ιf]

)
∨ (¬(∃α′ : alcnf

α′−→ ∧ rmatch(α′, rci))) ∧ alcnf ′ = alcnf ∧ α = �


The lemma below gives the conditions under which a modified step of a

process that is not syntactically high from an augmented global configuration can
be simulated by a step of a process executing the same augmented statement from
a different augmented global configuration, while preserving the low-equivalence
of the two processes.

Lemma 26. If all of the following statements hold

1. nip(C, ~V),
2. brci1cGagcnf 1

= brci2cGagcnf 2
,

3. for each j, astmt-of (agcnf 1[j]) ∈ AStmtWF,
4. for each j, astmt-of (agcnf 2[j]) ∈ AStmtWF,
5. for each j, fvs-cond(astmt-of (agcnf 1[j])) ⊆ Xj,
6. for each j, fvs-cond(astmt-of (agcnf 2[j])) ⊆ Xj,
7. (α1 6= � ⇒ no-upd-next(acstmt-of (agcnf 1), i, ~V, ~Λ, ~X)),

8. (∃α2 6= � : agcnf 2[i]
α2_rci2)⇒ no-upd-next(acstmt-of (agcnf 2), i, ~V, ~Λ, ~X),

9. prin-of (agcnf 1[i]) = pi = prin-of (agcnf 2[i]),
10. astmt-of (agcnf 1[i]) = AS = astmt-of (agcnf 2[i]),
11. (α1 6= � ⇒ asst-now(Φi, agcnf 1, i)),

12. (∃α2 6= � : agcnf 2[i]
α2_rci2)⇒ asst-now(Φi, agcnf 2, i),

13. lv-now(Λi,AS , ı′),
14. C,Vi,Ctx i `Φi,Λipi (l,X) AS (l′, X ′) : ı′, where X ′ ⊆ Xi,
15. ¬highVi,Ctx i,G

Φi,Λi,Xi (agcnf 1, i, l
′, X ′, ı′) and ¬highVi,Ctx i,G

Φi,Λi,Xi (agcnf 2, i, l
′, X ′, ı′),

16. agcnf 1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2, ∀j 6= i : agcnf 1

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2,

17. agcnf 1[i]
α1_rci1 alcnf ′1 : ı′, agcnf ′1 = agcnf 1[i 7→ alcnf ′1],

then there exist some α2, alcnf ′2, and agcnf ′2 = agcnf 2[i 7→ alcnf ′2], such that

agcnf 2[i]
α2_rci2 alcnf ′2 : ı′, bα1cGagcnf 1

= bα2cGagcnf 2
, α1 = � ⇔ α2 = �,

agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′2, ∀j 6= i : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2, and there exist

67

some AS ′, l′′, such that astmt-of (alcnf ′1) = AS ′ = astmt-of (alcnf ′2), and either
ı′stop ∈ atoms(AS ′) or it can be derived that

C,Vi,Ctx i `Φi,Λipi (l′′, X) AS ′ (l′, X ′) : ı′

Proof. The proof is by induction on the derivation of

C,Vi,Ctx i `Φi,Λipi (l,X) AS (l′, X ′) : ı′

Only selected cases of this induction are shown.

– Case ısend(c,~e). Using ¬highVi,Ctx i,G
Φi,Λi,Xi (agcnf 1, i, l

′, X ′, ı′), we can obtain C(c)∩
G 6= ∅, by Lemma 19. Hence, we have α1 = � = α2 or α1 = c!~v and α2 = c!~v′

for some ~v and ~v′, using brci1cGagcnf 1
= brci2cGagcnf 2

. In the first case, it is
straightforward to establish the conclusion of the lemma. In the following,
we assume α1 = c!~v and α2 = c!~v′ for some ~v and ~v′. We have ~v = J~eKm1

and ~v′ = J~eKm2
, where m1 and m2 are the memory states of agcnf 1[i] and

agcnf 2[i], respectively.
We next show bc!~vcGagcnf 1

= bc!~v′cGagcnf 2
. As a first step, we show

JC(c.j)Kagcnf 1,[(c.k 7→vk)k] ∩ G 6= ∅ ⇔ JC(c.j)Kagcnf 2,[(c.k 7→v′k)k]
∩ G 6= ∅

We consider the case where G 6= ∅, since the equivalence above obviously
holds in the other case. Assume per absurdum that the equivalence above
does not hold. Let inf (C(c.j)) = P =

c
s(φs . Rs). Then, there is an index

set I 6= ∅, such that (
⋂
s∈I Rs) ∩ G = ∅. Hence, G ⊆ Pr \ (

⋂
s∈I Rs) ⊆

Pr \ (
⋂
sRs). Hence, using nip(C, ~V), we can obtain that each principal in G

is in frs(Vk(x′)) for each x′@pk in each φs and in frs(C(c.k)) for each c.k in
each φs.
Pick an arbitrary x′@pk in φs, we have x′ ∈ lvars(Vk,G). Hence, we have

Jx′@pkKagcnf 1
= Jx′@pkKagcnf 2

by agcnf 1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2.

Pick an arbitrary c.k in φs. We have

Φi(ı)⇒ Vi[fvs(ek) ∪X] � C(c.k)[(e`/c.`)`]

from the typing of ısend(c,~e). Hence, for each variable y in ek, we have

JVi(y)Kagcnf 1,[(c.` 7→Je`Kagcnf 1
)`] ⊇ JC(c.k)Kagcnf 1,[(c.` 7→Je`Kagcnf 1

)`]

We have JVi(y)Kagcnf 1
∩ G 6= ∅ because G ⊆ frs(C(c.k)), and Vi(y) does

not contain channel components in its conditions. Hence, if y ∈ Λi(ı), then

we have Jy@piKagcnf 1
= Jy@piKagcnf 2

by agcnf 1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2. Hence,

we have JekKm1
= JekKm2

. Hence, vk = v′k. Hence, Jc.kKagcnf 1,[(c.k 7→vk)k] =
Jc.kKagcnf 2,[(c.k 7→v′k)k].
We therefore have JC(c.j)Kagcnf 1,[(c.k 7→vk)k] = JC(c.j)Kagcnf 2,[(c.k 7→vk)k], con-
tradicting the assumption. We have thus established that

JC(c.j)Kagcnf 1,[(c.k 7→vk)k] ∩ G 6= ∅ ⇔ JC(c.j)Kagcnf 2,[(c.k 7→v′k)k]
∩ G 6= ∅

We have alcnf ′1 = 〈pi, ı
′
stop,m1〉, and there exists alcnf ′2 = 〈pi, ı

′
stop,m2〉,

such that agcnf 2[i]
α2_rci2 alcnf ′2 : ı′.

68

Again using the typing of ısend(c,~e), it can be shown that vj = v′j holds if

JC(c.j)Kalcnf 1,[(c. 7̀→v`)`] ∩ G 6= ∅. This completes the proof that bc!~vcGagcnf 1
=

bc!~v′cGagcnf 2
.

Next, agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′2 can be shown straightforwardly, noting that

(Vi)pi,
ı′ stop

Ctxi
= (Vi)pi,

ısend(c,~e)
Ctxi

We have ∀j 6= i : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2 using agcnf ′1 = agcnf 1[i 7→

〈pi, ı
′
stop,m1〉], agcnf ′2 = agcnf 2[i 7→ 〈pi, ı{e}AS 1,m2〉], agcnf 1

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2 and Lemma 23.
There exist AS ′ = ı′stop such that astmt-of (alcnf ′1) = AS ′ = astmt-of (alcnf ′2).

– Case ırecv(c, ~x). From ¬highVi,Ctx i,G
Φi,Λi,Xi (agcnf 1, i, l

′, X ′, ı′), we can obtain C(c)∩
G 6= ∅ using Lemma 19. We have α1 = � or α1 = c?~v for some ~v with
rci1 = c!~v. In the first case, α2 = � (because brci1cGagcnf 1

= brci2cGagcnf 2
)

and it is straightforward to establish the conclusion of the lemma. Hence,
we assume α1 = c?~v for some ~v with rci1 = c!~v below.
Then, alcnf ′1 = 〈pi, ı

′
stop,m′1〉, where m′1 = m1[~x 7→ ~v]. There exist α2 =

c?~v′ with rci2 = c!~v′, alcnf ′2 = 〈pi, ı
′
stop,m′2〉, where m′2 = m2[~x 7→ ~v′], by

bc1!~vcGagcnf 1
= bc!~v′cGagcnf 2

. Again from bc1!~vcGagcnf 1
= bc!~v′cGagcnf 2

, we can

obtain bα1cGagcnf 1
= bα2cGagcnf 2

.

We proceed to show agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′2. We first show

∀x ∈ Var : J(Vi)p,
ı′ stop

Ctxi
(x)Kagcnf ′1

∩ G = ∅ ⇔ J(Vi)p,
ı′ stop

Ctxi
(x)Kagcnf ′2

∩ G = ∅

Pick an arbitrary k and y ∈ lvars(Vk,G). We show

Jy@pkKagcnf ′1
= Jy@pkKagcnf ′2

by a case distinction on y and k.
• Suppose y@pk 6∈ {xj@pi | j ∈ {1, . . . , |~x|}}. We have Jy@pkKagcnf 1

=

Jy@pkKagcnf 2
because of agcnf 1

Vk,Ctxk,G
=

Φk,Λk,k
agcnf 2, and y ∈ lvars(Vk,G).

By the semantics, we also have Jy@pkKagcnf 1
= Jy@pkKagcnf ′1

, and Jy@pkK
agcnf 2

= Jy@pkKagcnf ′2
. Hence, we have Jy@pkKagcnf ′1

= Jy@pkKagcnf ′2
.

• Suppose y@pk ∈ {xj@pi | j ∈ {1, . . . , |~x|}}. We have y = xj for some
j ∈ {1, . . . , |~x|}, and pk = pi. From the typing of ırecv(c, ~x), we have

Φ(ı) . C(c.j) � Vi(xj)[(c.k/(xk@pk))k]

Hence, we have

JC(c.j)Kagcnf 1,[(c.k 7→vk)k] ⊇ JVi(xj)Kagcnf 1[(xk 7→vk)k],[(c.k 7→vk)k]

because of (α1 6= � ⇒ asst-now(Φi, agcnf 1, i)) and α1 6= �. Hence, we can
obtain vj = v′j for each j ∈ {1, . . . , |~v|}. Hence, we have Jy@pkKagcnf ′1

=
Jy@pkKagcnf ′2

because of the semantics, y = xj and pk = pi.
We can now establish

∀x ∈ Var : J(Vi)p,
ı′ stop

Ctxi
(x)Kagcnf ′1

∩ G = ∅ ⇔ J(Vi)p,
ı′ stop

Ctxi
(x)Kagcnf ′2

∩ G = ∅

using Lemma 20.

69

Pick an arbitrary x′ ∈ Λi(ı′)∪ lvars(Vi,G) and assume JVi(x′)p,
ı′ stop

Ctx i
Kagcnf ′1

∩
G 6= ∅. If x′ ∈ lvars(Vi,G), then we have already shown Jx′@piKagcnf ′1

=
Jx′@piKagcnf ′2

. That is, m′1(x′) = m′2(x′). We next assume x′ ∈ Λi(ı
′) and

JVi(x′)p,
ı′ stop

Ctx i
Kagcnf ′1

∩ G 6= ∅. We make a case analysis on whether x′ ∈ {~x}.
• Suppose x′ ∈ {~x}. We have Φ(ı) . C(c.j) � Vi(xj)[(c.k/(xk@pk))k] by

the typing of ırecv(c, ~x). By reasoning analogous to the case where x′ ∈
lvars(Vi,G), it can be established that m′1(x′) = m′2(x′).
• Suppose x′ 6∈ {~x}. We can obtain x′ ∈ Λi(ı), using x′ ∈ Λi(ı

′) and
lv -now(Λi,

ırecv(c, ~x), ı′). Hence, we have m1(x′) = m2(x′) by

agcnf 1

Vi,Ctxi,G=
Φi,Λi,i

agcnf 2

Hence, we have m′1(x′) = m′2(x′) because of m′1(x′) = m1(x′) and
m′2(x′) = m2(x′).

We have now established agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′2.

Using Lemma 25, we can obtain ∀j 6= i : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2. In

addition, there exists AS ′ = ı′stop such that astmt-of (alcnf ′1) = AS ′ =
astmt-of (alcnf ′2) and ı′stop ∈ atoms(AS ′).

– Case ıif e then AS 1 else AS 2 fi. In the proof for this case, we use if as a
shorthand for ıif e then AS 1 else AS 2 fi. Assume agcnf 1[i] = 〈pi,AS ,m1〉
and agcnf 2[i] = 〈pi,AS ,m2〉 for some m1 and m2.
Assume JeKm1

= tt (the case where JeKm1
= ff is analogous).

We have α1 = τ and alcnf ′1 = 〈pi,AS 1,m1〉.
From C,Vi,Ctx i `Φi,Λipi (l,X) if (l′, X ′) : ı′ and using the typing rule for if,

we obtain C,Vi,Ctx i `Φi,Λipi (l,X ∪ fvs(e)) if (l′, X ′) : ı′. From

¬highVi,Ctxi,G
Φi,Λi,Xi (agcnf 1, i, l

′, X ′, ı′)

we have ∀x ∈ fvs(e) : J(Vi)pi,ifCtx i
Kagcnf 1

∩ G 6= ∅. Hence, for each y ∈ Λi(ı) ∩
fvs(e), we have m1(y) = m2(y), because of agcnf 1

Vi,Ctx i,G
=

Φi,Λi,i
agcnf 2. Hence,

we can establish JeKm1 = JeKm2 , using lv -now(Λi, if, ı
′). Hence, we have

JeKm2 = tt . Hence, there exist α2 = τ , alcnf ′2 = 〈pi,AS 1,m2〉, such that

agcnf 2[i]
α2_rci2 alcnf ′2 : ı′ can be derived.

Hence, we have bα1cGagcnf 1
= bα2cGagcnf 2

.

We next show agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′2. Pick an arbitrary x ∈ Var .

From if ∈ AStmtWF, we can obtain AS 1 ∈ Stmt , AS 2 ∈ Stmt , ı′stop 6∈
atoms(AS 1), and ı′stop 6∈ atoms(AS 2), for any ı′. Hence, (Vi)pi,

ı{e}AS1

Ctx i
(x) =

((Vi)pi,eCtx i(ı)
)
pi,AS1

Ctx i
(x) = (Vi)pi,eCtx i(ı)

(x) = P ′, where P ′ = (inf (Vi(x)))
pi,e or

P ′ = Vi(x). We make a case analysis on P ′.

• Suppose P ′ = Vi(x). We have (Vi)pi,
ı{e}AS1

Ctx i
(x) = (Vi)pi,ifCtx i

(x). Hence,

J(Vi)pi,ifCtxi
(x)Kagcnf 1 = J(Vi)pi,

ı{e}AS1
Ctxi

(x)Kagcnf ′1

J(Vi)pi,ifCtxi
(x)Kagcnf 2 = J(Vi)pi,

ı{e}AS1
Ctxi

(x)Kagcnf ′2

70

because agcnf ′1 and agcnf ′2 have the same memory states as those of
agcnf 1 and agcnf 2, respectively.

• Suppose P ′ = (inf (Vi(x)))
pi,e. we can deduce

J(Vi)pi,ifCtxi
(x)Kagcnf 1 = J(Vi)pi,

ı{e}AS1
Ctxi

(x)Kagcnf ′1

J(Vi)pi,ifCtxi
(x)Kagcnf 2 = J(Vi)pi,

ı{e}AS1
Ctxi

(x)Kagcnf ′2

using Lemma 18, and the fact that agcnf ′1 and agcnf ′2 have the same
memory states as those of agcnf 1 and agcnf 2, respectively.

Hence, we have

J(Vi)pi,
ı{e}AS2

Ctxi
(x)Kagcnf ′1

∩ G = ∅ ⇔ J(Vi)pi,
ı{e}AS2

Ctxi
(x)Kagcnf ′2

∩ G = ∅

Assume x ∈ Λi(fst(ı{e}AS 1)) ∪ lvars(Vi,G), and J(Vi)pi,
ı{e}AS1

Ctx i
(x)Kagcnf ′1

∩
G 6= ∅. We have that m1 and m2 are the memory states of agcnf ′1[i] and
agcnf ′2[i], respectively. We show m1(x) = m2(x) by case analysis on the set
membership of x.

• Suppose x ∈ lvars(Vi,G). We have m1(x) = m2(x) by agcnf 1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2.
• Suppose x ∈ Λi(fst(ı{e}AS 1)). From lv -now(Λi, if, ı

′), we can obtain
Λi(fst(ı{e}AS 1)) \ Λi(ı) = ∅. Hence, we have x ∈ Λi(ı). We have

J(Vi)pi,ifCtxi
(x)Kagcnf 1 ∩ G 6= ∅

because of J(Vi)pi,
ı{e}AS1

Ctx i
(x)Kagcnf ′1

∩ G 6= ∅. Hence, we have m1(x) =

m2(x), because of agcnf 1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2.

It is now established that agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′2.

We have ∀j 6= i : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2 using agcnf ′1 = agcnf 1[i 7→

〈pi, ı{e}AS 1,m1〉], agcnf ′2 = agcnf 2[i 7→ 〈pi, ı{e}AS 1,m2〉], agcnf 1

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2, and Lemma 23.
By C,Vi,Ctx i `Φi,Λipi (l,X) if (l′, X ′) : ı′, we can obtain

C, (Vi)pi,el′,X′,ı′ ,Ctx i `Φi,Λipi (l,X ∪ fvs(e)) AS1 (l′, X ′) : ı′

Hence, we can obtain C,Vi,Ctx i `Φi,Λipi (l,X) ı{e}AS 1 (l′, X ′) : ı′. Hence,

there exists AS ′ = ı{e}AS 1 such that

astmt-of (agcnf ′1[i]) = AS ′ = astmt-of (agcnf ′2[i])

and C,Vi,Ctx i `Φi,Λipi (l,X) AS ′ (l′, X ′) : ı′.
– Case ıwhile e do AS 1 od. In the proof of this case, we use wh as a shorthand

for ıwhile e do AS 1 od. Assume agcnf 1[i] = 〈pi,AS ,m1〉, and agcnf 2[i] =

〈pi,AS ,m2〉 for some m1 and m2. From ¬highVi,Ctx i,G
Φi,Λi,Xi (agcnf 1, i, l

′, X ′, ı′),

we can obtain ∀x ∈ fvs(e) : J(Vi)pi,wh
Ctx i

Kagcnf 1
∩ G 6= ∅. Hence, for each y ∈

Λi(ı) ∩ fvs(e), we have m1(y) = m2(y), because of agcnf 1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2.

Hence, we can establish JeKm1
= JeKm2

using lv -now(Λi,wh, ı′).

71

The reasoning can be completed by a case analysis on JeKm1
. The case where

JeKm1
= tt is analogous to the reasoning for if, and the case where JeKm1

= ff

is straightforward noting (Vi)pi,
ı′ stop

Ctx i
= (Vi)pi,wh

Ctx i
.

– Case AS 1; AS 2. Let m1 and m2 be the memory states of alcnf 1[i] and
alcnf 2[i], respectively. Let alcnf ′′1 , alcnf 1[i 7→ 〈pi,AS 1,m1〉]. Let alcnf ′′2 ,
alcnf 2[i 7→ 〈pi,AS 1,m2〉]. It is straightforward to obtain that for each j,
astmt-of (alcnf ′′1 [j]) ∈ AStmtWF, astmt-of (alcnf ′′2 [j]) ∈ AStmtWF, α1 6=
� ⇒ no-upd -next(acstmt-of (agcnf ′′1), i, ~V, ~Λ, ~X), (∃α2 6= � : agcnf ′′2 [i]

α2_rci2

)⇒ no-upd -next(acstmt-of (agcnf ′′2), i, ~V, ~Λ, ~X),

prin-of (agcnf ′′1 [i]) = pi = prin-of (agcnf ′′2 [i])

astmt-of (agcnf ′′1 [i]) = AS1 = astmt-of (agcnf ′′2 [i])

(α1 6= � ⇒ asst-now(Φi, agcnf ′′1 , i))

(∃α2 6= � : agcnf ′′2 [i]
α2_rci2)⇒ asst-now(Φi, agcnf 2, i)

lv -now(Λi,AS 1, ı
′), and C,Vi,Ctx i `Φi,Λipi (l,X) AS (l′′, X ′′) : afst(AS 2) for

some l′′ and X ′′, such that C,Vi,Ctx i `Φi,Λipi (l′′, X ′′) AS 2 (l′, X ′) : ı′,

¬highVi,Ctxi,G
Φi,Λi,Xi (agcnf ′′1 , i, l

′′, X ′′, afst(AS2))

¬highVi,Ctxi,G
Φi,Λi,Xi (agcnf ′′2 , i, l

′′, X ′′, afst(AS2))

agcnf ′′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′′2 , ∀j 6= i : agcnf ′′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′′2 , agcnf ′′1 [i]

α′1_rci1

alcnf a : afst(AS 2), for some α′1, and alcnf a = 〈pi,AS ′1,m
′
1〉, with some AS ′1

and m′1. Let agcnf a = agcnf ′′1 [i 7→ alcnf a].
By the induction hypothesis, there exists sovme α′2, alcnf b, and agcnf b =
agcnf ′′2 [i 7→ alcnf b], such that

agcnf ′′2 [i]
α′2_rci2 alcnf b : afst(AS2) (35)

bα′1cGagcnf ′′1
= bα′2cGagcnf ′′2

(36)

α′1 = � ⇔ α′2 = � (37)

agcnf a

Vi,Ctxi,G=
Φi,Λi,i

agcnf b (38)

∀j 6= i : agcnf a

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf b (39)

there exists some AS ′′ such that astmt-of (alcnf a) = AS ′′ = astmt-of (alcnf b),
and either afst(AS2)stop ∈ atoms(AS ′′), or it can be derived that

C,Vi,Ctx i `Φi,Λipi (l′′′, X) AS ′′ (l′′, X ′′) : afst(AS2)

for some l′′′.
We make a case analysis on whether α1 = � or not.
• Suppose α1 6= �. We have α′1 = α1. We have α′2 6= � because of (37). We

make a further case analysis on whether ∃~C : AS ′1 = blks(~C, afst(AS2)stop)
holds or not.

72

∗ Suppose ∃~C : AS ′1 = blks(~C, afst(AS2)stop) does not hold. The rea-
soning is straightforward using (35), (36), (38), and (39).

∗ Suppose AS ′1 = blks(~C, afst(AS2)stop) holds for some ~C. We have

agcnf ′1 = agcnf 1[i 7→ 〈pi,AS2,m
′
1〉]

We have alcnf b = 〈pi, blks(~C, afst(AS2)stop),m′2〉, because of

astmt-of (alcnf a) = astmt-of (alcnf b)

There exist α2 = α′2, alcnf ′2 = 〈pi,AS 2,m
′
2〉, and agcnf ′2 = agcnf 2[i

7→ alcnf ′2], such that agcnf 2[i]
α2_rci2 alcnf ′2 : ı′. We have bα1cGagcnf 1

=

bα2cGagcnf 2
(because of (36)), and α1 = � ⇔ α2 = �. We have

agcnf ′1 = agcnf 1[i 7→ 〈pi,AS2,m
′
1〉]

agcnf ′2 = agcnf 2[i 7→ 〈pi,AS2,m
′
2〉]

agcnf a = agcnf 1[i 7→ 〈pi, blks(~C, afst(AS2)stop),m′1〉]

agcnf b = agcnf 2[i 7→ 〈pi, blks(~C, afst(AS2)stop),m′2〉]

We proceed to show agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′2. For an arbitrary y ∈

lvars(Vi,G), we have Jy@piKagcnf ′1
= Jy@piKagcnf ′2

, because of

agcnf a

Vi,Ctxi,G=
Φi,Λi,i

agcnf b

For an arbitrary y ∈ lvars(Vj ,G), where j 6= i, we have Jy@pjKagcnf ′1
=

Jy@pjKagcnf ′2
because of ∀j 6= i : agcnf 1

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2. Hence, we

can obtain

∀x ∈ Var : J(Vi)pi,AS2
Ctxi

(x)Kagcnf ′1
∩ G = ∅ ⇔ J(Vi)pi,AS2

Ctxi
(x)Kagcnf ′2

∩ G = ∅

using Lemma 20.
Pick an arbitrary x′ ∈ Λi(afst(AS 2))∪lvars(Vi,G). If x′ ∈ lvars(Vi,G),
we have already shown that m′1(x′) = m′2(x′2). We next assume that

x′ ∈ Λi(afst(AS 2)), and J(Vi)pi,AS2

Ctx i
(x′)Kagcnf ′1

∩ G 6= ∅, and we show

m′1(x′) = m′2(x′). We have agcnf ′′1 [i]
α1−→ 〈pi, blks(~C, ιf stop),m′1〉.

Hence, we can deduce AS 1 = blks(~C, S) for some S ∈ Stmt because
of AS 1 ∈ AStmtWF and the semantics. Hence, we have

C,Vi,Ctx i `Φi,Λipi (l,X) blks(~C, S) (l′′, X ′′) : afst(AS2)

because of

C,Vi,Ctx i `Φi,Λipi (l,X) AS1 (l′′, X ′′) : afst(AS2)

Hence, for each Cs = ıs{es}, we have Ctx i(ıs) = (l′′, X ′′, afst(AS 2)).

Hence, we can deduce (Vi)pi,AS ′′

Ctx i
(x′) = (Vi)pi,AS1

Ctx i
(x′) = Vi(x′) =

(Vi)pi,AS2

Ctx i
(x′), because of AS ′′ = AS ′1, x′ ∈ Λ(afst(AS 2)), and

AS 2 ∈ Stmt (because AS 1; AS 2 ∈ AStmtWF). Hence, we have

J(Vi)pi,AS ′′

Ctxi
(x′)Kagcnf a ∩ G 6= ∅

73

Hence, we have m′1(x′) = m′2(x′) because of (38), and x′ ∈ Λi(afst(
AS ′′)). It can be deduced that

∀j 6= i : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2

using Lemma 25. There exist AS ′ = AS 2 such that C,Vi,Ctx i `Φi,Λipi

(l′′, X ′′) AS ′ (l′, X ′) : ı′.
• Suppose α1 = �. It is straightforward to show that there exists α2 = �

satisfying the desired conditions.
– Case ı{e}AS ′. Let V ′i = (Vi)pi,el′,X′,ı′ , agcnf ′′1 , agcnf 1[i 7→ 〈pi,AS ′,m1〉],

agcnf ′′2 , agcnf 2[i 7→ 〈pi,AS ′,m2〉].
We have brci1cGagcnf ′′1

= brci2cGagcnf ′′2
, nip(C, ~V ′) where ~V ′ = V1 . . .V ′i . . .Vn,

∀j : astmt-of (agcnf ′′1 [j]) ∈ AStmtWF

∀j : astmt-of (agcnf ′′2 [j]) ∈ AStmtWF

∀j : fvs-cond(agcnf ′′1 [j]) ⊆ Xj
∀j : fvs-cond(agcnf ′′2 [j]) ⊆ Xj
(α1 6= � ⇒ no-upd-next(acstmt-of (agcnf ′′1), i, ~V, ~Λ, ~X))

(∃α2 6= � : agcnf ′′2 [i]
α2_rci2)⇒ no-upd-next(acstmt-of (agcnf ′′2), i, ~V, ~Λ, ~X)

(α1 6= � ⇒ asst-now(Φi, agcnf ′′1 , i))

(∃α2 6= � : agcnf ′′2 [i]
α2_rci2)⇒ asst-now(Φi, agcnf ′′2 , i)

lv -now(Λi,AS ′, ı′)

We also have
C,V ′i,Ctx i `Φi,Λipi (l,X ∪ fvs(e)) AS ′ (l′, X ′) : ı′ (40)

with X ′ ⊆ Xi, ¬high
V′i,Ctx i,G
Φi,Λi,Xi (agcnf ′′1 , i, l

′, X ′, ı′), ¬high
V′i,Ctx i,G
Φi,Λi,Xi (agcnf ′′2 , i,

l′, X ′, ı′), agcnf ′′1
V′i,Ctx i,G

=
Φi,Λi,i

agcnf ′′2 , ∀j 6= i : agcnf ′′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′′2 (using

Lemma 23), and agcnf ′′1 [i]
α1_rci1 alcnf a : ı′ for some alcnf a = 〈pi,AS a,m

′
1〉,

with some AS a and m′1. Let agcnf a be agcnf ′′1 [i 7→ alcnf a].
By the induction hypothesis, there exists some α2, alcnf b = 〈pi,ASb,m

′
2〉

for some ASb and m′2, and agcnf b = agcnf ′′2 [i 7→ alcnf b], such that

agcnf ′′2 [i]
α2_rci2 alcnf b : ı′ (41)

bα1cGagcnf ′′1
= bα2cGagcnf ′′2

(42)

α1 = � ⇔ α2 = � (43)

agcnf a

V′i,Ctxi,G
=

Φi,Λi,i
agcnf b (44)

∀j 6= i : agcnf a

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf b (45)

there exist some AS ′′, l′′′, such that astmt-of (alcnf a) = AS ′′ = astmt-of (
alcnf b), and either ı

′
stop ∈ atoms(AS ′′) or it can be derived that

C,V ′i,Ctx i `Φi,Λipi (l′′′, X) AS ′′ (l′, X ′) : ı′

74

Hence, AS a = AS ′′ = ASb. From (41), we have agcnf 2[i]
α2_rci2 〈pi, ı{e}ASb,

m′2〉 : ı′. Let alcnf ′2 , 〈pi, ı{e}ASb,m
′
2〉, and agcnf ′2 , agcnf 2[i 7→ alcnf ′2].

We have bα1cGagcnf 1
= bα2cGagcnf 2

because of (42). We have

agcnf ′1 = agcnf 1[i 7→ 〈pi, ı{e}AS ′′,m′1〉]
agcnf ′2 = agcnf 2[i 7→ 〈pi, ı{e}AS ′′,m′2〉]
agcnf a = agcnf 1[i 7→ 〈pi,AS ′′,m′1〉]
agcnf b = agcnf 2[i 7→ 〈pi,AS ′′,m′2〉]

Hence, we have agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′2 because of (44), and we have ∀j 6=

i : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2, because of (45). By (40), and agcnf ′′1 [i]

α1_rci1

alcnf a : ı′, we have C,V ′i,Ctx i `Φi,Λipi (l,X ∪ fvs(e)) AS ′′ (l′, X ′) : ı′. Hence,

there exists AS ′ = ı{e}AS ′′, for which it holds that astmt-of (alcnf ′1) =
AS ′ = astmt-of (alcnf ′2), and it can be derived that

C,Vi,Ctx i `Φi,Λipi (l,X) AS ′ (l′, X ′) : ı′

– Case subtyping. The reasoning for this case is straightforward, using the
induction hypothesis on the typing of AS with a higher initial context and
a lower final context.

This induction completes the proof of the lemma. ut

The main message of the lemma below is: the low-equality of two processes
is preserved by a step of the first process, if it is syntactically high.

Lemma 27. If astmt-of (agcnf 1[i]) ∈ AStmtWF, asst-now(Φi, agcnf 1, i),

lv-now(Λi, astmt-of (agcnf 1[i]), ιf), nip(C, ~V), highVi,Ctx i,G
Φi,Λi,Xi (agcnf 1, i, l

′
1, X

′
1, ιf),

X ′1 ⊆ Xi, agcnf 1[i]
α−→ alcnf ′1, agcnf ′1 = agcnf 1[i 7→ alcnf ′1], agcnf 1

Vi,Ctx i,G
=

Φi,Λi,i

agcnf 2, then agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2.

Proof. Let agcnf 1 , 〈. . . , 〈pi,AS i1,mi1〉, . . .〉 and agcnf ′1 , 〈. . . , 〈pi,AS ′i1,m
′
i1〉, . . .〉.

Using Lemma 22, we obtain

∀x ∈ Var : J(Vi)pi,AS ′i1
Ctxi

(x)Kagcnf ′1
∩ G = ∅ ⇔ J(Vi)pi,ASi1

Ctxi
(x)Kagcnf 1 ∩ G = ∅ (46)

∀x ∈ upd-next(AS i1) : J(Vi)pi,AS ′i1
Ctxi

(x)Kagcnf ′1
∩ G = ∅ (47)

We have ∀x ∈ Var : J(Vi)pi,ASi1
Ctxi

(x)Kagcnf 1 ∩ G = ∅ ⇔ J(Vi)pi,ASi2
Ctxi

(x)Kagcnf 2 ∩ G = ∅

because of agcnf 1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2. Hence, we have

∀x ∈ Var : J(Vi)pi,AS ′i1
Ctxi

(x)Kagcnf ′1
∩ G = ∅ ⇔ J(Vi)pi,ASi2

Ctxi
(x)Kagcnf 2 ∩ G = ∅

by (46).

75

Pick an arbitrary x′ ∈ Λi(afst(AS ′i1))∩Λi(afst(AS i2))∪ lvars(Vi,G), and as-

sume that J(Vi)
pi,AS ′i1
Ctx i

(x′)Kagcnf ′1
∩G 6= ∅. Then, we have J(Vi)pi,ASi1

Ctx i
(x′)Kagcnf 1

∩
G 6= ∅ using (46). If x′ ∈ Λi(afst(AS i1)), then x′ ∈ Λi(afst(AS i1))∩Λi(afst(AS i2)).

Hence, we have mi1(x′) = mi2(x′) using agcnf 1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2. We have

m′i1(x′) = mi1(x′) because of (47) and J(Vi)
pi,AS ′i1
Ctx i

(x′)Kagcnf ′1
∩ G 6= ∅. Hence,

we have m′i1(x′) = mi2(x′). On the other hand, if x′ 6∈ Λi(afst(AS i1)), then
we have x′ ∈ upd -next(AS i1) by lv -now(Λi, astmt-of (agcnf 1[i]), ιf) and x′ ∈
Λi(afst(AS ′i1)). Hence, we have J(Vi)

pi,AS ′i1
Ctx i

(x)Kagcnf ′1
∩ G = ∅ using (47). We

therefore have a contradiction with the assumption J(Vi)
pi,AS ′i1
Ctx i

(x′)Kagcnf ′1
∩G 6=

∅, and the case where x′ 6∈ Λi(afst(AS i1)) is impossible. This completes the
proof. ut

The lemma below gives conditions under which a step of a syntactically
high process in an augmented global configuration can be simulated by another
syntactically high process in a different augmented global configuration, while
preserving the low-equivalence of the two processes.

Lemma 28. If all of the following statements hold

1. nip(C, ~V),

2. brci1cGagcnf 1
= brci2cGagcnf 2

,

3. α1 6= � ⇒ no-upd-next(acstmt-of (agcnf 1), i, ~V, ~Λ, ~X),

4. (∃α2 6= � : agcnf 2[i]
α2_rci2)⇒ no-upd-next(acstmt-of (agcnf 2), i, ~V, ~Λ, ~X),

5. α1 6= � ⇒ asst-now(Φi, agcnf 1, i)

6. (∃α2 6= � : agcnf 2[i]
α2_rci2)⇒ asst-now(Φi, agcnf 2, i),

7. lv-now(Λi, astmt-of (agcnf 1[i]), ιf) and lv-now(Λi, astmt-of (agcnf 2[i]), ιf),

8. astmt-of (agcnf 1[i]) ∈ AStmtWF and astmt-of (agcnf 2[i]) ∈ AStmtWF,

9. highVi,Ctx i,G
Φi,Λi,Xi (agcnf 1, i, l

′
1, X

′
1, ιf) ∧X ′1 ⊆ Xi ∨

ιf stop ∈ atoms(astmt-of (agcnf 1[i])),

10. highVi,Ctx i,G
Φi,Λi,Xi (agcnf 2, i, l

′
2, X

′
2, ιf) ∧X ′2 ⊆ Xi ∨

ιf stop ∈ atoms(astmt-of (agcnf 2[i])),

11. agcnf 1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2, ∀j 6= i : agcnf 1

Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2,

12. agcnf 1[i]
α1_rci1 alcnf ′1 : ιf , agcnf ′1 = agcnf 1[i 7→ alcnf ′1],

then there exist some α2, alcnf ′2, and agcnf ′2 = agcnf 2[i 7→ alcnf ′2], such that

agcnf 2[i]
α2_rci2 alcnf ′2 : ιf , bα1cGagcnf 1

= bα2cGagcnf 2
, agcnf ′1

Vi,Ctx i,G
=

Φi,Λi,i
agcnf ′2,

∀j 6= i : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2, highVi,Ctx i,G

Φi,Λi,Xi (agcnf ′1, i, l
′
1, X

′
1, ιf) ∧ X ′1 ⊆

Xi∨ ιf stop ∈ atoms(astmt-of (agcnf ′1[i])), and highVi,Ctx i,G
Φi,Λi,Xi (agcnf ′2, i, l

′
2, X

′
2, ιf)∧

X ′2 ⊆ Xi ∨ ιf stop ∈ atoms(astmt-of (agcnf ′2[i])).

76

Proof. We prove this lemma with a case analysis based on the conditions 9 and
10 in the lemma statement. Only the following selected case is presented

highVi,Ctxi,G
Φi,Λi,Xi (agcnf ′1, i, l

′
1, X

′
1, ιf) ∧X ′1 ⊆ Xi

highVi,Ctxi,G
Φi,Λi,Xi (agcnf ′2, i, l

′
2, X

′
2, ιf) ∧X ′2 ⊆ Xi

We further assume α1 6= � – the other case, where α1 = �, is less involved.

There exists some α2 such that agcnf 2[i]
α2_rci2 alcnf ′2 : ιf for some alcnf ′2. We

further assume α2 6= � – the other case, where α2 = �, is less involved.

We have agcnf 1[i]
α1−→ alcnf ′1 and agcnf 2[i]

α2−→ alcnf ′2. Suppose

alcnf 1 = 〈. . . , 〈pi,AS i1,mi1〉, . . .〉
alcnf 2 = 〈. . . , 〈pi,AS i2,mi2〉, . . .〉
alcnf ′1 = 〈. . . , 〈pi,AS ′i1,m

′
i1〉, . . .〉

alcnf ′2 = 〈. . . , 〈pi,AS ′i2,m
′
i2〉, . . .〉

From highVi,Ctx i,G
Φi,Λi,Xi (agcnf ′1, i, l

′
1, X

′
1, ιf) ∧ X ′1 ⊆ Xi, we obtain that there ex-

ists X1 such that highVi,Ctx i,G
Φi,Λi,Xi (agcnf 1, i,X1, l

′
1, X

′
1, ιf) ∧ X ′1 ⊆ Xi. We have

JΦi(afst(AS i1))Kagcnf 1
= tt and nip(C, ~V) using the hypotheses of the lemma

and α1 6= �. Hence, we can obtain

∀x ∈ Var : J(Vi)pi,AS ′i1
Ctxi

(x)Kagcnf ′1
∩ G = ∅ ⇔ J(Vi)pi,ASi1

Ctxi
(x)Kagcnf 1 ∩ G = ∅ (48)

∀c : (∃~v : α1 = c!~v ∨ ∃~v : α1 = c?~v)⇒ C(c) ∩ G = ∅ (49)

∀x ∈ upd-next(AS i1) : J(Vi)pi,AS ′i1
Ctxi

(x)Kagcnf ′1
∩ G = ∅ (50)

ιf stop ∈ atoms(AS ′i1) ∨ ∃X ′′1 : X1 ⊆ X ′′1 ∧ highVi,Ctxi,G
Φi,Λi,Xi (agcnf ′1, i,X

′′
1 , l
′
1, X

′
1, ιf) (51)

using Lemma 22. From highVi,Ctx i,G
Φi,Λi,Xi (agcnf ′2, i, l

′
2, X

′
2, ιf)∧X ′2 ⊆ Xi, we can obtain

that there exists some X2 such that highVi,Ctx i,G
Φi,Λi,Xi (agcnf 2, i,X2, l

′
2, X

′
2, ιf)∧X ′2 ⊆

Xi. We have JΦi(afst(AS i2))Kagcnf 2
= tt and nip(C, ~V) using the hypotheses of

the lemma and α2 6= �. Hence, we can obtain

∀x ∈ Var : J(Vi)pi,AS ′i2
Ctxi

(x)Kagcnf ′2
∩ G = ∅ ⇔ J(Vi)pi,ASi2

Ctxi
(x)Kagcnf 2 ∩ G = ∅ (52)

∀c : (∃~v : α2 = c!~v ∨ ∃~v : α2 = c?~v)⇒ C(c) ∩ G = ∅ (53)

∀x ∈ upd-next(AS i2) : J(Vi)pi,AS ′i2
Ctxi

(x)Kagcnf ′2
∩ G = ∅ (54)

ιf stop ∈ atoms(AS ′i2) ∨ ∃X ′′2 : X2 ⊆ X ′′2 ∧ highVi,Ctxi,G
Φi,Λi,Xi (agcnf ′2, i,X

′′
2 , l
′
2, X

′
2, ιf) (55)

We have bα1cGagcnf 1
= bα2cGagcnf 2

using (49) and (53). We have

highVi,Ctxi,G
Φi,Λi,Xi (agcnf ′1, i, l

′
1, X

′
1, ιf) ∧X ′1 ⊆ Xi ∨ ιf stop ∈ atoms(agcnf ′1[i])

using (51) and X ′1 ⊆ Xi. We have

highVi,Ctxi,G
Φi,Λi,Xi (agcnf ′2, i, l

′
2, X

′
2, ιf) ∧X ′2 ⊆ Xi ∨ ιf stop ∈ atoms(agcnf ′2[i])

77

using (55) and X ′2 ⊆ Xi.
Using Lemma 27 on agcnf 1[i]

α1−→ alcnf ′1, we obtain agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 2.

Using Lemma 27 again on agcnf 2[i]
α2−→ alcnf ′2, we obtain

agcnf ′1
Vi,Ctx i,G

=
Φi,Λi,i

agcnf ′2

Pick an arbitrary y ∈ lvars(Vi,G). It is straightforward to show Jy@piKagcnf ′1
=

Jy@piKagcnf ′2
. From the hypotheses of the lemma, and α1 6= �, we have

no-upd-next(acstmt-of (agcnf 1), i, ~V, ~Λ, ~X)

From the hypotheses of the lemma, and α2 6= �, we have

no-upd-next(acstmt-of (agcnf 2), i, ~V, ~Λ, ~X)

From the hypotheses of the lemma, we have agcnf 1

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 2. Hence, we

have ∀k : agcnf 1

Vk,Ctxk,G≈
Φk,Λk,Xk,k

agcnf 2. Hence, we have

∀j 6= i : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf ′2

using Lemma 25.

The proof of the lemma is complete with the case analysis based on the
conditions 9 and 10 in the lemma statement (selectively presented above). ut

The lemma below gives conditions under which a step of a system (executing
augmented statements) can be simulated by a step of another system, while pre-
serving the low-equivalence of the two systems and the equality of the observed
execution histories of both systems.

Lemma 29. If ξ1
G
= ξ2, ∀i ∈ {1, . . . , |CS |} : asst(Φi,CS , i), ∀i ∈ {1, . . . , |CS |} :

live(Λi,CS , i), ∀i ∈ {1, . . . , |CS |} : Xi = fvs-cond(CS [i]), atr1 ∈ atraces-of ξ1(CS),

atr2 ∈ atraces-of ξ2(CS), batr1cG = batr2cG, last(atr1)
~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
last(atr2), and

atr1 −→ξ1 atr ′1, then there exists some atr ′2 such that atr2 −→ξ2 atr ′2, last(atr ′1)
~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
last(atr ′2), and batr ′1cG = batr ′2cG.

Proof. Let agcnf 1 , last(atr1) and agcnf 2 , last(atr2). Furthermore, let CS
be of the form S1|| . . . ||Sn for some S1, . . . , Sn. Suppose

agcnf 1 = 〈. . . , 〈pi,AS i1,mi1〉, . . .〉
agcnf 2 = 〈. . . , 〈pi,AS i2,mi2〉, . . .〉
∀i : strip-stmt(AS i1) = Si1

∀i : strip-stmt(AS i2) = Si2

78

for some AS 11, . . . , ASn1, AS 12, . . . , ASn2, S11, . . . , Sn1, S12, . . . , Sn2, p1, . . . ,
pn. From the assumptions of the lemma (Lemma 29), we have

nip(C, ~V) (56)

no-upd(S11|| . . . ||Sn1, ~V, ~Λ, ~X) (57)

no-upd(S12|| . . . ||Sn2, ~V, ~Λ, ~X) (58)

with Xi = fvs-cond(Si) for each i. We have

bξ1(strip-tr(atr1))cGlast(atr1)
= bξ2(strip-tr(atr2))cGlast(atr2)

(59)

by ξ1
G
= ξ2, and batr1cG = batr2cG . We have for each k,

may-step(CS , fst(S11) . . . fst(Sn1), k) ⇒ JΦk(fst(Sk1))Kagcnf 1 = tt (60)

may-step(CS , fst(S12) . . . fst(Sn2), k) ⇒ JΦk(fst(Sk2))Kagcnf 2 = tt (61)

because of asst(Φk,CS , k) for each k, atr1 = atraces-of ξ1(CS), atr2 = atraces-of

ξ2(CS), last(atr1) = 〈. . . , 〈pi,AS i1,mi1〉, . . .〉, and last(atr2) = 〈. . . , 〈pi,AS i2,
mi2〉, . . . 〉. Hence, we have for each k

may-step(CS , fst(S11) . . . fst(Sn1), k) ⇒ asst-now(Φk, agcnf 1, k) (62)

may-step(CS , fst(S12) . . . fst(Sn2), k) ⇒ asst-now(Φk, agcnf 2, k) (63)

We have for each k

lv -now(Λk,ASk1, ιf) (64)

lv -now(Λk,ASk2, ιf) (65)

because for each k, live(Λk,CS , k) holds.

We have

∀k : agcnf 1

Vk,Ctxk,G≈
Φk,Λk,Xk,k

agcnf 2 (66)

from agcnf 1

~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
agcnf 2.

Let ii1 , ξ1(strip-tr(agcnf 1)), and ii2 , ξ2(strip-tr(agcnf 2)). The rest of
the proof is by a case analysis on ii1 and ii2.

– Suppose ii1 = (pi, ci1) for some communication intent ci1. We have ii2 =
(pi, ci2) for some ci2 such that bci1cGagcnf 1

= bci2cGagcnf 2
because it holds

that bii1cGagcnf 1
= bii2cGagcnf 2

.

We make a further case analysis on how agcnf 1

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 2 is derived.

79

• Suppose agcnf 1

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 2 is derived by

agcnf 1

Vi,Ctxi,G=
Φi,Λi,i

agcnf 2 (67)

AS i1 = AS = AS i2 (68)

Ci,Vi,Ctx i `Φi,Λipi (l,X) AS (l′, X ′) : ιf ∧X ′ ⊆ Xi ∨ ιf stop ∈ atoms(AS)
(69)

¬highVi,Ctxi,G
Φi,Λi,Xi (agcnf 1, i, l

′, X ′, ιf) (70)

¬highVi,Ctxi,G
Φi,Λi,Xi (agcnf 2, i, l

′, X ′, ιf) (71)

Suppose atr ′1 = atr1.α1.agcnf 1 for some α1. We have agcnf 1[i]
α1_ci1

alcnf ′1 : ιf where alcnf ′1 is such that agcnf ′1 = agcnf 1[i 7→ alcnf ′1].
From (69), either ιf stop ∈ atoms(AS) or

Ci,Vi,Ctx i `Φi,Λipi (l,X) AS (l′, X ′) : ιf ∧X ′ ⊆ Xi

We can derive AS ∈ AStmtWF using Si ∈ AStmtWF and Lemma 15. If
ιf stop ∈ atoms(AS), we then have AS = blks(~C, ιf stop) using Lemma 14.
On this basis, it is trivial to resolve the case where ιf stop ∈ atoms(AS).
On the other hand, the case where Ci,Vi,Ctx i `Φi,Λipi (l,X) AS (l′, X ′) :
ιf ∧X ′ ⊆ Xi can be resolved by reasoning using Lemma 26 whose pre-
conditions are established using the conditions (56) to (71), and AS ∈
AStmtWF.

• Suppose agcnf 1

~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
agcnf 2 is derived by

agcnf 1

Vi,Ctxi,G=
Φi,Λi,i

agcnf 2 (72)

highVi,Ctxi,G
Φi,Λi,Xi (agcnf 1, i, l

′
1, X

′
1, ιf) ∨ ιf stop ∈ atoms(astmt-of (agcnf 1[i])) (73)

highVi,Ctxi,G
Φi,Λi,Xi (agcnf 2, i, l

′
2, X

′
2, ιf) ∨ ιf stop ∈ atoms(astmt-of (agcnf 2[i])) (74)

This case is resolved using Lemma 28, whose pre-conditions are estab-
lished using the conditions (56) to (66), and (72) to (74).

– Suppose ii1 = (pi, pk) for some i and k (i 6= k). We have ii2 = (pi, pk)
because of bii1cGagcnf 1

= bii2cGagcnf 2
. We have

AS i1 ∈AStmtWF (75)

AS i2 ∈AStmtWF (76)

ASk1 ∈AStmtWF (77)

ASk2 ∈AStmtWF (78)

because of Si ∈ AStmtWF, Sk ∈ AStmtWF, agcnf 1 = last(atr1), atr i =
last(atr2), and Lemma 15.
Assume atr ′1 = atr1.α1.agcnf ′1. We make a case analysis on the rules used to

establish agcnf 1

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 2 and agcnf 1

Vk,Ctxk,G≈
Φk,Λk,Xk,k

agcnf 2, respectively.

80

• Suppose both agcnf 1

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 2 and agcnf 1

Vk,Ctxk,G≈
Φk,Λk,Xk,k

agcnf 2 are

established using the first rule for deriving the relation.

We have

agcnf 1

Vi,Ctxi,G=
Φi,Λi,i

agcnf 2 (79)

highVi,Ctxi,G
Φi,Λi,Xi (agcnf 1, i, l

′
i1, X

′
i1, ιf) ∧X ′i1 ⊆ Xi

∨ ιf stop ∈ atoms(astmt-of (agcnf 1[i])) (80)

highVi,Ctxi,G
Φi,Λi,Xi (agcnf 2, i, l

′
i2, X

′
i2, ιf) ∧X ′i2 ⊆ Xi

∨ ιf stop ∈ atoms(astmt-of (agcnf 2[i])) (81)

and

agcnf 1

Vk,Ctxk,G=
Φk,Λk,k

agcnf 2 (82)

high
Vk,Ctxk,G
Φk,Λk,Xk (agcnf 1, k, l

′
k1, X

′
k1, ιf) ∧X ′k1 ⊆ Xk

∨ ιf stop ∈ atoms(astmt-of (agcnf 1[k])) (83)

high
Vk,Ctxk,G
Φk,Λk,Xk (agcnf 2, k, l

′
k2, X

′
k2, ιf) ∧X ′k2 ⊆ Xk

∨ ιf stop ∈ atoms(astmt-of (agcnf 2[k])) (84)

We make a case analysis on whether α1 = �.
∗ Suppose α1 6= �. Assume (w.l.o.g.)

agcnf 1[i]
c!~v−−→ alcnf ′i1

agcnf 1[k]
c?~v−−→ alcnf ′k1

for some alcnf ′i1, alcnf ′k1, c, and ~v, such that

agcnf ′1 = agcnf 1[i 7→ alcnf ′i1][k 7→ alcnf ′k1]

We have α1 = τ .
Hence, we can obtain C(c) ∩ G = ∅ using Lemma 22.
Let rci1 , c?·. We have

agcnf 1[i]
c!~v
_rci1 alcnf ′i1 : ιf (85)

We make a further case analysis on whether α2 = �.
· Suppose α2 6= �. Assume (w.l.o.g.)

agcnf 2[i]
c′!~v′−−−→ alcnf ′i2

agcnf 2[k]
c′?~v′−−−→ alcnf ′k2

We have α2 = τ . This case can be resolved by reasoning using
Lemma 28 twice, the first time with c?· and c′?· as the relaxed
communication intents, and the second time with c!~v and c′!~v as
the relaxed communication intents.

81

· Suppose α2 = �. Let agcnf ′′1 = agcnf 1[i 7→ agcnf ′i1]. Using (56),
(80), (75), and (60), all the pre-conditions of Lemma 22 can be
established. Using this lemma, we can obtain C(c) ∩ G = ∅, and

∀x ∈ upd-next(AS i1) : J(Vi)pi,AS ′i1
Ctxi

(x)Kagcnf ′′1
∩ G = ∅ (86)

highVi,Ctxi,G
Φi,Λi,Xi (agcnf ′′1 , i, l

′
i1, X

′
i1, ιf) ∧X ′i1 ⊆ Xi

∨ ιf stop ∈ atoms(astmt-of (agcnf ′′1 [i])) (87)

where AS ′i1 = astmt-of (alcnf ′i1). Using Lemma 27, we can ob-
tain

agcnf ′′1
Vi,Ctxi,G=
Φi,Λi,i

agcnf 2 (88)

Using (86), we can obtain ∀y ∈ lvars(Vi,G) : Jy@piKagcnf ′′1
=

Jy@piKagcnf 2
. Hence, we have

∀j 6= i : agcnf ′′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2 (89)

using Lemma 25. Using (88), (87), and (81), we can obtain

agcnf ′′1
Vi,Ctxi,G≈
Φi,Λi,Xi,i

agcnf 2

Hence, we have

∀j : agcnf ′′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2 (90)

Using (84), and (57), we can obtain

high
Vk,Ctxk,G
Φk,Λk,Xk (agcnf ′′1 , k, l

′
k1, X

′
k1, ιf) ∧X ′k1 ⊆ Xk

∨ ιf stop ∈ atoms(astmt-of (agcnf ′′1 [k])) (91)

Using (56), (91), (60), and agcnf 1[k]
c?~v−−→ alcnf ′k1, all the pre-

conditions of Lemma 22 can be established. Using Lemma 22 we
obtain

∀x ∈ upd-next(ASk1) : J(Vk)
pk,AS ′k1
Ctxk

(x)Kagcnf ′1
∩ G = ∅ (92)

high
Vk,Ctxk,G
Φk,Λk,Xk (agcnf ′1, k, l

′
k1, X

′
k1, ιf) ∧X ′k1 ⊆ Xk

∨ ιf stop ∈ atoms(astmt-of (agcnf ′1[k])) (93)

where AS ′k1 = astmt-of (alcnf ′k1). Using Lemma 27, we can ob-
tain

agcnf ′1
Vk,Ctxk,G

=
Φk,Λk,k

agcnf 2 (94)

Using (92) and (89), we can obtain

∀y ∈ lvars(Vk,G) : Jy@pkKagcnf ′1
= Jy@pkKagcnf 2

82

Hence, we have ∀j 6= k : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2 using Lemma 25

with (90). Hence, we have ∀j : agcnf ′1
Vj ,Ctxj ,G
≈

Φj ,Λj ,Xj ,j
agcnf 2 using

(93), (84), and (94). We can obtain

no-upd(cstmt-of (strip-gcnf (agcnf ′1)), ~V, ~Λ, ~X)

no-upd(cstmt-of (strip-gcnf (agcnf 2)), ~V, ~Λ, ~X)

from (57) and (58). Hence, we have

agcnf ′1
~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
agcnf 2

We have bα1cGagcnf 1
= bα2cGagcnf 2

because α1 = τ and α2 = �.
Let atr ′2 = atr2. � .agcnf 2. We have batr ′1cG = batr ′2cG because
of bα1cGagcnf 1

= bα2cGagcnf 2
and batr1cG = batr2cG .

∗ Suppose α1 = �. The sub-case where α2 6= � is analogous to the case
where α1 6= � and α2 = �. The sub-case where α2 = � is trivial.

• Suppose agcnf 1

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 2 is established using the first rule, while

agcnf 1

Vk,Ctxk,G≈
Φk,Λk,Xk,k

agcnf 2 is established using the second rule. For the

sub-cases where agcnf 1 can perform a non-� action under ii1, or agcnf 2

can perform a non-� action under ii2, a contradiction can be derived
using Lemma 22 and Lemma 19. Hence, these sub-cases are impossible.
The other sub-case where both agcnf 1 and agcnf 2 can only perform �
under ii1 and ii2, respectively, is trivial.

• Suppose agcnf 1

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 2 is established using the second rule,

while agcnf 1

Vk,Ctxk,G≈
Φk,Λk,Xk,k

agcnf 2 is established using the first rule. The

reasoning is analogous to the previous sub-case.

• Suppose both agcnf 1

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 2 and agcnf 1

Vk,Ctxk,G≈
Φk,Λk,Xk,k

agcnf 2 are

established using the second rule for deriving the relation. The reasoning

needed is analogous to the sub-case where both agcnf 1

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 2

and agcnf 1

Vk,Ctxk,G≈
Φk,Λk,Xk,k

agcnf 2 are established using the first rule for de-

riving the relation, with the main difference being the use of Lemma 26
instead of Lemma 28 for establishing the simulation for the i-th and the
k-th processes.

The proof of Lemma 29 is complete by the case analysis above. ut

Based on the preceding lemmas, the proof of Theorem 1 is given below.

83

Proof (of Theorem 1). Let CS = p1 : S1|| . . . ||pn : Sn be a concurrent statement

such that C, ~V `~Φ~Λ CS can be derived. Assume ~Φ satisfies ∀i : asst(Φi,CS , i), and

~Λ satisfies ∀i : live(Λi,CS , i). Let ξ1 and ξ2 be two strategies, and G ∈ P(Pr),

with ξ1
G
= ξ2.

We first inductively show that for all atr1 ∈ atraces-of ξ1(CS), there exists

atr2 ∈ atraces-of ξ2(CS) such that batr1cG = batr2cG , and last(atr1)
~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
last(atr2). Note that CS is itself an augmented concurrent statement. The in-
duction is on the number of global configurations in atr1.

– Case atr1 contains one global configuration.
We have atr1 = 〈〈p1, S1,m?〉, . . . , 〈pn, Sn,m?〉〉 where m? is the initial mem-
ory state.
Take atr2 = 〈〈p1, S1,m?〉, . . . , 〈pn, Sn,m?〉〉.
We have batr1cG = ε and batr2cG = ε. Hence, batr1cG = batr2cG holds.
Let agcnf 0 = 〈〈p1, S1,m?〉, . . . , 〈pn, Sn,m?〉〉. We have agcnf 0 = last(atr1)
and agcnf 0 = last(atr2).

We move on to show that agcnf 0

~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
agcnf 0 holds. From C, ~V `~Φ~Λ CS we

have nip(C, ~V), and no-upd(acstmt-of (agcnf 0), ~V, ~Λ, ~X). Pick an arbitrary

i ∈ {1, . . . , n}. From C, ~V `~Φ~Λ CS we have C,Vi `Φi,Λipi (?, ∅) Si (li, Xi) : ιf for

some li and Xi. Hence, there exists some Ctx i such that C,Vi,Ctx i `Φi,Λipi
(?, ∅) Si (li, Xi) : ιf can be derived. In addition, it can be established that

agcnf 0
Vi,Ctx i,G

=
Φi,Λi,i

agcnf 0. It is not difficult to show that agcnf 0

Vi,Ctx i,G≈
Φi,Λi,Xi,i

agcnf 0 holds. Hence, agcnf 0

~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
agcnf 0 can be established.

– Case atr1 contains k > 1 augmented global configurations. We have atr1 =
atr ′1.α1.gcnf 1 for some atr ′1, α1, and agcnf 1. Here, atr ′1 contains k − 1 aug-
mented global configurations, and it holds that atr ′1 ∈ atraces-of ξ1(CS). By
the induction hypothesis, there exists some atr ′2 such that atr ′2 ∈ atraces-of ξ2

(CS), batr ′1cG = batr ′2cG , and last(atr ′1)
~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
last(atr ′2).

Using Lemma 29, we obtain that there exists some atr2 such that atr ′2 −→ξ2

atr2, batr1cG = batr2cG , and last(atr1)
~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
last(atr2). It can also be

derived that atr2 ∈ atraces-of ξ2(CS) because atr ′2 ∈ atraces-of ξ2(CS), and
atr ′2 −→ξ2 atr2.

It has now been established that under arbitrarily given ξ1, ξ2 and G such that

ξ1
G
= ξ2, for all atr1 ∈ atraces-of ξ1(CS), there exists atr2 ∈ atraces-of ξ2(CS)

such that batr1cG = batr2cG , and last(atr1)
~V, ~Ctx ,G
'

~Φ, ~Λ, ~X
last(atr2). The conclusion

of Theorem 1 can now be deduced using Lemma 13. ut

84

View publication statsView publication stats

https://www.researchgate.net/publication/333636914

