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Abstract

We propose an image-space contrast enhancement method for color-encoded visualization. The 

contrast of an image is enhanced through a perceptually guided approach that interfaces with the 

user with a single and intuitive parameter of the virtual viewing distance. To this end, we analyze a 

multiscale contrast model of the input image and test the visibility of bandpass images of all scales 

at a virtual viewing distance. By adapting weights of bandpass images with a threshold model of 

spatial vision, this image-based method enhances contrast to compensate for contrast loss caused 

by viewing the image at a certain distance. Relevant features in the color image can be further 

emphasized by the user using overcompensation. The weights can be assigned with a simple band-

based approach, or with an efficient pixel-based approach that reduces ringing artifacts. The 

method is efficient and can be integrated into any visualization tool as it is a generic image-based 

post-processing technique. Using highly diverse datasets, we show the usefulness of perception 

compensation across a wide range of typical visualizations.
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1. Introduction

A faithful visual representation relies on both appropriate mapping of the data and the visual 

perception followed [1]. In this paper, we focus on the latter—visual perception in the 

context of visualizations, and specifically, color encoding of 2D images. In particular, we 

study the faithfulness of contrast representation impacted by viewing distance. Our new 

method has the main effect of enhancing contrast depending on virtual viewing distance. 

This paper is an extended version of our previous method [2] with reuse of materials from 
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there. In this work, we extend the method framework with a new per-pixel contrast 

enhancement method.

Color encoding is one of the main research topics in visualization [3–6]. Here, we refer to 

color as a combination of achromatic and chromatic information. A large body of research 

focuses on rules and factors affecting the effectiveness of color coding. The perception of 

chromatic and achromatic information, together with the effect of spatial frequency and 

contrast, has been studied [4,5]. However, few papers focus on controllable contrast 

enhancement methods in the context of visualization—our viewing-distance-based contrast 

enhancement method is the first one to the best of our knowledge.

Our method is inspired by studies in human visual perception. The basis of our method is a 

threshold model of spatial vision, i.e., a model that predicts the visibility of an object under 

different viewing conditions. The computation of contrast and contrast sensitivity functions 

(CSF) is the core of such a model. It is believed that the human visual system contains visual 

pathways in a bandpass fashion, and therefore, spatial vision can be appropriately modeled 

by multiscale models [7–9]. A multiscale contrast model is proposed by Peli [10] to address 

the contrast representation of a complex image. There, a bandpass image pyramid is built 

using either cosine-log filters of various scales or multiscale Gaussian filters. We adopt this 

contrast representation [10] and choose to use the cosine-log pyramid as it provides more 

accurate spatial frequencies.

CSFs have been measured in physiological and psychophysical experiments [7,11–13]. 

These measurements are successfully matched by computational models of CSFs. In 

particular, Daly [14] proposes a computational model for multiscale CSFs to predict visible 

differences between two images. This comprehensive model considers variables affecting 

the contrast sensitivity, including the illumination level, image size, stimuli orientation, and 

viewing distance. Our contrast enhancement method combines the multiscale contrast model 

[10] with the computational CSF [14]. A virtual viewing distance is used as the single 

parameter to enhance contrast so that all bandpass images become visible.

Two weight assignment approaches are supported in our method: a band-based method that 

adjusts weights for bandpass images globally; and a pixel-based method that allows for 

setting weights for individual pixels of bandpass images.

Mullen [13] studies visual sensitivity for sinusoidal grating patterns for monochromatic 

luminance gratings and isoluminant chromatic gratings. The CSFs from experiments show 

that better visual sensitivity is achieved for chromatic channels for low spatial frequency 

stimuli, whereas the luminance channel provides better sensitivity for stimuli with higher 

spatial frequency. Therefore, we keep the chromatic channels for low spatial frequencies and 

use the viewing distance-adjusted achromatic image to provide more insights into higher 

spatial frequencies. An example of an MRI brain dataset is shown as the original (Fig. 1(a)), 

enhanced by our band-based method (Fig. 1(b)), and enhanced by our pixel-based method 

(Fig. 1(c)). The enhanced results show details inside the brain tissues that look washed away 

in the original visualization.
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The contribution of our work is an efficient image-based technique that improves contrast 

using a single parameter of virtual viewing distance. The method is inspired by the 

perception literature, and it goes beyond just compensation for contrast loss caused by 

viewing distance but allows for flexible overcompensation to emphasize relevant features in 

the image.

One benefit of our approach is its generality: our method can be used for a wide range of 

visualization examples, ranging from volume visualization with transfer functions all the 

way to 2D geographic information visualization, as demonstrated in our examples. Another 

advantage is the simplicity of the image-based post-processing that does not interfere with 

previous steps in the visualization pipeline and can be combined with any visualization 

system. Through our efficient computational model, the image enhancement works in 

interactive settings. Our method comes with easy and intuitive controllability with the virtual 

viewing distance as the only parameter.

2. Related work

Utilizing color in computer-based visualization is an important research topic [6]. 

Luminance and spatial frequency aspects in visualizations with color mapping are in 

particular related to our work. Specifically, luminance is more effective for revealing high-

spatial-frequency structures than chromatic channels [4,15]. The spatial frequency of the 

data is considered an important factor in color map design [5]. Color maps and high-

frequency sinusoid gratings are combined to design better perceptually uniform color maps 

that have good luminance contrast across the whole range [16].

Luminance also plays an important role in improving details in natural image processing. 

Tone mapping operators [17–19] are concerned with the compression of the luminance range 

while preserving perceived contrast. Unlike our proposed method, these are image-

processing methods that target to reproduce the perceived image of high dynamic range 

input on low dynamic range devices, and cannot be tuned with a viewing distance.

Computational perception models exist, albeit outside of the field of visualization. Daly [14] 

predicts the visible differences between two images by devising a computational visual 

perception model. We make use of the CSF of [14] for threshold contrast computation in our 

method. The high dynamic range (HDR) visible difference predictor (HDR VDP) [20] is a 

perceptual model that compares a test high dynamic range image against a reference high 

dynamic range image and predicts the visibility, i.e., the visible differences between these 

images, and quality—the quality degradation with respect to the reference image. However, 

these models focus on generating image metric for natural-scened photos or synthesized 

images, whereas our method perceptually enhances potentially abstract visualizations.

In the context of visualization, perceptual aspects have been studied. The spectral 

visualization sharpening [21] method is closely related to this work. That method [21] also 

enhances the contrast of visualization images with a viewing distance parameter but is based 

on a spectral model of vision. This spectral model could simulate perceptual effects due to 

the change of viewing distance and contrast enhancement is achieved by inverting weights in 
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this model. Our paper is concerned with color perception in the context of its spatial 

embedding, and the paper by Isenberg et al. [22] is relevant to our work but with a different 

goal in mind. Isenberg et al. study the visibility of features of different spatial frequencies at 

different viewing distances of a display wall. They propose a hybrid-image method that 

combines a near image containing high-frequency information with a far image that has low-

frequency information to allow the user to perceive coarse features well at distance and 

acquire fine details when close to the display. We also analyze multiscale band-limited 

images, however, we utilize them to compensate for perception distortions and design 

perceptually oriented color transformation. Moreover, rather than a display-wall setting 

where the user moves back and forth [22], we focus on a typical working space setting 

where the user sits in front of a regular monitor at more or less a fixed distance.

In regard to compensation for perception effects, there are methods [23,24] that compensate 

for the simultaneous contrast effect, which makes regions of the same color look different. 

The compensation is realized by rendering these regions with different colors based on a 

customized color appearance model. Unlike their work, our method does not focus on the 

isolated simultaneous contrast effect but how viewing distance affects the contrast on 

different spatial scales. Furthermore, our method goes beyond compensation but also 

supports overcompensation, which is important for visualization.

Contrast enhancement or image sharpening is well studied in image processing [25]. An 

efficient and accurate image sharpener is critical for high-quality image super resolution 

technique [26] that generates high-resolution output from a single low-resolution input 

image. However, these techniques are not perceptually-driven and cannot be controlled by 

the user.

Sufficient contrast is vital for gaining insights into the underlying data in a visualization. In 

fact, user studies [27] have shown that sharp boundaries created by binning continuous 

encodings help with the understanding of the data: participants with binned encoding outper-

form those with continuous encoding in terms of both the completion time and accuracy. 

Therefore, it is natural to enhance contrast for visualization images. Our method supports 

flexible interactive overcompensation through a slider, allowing for highlighting features of 

interest in visualization. It is important to note that such overcompensation is not arbitrary 

but perceptually-based in our method.

3. Contrast enhancement framework

The input of our method is a color image f(x, y). An image pyramid containing band-limited 

images ai(x, y) is extracted using cosine-log filters from the luminance image fY(x, y) of f(x, 
y). Then, contrast images ci of these band-limited images are calculated, and band weights ci

—the averaged values of ci—are also computed. Next, the core step—viewing-distance-

based band weight assignment, which is elaborated in Section 4—is achieved by testing the 

contrast, i.e., ci for the band-based method and ci for the pixel-based method, against a CSF 

S, which is computed separately and independent of the dataset, for a given virtual viewing 

distance set by the user. The luminance difference image fL(x, y) is then created by 

modulating the band weights with ai(x, y). The final visualization fV(x, y) is created by 

Zhou et al. Page 4

J Vis Lang Comput. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combining the luminance difference image fL(x, y) and the chromatic part fC(x, y) of f(x, y). 

The workflow of our method is illustrated in Fig. 2. The remainder of this section explains 

each module in our pipeline, and the two virtual viewing-distance-based weight assignment 

methods will be detailed in Section 4.

3.1. Image pyramid generation

A multiscale model of spatial vision uses an image pyramid generated from the input image. 

An image f(x, y) can be described in the frequency domain with polar coordinates 

representation:

F(u, v) = F(r, θ) = L0(r, θ) +
i 1

l 1
Ai(r, θ) + Hl(r, θ),

≈ L0(r, θ) +
i 1

l 1
Ai(r, θ),

r = u2 + v2 ,θ = arctan v
u ,

(1)

where u and v are the horizontal and vertical spatial frequency co-ordinates in cycles/image 

[10] (the image is always zero-padded to be squared with the side of power of 2), r and θ are 

the polar spatial frequency coordinates, L0 and Hl are low and highpass residuals 

respectively, l is the level of the pyramid, and Ai are band-limited images in the frequency 

domain. An image can be approximated without the high-frequency residual [10]; we, 

therefore, discard the high-frequency image. The band-limited images are created by 

filtering F(r, θ) by multiplying a bandpass filter Gi(r):

Ai(r, θ) = F(r, θ)Gi(r) . (2)

A popular choice of Gi is Gaussian filters with various standard deviations. Gaussian filters 

are closely related to scale space [28] and are widely used in imaging and computer vision. 

The advantage is that they can be conveniently transformed between the spatial domain and 

frequency domain. However, the Gaussian filters are asymmetrical in the logarithmic 

frequency domain, and reconstruction of the input image is nontrivial as filters do not sum to 

one [10].

Instead, we adopt the cosine-log filter bank [10] for image pyramid generation. We use a 

cosine-log filter of 1-octave width, i.e., the central spatial frequency is twice the frequency 

of the lower cutoff frequency and half of the higher cutoff frequency, centered at frequency 

2i cycles/image:

Gi r = 0.5[1 + cos(π log2r − πi) ]. (3)

Fig. 3 shows a 1D example of a cosine-log filter bank comprised of 1-octave-wide cosine-

log filters. The shapes are symmetrical in the log spatial frequency axis and the summation 

of filter responses equals to 1 as shown by the red dash curve. In practice, these filters are 

defined in the discrete frequency domain and the first few levels occupy only a few pixels. 
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The cosine functions are not accurately represented there. As a result, we slightly change the 

filter weights at these pixels to make sure that the summation of all filters equals to one, as 

can be seen in Fig. 3.

Bandpass images in the spatial domain ai(x, y) are obtained by applying the inverse Fourier 

transform to Ai(u, v). Fig. 4 shows an image pyramid of 8 levels of the Hurricane Isabel data 

[29]. It can be seen that the cosine-log filters capture features of different spatial frequencies 

in the image.

3.2. Contrast computation

The average contrast of each bandpass image ai(x, y) is calculated and later tested against 

the threshold contrast given by the CSF, which is discussed in the next section. We follow 

the approach of Peli [10] obtain contrast images ci(x, y) of each pyramid level:

ci(x, y) =
ai(x, y)
li(x, y) ,

li(x, y) = l0(x, y) +
j 1

i 1
a j(x y),

(4)

where l0(x, y) is the lowpass residual image in the spatial domain (L0(r, θ) in the polar 

coordinates frequency domain), and li(x, y) is the low-pass image before the ith level.

The per-pixel representation ci(x, y) is used as contrast for our pixel-based method (Section 

4.2) as in Peli’s approach [10], we further compute an average contrast ci for level i for the 

band-based method (Section 4.1). Therefore, we calculate the average band contrast ci for 

band i:

ci =
ci(x y) 0 ci(x y)

ci(x y) 01 . (5)

Note that other contrast definitions can also be used in our framework.

3.3. CSF and threshold contrast

The Daly CSF [14] is a comprehensive computational CSF model including many 

parameters: S(r, θ, L, i2, d, e), where r is the radial spatial frequency in cycles/degree (cpd), 

θ is the orientation, L is the illumination level, i2 is the image size in degrees, d is the 

distance for lens accommodation, and e is eccentricity. Fig. 5 shows Daly CSFs with various 

illumination levels L; there, the shape of CSFs varies significantly for different L: higher 

illumination levels offer better contrast sensitivity; CSF changes from lowpass to bandpass 

with increasing illumination level. We choose L = 100 cd m−2, which is a typical light 

condition in an office setting, which is our target environment; d = 0.7 m is chosen as it is a 

typical viewing distance in the office setting; e is set to 0 as we assume no eccentricity. 

Parameters L and i2 are fixed for a given input image.
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Given the CSF, the threshold contrast ct(r) is simply the inverse of sensitivity S:

ct(r) = 1
S(r, θ, 100, i2, 0.7, 0)

. (6)

Note that the orientation θ plays a secondary role for band-based weight assignment 

(Section 4.1), and, therefore, is set to a constant (0); however, θ is important in pixel-based 

weight assignment (Section 4.2)—it has to be set based on the image gradient.

3.4. Virtual viewing distance-based weight assignment

The perceptual spatial frequency rp(i) in cycles/degree of bands are changed in our method 

through a virtual viewing distance parameter dv. The cosine-log filter bank gives spatial 

frequency rc(i) of each band in cycles/image, and can be converted into the perceptual spatial 

frequency using:

rp(i) = rc(i) · sdeg(I), i = 0, 1, …, l − 1,

sdeg(I) = 2 ⋅ 180
π arctan 0.5

scm(I)
dv

,
(7)

where l is the number of layers of the image pyramid, sdeg (I) and scm(I) are angle size in 

degree and physical size in cm of the image I respectively. The physical size scm(I) can be 

calculated given the pixel resolution of the imageas well as the pixel resolution and physical 

size of the monitor.

Fig. 6 shows the average band contrast curves of an image with different viewing distances 

(dashed curves) together with a threshold contrast curve generated by the Daly CSF (the 

blue curve). It can be seen that with increasing virtual viewing distance, the spatial 

frequency of bands is increased. Our method allows for convenient spatial frequency 

modification of band-limited images with a single virtual viewing distance parameter. Based 

on this observation, we propose two approaches for weight assignment and explain them in 

detail in Section 4.

3.5. Combining image channels

The luminance difference image fL(x, y) is generated as the weighted sum of band-limited 

images:

f L(x, y) =
i 1

l 1
wi·ai(x y) . (8)

The final visualization fv(x, y) is created by combining fL(x, y) with the color image fC(x, 
y). We replace the achromatic channel L(fC(x, y)) of fC(x, y) by L(fC(x, y)) + fL(x, y), and 

keep the chromatic channels of fC(x, y) intact.

Care must be taken when band weights are high as the modified achromatic image become 

saturated, i.e., fully white or black. Since we would like to preserve the appearance of fC(x, 
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y) as much as possible, we clamp the achromatic channel L(fV(x, y)) empirically by ± 20% 

of the luminance of fC(x, y) to give an appropriate look of the visualization:

L( f V(x, y)): = min(max(L( f V(x, y)), 0.8L( f C(x, y))), 1.2L( f C(x, y))) .

In our current implementation, the combination operation happens in the HSL color space, 

and the combined color is transformed to the sRGB color space for display.

4. Weight assignment methods

Based on the threshold model of spatial vision, a threshold contrast curve predicts the 

visibility of features of specific spatial frequency: a feature is not visible if its contrast is 

below the curve, and it is visible if its contrast sits on or above the curve. The goal of our 

virtual viewing-distance-based weight assignment is to amplify features so that they become 

visible given their spatial frequencies set using the virtual viewing distance.

4.1. Band-based weight assignment

Band weight assignment is realized by comparing the average band contrast at virtual 

perceptual spatial frequencies against the threshold contrast curve. The weight of a band is 

set to 0, if the band contrast is above the curve; otherwise, the weight is set to be the 

multiplier that “lifts” the band contrast up to the threshold contrast:

wi =
ct(rp(i))/ci − 1, ct(rp(i)) > ci

0 , ct(rp(i)) ≤ ci . (9)

It can be seen in Fig. 6 that with a short viewing distance, more bands of low spatial 

frequencies need to be compensated and higher weights are required for shorter viewing 

distance, e.g., dv = 0.2 m; with a long viewing distance, more bands of high spatial 

frequencies need to be compensated and higher weights are necessary for longer viewing 

distance (dv = 2.2 m); bands with medium spatial frequency typically do not require 

compensation as threshold contrast is very low for these frequencies, i.e., the contrast 

sensitivity is very high. These findings successfully match our own experiences in daily life.

4.2. Pixel-based weight assignment

The aforementioned band-based method uniformly amplifies whole bandpass images 

without the consideration of contrast differences within each band. A shortcoming of this 

global approach is that some features that are clearly visible become over-exaggerated, 

whereas some other features do not have enough weights to be seen clearly. Therefore, we 

propose a pixel-based contrast enhancement extension to address this issue. The pixel-based 

contrast enhancement pipeline remains largely the same as the band-based method except 

that the pixel-based method uses contrast images rather than averaged band contrast, and 

weights are set on a per-pixel basis as shown in Fig. 2. The workflow of the weight 

assignment of the pixel-based contrast enhancement is illustrated in Fig. 7. In the remainder 

of this section, we explain each step in Fig. 7 in detail.
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The effect of orientation (θ) cannot be ignored when testing fine-grain stimuli, e.g., pixel-

sized, with the Daly CSF [14], and therefore, it is computationally expensive as the CSF has 

to be computed for each pixel of each band. In the perception simulation method [9], the 

contrast transducer functions are modeled to resemble CSF-like behaviors and are used as a 

unified approximation to threshold spatial vision and suprathreshold vision. Therefore, we 

adopt the contrast transducer functions for the achromatic channel from Pattanaik et al. [9] 

as we use the luminance channel for contrast enhancement and compute Eq. (7) only when 

necessary. The contrast transducer functions read:

T(c) = 22.4(c/0.536)0.5, c ≥ 0.536 ,
22.4(c/0.536)p , otherwise,

(10)

where c is the contrast, and the value of p depending on the spatial frequency is summarized 

in Table 1.

The values of p for peak frequency of 0.5 through 16.0 cpd in Table 1 are adapted from 

Pattanaik et al. [9], while for 32 cpd, the value of p is calculated by finding the threshold 

contrast ct(r) for r = 32 with the Daly CSF and then letting T (ct(r)) = 1, i.e., 

p = log(1/22.4)
log(ct(32)/0.536) · Linear interpolation is used to calculate p if the peak frequency of the 

band is between the values listed in Table 1.

Eq. (10) provides a light-weight alternative to the threshold contrast test—if T(c) < 1, the 

contrast of the pixel is below the threshold and needs to be compensated; otherwise, the 

contrast is above threshold and the pixel could be seen, and we set the weight of the pixel to 

0. Then, the CSF is only computed in cases that a pixel needs to be compensated, and the 

orientation of the feature can be calculated using the gradient of the contrast image:

θ = arctan
dci(x, y)

dy ,
dci(x, y)

dx .

We use the contrast transducer functions for spatial frequencies up to 32 cpd as there is 

evidence that the maximum spatial frequency of a perceivable achromatic stimuli is around 

30 cpd due to limits of human visual acuity [9], and in our case, we set the cutoff to 32 cpd 

to correspond with the cosine-log filters. Note that the spatial frequency can go beyond 32 

cpd with our method as a long virtual viewing distance can be set for overcompensation, and 

in that case, the CSF has to be computed for each pixel of bands that have spatial 

frequencies greater than 32 cpd.

The contrast of pixels of a band may vary significantly and result in contrast-enhanced 

images with unnatural look—some pixels may become too dark or bright. To avoid such 

problems, we empirically clamp the weight of a pixel by the smaller value of ct (rp(i), θ)/

ci(x, y) – 1—the multiplier that “lifts” the contrast of the pixel to the threshold contrast, and 

ct(rp(i))/ci – 1—the average amplitude of the whole band. Therefore, the per-pixel weight 

assignment mechanism can be described by:
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wi(x, y) =
0 , if T(ci(x, y)) ≥ 1 ,

min
ct(rp(i), θ)

ci(x, y) ,
ct(rp(i))

ci
− 1 , if T(ci(x, y)) < 1.

(11)

The per-pixel compensated results can be found in Figs. 1, 8, 9, and 10. In general, 

compared to the band-based method, pixel-based contrast-enhanced images better preserve 

features in the original images while generating less ringing artifacts.

5. User interaction and implementation

The virtual viewing distance visualization method has only one parameter—the virtual 

viewing distance dv. Therefore, user interaction is simple and intuitive with our method as dv 

can be easily controlled by a single slider.

The method is implemented in our visualization tool written in C + + using Qt and OpenGL. 

Our tool supports both 2D images and 3D volume datasets. The cosine-log filter bank is 

computed only once for an image or a slice of a volume dataset when its size was changed. 

The image pyramid is computed by Fourier transform using an efficient fast Fourier 

transform implementation in OpenCV. Contrast image generation is also aided by OpenCV. 

The computation of these steps takes up to a few seconds depending on the size of the 

image.

Interactivity is achieved with our implementation with the help of GPU acceleration. For the 

band-based method, the CSF is computed once and stored in a lookup table, and weight 

assignment involves only a few lookups and divisions. The resulting band weights are 

passed to the GPU, and the luminance image was combined with the color image in an 

OpenGL Shading Language (GLSL) shader to give the final visualization. Whereas for the 

pixel-based method, another GLSL shader calculates the contrast transducer function for 

each pixel and combines the per-pixel weighted luminance image with the color image; this 

shader also computes the orientation of the stimuli, and the CSF when the pixel’s contrast is 

considered below-threshold after the contrast transducer function test. Note that in the pixel-

based mode, we use only the top 5 high-frequency bandpass images to avoid artifacts caused 

by features of much lower frequencies that pass the contrast transducer function test. A code 

snippet of the GLSL shader is provided in the supplemental material for reproducibility.

6. Examples

The usefulness of our perceptual enhancement is demonstrated through various datasets of 

different types in this section. Examples range from color mapping on 2D images (slices) to 

show scalar fields of atmosphere simulation, brain MRI imaging, 3D volume rendered 

image, all the way to 2D geographic information visualization on maps. Insets of zoom-ins 

are provided in all example figures for a clearer comparison between the original, band-

based contrast-enhanced, and pixel-based contrast-enhanced images.
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6.1. Hurricane Isabel

The Hurricane Isabel simulation data is shown in Fig. 8. Here, we see the pressure attribute 

of time step 29, which well demonstrates the nature of atmosphere simulations that have 

large-scale smooth, homogeneous structures with subtle yet important vortex details. With a 

spectrum color map from ColorBrewer1, we are able to roughly see the hurricane eye, the 

spiral arms, and the shore area in the original color-mapped visualization. Details of both the 

hurricane eye and spiral arm structures can be better seen with a viewing distance of 200 cm 

with the band-based method (Fig. 8(b)). However, the band-based contrast-enhanced image 

reduces the resolution of fine features in the data and gives a slightly blurry look due to the 

ringing artifact. With our pixel-based method (Fig. 8(c)), the contrast of fine details 

throughout the image is enhanced, yet the resolution of these features are better preserved 

compared to the band-based method in Fig. 8(b).

6.2. MRI Brain

Results of an MRI brain scan are shown in Fig. 1. The dataset is visualized with a slightly 

modified isoluminant color map [32]. Without enhancement, the image gives a washed away 

impression that the brain cannot be easily separated from the surrounding tissues (cyan), and 

the delicate folded details are not recognizable without difficulty. With a virtual viewing 

distance of 100 cm, the brain structure with fine details become clearly noticeable with the 

band-based weight assignment method, especially for the cerebellum (Fig. 1(b)). Applying 

the pixel-based method to the data (Fig. 1 (c)), structure boundaries are enhanced with finer 

curves, and the result looks more natural than the image enhanced with the band-based 

method (Fig. 1(b)).

6.3. Volume rendered images

Fig. 9 (row 1) shows volume renderings of a supernova simulation using an ambient 

scattering model [30]. The perceptually enhanced result using the band-based method (Fig. 

9(b)) provides a less blurry visualization compared to the original rendering (Fig. 9(a)). 

Specifically, boundaries of complex vortex structures become more prominent with the 

enhanced contrast, making it easier to gain insights into these structures. The pixel-based 

method (Fig. 9(c)) gives a result where high-frequency features are more subtly enhanced 

compared to Fig. 9(b).

Fig. 9 (row 2) shows volume renderings with Phong shading of a simulation of a heptane 

pool fire. With our band-based method (Fig. 9(e)), the contrast of boundaries of layers of the 

fire is enhanced providing better depth cues than the original (Fig. 9(d)). In comparison, the 

pixel-based method generates a more subtly enhanced image with less ringing artifacts (Fig. 

9(f)) than the band-based method.

6.4. GIS data

Fig. 10 shows a visualization of movement behavior [31] on a GIS city dataset. The 

visualization is designed to achieve a focus-and-context effect: the focus is on dark red road 

http://colorbrewer2.org.
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networks and the region inside the circle area, other regions are given reduced contrast. The 

perceptually enhanced result (Fig. 10(b)) improves the overall contrast of the visualization 

while preserving the focus-and-context feeling. Icons and structures inside the circle of 

focus become more prominent. Details outside the focus are enhanced so that more insights 

can be gained easily; nevertheless, the enhancement is not too strong to distract users from 

the focus region. However, ringing artifacts can be seen in Fig. 10(b), especially around the 

circle of focus, and inside the icons. Fig. 10(c) shows the result using the pixel-based 

method—the ringing artifacts are reduced compared to Fig. 10(b), while the contrast of the 

whole image is enhanced compared to the original (Fig. 10(a)).

7. Quantitative evaluation

Our method is evaluated quantitatively using the Blind/Referenceless Image Spatial Quality 

Evaluator (BRISQUE) [33], where a lower score indicates better perceived quality. The 

scores for the original image s0, band-enhanced image sbe, and per-pixel-enhanced image 

spe, respectively, are summarized in Table 2. Furthermore, we calculate the structural 

similarity index [34] comparing the original image against the band-enhanced result ibe and 

the per-pixel-enhanced result ipe. As shown in Table 2, in general, the perceived quality of 

images is improved using our contrast enhancement method except for the GIS dataset. The 

GIS dataset is very different from other examples in nature and contains mostly high-

frequency features—it shows the limits of our method, which is best used for color-mapped 

scientific visualizations; however, the numbers are still comparable here. Higher values are 

shown for ipe than ibe, indicating that the pixel-based method yields images that look more 

similar to the original than the band-based method—this is in line with our observation that 

the enhancements with the former are more subtle than the latter.

Overall, the quantitative metrics is another indicator showing the effectiveness of our 

method.

8. Conclusions and future work

In this paper, we have introduced a contrast enhancement method based on virtual viewing 

distance for data visualization with color images. The perceptually based enhancement is 

achieved by adjusting bands that are extracted from the luminance channel of the input 

image to become visible at a virtual viewing distance. Specifically, the method is built on a 

multiscale image pyramid created with cosine-log filters; weights of band-limited images are 

assigned by testing average band contrast against a threshold contrast curve derived from a 

CSF. To reduce the potential ringing artifacts, we have further extended our method with an 

efficient pixel-based contrast enhancement approach—there, the weight of each pixel in each 

band-limited image is set using a hybrid method that combines the CSF and contrast 

transducer functions. The pixel-based method is recommended for high-quality renderings 

with subtle enhancements, whereas the band-based method is recommended for more 

controllability and drastic effects. Our technique has only a single parameter—virtual 

viewing distance that can be tuned easily by a slider. Interactivity is achieved with our 

implementation. The proposed method can be integrated into any visualization pipeline as 

image post-processing. A wide range of datasets that have representative image features is 
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shown as examples to demonstrate the usefulness of our method. Our viewing distance 

visualization method is a potential technique that benefits any visualization with effective 

perceptual enhancement.

In the future, we would like to conduct quantitative user studies to understand the optimal 

setting of virtual viewing distance for different datasets. Furthermore, the method could be 

extended to a VR/AR environment, where the virtual viewing distance can be set using 

sensors to achieve a more natural way of user interaction.
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Fig. 1. 
Visualizations of the MRI brain dataset with an isoluminant color map (d): (a) original, (b) 

contrast-enhanced by our band-based method, and (c) contrast-enhanced by the pixel-based 

method. Zoomed-in details can be seen in insets. Note that all figures in the paper are 

supposed to be shown on the screen with the longer side of around 30 cm and viewed at 

around 80 cm away.
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Fig. 2. 
The workflow of our contrast enhancement method based on virtual viewing distance.
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Fig. 3. 
Filter bank of 1-octave-wide cosine-log 1D filters in the discrete spatial frequency domain. 

The dashed curve indicates the sum of all filters.
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Fig. 4. 
Cosine-log image pyramid of a visualization of the Hurricane Isabel dataset. The input 

image is shown on the top row; images in the pyramid are shown with increasing spatial 

frequency from left to right, top to bottom (second and third rows). The bandpass images are 

amplified for visualization purposes.
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Fig. 5. 
Daly CSFs [14] with various illumination levels.
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Fig. 6. 
Average contrast of various viewing distance with threshold contrast.
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Fig. 7. 
The flowchart of pixel-based weight assignment (peak frequency of ci(x, y) ≤ 32 cpd).
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Fig. 8. 
Visualizations of the Hurricane Isabel dataset [29]: (a) the original visualization based on a 

(d) spectrum color map, (b) overcompensated with a viewing distance of 200 cm using the 

band-based method, and (c) contrast-enhanced by the pixel-based method.
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Fig. 9. 
Volume renderings with ambient scattering of a supernova dataset are shown in the top row: 

©IEEE. Reprinted, with permission, from Ament et al. [30]. Phong-shaded volume 

renderings of a combustion simulation are shown in the bottom row: ©SCI institute. 

Reprinted, with permission. The original images are shown in the left column, band-based 

enhancements are shown in the central column, and pixel-based enhancements are shown in 

the right column.
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Fig. 10. 
Visualization of a GIS dataset: the original image (a) is contrast enhanced by the band-based 

method (b) and the pixel-based method (c). ©IEEE. Reprinted, with permission, from 

Krueger et al. [31].
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Table 1

The exponent p for various peak spatial frequencies in Eq. (10).

Freq (cpd) 0.5 1.0 2.0 4.0 8.0 16.0 32.0

p 1.93 1.35 1.15 1.04 1.15 1.40 2.63
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Table 2

Quantitative metrics of the original visualizations, enhancements with band-based method, and enhancements 

with pixel-based method.

Dataset so sbe spe ibe ipe

Supernova 46.6867 42.0056 39.7383 0.9748 0.9954

MRI 40.7385 43.4585 21.3608 0.9696 0.9982

Isabel 49.9857 42.8227 49.2977 0.9813 0.9913

HE 51.6422 49.3146 50.5710 0.9928 0.9977

GIS 35.0151 48.6560 44.4159 0.9313 0.9510
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