
HAL Id: hal-04182714
https://hal.science/hal-04182714

Submitted on 21 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards smart contract distributed directory based on
the uniform description language

Wafa Ben Slama Souei, Chiraz El Hog, Raoudha Ben Djemaa, Layth Sliman,
Ikram Amous Ben Amor

To cite this version:
Wafa Ben Slama Souei, Chiraz El Hog, Raoudha Ben Djemaa, Layth Sliman, Ikram Amous Ben Amor.
Towards smart contract distributed directory based on the uniform description language. Journal of
Computer Languages, In press, pp.101225. �10.1016/j.cola.2023.101225�. �hal-04182714�

https://hal.science/hal-04182714
https://hal.archives-ouvertes.fr


Highlights
Towards smart contract distributed directory based on the uniform
description language
Wafa Ben Slama Souei, Chiraz El Hog, Raoudha Ben Djemaa, Layth Sliman,
Ikram Amous Ben Amor

• Propose a new architecture of a SCs directory called DSD which extends
the EbXML registry.

• Allow SC provider to publish, update and retract SCs description on
the DSD.

• Propose a queering algorithm to discover SCs according to the user’s
functional and non-functional preferences, contrariwise to the existing
solution that allows just transaction exploration or indexing from the
blockchain.

• Allow the SC consumers to retrieve, access and understand SCs before
executing them without accessing their source code.



Towards smart contract distributed directory based on
the uniform description language

Wafa Ben Slama Soueia,c, Chiraz El Hogb,c, Raoudha Ben Djemaaa,c,
Layth Slimand, Ikram Amous Ben Amore,c

aUniversity of Sousse, ISITCOM H.Sousse, Sousse, 4011, Tunisia
bDepartment of computer science, College of sciences and arts, Unaizah, Saudi Arabia

cUniversity of Sfax, MIRACL Laboratory, University of Sfax, MIRACL
Laboratory, Sfax, 3031, Tunisia

dEngineering School of Information and Digital Technologies,EFREI
Paris, Paris, 94800, Villejuif, France

eNational School of Electronics and Telecommunications of Sfax, University of
Sfax, Sfax, 3018, Tunisia

Abstract
A Smart Contract (SC) is a piece of code executed on the blockchain to
automatically trigger transactions upon the occurrence of predefined events.
Due to the intrinsic features regarding traceability and data immutability,
many companies started using blockchain Smart Contracts to perform col-
laborative processes. Despite their promising features, there is a lack of
Smart Contacts management platforms that enable blockchain participants
to describe and publish their smart contacts or “search and match” already
deployed ones. In this paper, a new Distributed Smart Directory (DSD)
where providers can publish their SCs description is proposed. The SCs
descriptions include metadata covering functional, and non-functional prop-
erties of the SC. Hence, users can find SCs according to their non-functional
preferences, needs, and constraints. The proposed DSD is an extension of the
ebXML directory. It was fully implemented on-chain. The SCs descriptions
are generated based on the Uniform Description language for SC (UDL-SC).
The proposed solution is implemented on the Ethereum blockchain. It was
then tested and evaluated.
Keywords: Smart Contract, Distributed Directory, Uniform description
language, Solidity, Blockchain.

Preprint submitted to Journal of computer languages August 21, 2023



1. INTRODUCTION

Blockchain technology is a decentralized peer-to-peer network composed
of a series of blocks where data is stored. These blocks are linked based
on cryptographic hash methods (16). In This distributed ledger, where
consumers are identified using pseudonyms, transactions are validated and
verified based using cryptography mechanisms (11). More precisely, each
blockchain network agrees on a consensus mechanism that guarantees trust,
transparency, and security, between users. Blockchain applications are not
limited to cryptocurrency transaction execution (7). With the integration
of the Smart Contract concept into the blockchain, blockchain is adopted in
many applications of various domains (12) . SCs were introduced by Nick
Szabo about twenty-five years ago (9). This concept was adopted to auto-
mate the execution of decentralized applications on blockchain networks. The
integration of SCs enables the implementation and enforcement of real agree-
ments between blockchain participants. A Smart Contract is a piece of code
that encapsulates agreement logic stored on a blockchain. SCs run automat-
ically when predetermined conditions are met, without any intermediary’s
involvement, so that all participants can be certain of the outcome. Many
blockchains use SCs and provide an adaptable platform to code and test
them, such as Ethereum1 and Hyperledger2 Contrariwise, other blockchains,
such as bitcoin3 and Ripple 4, are still using dedicated internal smart con-
tacts only for cryptocurrency transactions.
The number and types of SC are constantly growing and expanding (13).
However, there are no available solutions that allow the user to access, read
and compare SCs before using them without accessing their source code.
Moreover, SC use is costly and time-consuming. Consequently, to attract
and convince users to use a contract, a high level of transparency must be
established. Trust and transparency can be ensured through the provision
of contractual metadata on an adapted platform that enables the consumers
to view and discover Smart Contracts’ metadata before using them. This
requirement can be met using a SC directory that holds SCs information.
From a conceptual standpoint, a SC can be seen as a service (6) offered

1https://ethereum.org/fr/
2https://www.hyperledger.org/
3https://bitcoin.org/fr/
4https://ripple.com/

2



to the consumer. This service can automatically execute the business logic
implemented in the code (23).

Numerous studies (24) (22) suggest that Smart Contracts and services
share many features. This has led to the creation of a new blockchain archi-
tecture that leverages the service orientation of SCs, enabling the publication
and discovery of SCs without needing third-party involvement. At the heart
of this architecture resides an entity called service registry, which provides
the publishing and discovering mechanisms. On the participative web, many
service-oriented directories prove their efficiency to simplify the service in-
ventory, IT management, and unified visibility for all services across the web
(30)(17). Contrariwise to the web3 environment, the service orientation of
the blockchain is still in the preliminary stage (24),(22). In fact, existing
solutions try to search, explore, or index SC-produced transactions, or pro-
vide tokens to contracts directory (18),(19). Therefore, a new directory for
SCs is required to enable the deployment of this service-oriented blockchain
architecture.
Many researchers proposed SCs’ registry in the literature, on-chain (15),
(16) or off-chain(8), (6). Some works suggest storing SCs and their meta-
data (16),(6), while other works, propose simple solutions where just SCs
code are collected and stored(14), (8). In addition, accessing and discover-
ing/searching techniques are different, (14) proposes to download the whole
registry locally to read and reuse a contract, whereas other solutions (8),(6),(1)
provide searching mechanisms via web interfaces or APIs.

This paper tries to resolve issues related to SCs management and use based
on blockchain technology and service-oriented architecture concepts.
Our first goal is to provide a distributed directory where providers can pub-
lish easily and efficiently SCs metadata. We intend to provide a directory
that holds SC descriptions generated based on the Uniform Description lan-
guage for SC (UDL-SC)(2), where the provider can indicate functional and
non-functional properties of the SCs.

Our second goal is to increase the trust between SC providers and consumers
by providing a discovery mechanism that allows searching SCs according to
consumers’ preferences. We focus on filtering SCs according to their features,
security, and legal information to help consumers to find suitable SCs and to
verify their integrity and origin.
We can list our main contributions in this paper as follows:

3



1. a new service-oriented architecture based on blockchain technology us-
ing smart contracts, that facilitates the interaction between SC providers
and consumers, enables the reuse of SCs, and increases cost-effectiveness.

2. a new distributed smart directory (DSD) based on the EbXML registry
structure, where consumer interaction and data flow are managed based
on SCs.

3. publishing, updating, and retracting solutions that allow publishing
and managing UDL-SC descriptions according to the blockchain mech-
anism.

4. a discovering solution that allows searching SCs, and filtering them
based on consumer preferences (Legal and security metadata).

The remainder of the paper is organized as follows. Sect.2 provides a back-
ground of registries on the blockchain. Sect.3, presents and compares the
related works and projects of existing SCs directory approaches in the liter-
ature. Sect.4 introduces the blockchain service-oriented architecture. Sect.5,
gives an overview of the UDL-SC description language proposed in our previ-
ous work (2). sect.6 is dedicated to exposing our Distributed Smart directory
(DSD) as an approach to tackle the previously mentioned challenges. Sect.7
provides the conceptual overview of the DSD, in addition to the proposed
algorithms. Sect. 8 describes the implemented prototype and shows test
and evaluation results. Finally, sect.10 concludes our work and gives some
perspectives for future improvement.

2. BACKGROUND: REGISTRIES ON THE BLOCKCHAIN

Given the increasing number of digital solutions and users, the tasks of
storing, processing, and analyzing data are becoming increasingly difficult.
Numerous solutions have been proposed to address these challenges, and
emerging technologies are continuously being developed to make these tasks
easier and safer. A registry or directory on the blockchain refers to a de-
centralized database that is maintained on a distributed ledger technology
platform. Contrary to the traditional database, where all personal data and
property records are stored and controlled by a trusted third party, based
blockchain registry or directory is not controlled by any single entity, making
it more secure and transparent. The blockchain is considered to be a source
of truth. In fact, it is used to store the list of records, such as user identities,
assets, transactions, or other types of data, which are verified and recorded in

4



a tamper-proof and immutable manner using cryptography and consensus al-
gorithms. Storing and managing this data is maintained automatically based
on the blockchain’s internal mechanisms (5). To verify this data, the user
needs access to that closed database or trusts the entity that stores it (5).
In addition, the blockchain is an append-only type of database, it prevents
data corruption and unauthorized changes. This presents the advantage of
reducing centralization and making information always available and secure.
Furthermore, based blockchain registries are strong solutions for maintaining
the traceability of important and unique products such as diamonds, copy-
right, or coins such as Non-fungible tokens (NFT).
The records on the based blockchain registry are accessible to anyone with
permission to access the network, and they cannot be altered or deleted with-
out consensus from the network participants. Blockchain registries can be
classified into two main categories: public and private.(5). A private registry
builds a more trusted environment to store important data and sensitive in-
formation needs to be kept private. They are restricted to a specific group
of participants who are granted permission to access the network. Whereas,
public registries are open to anyone to read, write, and access the data on
the blockchain. There are two solutions to store data on the blockchain;
On-chain solution: Consists of storing all the information on the block
used for data that requires high security, transparency, and immutability.
On-chain registries guarantee that the data is tamper-proof and that trans-
actions can be verified and audited at any time. Whereas, it can also be
limited by the capacity and scalability of the blockchain, as the data is repli-
cated across all nodes on the network, which can lead to slow transaction
times and high costs. But it is considered the most secure solution for small,
critical pieces of data that require high levels of security and immutability.
Off-chain solution: Consists of storing only the metadata on-chain while
the data is stored off-chain on a secondary network or database that is con-
nected to the main blockchain through smart contracts or other mechanisms.
It is a cost-efficient option suitable for large data sets that require flexibility
and scalability. Off-chain registries provide greater privacy and confidential-
ity as data is not replicated on the network. They also enable faster transac-
tion times and lower transaction fees, as transactions can be processed and
verified off-chain. However, off-chain registries may not be suitable for crit-
ical data that requires high levels of security and immutability as they are
stored on third-party networks that may be vulnerable to hacking or data
breaches.

5



Based Blockchain registries/directories are used to store and collect impor-
tant data or metadata with expensive value. Despite the disadvantages of
the two described solutions, the level of security of the blockchain pushes
users to sacrifice time and money to get the expected features. In fact, stor-
ing/updating data on the blockchain is considered a non-frequent task, but
it requires a heightened level of trust and security to attract users.

3. RELATED WORKS AND PROJECTS

In this section, we will present related works and projects that propose a
registry solution to store and manage data on blockchain technology.

3.1. Related works
In (6) the authors proposed an off-chain registry for SCs metadata de-

scriptions named SC description language (SCDL) registry. The proposed
registry holds SC description metadata designed according to the SCDL de-
scription language(6). The proposed SCDL registry allows SC developers
to share and publish their SCs’ information. It gives the ability for the SC
consumers to search and retrieve SC information through the SC locator (6).
The work presented in (1) proposed a decentralized solution based on blockchain
technology for metadata management and storage. It allows storing services
metadata using a struct solidity component in a SC metadata repository and
uses Oraclize API to check that the resource is really available. This contract
also implements add, replace, and retract operations. Resource search and
discovery are currently done in the background by using external blockchain
explorers, that read the published data directly and scan it.

3.2. Related projects
In this section, we will present related projects proposing a registry or

repository system where the SC and metadata are collected.
In (8), the authors proposed Smart Corpus. It is an organized, reasoned,
and up-to-date repository where Solidity source code and other metadata
about Ethereum SCs (source code, ABI, and byte code) can easily and sys-
tematically be retrieved. Smart corpus creation is based on a pipeline model
composed of four essential components; data retrieving, data cleaning, data
modeling, and data querying. The essential goal of the proposed smart corpus
system is to provide a data set of SCs’ source code in a variety of program-
ming languages. Users can query the smart corpus to get useful information

6



on SCs and their software metrics via a simple user interface.
SC Modular Template (14) is an off-chain open-source repository containing
educational materials. It includes SC templates for developers, published
on GitHub. It is backed by Blockchain Education Network Hong Kong and
Taiwan branches.
Metadata registry(15) is an On-chain IPFS (InterPlanetary File System) di-
rectory for Ethereum SCs. It allows deployment keys to submit an IPFS
multi-hash containing metadata (in any format the author wishes) that will
be associated with their given contract. IPFS is a peer-to-peer protocol for
content-addressed sharing of data via a distributed file system.
Metamask corporation proposed an on-chain contract metadata implementa-
tion project (16) to broadly accepted metadata to check summed Ethereum
SCs addresses. All address keys follow the EIP 55 address checksum format.
They use a mapping metadata solidity structure to store simple SC metadata
(name, logo, ERC20, symbol, and decimals). This project allows adding SC
metadata to the mapping file through a SC function.
(18) presents Etherscan, a leading blockchain explorer, search, API, and an-
alytics platform for Ethereum. The main task of this project is to provide
equitable access to blockchain data. Based on the documentation presented
in (18), Etherscan allows searching verified SCs, getting their source codes
using the addresses, getting contract creators, and creating transactions Hash
by addresses.
(19) presents an efficient indexing and querying of blockchain data called the
Graph. This project simplifies the accessibility and query on the blockchain-
based on GraphQL by providing an efficient and user-friendly way to access
data stored on the blockchain. The Graph Protocol achieves this by allowing
developers to create and deploy custom data indexes, known as subgraphs,
which track specific data points on the blockchain. These subgraphs can
index data such as transaction history, account balances, events, or other
relevant data for a particular Dapp or application and run the attached
mapping handlers. The mapping is a WebAssembly (WASM) module that
creates or updates the data entities that Graph Node stores in answer to
Ethereum events.

3.3. Synthesis
A variety of solutions has been proposed in the literature that present

based blockchain registry, Table 1 summarizes studied works and projects
discussed in the previous sections according to the following criteria:

7



• Data type: the type of the stored data on the proposed registry. It
can be a SC, simple metadata if the registry holds functional metadata
about contracts, or extra metadata if the registry holds functional and
non-functional metadata about contracts.

• Location: the location of the registry, on-chain means available on the
blockchain network. Off-chain means that the registry is located on a
centralized and traditional server.

• Search and discovery mechanisms: the adopted search and discov-
ery mechanism.

Based on Table 1, we argue that previously presented works and projects suf-
fer from certain weaknesses. On the first hand, only the MetaMask contract-
metadata project (16)and the SCDL(6) allowed the storage of SCs source
code, simple metadata, and extra metadata about SCs. The rest of the re-
search works deal with SCs code and simple metadata (15), (1), (8) or only
SCs source code (14). In addition, stored metadata is very restricted. (1)
proposed to use one only attribute called meta that allows adding informa-
tion about a Digital resource. (15) proposes to store an IPFS multi-hash
containing SS simple metadata. (8) allowed storing extrinsic metrics related
to the number of transactions or tokens produced by the contract and intrin-
sic metrics related to the source code, such as the number of lines of code,
modifiers, and payable. (16) proposed a checksummed Ethereum contract
addresses to metadata, like names, and images of their logos. (6) proposed
to store SC generic information such as description, name, version, author,
and access-oriented attributes like the blockchain type, version, and internal
address for internal consumers and the address for external consumers. There
is no proposed solution that allows storing SC non-functional properties such
as gas consummation, legal, pricing, or security information. On the second
hand, architecturally, only (1), (16), and (15), proposed an on-chain registry
implemented based on the Ethereum platform, despite its promising advan-
tages. Finally, retrieving mechanisms are not considered in almost all of
these works. (16), (14) proposed to import the needed contract, or to down-
load and reuse it without having additional information on its source code.
While (8) provides a retrieving mechanism that allows users to search for
SCs and SCs metadata through a web interface where the searching criteria
are restricted by the authors. Otherwise, (18) allows searching validated SCs

8



Table 1: Summary of related Works and Projects

Solu-
tion

SC Si
m

pl
e

m
et

ad
at

a

E
xt

ra
m

et
ad

at
a

Lo
ca

ti
on

Se
ar

ch
an

d
di

sc
ov

er
y

P
la

tf
or

m

Smart
Corpus
(8)

* * - Off-chain Yes E

Modular
Template
(14)

* - - Off-chain No -

Metadata
Registry
(15)

- * - On-chain No E

Metamask
(16)

* * * On chain No E

SCDL(6) * * * Off-chain yes -
Metadata
Repository(1)

- - - On-chain yes E

Etherscan(18)- - - Off-chain yes E
The
Graph(19)

- - - Off-chain yes E

DSD - * * On-chain yes E
(Platform E: Ethereum, - : non specified) (Stored data *: is supported)
(-: is not supported)

by addresses, while (19) allows indexing SC and traces their event-emitted
transactions on the blockchain. Based on these works, we notice that no
proposed approach or project provides a complete on-chain system registry
to manage and retrieve SCs easily based on users’ preferences. Therefore, the

9



last entry in Table 1 presents our proposed smart contract directory, named
DSD, which serves as the key contribution of this research article. The DSD
enables the storage of smart contracts metadata (simple and Extra) directly
on the blockchain. Moreover, it facilitates the discovery and retrieval of these
smart contracts based on users’ non-functional preferences.

4. THE BLOCKCHAIN SERVICE ORIENTATED ARCHITEC-
TURE

Blockchain technology is merged in many domains, and with smart con-
tracts, the implementation and integration of based blockchain applications
called "DAPP" become more and more easy and flexible.
By analyzing a set of implemented smart contracts code5, we notice that
a SC is a block of code; a class, or an object; deployed in the distributed
network, has a defined interface where we found methods signatures, name,
inputs, and outputs. Also, it has a standard invocation method that enables
its execution by any node on the network. These properties are similar to
Web services characteristics. Authors in (22) analyzed web services char-
acteristics such as types, interaction styles, interaction protocols, and data
formats, and then discussed the corresponding of these characteristics for
smart contracts, to demonstrate the ability to propose a service-oriented
perspective on blockchain smart contracts. As well, the work presented by
(23) introduces the new concept Blockchain-as-a-Service and demonstrates
based on a comparative study between SCs, services, and micro-services,
that the integration between service-oriented context and blockchain tech-
nologies presents promising prospects. Moreover, the work presented by (24)
described a full service-oriented architecture using smart contracts in Het-
erogeneous Blockchain platforms, by proposing a SC description language
(SCDL) (6), and SC Invocation Protocol (SCIP) (25) which support the ap-
plicability of the service-oriented concept on the blockchain to facilitate its
utilization, to foster reuse and increase cost-effectiveness.
After this review, we assume that the service-oriented architecture for the
blockchain represents a promising approach in which a smart contract is
viewed as a service. This architecture offers several advantages. Firstly,
it empowers consumers of smart contracts to discover, access, review, and

5https://github.com/wafa2011/blockchainProjectPortfelio

10



comprehend the purpose of contracts before using them, without the need
to access the source code. Secondly, it enables smart contract providers
to publish their contracts on a distributed infrastructure. The blockchain
service-oriented architecture is composed of three essential components;

1. The directory: Where smart contracts information are stored. This di-
rectory provides adaptable mechanisms for publishing and discovering
SCs.

2. The smart contract consumer(SCC): it is an internal node that intends
to execute a smart contract either to utilize its enclosed functions or
to integrate it into business applications for its benefit.

3. The smart contract provider (SCP): it is an internal node that owns a
SC and intends to publish it on the directory.

Figure 1 depicts our vision of the blockchain service-oriented architecture
established over three essentials such as the directory, the UDL-SC, and the
blockchain interaction protocol.

Figure 1: The blockchain service-oriented architecture

The directory is called distributed Smart Directory (DSD) and represents
the purpose of this research work. It is a new approach for publishing and
discovering UDL-SC description metadata demonstrated carefully in sect.6.
The UDL-SC description language is the uniform description language of
SCs demonstrated in sect.5 and our recently published work (2). Finally,
the blockchain interaction protocol allows interaction between the SCP and

11



SCC based on the interaction protocol of the blockchain where the DSD is
deployed.

5. The UDL-SC description meta-model

The Uniform Description language for SC (UDL-SC) is a description lan-
guage that extends the Uniform service description language (USDL) (28).
It is proposed in our previous work (2) in 2021 to obtain a simple and rich Sc
description file, in our case, a JSON file, supported by almost all blockchain-
based platforms. UDL-SC draws its power from two main architectural prin-
ciples: its capability to describe the functional properties of a SC, and its
capability to describe non-functional properties. According to USDL, the
non-functional properties are divided into business and technical perspec-
tives. Figure 2 exposes the designed meta-model of the UDL-SC description
language.

Figure 2: The Uniform Description language for SC (UDL-SC) Meta-model (2)

The meta-model shows description properties that can be associated with

12



a SC and the relationships among them. The description of functional ele-
ments covers functions, events, and input/output types. The description of
non-functional properties covers Qos, price, legal, and blockchain informa-
tion which are considered as extra metadata. The blockchain information
such as the "name", "type", "currency", and "consensus" are inserted into the
UDL-SC description to identify SCs’ blockchain information in the case of a
federated blockchain platform. The UDL-SC has implemented Extra meta-
data to enhance the level of detail, expressiveness, and clarity in descriptions
of SCs. By doing so, it promotes easier comprehension of the SCs, thereby
motivating users to employ and run them. The UDL-SC description language
aims to simplify the interaction with SCs, minimize their ambiguity, and help
users to understand their functionality and their internal mechanism with-
out accessing their source code. In addition, this description language helps
SC providers to highlight SC properties so that they can get more profits
by attracting users and increasing the accessibility to their contracts. The
meta-model transformation process is performed using JSON rules based on
a model-driven approach (MDA). A SC description generator (SCDG) is pro-
posed in (2) to help developers to generate JSON UDL-SC description files
automatically.

6. PROPOSAL: DISTRIBUTED SMART DIRECTORY

In this section, we present our Distributed Smart Directory called DSD.
The DSD is an extension of the EbXml registry (3) and serves to store and
retrieve SCs on the blockchain. Figure 3 exposes the architecture of our pro-
posed directory.
The DSD directory architecture is based on a layered architecture that main-
tains separation of concerns advantages (10). The DSD is established based
on the EbXml registry architecture (4)(3) by using the smart directory ser-
vice (SDS) and the smart directory client (SDC) components. Furthermore,
it is extended by two new components called smart directory data (SDD) and
smart directory security (SDSEC) as illustrated by figure 3 (pink rectangle).
We choose to extend the ebXML registry because its architecture is light and
simple (4)(3), and can be adapted to blockchain technology easily using SCs.
The stored SCs metadata is structured according to the Uniform Description
language for SCs named UDL-SC presented in sect.5.
Our work’s innovation relies on combining functional, business, and techni-
cal information of smart contracts into a directory to increase transparency.

13



Figure 3: The Distributed Smart directory Architecture

Additionally, we have proposed a discovery system that efficiently retrieves
Scs based on consumers’ preferences. This will lead to enhanced trust be-
tween smart contract providers and consumers and improve accessibility to
published smart contracts. Our proposed directory is an on-chain public so-
lution available for all blockchain users. It enables the on-chain storage of
Scs metadata to maintain immutability, security, and availability.

6.1. The smart directory service (SDS)
The smart directory service is the provider entry point to the DSD. It

is the SC that allows collecting SCs descriptions from providers to make
them available to general users. The smart directory service implements
the provider-actions interface where a set of allowed interactions are de-
scribed, such as publish function that allows SCP to publish a UDL-SC
description, update function that allows SCP to update a UDL-SC descrip-
tion, and retract function that allows deleting a published description from
the registry. These functions will be implemented in the SDS.
The DSD directory relies on existing consensus protocols of the blockchain
that implements it. The designed system collects information’s metadata
from providers’ transactions (payable transactions) and stores it on the blockchain
according to the smart directory data (SDD) data structure.

14



6.2. The smart directory security (SDSEC)
The Smart directory security is implemented following the Identity Access

Control methodology (27) used to manage and control access to resources
within an organization or systems. The SDSEC involves several mechanisms;

• Password-based authentication, each provider has to authenticate
to publish and manage his SCs on the DSD. This process allows for
verifying the identity of the provider attempting to access the DSD. The
goal of authentication is to ensure that only authorized providers are
granted access to published SCs, and to prevent unauthorized access.

• Role-Based Access Control (RBAC) It is a security model that
controls access to resources based on roles. In fact, access rights are
assigned to roles, and users are assigned to those roles. Access to DSD
features is then granted based on the roles that the user has been
assigned to, based on their public key. On the DSD we have two roles,
provider and consumer. We have assigned the "Add, Update, Retract,
Querying" actions to the provider role, and the "Querying" action to the
consumer role. Therefore, each time a new Provider is registered on the
DSD, its public address is assigned to the provider role. The benefits
of RBAC include increased security, improved compliance, simplified
administration, and greater flexibility in managing access rights.

• Identities-based authorization: it is a security model that grants
or restricts access to a SC description based on a user’s identity (pub-
lic key). This mechanism is adopted to prevent other providers from
updating or retracting a not owned SC metadata. Specifically, it lim-
its the "Updates/Retracts" access right to the provider who created
the contract, as determined from the SC description metadata, by the
public key value of the provider. In addition, to avoid fake metadata
publishing on the DSD, this mechanism, forces that, the SC Provider
is one of the parties of the smart contract agreement, and his address
is used to send and receive tokens during the execution of the SCs.
This will be performed based on the UDL-SC description metadata
extracted from the participant description sub-class.

In addition, by its foundation on the blockchain, the DSD improves the trust
between the provider and the consumer of the SCs. In fact, by uploading
SCs and their metadata on-chain on the same blockchain platform, the DSD

15



will be more trusted by nodes, and the SC consumer will be sure that the
published transactions are verified by the same consensus mechanism that
all nodes already trust.

6.3. The smart directory data (SDD)
The SDD manages DSD data flow. Figure 4 presents the DSD data flow

model.

Figure 4: The DSD Data information model

It includes SC description metadata and providers metadata. These infor-
mation are persistently stored in the blockchain network. The SC descrip-
tion metadata is structured according to the UDL-SC meta-model(2). It is
divided into four essential structures. The first structure encapsulates the
business perspectives including; QOS, legal, security, and pricing informa-
tion. The second and third structures encapsulate technical and functional
perspectives. Finally, the fourth structure encapsulates the provider’s au-
thentication information and the role used by the SDSEC.

6.4. The smart directory client (SDC)
The smart directory client is the consumer entry point to the DSD. This

contract implements the request-actions interface that describes discov-
ery and retrieval methods. The discovery and retrieval processes are per-
formed based on the UDL-SC metadata deployed on the DSD by the provider.
The SC consumer specifies the searching criterion through a web user inter-
face and sends a search request, so the SDC undertakes to seek the suitable
contract description to retrieve it for the SC consumer.

16



7. CONCEPTUAL OVERVIEW OF THE DSD

In this section, we will present the conceptual overview of our proposed
DSD platforms. Figure 5 exposes the component diagram where the physical
aspects of our solution are presented. According to this diagram, the four
essential components introduced in sect.6 are designed to be implemented
using SCs. These SCs will be deployed on the blockchain and their public

Figure 5: The Distributed Smart Directory component diagram

addresses will be used as a reference to invoke their encapsulated features. To
invoke a function within the smart contract, a transaction must be executed.
This transition includes the contract address, the function to be called, and
any required parameters for that function. These SCs receive data from a
web browser component and send data to the blockchain component. Based
on this diagram, the DSD software architecture follows the 3-tier architecture
principle, where;

• The presentation tier: is a DAPP application, that provides two
web interfaces, the first is for the SCP that enables the sign-in, log-in,
publish, update, and retract functions. The second is for SCC which
enables smart contract discovery and retrieval functions.

• The data tier: presented essentially by the smart directory data
(SDD)that represents the data structure used to manage and organize
information about SCs and providers on the directory. They are per-
sistently stored in the blockchain network according to the information
model of the smart directory data presented in sect.6.3.

17



• The application tier: is composed of the two interfaces that describe
user and provider actions and protocols, such as; the provider-actions
interface implementation by the SDESC and the SDS. And the request-
actions interface implementation by the SDC.

Figure 6: Use case diagram of the Distributed Smart Directory

We choose to use SC technology in the implementation of the DSD to provide
a fully distributed solution on all nodes of the Blockchain networks. The goal
is to achieve the non-repudiation, immutability, and high availability of the
DSD component based on blockchain technology‘s data sharing and repli-
cation proprieties. In addition, SCs are used to prevent data modification
(contract agreements) and to maintain a high level of trust.
To facilitate synchronization and accessibility to the deployed SCs, the pro-
posed DSD is deployed on the same blockchain where the described SCs are
deployed and will be available for all blockchain participants.

Figure 6 exposes the use case diagram that demonstrates the different
ways that an actor might interact with our system. This diagram shows two
involved participants, the SC provider (SCP) and the SC consumer (SCC).

18



The SCP must sign up to register on the DSD system. After that, he can log
in, publish, update, or retract SC descriptions. The SCC can only query SC
descriptions. The SC provider must exist on the same blockchain where the
SC and the SC description are deployed because it is one of the SC parties,
and its public address is used to transfer and receive tokens.

7.1. The provider-actions interface
The provider actions interface is implemented by the SDS and the SDSEC

components. This interface groups SCP-authorized methods signatures such
as publish, update, retract, sign-up and sign-in. The class diagram exposed in

Algorithm 1 Publish a SC description on the DSD
input : a UDL-SC description UDL-SCdesc, and SCP public key PPK
output : event message
Begin
if dontExist(UDL-SCdesc, PPK) then

Store the UDL-SCdesc metadata in the SDD object on the blockchain.
emit descriptionPublished("description is published successfully!").

else { emit descriptionExist("SC description already Exist!").}
end if
End algorithm.

Figure 7 illustrates the structure of the DSD by exposing the SCP SCs, their
attributes, operations, and the relationships among the SDS, the SDSEC,
and SDD smart contracts. The SDS implements the publish, update, and

Figure 7: SC Class diagram for the SDS, the SDSEC, and SDD SCs

retract functions, that allow managing UDL-SC descriptions on the DSD.

19



The algorithm 1 called "Publish a SC description on the DSD" is invoked by
the constructor of the SDS when a SCP wants to publish a SC description on
the DSD. This algorithm takes as input the SC UDL-SC description and the
SCP public key and emits an event message that informs the SCP that his
metadata is published or not on the DSD. One UDL-SC description for each
contract is authorized based on the public address of the contract. Figure

Figure 8: Sequence diagram of publishing a SC description on the DSD

8 exposes the sequence diagram of publishing metadata on the DSD. The
sequence diagram illustrates the interactions between actors and the system
in chronological order.

The algorithm 2 called "Retract and update a SC description on the DSD"
is invoked by the constructor of the SDS when an SCP wants to update or
retract a SC description from the DSD. For the update, this algorithm takes
as input the SC public key, the SCP public key, and a UDL-SC descrip-
tion. In case of retraction, it takes the same cited input, but with an empty
UDL-SC description. As output, this algorithm emits an event message that
informs the SCP whether his description is updated or not. When the up-
dating or retracting process is performed, a new SC description for the same
SC is published on the DSD using the Algorithm 1. The older SC description
transaction will not be dropped from the DSD directory because of the im-
mutability nature of the blockchain, but, when a user or a provider searches
it, its latest published version will be retrieved. The older Sc description
will be assigned as an invalid transaction by the network users. The SDSEC
implements the sign-up and sign-in functions, that allow the registering and
authentication of an SCP on the DSD. The algorithm 3 called "SCP sign-up
and sign-in" is invoked by the constructor of the SDSEC when a blockchain

20



Algorithm 2 Retract and update a SC description on the DSD
input : a UDL-SC description UDL-SCdesc, the SC and SCP public key PPK, CPK
output : event message
Begin
if search(UDL-SCdesc, PPK, CPK) then

Retrieve the UDL-SCdesc older version and assign it as invalid.
Store the UDL-SCdesc metadata in the SDD object on the blockchain using the algorithm 1.
emit descriptionUpdated("description is Updated successfully!").

else { emit descriptionDontExist("SC description don’t Exist!"). }
end if
End algorithm.

user wants to publish a UDL-SC description on the DSD. This algorithm
takes as input the SCP public key and the password. As output, this algo-
rithm emits an event message that informs the SCP whether he is successfully
logged in or is registered on the DSD. If the SCP public key is already stored
on the SDD, and the user writes a correct password, he will be redirected to
the home page where he can visualize only the list of his published contracts.
Else, this algorithm will transfer mining fees from the SCP balance to the
miner balance to store its information on the DSD and him to the empty
home page.

Algorithm 3 SCP sign-up and sign-in
input : SCP public key PPK, and password PSW
output : event message, redirection link
Begin
if search(PPK, PSW) then

Redirect the SCP to his home page if correct(PSW).

emit providerlogIn("Login successfully!").
else {
(1)Store the provider metadata in the SDD object on the blockchain.
(2)Redirect the SCP to his home page.
(3) Save this user as provider
(4) emit providerSignedUp("The provider is registered successfully!").}
end if.
End algorithm.

The publish, update, retract, and sign-up algorithms executions are payable,
so the SCP should pay mining fees, otherwise, if he doesn’t have the adequate
balance, the invocation fails. To avoid unauthorized publishing, updates, and
retracting, the Modifier function is used. Modifier functions are used to mod-
ify the behavior of a function or to add a prerequisite. onlyProvider Modifier
guarantees that only the SCP can invoke publish, update and retract func-
tions. These functions fail if the Modifier require instruction fails.

7.2. The request-actions interface
The request-actions interface is implemented by the SDC component. In

this interface, we defined the signature of the querying method. The class

21



Figure 9: SC Class diagram for the SDC Sc.

diagram exposed in Figure 9 illustrates the structure of the DSD by showing
the system’s SDC Sc, its attributes, operations, and the relationships among
the SDC, and SDD components.

The algorithm 4 called "Discovering Smart contracts" is invoked by the
constructor of the SDC when a blockchain user wants to query a UDL-SC
description from the DSD. SCC can query on the combination of four pa-
rameters (Category, legal, security, gas limit) and return from the SDD any
UDL-SC description that matches this query. It effectuates a linear search
(29) through a collection of SCs descriptions in a linear manner until target
SCs are found. First, this algorithm 4 extracts all contracts according to the
chosen category. After that, three filters will be executed on the retrieved
SCs to find SCs that meet user preferences, respectively;

• security filter: Retrieves contracts with non-empty security informa-
tion, these contracts are secured and tested by a SC audit service. An
audit service executes the SC automatically whenever a network tries to
access it for a transaction requested by a user to discover cyberattacks
and potential vulnerabilities and correct them.

• legal filter: Retrieves contracts with non-empty legal information, these
contracts are legally binding and enforceable if they comply with the
contract law of the government.

• gas filter: allows retrieving the smart contracts based on the chosen
gas consumption thresholds.

22



We choose to use the linear search known as sequential search because (29)
it represents a good choice for small collections, in our case SCs metadata, as
it requires minimal processing overhead. The algorithm 4 returns as output
a message if the SDD is empty, else it will return the list of smart contracts
that meet the SCC query.

Algorithm 4 Discovering Smart contracts
input : Category , legal, security, gas limit
output : Set of SCs or message
Begin
results: an empty Set of contract addresses.
if IsEmpty(SDD then

emit Empty("directory is empty!").
else

results <- Extract contracts description based on the category param.
results <- Extract contract addresses based on (legal, security) parameter values.
results <- Eliminate SC address out of the requested (gas limit) parameter value.

end if.
return results.
End algorithm.

8. Implementation and Evaluation

To evaluate the feasibility of the proposed directory, we implemented the
DSD as a full DAPP application on the Ethereum platform 6. We used
RemixIDE as a development environment to code Solidity smart contracts,
and Metamask as a blockchain provider to publish smart contracts and sign
transactions sent. The implementation source code can be inspected online
7.
The four smart contracts; SDS, SDC, SDSEC, SDD; introduced in sect.6 are
implemented in Solidity language (20) and contain all the algorithms intro-
duced in sect.7. To support the upgrade-ability of our solution in case of
future development or bug fixing, we have deployed our smart contracts us-
ing the OpenZeppelin Upgrades Plugins 8. By choosing this option, we can
upgrade our smart contracts by making changes to their code while main-
taining their balance, address, and state.
For the front end of our DApp, we used the React.js Javascript library,
HTML5, CSS3, and JavaScript. The front end is composed of two user
interfaces according to user types. The SCC user interface allows the discov-
ery and retrieval of SC descriptions based on a set of Discovering parameters.

6https://dsd-iota.vercel.app/#
7https://github.com/wafa2011/DSD
8https://docs.openzeppelin.com/upgrades-plugins/1.x/

23



The SCP user interface allows the publishing/updating/retracting SCs meta-
data, in addition to the sign-up and sign-in services.
To connect our Scs with the front end we used Web3.js and then we deployed
them on the polygon L2 side chain networks. We have used the polygonscan
website 9 to find users’ wallets by their public address and visualize the trans-
actions sent. The SCC user interface is connected to the SDC presented in
sect.6.4, and the SCP user interface is connected to the SDS and SDSEC pre-
sented in sect.6.2 and sect.6.1. We will use the blockchain to store DSD trans-
actions according to the SDD Data information model presented in sect.6.3.
This contract is implemented using Solidity where we define a multi-mapping
structure that stores the state information to be shared among the blockchain
networks. In the data structures of DSD, we define the representation of the
UDL-SC description meta-model and provider information. As illustrated
in Figure 4, each struct represents a record of the UDL-SC and provider
descriptor metadata. To associate the representation structs to an entity,
four elements similar to hash tables, called mapping, are created. Mapping
allows efficient key-value lookup. The three first mappings are used to store
the UDL-SC functional, business, and technical description meta-data struct
called respectively CDF, CDT, and CDB, where we assign to each entry a
unique integer ID to serve as the mapping key. To store UDL-SC metadata,
the three mappings will be updated at the same time. So, they generate the
same ID for a SC UDL-SC record. The fourth mapping is used to store the
provider meta-data struct called PInf (provider information) and assign a
unique integer ID to serve as the mapping key to each entry. In the SCP web
application, the publish/update functions store smart contracts information
on the CDF, CDT, and CDB mapping struct. The retract function allows
deleting a SC description from these three mapping structs based on the
mapping key (ID). The SignIn function stores provider information in PInf
mapping struct. All the proposed methods in the SCP application use the
hash function Keccak32 (21) available in the Ethereum platform to encode
transactions sent. To retrieve these transactions and decrypt their hash’s,
we used the abi-decoder library 10.
For evaluation purposes, the Solidity smart contracts were hosted on the poly-
gon L2 side chain, we get test MATIC tokens from the Polygon Faucet web-

9https://mumbai.polygonscan.com/
10https://github.com/ConsenSys/abi-decoder

24



site 11. According to CoinMarketCap 12 inspected during our experiments, 1
Matic is equal to 0,81637 USD. The experimentation is conducted on a SCs
description data set 13 called "UDL-SCdescriptions". UDL-SCdescriptions
is composed of 400 JSON files 14. Each description file contains metadata
about one SC generated by the UDL-SC description generator proposed by
(2). The deployed smart contracts were experimented upon by imitating the
SCP and SCC actions processes. Table 2 shows the gas cost sent for each
method invocation of smart contracts.

Table 2: Experiment results for method invocations
DSD Solidity Smart Contract Methods

Functions Transaction Fee (MATIC) Transcation Fee (ETH)
Publish 2,197311 0.00160415
Update 1.035802 0.00075619
Retract 0.318916 0.00023501
Sign in 0.087023 0.00006412
Log in 0,054176 0.00003955
Discovery 1,025835 0.00075591

Through a careful examination of the results, the methods ’Publish’, ’Up-
date’, ’Retract’ and ’Sign in’ require an amount of gas to process bigger than
the ’Login’ and ’Discovery’ methods. In fact, ’Publish’, ’Update’, ’Retract’
and ’Sign in’ methods change the state of the blockchain by registering new
data, which requires big transaction fees. Whereas, ’Login’ and ’Discovery’
methods enable the querying on the blockchain without any change of the
data. We notice that the methods ’Publish’ and ’Update’ take much more gas
than ’Retract’, and ’Sign in’ because the stored data by the two first methods
is bigger than the stored by the seconds. In addition, when compared, the
’Publish’ function execution costs are higher, as during the execution, a new
SC description data record is created, as opposed to the ’Update’ when only

11https://faucet.polygon.technology/
12https://coinmarketcap.com/fr/
13https://github.com/wafa2011/UDL-SCdescription-data-set
14We were unable to obtain enough resources to run with more descriptions metadata

at the time of writing.

25



the specific SC description data record values are updated. The method ’Lo-
gin’ consumes less gas compared to the ’Discovery’ method because it allows
only extracting from the PInf struct where providers’ information is stored,
which is considered smaller than the CDF, CDT, and CDB structs where the
SC descriptions are stored. In conclusion, throughout the workflow execu-
tion, this implementation displayed reliable behavior and recorded the data
efficiently on the blockchain.
For the performance experiment of the DSD system, we tested the transac-
tion throughput of the proposed publishing algorithm by creating a stress
insertion test of 400 records and measuring the memory, and time required
for the insertion algorithm. A server with an Intel Core i7-7500U CPU fea-
turing 8 GB of RAM with data stored on the IDE storage was used to host
this experiment. Figure 10 displays the results of the publishing performance
test of the DSD on the polygon L2 side chain. Upon conducting a compre-

Figure 10: Publishing performance test of the DSD on polygon L2 side chain

hensive analysis of the data displayed in Figure 10, it was observed that the
insertion time for new records into the DSD increases linearly as the num-
ber of records in the structure grows. This linear growth in insertion time
provides a favorable balance between performance and efficiency, making it
a beneficial attribute for the DSD. For example, the algorithm inserts 150
records in 400ms and 350 records approximately in 900ms. The insertion
time on the blockchain can be affected by factors such as network conges-
tion, computational resources available to the network, and the size of the
blockchain itself. Moreover, upon examining the outcomes of memory usage,
it was observed that the DSD insertion algorithm consumes approximately
900 MB of memory for each record that is inserted. These findings indicate
that the algorithm’s memory usage falls within an acceptable performance
value.

26



For the performance experiments of the distributed discovering algorithm,
we tested the time to execute four field queries (category, legal, security, and
gas) in the DSD with several entries for 50 random queries. The category
parameter is a text field that enables the SCU to input keywords describing
the desired SC, whereas the legal and security parameters are represented as
checkboxes, allowing users to indicate whether they require a legally-endorsed
and secured SC. Lastly, the gas parameter is presented as an option button,
enabling users to select one gas threshold option from a predefined set that
specifies the maximum gas consumption for the required SC. Figure 11 ex-
poses the recorded discovery execution time results.

Figure 11: Discovery execution time for 50 random queries

The blue curve in Figure 11 depicts the time for each discovery method
invocation of 50 queries. Upon analyzing the computed time, it was observed
that the querying time is influenced by multiple factors. First, it depends on
the size of the query, more precisely, as the number of non-empty query fields
increases the time to retrieve SCs increases. Green points in Figure 11 show
the time variation when executing two query types. When running a query
with one field; just the category field; the time is equal to 1.6 ms. Whereas,
when executing a query with four fields(category, legal, security, and gas),
the time is equal to 14.2ms.
Second, the used keywords in the category text field can impact querying
time. In fact, the utilization of inaccurate, or excessively lengthy keywords,

27



will lead to a prolonged search time. Consequently, the algorithm will have
to scan through all the description records on the DSD to match the query,
but may not be able to find any relevant results. Purple points in Figure 11
show the time variation when executing two similar-size queries using only
the category field. The first query uses an inaccurate and very long keyword
and takes time equal to 16.2 ms, whereas the second query uses the ’RENT’
keyword and takes time equal to 2.9 ms.
Finally, the indexing of the data set impacts the querying time. We have
executed the same queries on the same data set after indexing it based on
the "category" attribute. The category attribute exists in the UDL-SC de-
scription under the smart contract common characteristic class. We found
eight smart contract categories (’Rent’,’ Bank ’,’ Sale’,’ ’Copyright’,’ NFT’,’
Voting’,’ Math’,’ Financial ’). In the SDD SC, we have added a new struct
called index, and for each category, we have added a new sub-struct where
we have stored all SCs public key that belongs to this category. To associate
this sub-struct to an entity, we used in the code a new mapping called index,
where we assign to each public key an ID. This ID is also extracted from the
SDD SC presented in sect.6.3 from the three mappings where we store the
complete UDL-SC description metadata. Figure 12 exposes the web interface
developed for the interaction with the DSD.

Figure 12: Web interface developed for the interaction with the DSD

At the same time we have changed the text box of the category field by

28



a select box option illustrated in figure 12. This new component provides
the list of categories from the index automatically, and will dynamically be
updated if a new category is added to the index. Figure 11 displays the
querying time for 50 random queries based on the new index, depicted by
the orange curve, and demonstrates how the index decreases the querying
time. Compared to the sequential searching approach, Mapping elements
allow efficient and fast key-value lookup. Practically, we have extracted the
SCs that belong to the needed category, after that, we have used their key
"ID" to extract their metadata from the other three mappings presented in
sect.6.3. Finally, we have filtered the set of retrieved Scs using security, gas,
and legal filters. Using the index and the selection box features reduces the
time required for discovery, while also preventing wasteful searches due to
the use of incorrect keywords. To evaluate the quality of the results of the
discovery of Scs, we have calculated the Precision, Recall, and F1 score of
four different queries chosen randomly. Table 3 exposes the four different
queries in addition to the retrieved Scs numbers.

Table 3: SC discovery based on 4 different queries
Query SCs F.P T.P F.N T.N

Q1["category"="Math" "security"="true" "le-
gal" = "true" "maximumGas"="O"]

70 20 50 40 310

Q2["category"="Financial" "security"="true"
"legal" = "false" "maximumGas"="2 gwei" ]

130 60 70 20 270

Q3["category"="Voting" "security"="true"
"legal" = "true" "maximumGas"="1gwei"]

40 10 30 20 360

Q4 ["category"="NFT" "security"="true" "le-
gal" = "false" "maximumGas"="O"]

30 10 20 0 370

F : false T: true P: positive N: negative

The definition of precision pertains to the ratio of relevant and accurate Scs
to all Scs returned by the discovery algorithm. The Recall is defined by the
proportion of the relevant Scs of all the existing Scs that have been published
on the DSD. Finally, the F1 score is a measure of accuracy that considers
both its precision and recall. It is the harmonic mean of precision and recall,
with a value between 0 and 1. A high F1 score indicates that the model has
both high precision and high recall, whereas a low F1 score indicates that
either precision or recall is low. Figure 13 exposes the experimental results
conducted for effectuated tests.

29



Figure 13: recall, precision, and F1 score results of the Discovering algorithm execution
for four queries

After a thorough investigation of the results, we notice that the proposed
algorithm retrieves Scs with an acceptable precision score which indicates
that it makes few false positive predictions, while the calculated recall score
indicates that it is good at identifying actual positive cases. These results
are reflected in the F1 score results, especially on the fourth query where the
F1 score value is equal to 0.8.

9. Discussion

Based on performance test results, the DSD proves the importance of the
proposed functionalities and shows that it improves the accessibility to SCs
by encouraging SCC and SCP to use the proposed algorithms to publish, re-
trieve and discover SCs. In fact, the publishing/updating of SC descriptions
is a not frequent task, as we see in the web service context. More precisely,
the provider will publish once a SC description, so its expenses will not be
very high compared to the profit that he will earn after the execution of the
SC by a user.
Since its distributed property, the proposed DSD resolves the limits of exist-
ing systems presented in sect.3.3 because ;

• It is a full on-chain solution,

• It allows storing SC metadata,

30



• The stored metadata is very expressive because it includes functional
and non-functional properties of the SC,

• It increases information availability by enabling publishing, searching,
and retrieving SCs via a simple user interface.

• It achieves synchronization because each node in the network has a
replication of the DSD and all its data.

Besides, with its foundation on blockchain technology, the proposed DSD
resolves the limits of centralized registry systems such as;

• Records vulnerability and risk of loss: The DSD relies on the
consensus mechanisms of the blockchain where it is deployed to as-
sure the verification and the validation of any requested transaction (a
record).

• Delay in bringing records and single point of failure: this prob-
lem is resolved by the data sharing and replication in each blockchain
network node.

• Very difficult to maintain secret and confidential transaction:this
problem is resolved by encrypting all transactions using a cryptographic
algorithm and hash function.

• Records falsification: this problem is resolved by the immutability
nature of the blockchain, defined as the ability to remain unaltered,
unchanged, and indelible. Accordingly, published information on the
DSD is ensured from fraud and data violence.

• Member loyalty and delay in decision-making problems: this
problem is resolved by implementing the logic on SCs that enforce and
automate the execution of any agreement without depending on a third
party member.

We conclude that our proposed DSD keeps the advantages of decentralization,
promotes trust between parties, reinforces data security, and achieves records
synchronization.

31



10. CONCLUSION

In this paper, we have sketched a fully on-chain distributed directory
called DSD for SC metadata. This directory will help providers to share in-
formation on SCs with blockchain users to facilitate its utilization. So, they
can understand SC functionalities without accessing the source code. The
proposed DSD is an extension of the ebXML directory that enables many
properties such as publishing UDL-SC metadata and searching for UDL-SC
releases and instances. The evaluation of the DSD directory shows that
using blockchain technology improves the availability of information, and
supports transparency between parties. By its foundation on the unified SC
description language called UDL-SC, and the EbXML registry standard, the
adoption of this solution to other blockchain platforms supporting smart con-
tracts is feasible through customization of the UDL-SC meta-model and the
implementation of the DSD according to the chosen platform requirements
and coding languages. This would enhance the applicability and interoper-
ability of the proposed solution across different blockchain ecosystems. Our
next step is to build a new platform for blockchain clients that allow them to
search and retrieve SCs using different techniques inspired by what we see in
the literature review. Furthermore, our intention is to place greater emphasis
on the examination of functional properties of the smart contract throughout
the process of discovery. Functional properties include function name, input,
output, data, processing logic, and exception management. Also, we intend
to implement new mechanisms for the SCs selection, recommendation, and
comparison based on SCU preferences. Furthermore, we intend to imple-
ment an SLA management system (26) to ensure the outlined contract terms
and identify when parties breach the contract based on the UDL-SC descrip-
tion file to prevent fake metadata insertion problems. Finally, we propose to
improve the transaction processing capabilities of the DSD system by imple-
menting mechanisms such as sharding or parallel processing of the publishing
algorithm. These techniques will allow transactions to be processed concur-
rently across multiple nodes, thereby distributing the processing workload
and reducing the risk of overload on any single node.

References

[1] GARCÍA-BARRIOCANAL, Elena, SÁNCHEZ-ALONSO, Salvador, et
SICILIA, Miguel-Angel. Deploying metadata on blockchain technologies.

32



In : Metadata and Semantic Research: 11th International Conference,
MTSR 2017, Tallinn, Estonia, November 28–December 1, 2017, Pro-
ceedings 11. Springer International Publishing, 2017. p. 38-49.

[2] SOUEI, Wafa Ben Slama, EL HOG, Chiraz, SLIMAN, Layth, et al. To-
wards a Uniform Description Language for Smart Contract. In : 2021
IEEE 30th International Conference on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE). IEEE, 2021. p. 57-62.

[3] KOTOK, Alan et WEBBER, David RR. ebXML: the new global stan-
dard for doing business over the internet. Sams Publishing, 2001.

[4] HOFREITER, Birgit, HUEMER, Christian, et KLAS, Wolfgang.
ebXML: Status, research issues, and obstacles. In : Proceedings Twelfth
International Workshop on Research Issues in Data Engineering: Engi-
neering E-Commerce/E-Business Systems RIDE-2EC 2002. IEEE, 2002.
p. 7-16.

[5] KONASHEVYCH, Oleksii. Cross-blockchain protocol for public reg-
istries. International Journal of Web Information Systems, 2020, vol.
16, no 5, p. 571-610.

[6] LAMPARELLI, Andrea, FALAZI, Ghareeb, BREITENBÜCHER, Uwe,
et al. Smart contract locator (scl) and smart contract description lan-
guage (scdl). In : Service-Oriented Computing–ICSOC 2019 Workshops:
WESOACS, ASOCA, ISYCC, TBCE, and STRAPS, Toulouse, France,
October 28–31, 2019, Revised Selected Papers 17. Springer International
Publishing, 2020. p. 195-210.

[7] SANKA, Abdurrashid Ibrahim, IRFAN, Muhammad, HUANG, Ian, et
al. A survey of breakthrough in blockchain technology: Adoptions, ap-
plications, challenges and future research. Computer Communications,
2021, vol. 169, p. 179-201.

[8] PIERRO, Giuseppe Antonio, TONELLI, Roberto, et MARCHESI,
Michele. An organized repository of ethereum SCs source codes and
metrics. Future internet, 2020, vol. 12, no 11, p. 197.

[9] SZABO, Nick. The idea of SCs. Nick Szabos papers and concise tutorials,
1997, vol. 6, no 1, p. 199.

33



[10] RICHARDS, Mark. Software architecture patterns. 1005 Gravenstein
Highway North, Sebastopol, CA 95472 : O’Reilly Media, Incorporated,
2015.

[11] ABDELHAMID, Mohamed Moetez, SLIMAN, Layth, BEN DJEMAA,
Raoudha, et al. ABISchain: Towards a Secure and Scalable Blockchain
Using Swarm-based Pruning. In : Proceedings of the 2023 Australasian
Computer Science Week. 2023. p. 28-35.

[12] SUNNY, Farhana Akter, HAJEK, Petr, MUNK, Michal, et al. A sys-
tematic review of blockchain applications. IEEE Access, 2022.

[13] IWATA, Kotono et OMOTE, Kazumasa. Automatic Monitoring System
for Security Using IoT Devices and Smart Contracts. In : Advanced
Information Networking and Applications: Proceedings of the 36th In-
ternational Conference on Advanced Information Networking and Ap-
plications (AINA-2022), Volume 1. Cham : Springer International Pub-
lishing, 2022. p. 205-216.

[14] H.U.Y.-C. (2020, April 6). GitHub - Turing-Chain/Smart-Contract-
Modular-Template: the open-source repository contains educational ma-
terials including SC templates for developers. GitHub. Retrieved Febru-
ary 1, 2022, from https://github.com/Turing-Chain/Smart-Contract-
Modular-Template

[15] C. (2020a, September 28). GitHub corydickson/ethmetadataregistry:
On-chain metadata registry for Ethereum SCs. GitHub. Retrieved
March 7, 2022, from https://github.com/corydickson/eth-metadata-
registry

[16] M. (2022, May 10). GitHub - MetaMask/contract-metadata: A
mapping of ethereum contract addresses to broadly accepted icons
for those addresses. GitHub. Retrieved June 21, 2022, from
https://github.com/MetaMask/contract-metadata

[17] EL HOG, Chiraz, DJEMAA, Raoudha Ben, et AMOUS, Ikram. Adapt-
able web service registry for publishing profile annotation description.
In : 2013 IEEE 10th International conference on ubiquitous intelligence
and computing and 2013 IEEE 10th International conference on auto-
nomic and trusted computing. IEEE, 2013. p. 533-538.

34



[18] EtherScan Documentation (Contracts) (2022) Etherscan. Available at:
https://docs.etherscan.io/api-endpoints/contracts (Accessed: Novem-
ber 6, 2022).

[19] Get started with the graph documentation (2022) The Graph Docs.
Available at: https://thegraph.com/docs/en/ (Accessed: November 6,
2022).

[20] DANNEN, Chris. Introducing Ethereum and solidity. Berkeley : Apress,
2017.

[21] KURTULMUS, A. Besir et DANIEL, Kenny. Trustless machine learning
contracts; evaluating and exchanging machine learning models on the
ethereum blockchain. arXiv preprint arXiv:1802.10185, 2018.

[22] DANIEL, Florian et GUIDA, Luca. A service-oriented perspective on
blockchain smart contracts. IEEE Internet Computing, 2019, vol. 23, no
1, p. 46-53.

[23] WEBER, Ingo. Blockchain and Services–Exploring the Links: Keynote
Paper. In : Service Research and Innovation: 7th Australian Sympo-
sium, ASSRI 2018, Sydney, NSW, Australia, September 6, 2018, and
Wollongong, NSW, Australia, December 14, 2018, Revised Selected Pa-
pers 7. Springer International Publishing, 2019. p. 13-21.

[24] FALAZI, Ghareeb, LAMPARELLI, Andrea, BREITENBUECHER,
Uwe, et al. Unified integration of smart contracts through service orien-
tation. IEEE Software, 2020, vol. 37, no 5, p. 60-66.

[25] FALAZI, Ghareeb, BREITENBÜCHER, Uwe, DANIEL, Florian, et al.
Smart contract invocation protocol (SCIP): A protocol for the uni-
form integration of heterogeneous blockchain smart contracts. In : Ad-
vanced Information Systems Engineering: 32nd International Confer-
ence, CAiSE 2020, Grenoble, France, June 8–12, 2020, Proceedings 32.
Springer International Publishing, 2020. p. 134-149.

[26] HAMDI, Nawel, EL HOG, Chiraz, BEN DJEMAA, Raoudha, et al. A
Survey on SLA Management Using Blockchain Based Smart Contracts.
In : Intelligent Systems Design and Applications: 21st International
Conference on Intelligent Systems Design and Applications (ISDA 2021)

35



Held During December 13–15, 2021. Cham : Springer International Pub-
lishing, 2022. p. 1425-1433.

[27] FERRAIOLO, David, FELDMAN, Larry, et WITTE, Greg. Exploring
the next generation of access control methodologies. 2016.

[28] CARDOSO, Jorge, WINKLER, Matthias, et VOIGT, Konrad. A service
description language for the internet of services. In : Proceedings of
ISSS. 2009.

[29] GLASS, H. et COOPER, L. Sequential search: A method for solving
constrained optimization problems. Journal of the ACM (JACM), 1965,
vol. 12, no 1, p. 71-82.

[30] NABLI, Hajer, DJEMAA, Raoudha Ben, et AMOR, Ikram Amous Ben.
Efficient cloud service discovery approach based on LDA topic modeling.
Journal of Systems and Software, 2018, vol. 146, p. 233-248.

36


	INTRODUCTION
	BACKGROUND: REGISTRIES ON THE BLOCKCHAIN
	RELATED WORKS AND PROJECTS
	Related works
	Related projects
	Synthesis

	THE BLOCKCHAIN SERVICE ORIENTATED ARCHITECTURE
	The UDL-SC description meta-model
	PROPOSAL: DISTRIBUTED SMART DIRECTORY
	The smart directory service (SDS) 
	The smart directory security (SDSEC)
	The smart directory data (SDD)
	The smart directory client (SDC)

	CONCEPTUAL OVERVIEW OF THE DSD
	The provider-actions interface
	The request-actions interface

	Implementation and Evaluation
	Discussion
	CONCLUSION

