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Abstract

This article proposes the XGOP-B deterministic traffic model for MPEG video services requiring strict bounds on the quality of service

provided by the network. The XGOP-B model takes advantage of two characteristics of MPEG video traffic by performing a two-level

analysis of such sources. In our scheme, the traffic parameters are directly obtained by a single-input single-output parameter extracting

algorithm. The proposed algorithm is autonomous and leads to a single set of parameters for each video stream avoiding user interaction

determine the most appropriate set of parameters. We show through analysis of several video traces that these original features of the XGOP-

B model yield accurate parameterizations at a low complexity cost. Our results show that the accuracy of the XGOP-B model leads to

significant improvements when compared with the accuracy of the other traffic models. Furthermore, the complexity is evaluated through the

number of traffic parameters and we show that it can be substantially decreased.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The development of efficient communication systems to

transport variable bit rate (VBR) video has been a major

challenge in recent years. An efficient use of the

bandwidth and the provision of the required quality of

service (QoS) are two important keys for the success of

oncoming applications. Mechanisms to access and manage

network resources must be provided to avoid bandwidth

misuse and to improve the quality of the application at the

receivers [1–4].

Most video applications require strict QoS guarantees

from the network. Delay bounds, throughput, jitter, and loss

rate are important parameters that must be controlled by the

communication infrastructure to provide such applications

with the required QoS degree [1,5–11]. Three components

are used by the network service in order to provide QoS

guarantees: traffic model, packet scheduler, and connection

admission control (CAC) [12–15]. Nevertheless, neither the

packet scheduler nor the CAC can provide by themselves an

efficient service if an accurate traffic model is not supplied

[7,16–19].

A number of traffic models for statistic services have

been proposed in the literature [20–24]. These models are

mostly based on Markov chains, self-similarity, and other

stochastic techniques. Such models, however, either are

extremely complex for practical use or they do not capture

traffic characteristics accurately. Moreover, they cannot be

used for services that require deterministic guarantees from

the network (e.g. strict video applications) since there exists

a nonzero probability that the QoS parameters are violated.

In a deterministic service, all the packets are guaranteed

to be delivered within the specified QoS bounds [7,13–19,

25,26]. The traffic characteristics are parameterized by a

deterministic traffic model. A traffic model is deterministic

when the corresponding traffic behavior function MðtÞ;

which denotes the number of bits generated by the modeled

source, is always equal to or greater than the actual number

of bits generated by the source. A deterministic traffic model

often makes use of the concept of traffic constraint function

[7,18,27]. Let G½t; t þ t� be the number of bits transmitted

by the source in the interval ½t; t þ t�: A function Fð·Þ is a

traffic constraint function if

G½t; t þ t� # FðtÞ; t $ 0; ð1Þ
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i.e. if during any interval of length t the source does not

transmit more than FðtÞ bits.

The only requirement that must be respected is that ð·Þ

must be an upper bound on the traffic behavior. This implies

that an infinite number of traffic constraint functions exists.

The most accurate traffic constraint function that can be

obtained is called empirical envelope [7,18], defined as

zðtÞ ¼ sup G½t; t þ t�; t $ 0: ð2Þ

In practice, representing the behavior of VBR sources by the

empirical envelope may be extremely complex, due to

the large number of parameters that would be necessary.

The solution is to approximate zð·Þ by an upper bound

FðtÞ $ zðtÞ;;t; which is mathematically easierto

represent than zð·Þ:

An efficient deterministic characterization aims at

finding a function Fð·Þ as close as possible to zð·Þ: An

accurate traffic model keeps as low as possible the inter-

model distance DM; given by

DMðtÞ ¼ FðtÞ2 zðtÞ; ð3Þ

for all t:

In the ðs; rÞ model [27,28] for an interval of length t; the

source is constrained to transmitting no more than sþ rt

bits. The ð ~s; ~rÞ model [7], which is an extension of the ðs; rÞ

model, defines a two-dimensional array of ðsk; rkÞ pairs

resulting in a piecewise concave function. The discrete

model [29] uses four parameters ðxmin; xave; I; smaxÞ to model

a traffic, where xmin is the minimum interval between two

consecutive packet arrivals, xave is the maximum average

interval between two packet arrivals within an interval of

length I; and smax is the maximum packet size. The D-BIND

(Deterministic Bounding INterval Dependent) model [30]

characterizes a source by a RðIÞ function, which gives the

maximum transmission rate within any interval of length I:

The RðIÞ function is parameterized by the pairs ðRk; IkÞ; k ¼

1; 2;…;N; and results in a piecewise linear traffic constraint

curve. Table 1 summarizes the traffic constraint functions

for each one of the models.

The abovementioned models aim at characterizing

general VBR videosources. When parameterizing MPEG

video [31], which is a de facto standard for networked

multimedia applications, they capture neither the intrinsic

property of burstiness caused by the intra-picture frames nor

the long-term deviations in the average traffic rate due to

changes in scenes. Moreover, for some models, the

procedures to extract parameters from the sources cannot

be efficiently performed if the user does not interfere to

decide which parameters seem to be the most adequate.

This paper proposes the XGOP-B (eXtended GOP-

Based) model to deterministically characterize MPEG video

sources. The XGOP-B model is based on Group of Pictures

(GOP), which is the second-level hierarchy of MPEG video

streams. The model definition relies on a two-level analysis

of MPEG traffics, which results in a detailed description of

such sources in the frame and GOP levels. The proposed

model uses the results of this two-level analysis to obtain a

simple and accurate characterization. Furthermore, in order

to obtain the XGOP-B parameters, we develop the single-

input single-output (SISO) parameter extracting algorithm

that computes one and only one set of traffic parameters for

each video stream. This implies that the final parameters are

not result of erroneous choices incurred by interactions

between the algorithm and the user. With the proposed

parameter extracting algorithm, the number of parameters,

and, consequently, the complexity of the model, can be

calibrated by tuning a special variable. This variable allows

a fine control on the tradeoffs between the accuracy and the

complexity of the model, so that badly behaved sources

(which require a large number of parameters to achieve high

accurate modeling) can be modeled at an acceptable

complexity level.

We use several traces of MPEG video streams to

demonstrate the improvements achieved by the XGOP-B

model. First, by taking into account specific characteristics

of MPEG video sources, the accuracy of the XGOP-B

model is shown to be up to 70% greater than the ones of the

other models. Second, these values are achieved at no extra

complexity in terms of the number of parameters. This is

mainly attributed to the autonomous characteristic of the

parameter extracting algorithm.

This paper is organized as follows. In Section 2,we

perform a detailed analysis of MPEG video streams and

establish the specific properties intrinsic to such sources.

We describe then the fundamental requirements to achieve a

simple and accurate deterministic traffic modeling and

propose the XGOP-B model, showing how it fulfils the

requirements. Section 3 presents the single-input single-

output parameter extracting algorithm for the XGOP-B

model. In Section 4, we analyze several MPEG video traces

in terms of the level of accuracy and present numerical

results concerning the tradeoffs between the adjustment of

the model and the respective accuracy. Finally, Section 5

concludes the paper.

2. The XGOP-B model

We present in this section the XGOP-B model that

captures specific characteristics of MPEG video sources and

uses these characteristics to achieve high modeling

Table 1

Traffic constraint function for the models

Model Traffic constraint function

ðs; rÞ FðtÞ ¼ sþ rt

ð ~s; ~rÞ FðtÞ ¼ mini{si þ rit}

Discrete FðtÞ ¼
t

I

� �
Ismax

xave

þ min
t

I2

t

I

� �� �
I

xmin

� �
;

I

xave

� �
smax

D-BIND FðtÞ ¼
RkIk 2 Rk21Ik21

Ik 2 Ik21

ðt2 IkÞ þ RkIk ; Ik21 # t # Ik
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accuracy. It is well suited to MPEG video distribution,

which may handle hundreds of highly variable streams,

because it is a simple specific traffic model that can be used

to maximize the bandwidth utilization and to optimize the

admission control.

The XGOP-B model is based on a two-level analysis of

MPEG compressed video streams. In the frame-level

analysis, we investigate the rate differences between intra-

picture frames and inter-picture frames. We show that due

to the larger size of intra-picture frames, the traffic

constraint function assumes a staircase behavior, which is

characterized by a simple ðh; nÞ pair of parameters. In the

GOP-level analysis, we find that the long-term behavior of

the traffic constraint function is perturbed by deflection

points that affect the average increase rate of the curve.

The ðh; nÞ parameters are then modified to adapt to the

different homogeneous regions outlined by these deflec-

tion points.

2.1. Frame-level observation

An MPEG coder [31] produces three frame types:

intra-picture I frames and inter-picture P and B frames.

These frames are generated in a cyclic sequence called

GOP, which contains an initial I frame and some P and

B frames, in conformity with a specified pattern, for

instance IBBPBBPBB. Most MPEG video streams have I

frames much larger than P or B frames, which results in

traffic bursts at the beginning of each GOP. In the

corresponding traffic constraint function, this is equival-

ent to periodical stairs in the curve, as shows the

example of a real MPEG traffic constraint function of

Fig. 1.

2.2. GOP-level observation

The staircase behavior is valid for the short-term but not

for the long-term analysis of the traffics. Our next

investigation relies on the GOP-level observation of

the video characteristics. As it will be seen, this analysis

is the foundation for the modeling of the source’s long-term

behavior. To illustrate the methodology, Fig. 2(a) shows a

18-second sequence of the traffic constraint function

corresponding to the MPEG sequence shown in Fig. 2(b).

Note that the empirical envelope presents deflection points

in the average increasing rate of the curve. We refer to these

points as break points and let k of them be denoted by

j1; j2;…; jk:

Breakpoints are caused by changes in scenes, when the

average rate of the video traffic varies beyond a given

threshold. Fig. 2(b) shows a segment of an MPEG video

stream that exhibits this characteristic. Edges in the arrival

process correspond to breakpoints in the traffic constraint

function.

A breakpoint can be of two types. We define a positive

breakpoint the one that increases the average increase rate of

the traffic constraint function. Similarly, a negative break-

point corresponds to a point where the average increase rateFig. 1. Bursts due to intra-picture frames.

Fig. 2. Influence of breakpoints on the average increasing rate of the traffic

constraint function.

M.D. de Amorim, O.C.M.B. Duarte / Computer Communications 27 (2004) 197–207 199



of the traffic constraint function decreases. In the example of

Fig. 2(a), breakpoints 1 and 3 are negative, whereas

breakpoint 2 is positive.

Breakpoints have a negative impact on the accuracy of

general traffic models. The ðs; rÞ and discrete models have

traffic constraint functions with constant average increasing

rate. At negative breakpoints, the traffic constraint functions

for these models diverge from the empirical envelope. The

implication is that the inter-model distance increases, which

consequently leads to a degradation of the model’s

accuracy. For the ð ~s; ~rÞ model, if a negative breakpoint is

followed by a positive breakpoint (which results in a convex

segment), the model cannot track the empirical envelope

since the ð ~s; ~rÞ curve is strictly concave. These issues are

addressed by the XGOP-B model through its average rate

adaptive characteristic. The concave and convex aspects are

adjusted according to the type and intensity of the

breakpoint.

2.3. Formalization of the XGOP-B model

Based on our two-level analysis of MPEG video

sources, we can now conclude that an accurate traffic

model for such traffics should be composed of two

components:

† Short-term component: this component characterizes

the traffic at the frame level. It must take into

account the differences between I-frames and P- and

B-frames.

† Long-term component: this component characterizes

the traffic at the GOP level. The resulting model must

behave such as to reflect the presence of breakpoints.

These two components are the basis of the XGOP-B

model. We detail them in the following.

2.3.1. Modeling the short-term component

To model the short-term component of the video

traffics, it suffices to find a function that presents the

staircase behavior observed in Section 2.1. To obtain this

characteristic, the XGOP-B model defines the pair ðh; nÞ

as traffic parameters. The h factor, called impulse factor,

models the bursts caused by intra-frames. This factor is

added to the traffic constraint function for interval lengths

proportional to the GOP size1. The average factor n

parameterizes the average increasing of the traffic

constraint curve. These parameters are combined in

order to generate a traffic constraint function with the

staircase characteristic observed in the empirical

envelope.

Fig. 3 shows the approximation obtained through the

ðh; nÞ parameters. Fig. 3(a) shows the actual traffic

constraint function (one GOP is represented). The resulting

modeled curve is depicted in Fig. 3(b).

We can now define the exact curve using the ðh; nÞ

pair, as

XshortðtÞ ¼
tþ T

TD

� �
hþ nt; ð4Þ

where T is the inverse of the video’s sample rate and D is the

GOP size.

2.3.2. Modeling the long-term component

The use of a single pair ðh; nÞ results in a good

approximation of the traffic constraint function if and only

if the average increasing rate of this latter is constant.

Nevertheless, we have observed that in practice this is not

true, because of the presence of breakpoints. Thus, in order

to capture the breakpoint property, we must change average

inclination of the modeling curve at each breakpoint. A pair

ðh; nÞ must then be defined for each area delimited by the

breakpoints. The empirical envelope is then subdivided in

Fig. 3. Similarities between the actual behavior of an MPEG group of

pictures and the corresponding XGOP-B model.

1 The GOP size is the number of frames in a GOP.
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‘zones’ bounded by the breakpoints, where each zone k is

considered separately and is assigned to a specific pair

ðhk; nkÞ:

Each pair must be associated with an offset uk (see Fig. 4),

where u1; i.e. the offset of the first zone, is zero.

The equation that represents the long-term component is

given by

Xk
longðtÞ ¼ uk þXk

shortðtÞ: ð5Þ

2.4. The XGOP-B model

We can now define the global equation of the XGOP-B

model by combining Eqs. (4) and (5). We must determine,

for each zone bounded by the breakpoints, an offset u and a

pair ðh; nÞ:

Thus, the set of parameters that completely define the

XGOP-B model is the number of zones, Z; and the 4-tuple

ðhi; ni; ui; jiÞ for zone i bounded by breakpoints ji21 and ji:

We also have j0 ¼ 0:

The final equation for the XGOP-B model is given by

equation:

XðtÞ ¼ ui þ
tþ T

TD

� �
hi þ nit; ji21 , t , ji; 1 # i # Z:

ð6Þ

One of the most significant advantage of the XGOP-B

model relies on its injective parameter extracting algor-

ithm. For each video traffic, the algorithm obtains one and

only one set of parameters. To achieve an efficient and

accurate characterization, the computation of the traffic

parameters must not be based on intuitive considerations.

Consider for example the ðs; rÞ model and the empirical

envelope shown in Fig. 5. There are no conceptual

constraints on what values should be assigned to s and

r: In the example, we show three possibilities for the ðs; rÞ

curve, where each one is more suitable to a particular range

of interval lengths. If case 1 is chosen, the traffic constraint

function is close to the empirical envelope for interval

lengths below 3 s but does not capture the long-term

behavior of the source. Case 3, in turn, is suited for larger

interval lengths but captures poorly the traffic behavior for

short intervals. An intermediate choice is represented by

case 2. None of them, however, can serve as an accurate

approximation for all interval lengths.

The above example shows that different parameters

can be obtained for the same traffic source. A fine traffic

model should be associated with an autonomous extract-

ing algorithm that computes the traffic parameters

without incurring a decision stage as in the example of

the ðs; rÞ model. To be independent of a subjective

choice of such parameters, the traffic model must then be

defined to lead to a single set of parameters for each

input traffic.

For the XGOP-B model, users need not to specify their

traffic parameters since the parameter extracting algorithm

determines itself the most adequate values. Furthermore, the

structure of the XGOP-B model results in a single

characterization for each MPEG traffic.

Fig. 4. Utility of the offsets for the configuration of the final XGOP-B curve.

Fig. 5. Possible solutions for the s and r parameters.
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3. Single-input single-output parameter extracting

algorithm

The single-input single output (SISO) parameter

extracting algorithm comprises two main steps: the

reckoning of breakpoints and the computation of the

effective parameters. The first step is to develop a

mathematical procedure to identify the breakpoints. Let

zð·Þ; called the first derivative function, (Fig. 6) be the

function that represents the number of bits generated

by the source during one GOP. An example is shown in

Fig. 6(a). Based on this function, the algorithm computes

a discrete instance of the non-zero variations of the first

derivative function, which results in the second derivative

function zppð·Þ: Fig. 6(b) shows the second derivative

functions relative to Fig. 6(a). The impulses given by the

second derivative function will help us to identify the

breakpoints.

The amplitudes of the impulses plotted in Fig. 6(b) point

out the rate variation of two consecutive GOPs in the

empirical envelope. It must be distinguished among these

impulses which of them should be identified as breakpoints.

Note that there is no exact quantitative definition of what is a

breakpoint. The challenge is to define an impulse amplitude

(threshold) to correspond to a breakpoint. This identification

is performed according to the amount of accuracy specified

to the parameter extracting algorithm. Reducing the

threshold implies more breakpoint identifications. The

model is then more accurate since a greater number of

parameters is specified. On the other hand, if fewer points

are selected, the model is simpler but less accurate. For this

purpose the parameter extracting algorithm defines the b

variable, called quality of the model. The algorithm is

performed in conformity with the following propositions:

Proposition 1. Given an inclination, a breakpoint j is

identified if this inclination varies, negatively or positively,

of a factor b; with b . 0 :

zppðtÞ $ b:

In this case, there is a breakpoint at t ¼ t:

Proposition 2. A breakpoint j is also identified if the sum of

an uninterrupted sequence of second derivatives varies,

negatively or positively, with regard to the first inclination

of this sequence, of a factor b; with b . 0 :

ðtþDt

t
zppðtÞdt












 $ b; t;Dt . 0:

In this case, a breakpoint is identified at t ¼ tþ Dt:

Note that a breakpoint is also identified when sum of a

sequence of small impulses is equal to or greater than the

threshold. Thus, the parameter extracting algorithm also

considers that the traffic constraint function has changed its

average increasing rate beyond the defined threshold.

The SISO parameter extracting algorithm computes h

and n from the input video traffic as follows. For the sake of

simplicity, we present the algorithm for the first zone, but it

can be easily extended to the other zones by simple

translation of the x–y axis.

The basic input to the algorithm is naturally the empirical

envelop zð·Þ: First of all, we obtain its first derivative

through a simple function given by

zpðtÞ ¼
zðnDTÞ

DT
; ð7Þ

where n ¼ dt=DT e:

The computation of the second derivative function is

straightforward and given by

zppðtÞ ¼ zpðtÞ2 zpðt 2 TÞ; ð8Þ

where, by definition, zpðtÞ ¼ 0 for t # 0:Fig. 6. Examples of derivative functions.
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The h and n values must be computed for each zone. Let

z be the zone bounded by breakpoints jz21 and jz; 1 # z #

Z (Z is the number of zones).

We first derive the impulse factor hz: Since it

corresponds to the largest impulse within the zone, we

have that

hz ¼ maxzppðtÞ; jz21 # jz: ð9Þ

For the computation of nz; we define the first point of X each

zone based on the empirical envelop as

Xðjz21Þ ¼ zðjz21Þ þ hz: ð10Þ

These points are fix and they will be used for determining nz

and uz as detailed in the following.

For the computation of nz; the algorithm initially sets nz

as the average slope of the first GOP in the zone, i.e.

nz ¼
zðjz21 þ DTÞ2Xðjz21Þ

TðD 2 1Þ
: ð11Þ

Note that this does not guarantee that this curve is a

deterministic characterization of the source. It must be

assured that the difference XðtÞ2 zðtÞ is positive for all t:

Fig. 7(b) shows an example where this requirement is not

satisfied. To eliminate this possibility, the algorithm

performs a loop that checks the traffic constraint function

for each jz21 # t , jz: If at some time we have

XðtÞ , zðtÞ then the algorithm assures a deterministic

characterization by modifying the average factor n: For

each jz21 # t # jz; if ½XðtÞ2 zðtÞ� , 0; then a new nz is

computed through

Pseudo-code 1.

for t ¼ jz down to jz21

if ðXðtÞ2 zðtÞÞ , 0 then

t ¼
� t

TD

�
TD;

nz ¼
zðtÞ2XðtÞ

t 2 t
;

end if

end for

This verification is repeated until the entire zone has been

verified and no violation of the deterministic rule has been

detected.

The next step is to determine the offset uz of zone z: The

first point of the XGOP-B model for zone z is

Xðjz21Þ ¼ zðjz21Þ þ hz: ð12Þ

For time t ¼ jz21; we can rewrite Eq. (6) as

Xðjz21Þ ¼ uz þ
jz21 þ T

TD

� �
hz þ nzjz21: ð13Þ

Since we know Xðjz21Þ; hz; and nz; we manipulate Eq. (13)

and obtain

uz ¼ Xðjz21Þ2
jz21 þ T

TD

� �
hz 2 nzjz21; ð14Þ

subject to u0 ¼ 0:

Fig. 8 shows an example of the XGOP-B traffic

constraint curve. Observe the adaptive characteristic of the

model at the breakpoints.

Fig. 7. (a) Deterministic and (b) non deterministic characterization. Fig. 8. Example of the XGOP-B traffic constraint curve.
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4. Numerical results

In this section, we evaluate the XGOP-B model by

performing simulation analysis over several MPEG video

traces. First, we compare the accuracy of the XGOP-B

model with the results obtained for the other traffic models.

We use the empirical envelope as a benchmark to estimate

the accuracy of the models. Second, we assess the

complexity of the models through the number of par-

ameters. Finally, we investigate the tradeoffs between the

quality adjustment given by the b factor and the number of

breakpoints.

The analyzed MPEG video traces represent a wide range

of video applications coded from films, sport events, and TV

shows Ref. [32]. The samples have the following charac-

teristics:

† GOP pattern: IBBPBBPBBPBB (GOP size ¼ 12)

† Definition: 384 £ 288 pels

† 12 bits of color information

† Number of frames: 40000

† Sample rate: 22 frames=s ! T ¼ 45:5 ms:

In order to compare the accuracy of the models, we

define a variable called Modeling Approach Loss (MAL)

that is computed as the difference between the area under

the traffic constraint curve, SF ¼
Ð1

0 FðtÞdt; and the area

under the empirical envelope, Sz ¼
Ð
1
0 zðtÞdt; where 1 is

equivalent to the period of 10 GOPs in our simulations. The

equation for the modeling approach model is then

MAL ¼
SF

Sz

2 1

 !
100%: ð15Þ

As a consequence, the smaller is MAL, more accurate is the

function. In the particular case where MAL ¼ 0%, the two

curves meet each other and the maximum accuracy is

obtained, since the empirical envelope is the most accurate

function. The goal, however, is to have a low MAL and still

maintain a reasonable complexity, since representing

MPEG streams with the empirical envelope is not practical

due to the large number of required parameters.

We formalized some considerations about the procedures

to extract the parameters for the models proposed in the

literature. This is necessary to make a coherent and

normalized basis to compute the respective traffic par-

ameters and to make the comparisons fair. For the ðs; rÞ

model, we select the maximum distance ðt2 2 t1Þ and the

parameters ðs; rÞ such that

zðt1Þ ¼ sþ rt1; ð16Þ

zðt2Þ ¼ sþ rt2; ð17Þ

zðuÞ # sþ ru; ;u: ð18Þ

For the D-BIND model, we limit the interval Ik to Ik $

Imax; ;k; where Imax ¼ 32T : We make I0 ¼ 0 and R0 ¼ 0

and compute Ik and Rk as

Ik ¼

�
t





 max
Ik21#t#Ik21þImax

�
zðtÞ2 zðIk21Þ

t 2 Ik21

�




�
; ð19Þ

Rk ¼
zðIkÞ

Ik

� �
: ð20Þ

In Ref. [7], the authors present an algorithm that uses the

empirical envelope to construct the ð ~s; ~rÞ traffic constraint

function. For a given time t; a parameter pair ðsi; riÞ and a

new time value 0 # t0 , t are selected such that zðtÞ ¼

si þ rit; zðtÞ ¼ si þ rit for all 0 # t # t; and zðt0Þ ¼

si þ rit
0: This procedure is repeated with a newly

calculated time value t0 as long as t0 is positive. For the

ðxmin; xave; I; smaxÞ model, we assume the interval I equival-

ent to one GOP size and smax ¼ 48 bytes: The parameters

xave and xmin are given by

xave ¼ min
Ismax

zðtþ IÞ2 zðtÞ

� �
; ð21Þ

xmin ¼ min
Tsmax

zðtþ TÞ2 zðtÞ

� �
: ð22Þ

Table 2 shows the results for the analyzed video traces

when the quality of the model for the XGOP-B model is

b ¼ 0:01: The results show the high accurate characteriz-

ation obtained by the XGOP-B model and prove that the

XGOP-B model actually captures the intrinsic properties of

MPEG video sources, leading to modeling approach losses

up to 70% lower than the ones of the other models.

Fig. 9 shows an example of the traffic constraint curves

for a cartoon video trace. Note that the static property of the

ðxmin; xave; I; smaxÞ and ðs; rÞ models inhibits an accurate

characterization. The ð ~s; ~rÞ model is a good approximation

Table 2

Modeling approach loss for the models

Modeling approach loss (%)

Video ðs; rÞ ð ~s; ~rÞ Discrete D-BIND XGOP-B

James Bond 44.02 2.16 31.75 1.48 0.41

Lambs 30.56 3.42 20.31 2.23 1.63

News 7.44 2.56 33.67 2.47 1.58

Soccer 7.21 2.20 39.58 1.53 1.22

Conference 6.79 5.42 13.49 5.18 1.93
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between 0 and 3 s. After that, the empirical envelope is

convex and consequently the model does not follow

the curve since its traffic constraint curve is strictly concave.

Even though the XGOP-B and the D-BIND models can

result in equivalent levels of accuracy, the characterization

of the former is straightforward. Furthermore, the b variable

can be modified to adjust the number of traffic parameters

and consequently the level of accuracy. The accuracy

adjustment is simple because the users need not to look into

the traffic stream in order to change the traffic parameters,

but only adjust the value of b: The smaller is b; more

breakpoints are identified, which results in greater accuracy.

Analyzing in details, the behaviors of the D-BIND and

XGOP-B models, we observe that the XGOP-B better

approximates the empirical envelope. To illustrate this

statement, we show in Fig. 10 a zoom in a one-second

segment of video. As we can see, the XGOP-B leads to a

tighter approximation of the empirical envelope.

In the second part of the analysis, we evaluate the

tradeoffs between the adjustment of the b factor and the

number of breakpoints. This tradeoff is important because as

the number of breakpoints increases, greater is the number

of traffic parameters. In one side, the admission control

algorithms and the policing mechanism are more complex

since they have to manipulate more traffic parameters. On

the other hand, if the model is more accurate, the bandwidth

utilization can be improved. Fig. 11 shows the effect of b on

the number of breakpoints for some video streams. We can

also have from the same figure a qualitative view of the

variable characteristics of the traffics. For example, for the

cartoon video trace, even for high b (between 0.6 and 0.9)

the SISO algorithm detects two breakpoints, which means

that the equivalent source presents high fluctuations over

long-term intervals.

The D-BIND and the XGOP-B are the models that better

capture the variable characteristic of the sources, as it can be

observed in Table 2. The complexity of these two models

can be compared in terms of the required number of

parameters. Table 3 presents the required number of

parameters for the XGOP-B model for b ¼ 0:01: The

number of parameters for the D-BIND model is obtained by

adjusting the same level of accuracy. The results show that

the staircase characteristic of the XGOP-B model leads to an

Fig. 10. Zoom in the traffic constraint functions.

Fig. 11. b versus the number of breakpoints.

Fig. 9. Traffic constraint functions for the Cartoon video trace.
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improvement accuracy with a lower number of traffic

parameters.

The ðs; rÞ model is the simplest model, but may not be

accurate depending on the traffic characteristics. The ð ~s; ~rÞ

model defines a piecewise curve which improves the ðs; rÞ

model, but does not characterize well concave sources. The

D-BIND model is also a piecewise curve model which

overcomes the effect caused by concave sources on ð ~s; ~rÞ;

resulting in a better characterization. For the D-BIND

model, the greater is the number of parameters, the better is

the characterization and, as consequence, more complex is

the processing.

XGOP-B is also a piecewise curve model. As well D-

BIND, the XGOP-B characterizes well concave sources

being more accurate than ðs; rÞ and ð ~s; ~rÞ models. It is not

easy to compare XGOP-B with D-BIND, because they have

different approaches. The D-BIND model improves the

characterization decreasing the I interval whereas XGOP-B

increases the considered number of breakpoints. We can say

that the XGOP-B model gives a better tuned improvement,

because it increases the number the parameters when and

where is required. Table 3 shows that the XGOP-B model

requires less parameters than D-BIND for the same quality

of characterization and, as a consequence, being less

complex. Furthermore, the parameter extraction of the

XGOP-B is direct obtained.

5. Conclusion

In this article, we proposed the XGOP-B traffic model to

provide deterministic characterization of MPEG-com-

pressed video sources. The advantages of the XGOP-B

traffic model are twofold. First, it leads to an accurate

modeling of the video source because the model takes into

account some intrinsic characteristics of MPEG videos.

Second, the traffic parameters are obtained in a straightfor-

ward fashion, i.e. for a given video source, the parameter

extracting algorithm returns a unique set of traffic

parameters. The simulation results show that these two

features together lead to good results.

The XGOP-B model is based on a two level analysis of

MPEG video traffics. The frame-level analysis identifies

that MPEG video sources generate bursts due to intra-

picture frames. This happens because intra-picture frames

are normally much greater than inter-picture frames. This

corresponds to a staircase characteristic in the traffic

constraint curve. In the GOP-level analysis, the model

captures the variable long-term behavior of the sources that

reflects the variation of the average video rate due to

changes in scenes. These variations are identified as

breakpoints. Both the short-term and the long-term analysis

were used to obtain an accurate characterization with a

small number of traffic parameters. We have succeeded to

define a simple and accurate model consisting of four

parameters.

The simulation results for the XGOP-B model showed a

significant improvement of the characterization. The

proposed model results in levels of accuracy that are up to

70% greater than the ones obtained by other traffic models.

For the majority of the traces, the XGOP-B model has

presented negligible difference from the optimum charac-

terization given by the empirical envelope. It means that the

XGOP-B model results in a traffic constraint function that

almost meets the optimal characterization. Furthermore, the

XGOP-B model introduces a quality parameter that allows

to balance complexity and accuracy. We also observed that

the XGOP-B model achieves fine modeling with less

parameters than other accurate models.

The single-input single-output (SISO) parameter extract-

ing algorithm is a main contribution of this article. A

difficult task of general deterministic traffic modeling is to

automatically define a unique set of parameters for each

video traffic. This is due to loose nature of the traffic

constraint functions. In fact, the only restriction is that the

traffic constraint function must be an upper bound on the

empirical envelop. Thus, there is no inherent requirements

for defining an accurate constraint function. The XGOP-B

model is associated with the SISO parameter extracting

algorithm to compute the traffic parameters. With the SISO

algorithm, each parameter is assigned a specific equation

that leads to unambiguous results. We showed that it is

important to obtain an accurate characterization without the

user’s intervention to help the choice of the most adequate

parameters.
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