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Abstract

4-Regular grid structures have been used in multiprocessor systems for decades due to a number of nice properties with regard to routing,

protection, and restoration, together with a straightforward planar layout. These qualities are to an increasing extent demanded also in large-

scale access networks, but concerning protection and restoration these demands have been met only to a limited extent by the commonly used

ring and tree structures. To deal with the fact that classical 4-regular grid structures are not directly applicable in such networks, this paper

proposes a number of extensions concerning restoration, protection, scalability, embeddability, flexibility, and cost. The extensions are

presented as a tool case, which can be used for implementing semi-automatic and in the longer term full automatic network planning tools.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Internet is to an ever-increasing extent becoming a

part of every day life for people all over the world. While

it was traditionally used for best-effort services such as

email, news, FTP, and to some extent WWW, a large

variety of applications have now been developed that

demand higher levels of QoS and reliability. In order to

support this, new protocols such as Intserv and Diffserv

have been developed together with different protection

and restoration schemes.

While most households today receive telephony,

television, and radio by dedicated technologies for each

medium, this is expected to change as virtually all media

are becoming able to communicate via Internet protocols

and consequently make use of the same physical

connections [1]. Together with an increasing use of

telerobotics [2,3], tele operations [4], and other critical

applications, the access networks are becoming a critical

part of the whole communication infrastructure. Even
0140-3664/$ - see front matter q 2005 Elsevier B.V. All rights reserved.
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though protocols are being developed to ensure reliability,

the physical network structures limit what level of

reliability can be offered: communication between two

nodes is only possible if there is a physical connection

between them. In a tree-based network structure there

exists only one path between any pair of nodes, making it

vulnerable to attacks and failures. Obvious and commonly

used alternatives to tree structures are ring structures,

which offer connectivity in case of any single failure.

However, given the expected demands of reliability, this

is likely to become insufficient in near future.

The study of structural and topological properties of

networks is highly relevant because Fiber To The Home is

about to replace the old copper-based telephony infrastruc-

ture in many countries worldwide. This is a unique

opportunity to implement a structure almost from scratch.

At the same time, it is a huge task, especially because it

requires a huge amount of duct digging. This together with

the fact that fibre infrastructures are expected to have a long

lifetime because they are upgradeable by changing end

equipment only is a major argument for choosing network

structures with good and predictable properties.

It has been shown that node symmetry, maximal

connectivity, and regularity are important properties to

satisfy for robust network structures [5]. A regular structure

is a structure where all nodes are connected by the same

number of lines n, and given n, such a structure is said to be
Computer Communications 29 (2006) 1350–1362
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n-regular. 2-Regular structures are equivalent to rings, and

inherently node symmetric and maximally connected. The

next step, discussed in this paper, is to consider 3-regular or

4-regular structures, which are preferably node symmetric

and maximally connected, but at least sufficiently regular

and symmetric to benefit from these properties.

Among the 3-regular structures, the group of N2R(p; q)

structures has been introduced as a generalization of double

rings. Another set of 3-regular structures, the honeycomb

structures, has been introduced for multiprocessor systems

[6], but most of these results are directly transferable to

large-scale networks. However, some hierarchical exten-

sions must be developed for these structures to perform

reasonably well with regard to average distances and

diameters, and this challenge has not yet been met.

4-Regular grid structures have been used for multi-

processor systems in decades due to their nice properties

with respect to routing and restoration, and they were

recently suggested used as a base for access network

structures as well [7,8]. This paper is an extension of these

two conference papers. In addition to the results previously

published, it contains a more clear and in-depth presentation

of the theory, as well as new results obtained by pruning the

structures as described in Section 6. A few of the previously

published results are not presented in this paper, in order to

make it more straightforward to read.

The main contribution of the work presented, is a number

of extensions of the 4-regular grid structures. While the

basic structures are suitable for multiprocessor systems, the

extensions presented are required in order to be able to

apply the structures in large-scale networks and planning

hereof. This work forms the base for developing semi-

automatic and in the longer term full automatic network

planning tools.

The remainder of the paper is organized as follows:

Section 2 introduces preliminaries, background, and

notation. Section 3 introduces the basic 4-regular grid

structure, which forms a base for the extensions provided in

Sections 4–6. Section 4 introduces restoration and protec-

tion schemes. The two other important extensions intro-

duced are the hierarchical extension (Section 5) and the

pruning (Section 6). Section 7 provides some tools for

embedding the structures in real-world networks, leading to

the discussion on applying the theory in real-world network

planning given in Section 8. Section 9 concludes the paper.
2. Preliminaries

Throughout this paper, network structures are studied.

The definition of a structure is similar to the definition of a

graph, and can be used for modelling a network, abstracting

away from specific physical conditions. Node equipment,

transmission technologies, wiring, and bandwidth are not

taken into consideration. The terminology used is well
known from graph theory, so in the following we shall

simply provide the usual conventions.

A structure consists of a set of nodes and a set of lines,

such that each line interconnects two nodes. Lines are bi-

directional: if a pair of nodes (u, v) is connected by a line, so

is (v, u). A path from a source node u to a destination node v

is a sequence of nodes and lines (uZu0), e1, u1, e2, u2,.,

enK1, unK1, en, (unZv), where every line ei connects the

nodes uiK1 and ui. It is assumed that uisuj whenever isj.

Only connected structures are dealt with, i.e. for each pair of

nodes (u, v) in the structure, there exists at least one path

between u and v. The length of a path is determined by the

number of lines it contains; in the previous case, the path is

of length n. The distance between two nodes u and v is

written d(u, v) and is determined by the length of the

shortest path between them.

Two different paths between a pair of nodes (u, v) are

said to be line independent if they share no lines, and a set of

paths between u and v are said to be line independent if they

are pair wise line independent. Similarly, two different paths

between a pair of nodes (u, v) are said to be node

independent if they share no nodes except for u and v, and

a set of paths between u and v are said to be node

independent if they are pair wise node independent. It is

easy to see that two node independent paths (of length more

than one) must be line independent, but that the converse is

not in general true.

For a node u, the set of nodes v such that d(u, v)Z1 are

said to be the neighbours of u, and two nodes are said to be

connected if and only if they are neighbours. The degree of a

node corresponds to the number of neighbours it has. If all

nodes of a structure have the same degree n, the structure is

said to be n-regular. The size of a structure is given by the

number of nodes it contains.

A number of parameters for evaluation of structures [9]

are referred to throughout the paper, and defined in the

following. Let S be a network structure consisting of a set of

nodes N and a set of lines L:

† Average average distance: the average average distance

is obtained by taking the average of d(u, v) over all pairs

of nodes usv, where u, v2N.

† Worst-case average distance: the worst-case average

distance is obtained by taking the maximum over all

nodes u of the average of d(u, v) for all nodes v, usv,

where u, v2N.

† Diameter: the diameter is obtained by taking the

maximum of d(u, v) over all pairs of nodes usv,

where u, v2N.

† Cost: since the representations of structures abstract

from specific physical conditions such as node equip-

ment, transmission technologies, bandwidth, and line

ducts and lengths, it is hard to estimate the cost of a

structure as such. We use either the number of lines or

the average node degree to indicate the cost.
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3. The basic structure

The basic structure is well known from multiprocessor

systems (e.g. [10,11]). In order to define and discuss various

extensions later in the paper, it is necessary to provide

precise definitions and notation. Notation and definitions are

chosen to make the paper fairly easy to read.

Let dimx and dimy be positive integers. They define a

4-regular grid structure S with node set N and line set L as

follows. Every node in N is associated to a pair of integer

coordinates (x, y) such that 0%x%dimx and 0%y%dimy,

and every such coordinate pair is associated to a node.

Furthermore, no two nodes are associated to the same pair of

coordinates. Consequently, there are exactly (dimxC1)

(dimyC1) nodes in S. If a node u is associated to a

coordinate pair (xu, yu), we write uZ(xu, yu) to ease notation.

The definition of lines depends on whether the mesh or torus

is dealt with.

The lines of the 4-regular mesh are given as follows: two

nodes (xu, yu) and (xv, yv) are connected by a line if and only

if jxuKxvjCjyuKyvjZ1. Despite not being regular, we still

refer to it as the 4-regular mesh. A torus is obtained by

adding a set of lines, such that two nodes (xu, yu) and (xv, yv)

are connected also if either jxuKxvjZdimx and yuZyv or

jyuKyvjZdimy and xuZxv. The torus is regular, node

symmetric, and maximally connected, which is not the case

for the mesh. The mesh nevertheless possesses most of the

qualities related to these properties, except for the unevenly

distributed traffic and the less robust nodes on the edges.

Since the mesh is planar and thus easily embedded on a

surface, this paper focuses on the mesh, and when referring

to the 4-regular grid structure, the mesh is implicitly

assumed. However, most of the results are easily extended

to the torus, even though certain parts, such as routing,

become more complicated.

A node (x, y) such that either xZ0, xZdimx, yZ0 or yZ
dimy is said to be an edge node, and the four nodes (0, 0),

(dimx, 0), (0, dimy), and (dimx, dimy) are said to be corner

nodes. While in general there exist four node independent

paths between any pair of nodes, there exist no more than

three or two node independent paths between a pair of nodes

if one of the nodes is an edge or corner node, respectively. It

is also easy to see that the distances to and from edge and

corner nodes are generally larger than those to and from

nodes in the middle of S.

3.1. Routing

The purpose of the routing scheme proposed in the

following is to make it possible to send packets from one

node to another using a shortest path. This is done using

hop-by-hop routing, such that when a node receives a packet

of which it is not the intended destination, it is forwarded to

a neighbour. Doing this without tables, relying only on node

addresses, is known as Topological Routing. Topological

Routing is especially beneficial in large-scale networks,
because maintaining tables of the complete network

topology is a resource-consuming task.

For the basic structures, standard XY-routing (see e.g.

[12]) is used. Let p be a packet with destination (xv, yv).

Whenever p is received by a node (xu, yu) it is determined if

it has reached its destination. If this is not the case, it is

forwarded using the following algorithm, which also applies

if (xu, yu) is the source node:

† Let DxZxvKxu and DyZyvKyu.

† If Dy!0, p can be forwarded to (xu, yuK1), and if DyO0

to (xu, yuC1).

† If Dx!0, p can be forwarded to (xuK1, yu), and if DxO0

to (xuC1, yu).

If DyZ0 or DxZ0, the path is uniquely determined.

Otherwise two possibilities exist and a choice must be made.

A random choice can be made, one direction can be given

highest priority such that it is followed whenever possible,

or the packet can be sent in the direction with the highest

value of D. The advantage of the latter approach is that the

number of potential paths is the highest possible in every

intermediate node, i.e. in case of an arbitrary failure the risk

of having to route along a longer path is minimized. This

choice can also be used by protection schemes.
4. Restoration and protection

The routing scheme introduced always results in a

shortest path, given that the structure is as defined, without

failing nodes or lines. However, both lines and nodes do fail

from time to time, and therefore it must be possible to route

even in case of one or more failures: in any case where a

path exists between two nodes, the routing scheme should

be able to find it. Some applications tolerate a certain delay

or jitter, which allows time for establishing a new path,

while others are more critical with respect to delays and

must be able to communicate smoothly, even in case of

failures. This is handled by restoration and protection

schemes, which we propose as follows.

The restoration scheme allows for restoration and for

choosing paths in networks with failures. This is handled by

lake algorithms. Let S be a 4-regular grid structure and

assume that a set of nodes N 0 and a set of lines L 0 are missing

or out of order. Furthermore, any line connected to a node in

N 0 is considered to belong to L 0. Let S 0 denote the structure

without failing nodes and lines (that is S0ZSKL0KN 0).

A set of nodes N 004N 0 and lines L 004L 0 are said to form a

lake A if in a standard (x, y) planar representation of S as

shown in Fig. 1, it is possible to draw a (not necessarily

straight) line from any element (node or line) in A to any

other element in A without crossing any nodes or lines not in

A. Furthermore, in this planar representation, it must not be

possible to draw a line from an element in A to an element in

N 0 or L 0, which is not in A, without crossing an element in S 0.



Fig. 1. The routing of a left packet (dashed line) from u ensures it traverses

around the lake (shaded). For any lake A, a line can be drawn between any

two elements of it without crossing any element not in A.
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A node in S 0 is said to be a border node of A, if it is in S

connected to a line in A. In the following it is assumed that

only one lake A exists in S 0, but this is easily generalized,

keeping in mind the fact that no node in S 0 is a border node

to more than two lakes.

When a node u detects that a line or node connected to

it experiences a failure, it becomes aware that a lake has

appeared, and that consequently it has become a border

node. The next step is to collect the information necessary

to be able to route packets around the lake. This is done

by using left control packets, right control packets or both.

Consider S mapped onto a standard (x, y) coordinate

system as shown in Fig. 1. From u a left control packet

qleft is sent along the first available line on the left-hand

side of the detected unavailable line/node. Initially it

contains only information stating that it is a left control

packet with origin u. When a node v receives qleft, it first

checks if v is the origin of qleft. If this is not the case, v is

added to a list carried by qleft, keeping record of all nodes

passed, as well as their order. qleft is then forwarded along

the first available line on the left-hand side of the line

from which it was received. When qleft is received by its

origin, the list of nodes passed is stored in a table Tu,

called a lake table, and qleft is killed. The nodes stored in

this table define the border of A seen from u (there may

exist several borders of A such that no path exists between

any pair of nodes from different borders). Note that not all

nodes on the border are actually border nodes. Right

control packets are defined in a similar manner, replacing

the occurrences of ‘left’ in the above definition by ‘right’.

For every border node u of A, such a table Tu is kept

updated by sending right and/or left control packets within

specified intervals. When it is determined that the failing

link(s) has recovered from the failure, Tu is deleted and

routing again done as usual. If u is a border node of two

lakes, a table is maintained for each lake.

When a packet p with destination w is received in u, the

following happens: if in S 0 there exists a neighbour u 0 of u

such that d(u 0, w)!d(u, w), p is forwarded from u to u 0 as

usual. If, however, there is no such node, a lookup is made in

Tu, and a node v in Tu is chosen such that d(v, w)!d(u, w),
and such that d(v, w) is smallest possible. A shortest path

from u to v using the nodes of Tu is now determined, and v is

sent to the first node on this path along with the path

specification. In any node of this explicitly defined path, it is

forwarded simply to the next node of the path. In case a line

of this path is failing, the path is discarded and p treated like

any other packet. Given that the lake is or becomes stable

during the routing process and that a path to the destination

exists, it is ensured that the packet reaches its destination in

a finite number of hops. If Tu contains no node v such that

d(v, w)!d(u, w), the packet is either treated as if no table

exists (described below), or it is discarded. If the table is

updated and contains no such node v, w is either in A, or it is

unreachable from u, possibly because the removal of A has

disconnected S.

Different schemes can be used to optimize the set-up of

paths given a table Tu. The simplest solution is to define the

path as the list of nodes traversed by a right or left control

packet, but in some cases gains can be obtained by

discarding loops, or even by using nodes not listed in Tu.

Maintaining tables of a larger part of the structure than just

the border of A may be useful in order to determine shorter

paths, and it may be possible to improve performance by

storing tables in a larger set of nodes around a lake, such that

alternative routing can be done before a packet reaches the

border. However, there is a trade-off between different

factors including path lengths, set-up times in case of

failures, restoration time, and resource usage in terms of

storage capacity and control traffic.

In case only one line or node fails, and even in case a few

lines/nodes are failing, lake tables can be generated fast

since the left and right control packets only need to traverse

a few nodes. However, it can happen that u receives a packet

p with destination w, which could in S only be sent along a

line in A, before a table Tu has been created. In this case, a

chance is taken to send the packet right or left (or both)

around the lake (using a scheme similar to that of left and

right control packets) for example until it reaches a node v

such that d(v, w)!d(u, w), from where it is routed either

normally or by using lake algorithms. It is also possible to

simply discard the packet.

The protection scheme allows for choosing paths with

protection. In general up to four node independent paths

can be set-up between any pair of nodes, but if one of the

nodes is an edge or corner node, fewer paths exist.

Assume that (xu, yu) and (xv, yv) are nodes in S, that none

of them are edge nodes, and that a packet p is to be sent

from (xu, yu) to (xv, yv).

Clearly, either xusxv or yusyv (or both). Without loss of

generality, it is necessary only to consider two cases: in the

first case xusxv and yusyv, and in the second case xusxv
and yuZyv. In both cases it can be assumed without loss of

generality that xu!xv and yu!yv.

In the first case, four node independent paths are

established by duplicating the packet and routing each

copy as follows:



Fig. 2. Distances in 4-regular grid mesh with no hierarchical extension.
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(1) (xu, yu), (xu, yuC1),.,(xu, yv), (xuC1, yv),.,(xv, yv).

This path has length yvKyuCxvKxu and is a shortest

path.

(2) (xu, yu), (xuC1, yu),.,(xv, yu), (xv, yuC1),.,(xv, yv).

This path has length yvKyuCxvKxu and is a shortest

path.

(3) (xu, yu), (xu, yuK1), (xuC1, yuK1),.,(xvC1, yuK1),

(xvC1, yu),.,(xvC1, yv), (xv, yv). This path has length

yvKyuCxvKxuC4.

(4) (xu, yu), (xuK1, yu), (xuK1, yuC1),.,(xuK1, yvC1),

(xu, yvC1),.,(xv, yvC1), (xv, yv). This path has length

yvKyuCxvKxuC4.

In the second case, the first three node independent paths

are established by sending copies of the packet as follows:

(1) (xu, yu), (xuC1, yu),.,(xv, yuZyv). This path has length

xvKxu and is a shortest path.

(2) (xu, yu), (xu, yuC1), (xuC1, yuC1),.,(xv, yuC1), (xv,

yuZyv). This path has length xvKxuC2.

(3) (xu, yu), (xu, yuK1), (xuC1, yuK1),.,(xv, yuK1), (xv,

yuZyv). This path has length xvKxuC2.

The fourth node independent path can be established in

two ways. In some cases where either (xu, yu), (xv, yv) or both

are neighbours to an edge node, it is possible that only one

of them exists:

† (xu, yu), (xuK1, yu), (xuK1, yuC1), (xuK1, yuC2), (xu,

yuC2),.,(xvC1, yuC2), (xvC1, yuC1), (xvC1, yu), (xv,

yuZyv).

† (xu, yu), (xuK1, yu), (xuK1, yuK1), (xuK1, yuK2), (xu,

yuK2),.,(xvC1, yuK2), (xvC1, yuK1), (xvC1, yu), (xv,

yuZyv).

In both cases the path length is xvKxuC8.
5. Hierarchical extension

We propose a hierarchical extension to deal with the fact

that distances in 4-regular grid structures increase as shown

in Fig. 2, which results in considerably larger distances than

in today’s Internet. For example, the average distance in a

square mesh structure of 10 000 nodes is 66.67, while in

1998 average path lengths of the Internet were measured,

and it was shown that the Internet at that time had an

average path length of around 11–24, depending on location

[13]. In 1999 appr. 88 000 different nodes (routers) were

found in the Internet [14].

The extension is introduced in two steps: first an

additional set of lines, hierarchical lines, are defined, and

next a revised routing scheme is presented in order to make

use of these new lines. At the end of the section, the

performance of the hierarchical extension is evaluated.
5.1. Physical extension

Let S be a 4-regular grid structure, and let gx and gy be

positive integers defining the granularity in x respectively y

directions. Furthermore, nH must be a non-negative integer

defining the number of hierarchies. If nHZ0, there are no

hierarchical lines added to the structure. While the

definitions in the following are valid for all gxO0 and

gyO0, we assume that both gx and gy are chosen odd such

that gxR3 and gyR3 in order to support the revised routing

schemes.

Let (x, y) be a node of S. As given by the definition of the

4-regular grid structure, it is connected by basic lines to

the nodes (xC1, y), (xK1, y),(x, yC1), (x, yK1) that exist in

S. For any i, 0%i%nH such that xh0 ðmod gixÞ, and yh0

ðmod giyÞ a node (x, y) is said to belong to layer i. For iO0

this means that it is connected by hierarchical lines to the

nodes ðxCgix; yÞ, ðxKgix; yÞ, ðx; yCgiyÞ, and ðx; yKgiyÞ that

exist in the structure. These lines are also said to be lines of

layer i. As such, the introduction of hierarchies is the

introduction of an additional set of lines. The main model

used in this paper is the Perfect Square Mesh. In addition to

the conditions above, S must satisfy that dimxZg
nH
x ,

dimyZg
nH
y , and gxZgy. For short, we write gZgxZgy. An

example of such a structure, illustrating how performance

gains are obtained, is shown in Fig. 3.
5.2. Revised routing scheme

Before introducing the revised routing scheme, some

notation is necessary. For any pair of nodes uZ(xu, yu) and

vZ(xv, yv), both belonging to layer i (0%i%nH) of a

structure with hierarchical extension, let

diðu; vÞZ
jxuKxvj

gix
C

jyuKyvj

giy
:

Furthermore, let ujZ ðxuj ; yuj Þ and vjZ ðxvj ; yvjÞ be the

nodes of layer j (0%j%nH) such that d0(u, uj) and d0(v, vj)

are smallest possible.



Fig. 3. A Perfect Square Mesh with gZ5 and nHZ2. The distance between

the marked nodes is reduced from 34 to 12 by the addition of hierarchical

lines.
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The revised routing scheme makes use of a number of

easily established properties. Assume that S is a 4-regular

grid structure with gx, gy, and nH chosen as above. The

scheme is designed for the Perfect Square Mesh with gO3,

but even if gxsgy and/or gZ3, it can be easily modified to

always result in a shortest path. In these cases it may be

necessary to perform more calculations because path

lengths in higher layers must be calculated.

(1) Let uZ(x, y) be a node of S. Then the node ui is easily

determined by ðgixroundðx=gixÞ; g
i
yroundðy=giyÞÞ, where

round(a) determines the integer I such that jaKIj is

smallest possible. Since gx and gy are odd, such

rounding is always unique.

(2) Let u and v be nodes of S, and assume for some value of

i!nH that no path piC1 between u and v using at least

one line of layer iC1 exists, which is shorter than the

shortest path using only lines of layer i or lower, pi.

Then there exists no path using lines of layer iC2 or

higher, which is shorter than pi.

(3) Let u and v be nodes of S, and assume for some i that a

shortest path between u and v uses some line of layer i.

This implies that there exists a shortest path between u

and v that contains all nodes uj and vj, for all j%i.

The routing scheme works as follows, assuming that a

packet p is to be sent from u to v, u belonging to layer i but

not layer iC1. p can be sent either through a node of layer

iC1 or through nodes of layer i and below only. If it is sent

through layer iC1, it is forwarded to a node u 0 among

ðxuCgix; yuÞ, ðxuKgix; yuÞ, ðxu; yuCgiyÞ and ðxu; yuKgiyÞ that

minimizes d0(uiC1, u 0). If it is not sent through layer iC1,

two schemes can be used. In case gxsgy, only the first

scheme guarantees that a shortest path is always chosen:

(1) Let u 0 be a neighbour of u that belongs to the highest

possible layer while still satisfying d0(u 0, v)!d0(u, v).

Then p is sent to u 0.
(2) p is forwarded to any neighbour u 0 of u that minimizes

d0(u
0, v).

If p is sent through layer i, a shortest path from u to v that

passes at least one node of layer i can be constructed passing

both ui and vi due to property (3), and the same holds for any

shortest path from u to v that passes at least one node of

layer iC1: such a shortest path exists passing both ui, uiC1,

viC1, and vi.

Therefore, when deciding if routing should be done

through layer iC1, it is sufficient to compare the distance

from uZui (u belongs to layer i) to vi using layer i to the

distance using layer iC1. Note that routing through layer i

does not necessarily imply that any line of this layer is

actually used. The distance between ui and vi using layer i is

given by di(u, vi) while the distance using layer iC1 is given

by di(u,uiC1)CdiC1(uiC1,viC1)Cdi(vi,viC1). All these

nodes are easily determined due to property (1).

Cases can occur where the distances using layer i and

layer iC1 are similar, and similarly if routing is done using

layer i, it may happen that more than one neighbour of u can

be selected for forwarding. In this case, routing can be done

using any such layer and line.

Routing can also be done using layer iC2 or higher. This

decision is made whenever a packet reaches a node of layer

iC1. This is sufficient due to properties (2) and (3).

The presented scheme always determines a shortest path,

and selects the appropriate hierarchical layer, ensuring

maximum benefit from the hierarchical extension.

The restoration and protection schemes introduced in

Section 4 have not yet been extended to deal with the

problems, which occur in hierarchical structures. The

protection scheme is easily extended to provide four node

independent paths between any pair of nodes within each

layer, making it possible to establish line independent paths

from source to destination even in a hierarchical structure.

However, the same nodes may be used when shifting from

one layer to another. This may be managed by improving

the reliability of nodes belonging to first or higher layers,

but increasing distances are still a problem: the additional

hops as specified in the scheme are added at each layer. The

restoration scheme must also be extended, especially in

order to handle situations where a packet is to be routed

from a layer i to layer iC1, but where the nearest layer iC1

node is out of order or not reachable.
5.3. Performance

The performance of the hierarchical extension in terms of

average distances, worst-case average distances, and

diameters were measured by calculating those values for a

number of hierarchical structures. The results are shown for

the basic structures (Fig. 2) and for the Perfect Square Mesh

(Figs. 4–6). While the basic structures have power-law

dependencies between the number of nodes and



Fig. 6. Diameters in Perfect Square Mesh.Fig. 4. Average average distances in Perfect Square Mesh.
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the distances, the dependencies are logarithmic for the

Perfect Square Mesh.
6. Cost reduction

Since ring structures have average degree 2, and double

ring structures as well as Generalized Petersen Graphs [15]

have average degree 3, the 4-regular grid structure is more

expensive: the torus is 4-regular and consequently the

average degree is 4, while the mesh has a slightly lower

average degree due to edge and corner nodes. For a structure

of for example 26!26 nodes, the average degree is 3.85,

approaching 4 for larger structures. The hierarchical

extensions generally add to the number of lines and node

degrees, but their contribution to the total number of lines

and average degree is limited, as can be seen from Table 1.

The high costs of the 4-regular grid structures make it

difficult to apply them in real-world networks since rings

offer a level of protection, which has been satisfactory so

far. However, cheaper variants of the 4-regular grid

structure may form better solutions than the rings even in

the short term, while at the same time allowing for gradual
Fig. 5. Worst-case average distances in Perfect Square Mesh.
extensions. In the following, we propose and discuss two

ways of pruning.

The first approach is to remove every second line in one

of the directions as shown in Fig. 7, leading to a honeycomb

structure. This approach seems feasible: it is cheaper than

the 4-regular grid, it can be extended/upgraded to a

4-regular grid structure, and addressing and routing have

been described, with properties similar to those of the

4-regular grid structure [6]. However, no hierarchical

extension has been developed or proposed so far.

The rest of the section deals with another approach,

making use of the fact that the number of hierarchical lines

is very small compared to the number of basic lines. Based

on this, we propose to reduce only the number of lines in the

basic structure, see Fig. 8, by removing all basic lines in the

y direction except for those co-located with lines of a higher

hierarchy. In other words, two nodes (xu, yu) and (xv, yv) are

connected by a basic line if and only if one of the following

is true:

† yuZyv and jxuKxvjZ1.

† xuZxv, jyuKyvjZ1 and xuh0 (mod gx).

The performances of such a pruned Perfect Square Mesh

with gZ3 and gZ9 are shown in Figs. 9 and 10. It can be

seen that while the number of lines, and thus the average

degree as well as the cost, is significantly reduced, the

average and worst-case average distances are only slightly

larger. For the structures with 6724 nodes, the number of

lines is reduced by 29.2% for the Perfect Square Mesh with
Table 1

Average degree and the contribution to this from basic lines in Perfect

Square Mesh with gZ5

Size Avg. degree % of lines basic

nHZ1, 36 nodes 3.56 93.8

nHZ2, 676 nodes 4.04 95.3

nHZ3, 15 876 nodes 4.14 95.8

nHZ4, 391 876 nodes 4.16 96.0



Fig. 7. Pruning a basic structure to obtain a honeycomb. Fig. 9. Comparison of Perfect Square Mesh and pruned Perfect Square

Mesh for gZ3.

J.M. Pedersen et al. / Computer Communications 29 (2006) 1350–1362 1357
gZ3, and by 43.3% for the Perfect Square Mesh with gZ9.

The average distances are increased by 0.024% respectively

0.35%. The corresponding values for the structures with

532 900 nodes are reductions in the number of lines of

29.6% respectively 43.8%, and an increase in average

distance of !0.001% respectively 0.003%. The calcu-

lations were done with a precision of three decimals, but for

gZ3 with 532 900 nodes, the calculations returned identical

values. Due to the fact that only distances between pairs of

nodes for which all shortest paths use no hierarchical lines

are affected, the differences are smallest for large structures

and structures with small granularity. The diameters are the

same for pruned and non-pruned structures. While

the distances are only slightly affected by this pruning, the

reliability is better in the non-pruned structures due to the

higher connectivity.

This approach to pruning requires a revised routing

scheme. Assume that a packet is send from a node uZ(xu,

yu) to another node vZ(xv, yv). A revised routing scheme

must be used in case all of the following conditions are true:
Fig. 8. Pruning of a Perfect Square Mesh with gZ5 and nHZ2 by removing

all basic lines in the y-direction, except those co-located with lines of higher

hierarchies.
† xus0 (mod gx).

† xvs0 (mod gx).

† yvsyu.

† bxu=gxcZ bxv=gxc.

In this case, d0(u, v) is different from the corresponding

value in the non-pruned structure. Two alternative path

lengths are calculated, corresponding to using either (gx
bxu/gxc,yu) or (gx dxu/gxe,yu) as intermediate node. The

corresponding values of d0(u, v) are jyuKyvjC(xu mod gx)

C(xv mod gx) and jyuKyvjC2gxK(xu mod gx)K(xv
mod gx), respectively. Depending on which one results in

the shortest path, the packet is sent towards one of these

intermediate nodes in case routing is done using only the

basic layer.

In all other cases, a shortest path is ensured by

forwarding packets along the x-direction in the basic layer

only if routing along the y-direction of the basic layer does

not reduce the distance to the destination. It is necessary

though to adjust the protection scheme in all cases.
Fig. 10. Comparison of Perfect Square Mesh and pruned Perfect Square

Mesh for gZ9.
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7. Embedding of structures

The studies conducted so far have mainly concentrated

on topological properties of network structures, and

abstractions from real networks have been made to large

extents. However, in order for the structures to be applied in

real-world networks, it is necessary to devise methods for

mapping them onto the physical level.

In order to decide if it is possible to map some structure

into a real-world network, it is necessary to consider a

number of physical conditions: existing structures and ducts

may be preferable to use, location and density of nodes may

depend on the density of homes and offices, some places are

more suitable for ducts than others, etc. Due to the

dependability on such specific conditions, it is not possible

to present one single method for embedding the structures.

Instead we provide a number of useful tools, which can be

combined in order to develop structures that are possible to

use in specific cases.
7.1. Varying hierarchical depth

From a Perfect Square Mesh, we propose to omit either

one or more of the lowest hierarchical layers in parts of the

structure. In the following, we will show that this can be

done without affecting the routing scheme, allowing for

making a structure denser in some areas than in others. It

also makes it possible to extend a structure after it is initially

deployed, because omitted layers are easily added later on,

and it allows for constructing structures of different sizes.

An example of a structure with such omitted areas is shown

in Fig. 11.

The areas to be left out must be selected carefully.

Removing a single node or an arbitrary set of nodes may

result in the routing scheme no longer guaranteeing that a

shortest path is always chosen. In the following, areas of the

lowest layer that can be left out are described, and a

generalization to more layers presented.
Fig. 11. Flexibility obtained by removing areas of lowest hierarchical

layers.
Assume a Perfect Square Mesh, with dimx, dimy, and gZ
gxZgy, and let a and b be positive integers such that

ag%dimx and bg%dimy. a and b then define an area A. A

node (x, y) belongs to the inner of A if and only if (aK1)g!
x!ag and (bK1)g!y!bg. A also has a border. It consists

of the four corner nodes ((aK1)g, (bK1)g), ((aK1)g, bg),

(ag,(bK1)g), and (ag, bg) as well as four sections, each

defined by the nodes with coordinates fulfilling the

conditions below, respectively:

† xZ(aK1)g and (bK1)g!y!bg.

† xZag and (bK1)g!y!bg.

† yZ(bK1)g and (aK1)g!x!ag.

† yZbg and (aK1)g!x!ag.

When A is left out, this is done by removing all nodes in

the inner of A as well as all lines connected to at least one

node in the inner of A. Nodes belonging to the border of A

can be removed as well, but the conditions are slightly more

complicated: no node belonging to the inner of A belongs to

the inner or border of any other area, but a node belonging to

the border of A may belong to the border of up to three other

areas.

The four corner nodes of A cannot be removed at this step

because they also belong to layer 1, but other border nodes

can be removed section-wise. Within each section either

none or all are removed, and if a section is removed so are

all basic lines connected to at least one node in the section.

A section can only be removed if no node in it is connected

to a node outside it except for the corner nodes of A.

It is interesting but also rather trivial to realize that for

two nodes u and v in a structure where an area of the lowest

layer is left out, the distance is the same as in the full

structure. Let S be a Perfect Square Mesh, and let S 0 be

identical to S, except that one area A (say, the inner of it) is

left out. This implies that there exist integers a and b such

that the nodes with x coordinates (aK1)g!x!ag and y

coordinates (bK1)g!y!bg are left out.

Assume for contradiction that there are two nodes, u and

v, in S 0 between which a shortest path is longer than a path

between u and v in S. This implies that any shortest path

between u and v in S uses at least one node from the inner of

A, which again implies that there exist two nodes u 0 and v 0

on the border of A such that any shortest path between them

passes only nodes of the inner of A and thus is shorter in S

than in S 0. Assume that u 0 has coordinates (x1, y1), and that v 0

has coordinates (x2, y2), and note that neither u 0 nor v 0 are

corner nodes of A. Without loss of generality it is assumed

that x1%x2 and y1%y2.

Three cases are considered:

† x2Kx1!g and y2Ky1!g. If x1Zx2 or y1Zy2, assume

without loss of generality that x2Zx1. y2Ky1!g and

thus x1Z(aK1)g or x1Zag, and in both cases a path

exists: (x1, y1), (x1, y1C1),.,(x1Zx2, y2). This path has

length y2Ky1, equal to d0(u 0, v 0). So, assume x1sx2



Fig. 12. A structure with gxZ11, gyZ3, and nHZ2.
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and y1sy2. Then x1Z(aK1)g and y2Zbg or x2Zbg and

y1Z(bK1)g. In the first case there exists a path (x1, y1),

(x1, y1C1),.,(x1, y2), (x1C1, y2),.,(x2, y2), and in the

second case a path (x1, y1), (x1C1, y1),.,(x2, y1), (x2,

y1C1),.,(x2, y2). Both paths are of length x2Kx1Cy2K
y1, and thus equal to do(u

0, v 0), and a contradiction is

obtained.

† x2Kx1Zg and y2Ky1!g. This implies x1Z(aK1)g and

x2Zag. Two paths p1 and p2 are constructed, where jp1j

and jp2j denote their respective lengths. p1 contains the

layer 1 line connecting (x1, (bK1)g) and (x2, (bK1)g)

while p2 contains the layer 1 line connecting (x1, bg) and

(x2, bg). Thus, p1Z(x1, y1), (x1, y1K1),.,(x1, (bK1)g),

(x2, (bK1)g), (x2, (bK1)gC1),.,(x2, y2) and p2Z(x1,

y1), (x1, y1C1),.,(x1, bg), (x2, bg), (x2, bgK1),.,(x2,

y2). jp1jZy1Cy2K2ðbK1ÞgC1 and jp2jZ2bgKy1K
y2C1. This implies that jp1jCjp2jZ2C2 g. Since x2K
x1Zg, d0(u 0, v 0)Rg. It must then be true that jp2jOg. If

jp2jRgC2 then jp1j%g, and thus jp2jZgC1. Since jp2

jZ2bgKy1Ky2C1 this implies that 2bgKy1Ky2Zg.

Since g is odd, y1Ky2 is odd, but then y1sy2, implying

that d0ðu
0; v0ÞZgCy2 � y1RgC1, but then the dis-

tance is not shorter in S than in S 0, a contradiction.

† x2Kx1!g and y2Ky1Zg. This case is similar to the case

above, and a final contradiction obtained.

The property also holds if one or more sections of border

nodes of A are removed: these nodes are only connected to

each other and to nodes of the first layer, and their removal

does therefore not increase any distances.

Since the distance between no pair of nodes is increased

in S 0 compared to S, the existing routing scheme only needs

to be changed in nodes of borders of left-out areas. While

initially algorithms similar to the lake algorithms seem

necessary, it can actually be solved by simpler means.

According to the proof stated, two approaches will both

result in a shortest path being chosen in all cases:

† Routing always using the highest hierarchical layer in

which a shortest path exists.

† Whenever a packet is forwarded from a node of the

border of a left-out area, and it should normally be

forwarded to a node of the inner of this area, it is instead

forwarded towards the nearest higher-hierarchy node.

The principle described can be used for other layers than

the basic layer. However, no node of layer i can be removed

if it is connected by any lines of a layer !i.

For a layer i, and positive integers a and b such that

agi%dimx and bgi%dimy, an area A of layer i is defined by

the nodes such that (aK1)gi%x%agi and (bK1)

gi%y%bgi. A node (x, y) belongs to the inner of A if

and only if (aK1)gi!x!agi and (bK1)gi!y!bgi. The

inner of A can be removed only if all nodes not belonging

to layer i within the inner of A have been removed.

Sections of border nodes of A are defined as in the basic
layer, and can be removed under the same conditions with

the addition that a node cannot be removed if it is

connected by lines of a layer !i. Nodes on the corner of A

cannot be removed at this step because they are also nodes

of layer iC1. The nodes of layer nH are all corner nodes of

S, and it makes no sense to remove them, since this would

imply a removal of the whole structure.

The distances of a structure with various left-out layers

may differ from those of a Perfect Square Mesh, depending

on which layers a left out, and further analysis is needed in

each case to clarify this. However, for each such structure

the distance between each pair of nodes equals the distance

between the same pair of nodes in a full Perfect Square

Mesh. Since the second approach to pruning described in

Section 6 only applies to the lowest hierarchical layer, the

gains of pruning may be less significant if combined with

leaving out layers, depending on the extent to which layers

are left out.

It is also possible to merge Perfect Square Meshes side-

by-side in order to obtain structures with different sizes and

shapes than the Perfect Square Mesh while still maintaining

gxZgy. Actually, this corresponds to leaving out a number

of lowest layers as well as removing the highest layer.

Leaving out the highest layer does affect performance, and it

should also be noted that it is possible to do so only if the

structure remains connected. Furthermore, if the highest

hierarchical layer is removed, care must be taken as to

which areas are left out, unless the routing scheme is

revised.
7.2. Varying granularity

Hierarchical structures different from the Perfect Square

Mesh (i.e. gxsgy) also result in logarithmic dependencies

between the number of nodes and distances in the structure.

An example of such a skew structure with gxZ11 and gyZ3

is shown in Fig. 12. Applying this in combination with

leaving out layers makes it necessary to refine the routing

scheme in order to ensure that a shortest path is always

chosen. As shown in Fig. 13, the structures with gxZ11 and

gyZ3 have performances close to those of the Perfect

Square Mesh with gZ9. However, as can be seen in

Tables 2 and 3, the skew mesh requires relatively more

hierarchical lines and contains more edge nodes than the

Perfect Square Mesh, resulting in more expensive and less

robust structures.

It is also possible to vary the granularity from layer to

layer: instead of choosing one value of gx and one value of

gy, gxi and gyi are chosen for every i, 0!i%nH. Now dimxZ
gx1

gx2
.gxnH

and dimyZgy1
gy2

.gynH
. The definition of



Fig. 13. Performances of skew structures with gxZ11 and gyZ3 compared

to performances of Perfect Square Mesh with gZ9.

Table 2

Contribution from hierarchical lines to the average node degree and the

relative number of edge nodes for structures with gxZ11 and gyZ3

Size Avg. degree

from h-lines

% of nodes

on edge

nHZ1, 48 nodes 0.17 58.3

nHZ2, 1220 nodes 0.14 21.3

nHZ3, 37 296 nodes 0.13 7.28

Fig. 14. Extended structure with gZ5 and nHZ2.
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hierarchical nodes and lines as well as the routing scheme

must be adjusted accordingly.

We also propose another promising extension of

the Perfect Square Mesh, the extended mesh, which

maintains the square shape, but the size is redefined, such

that Kb gnH/2c%x, y%b3gnH/2c as seen in Fig. 14. It was

evaluated for gZ5, and performance was close to the

Perfect Square Mesh with the same granularity, as can be

seen in Fig. 15. Using this approach to various extents

makes it possible to construct structures of different sizes

than the Perfect Square Mesh definitions allow for.
8. Applying the theory to real-world network planning

Compared to simple ring and tree networks, applying

4-regular grid structures in large-scale communication

networks obviously requires more careful planning, even

with the proposed extensions and embedding tools. In this

section, we state how such a planning process can be carried
Table 3

Contribution from hierarchical lines to the average node degree and the

relative number of edge nodes for Perfect Square Mesh with gZ9

Size Avg. degree

from h-lines

% of nodes

on edge

nHZ1, 100 nodes 0.080 36.0

nHZ2, 6724 nodes 0.055 4.82

nHZ3, 532 900 nodes 0.051 0.55
out, leading to an optimization problem. Solving this

problem is beyond the scope of this paper. We are currently

working on it [16], and also strongly encourage other

researchers to do so.

The first step in the planning process is to identify the

network termination points (NTPs). The nature of these

points depends on which kind of network is to be planned; in

the case of access networks, we include private households,

businesses and public institutions as NTPs. In order to

perform the required analyses, the placement of NTPs

should be available in some digital format, e.g. as GIS data.

In many countries including Denmark, GIS data are

available at a very high quality.

After having identified the network nodes, the next and

more complex step is to identify the potential lines. In most

cases, network lines should preferably be placed along

existing infrastructures such as roads, paths and railway

tracks, which can be identified by GIS data. These usually

connect the NTPs in some way, and thus form a set of

potential lines. It may be possible to establish lines away

from existing infrastructures (i.e. crossing bare fields), but
Fig. 15. Performances of extended structures with gZ5 compared to

performances of Perfect Square Mesh with gZ5.



Fig. 16. The Municipality of Hals, with Network Termination Points and

roads obtained from GIS data.
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some areas may be impracticable and expensive, or even

impossible, to establish lines across. A visualization of the

available GIS data of roads and NTPs of the Municipality of

Hals is shown in Fig. 16. It is a rural Danish municipality

with a total of approximately 7500 NTPs, including

approximately 3400 summerhouses.

Given the nodes and the potential lines, the remaining

problem can be split into two subproblems:

† Find a suitable physical topology, given the 4-regular

grid structure with proposed extensions.

† Map this topology onto the potential paths.

These subproblems cannot be considered separately,

because the choice of suitable physical topology will be

heavily dependent on which potential paths are available.

It adds to the complexity of the problems that the set of

potential paths is not strictly defined, since lines may be

established without following existing infrastructures,

sometimes at significantly greater costs. Furthermore,

some techniques easing the mapping can be used with

care, such as co-locating two or more lines along a single

road segment. However, doing so inevitably compromises

the independency of lines, and thus affects the network

reliability.

As can be seen from Fig. 16, it is non-trivial to perform

this topology selection and mapping. At least some semi-

automatic tools must be available. This also implies that

such tools are necessary in order to determine how well the

proposed extensions perform with respect to real-world

network planning.
9. Conclusion and further work

This paper has discussed a number of aspects on how to

apply the 4-regular grid structures in large-scale communi-

cation access networks. Due to the nice properties of these

structures, including simple routing and restoration
schemes, they have been deployed in multiprocessor

systems for decades. However, they are not directly

applicable in large-scale networks. In this paper, four

major barriers have been dealt with, namely restoration/-

protection, scalability, cost, and embeddability. For each

barrier, extensions and schemes have been proposed to

facilitate the use of 4-regular grid structures in large-scale

access networks. These form a tool-case, which can be used

as a base for developing semi- or full automatic tools for

network planning.

With regard to restoration, a simple scheme was

introduced, facilitating fast and easy restoration by the

concept of lake algorithms: if only a small part of the

network is failing, only small tables are needed, and

consequently only little communication overhead is

necessary in order to create and maintain these tables.

A simple way of establishing up to four independent

paths was introduced for protection. In the basic structure

(and generally within each hierarchical layer) the paths are

node independent, but in the hierarchical extension, nodes

are shared wherever a packet moves from one hierarchical

layer to another. In a few cases only two or three

independent paths can be set up. This is the case if the

source or destination nodes are edge/corner nodes, or if the

routing is done in a pruned structure and either source or

destination node belongs only to the basic layer.

A hierarchical extension was proposed in order to deal

with the scalability problem. This approach results in

logarithmic dependencies between the number of nodes and

the distances in the structure. Depending on the chosen

granularity, the number of hierarchical lines was small

compared to the number of lines in the basic structure.

To deal with the cost problem, an approach was

suggested where in a hierarchical structure some lines of

the basic layer are left out. As with any other way of

reducing the number of lines, it reduces the connectivity, but

the distances in the structure were hardly affected.

Due to the many physical and demographical conditions

and constraints, it is not possible to provide one general

method for embedding these structures in real-world

networks. Instead, the different schemes and extensions

proposed in the paper were presented as a tool-case,

allowing for various approaches to be combined. Further

studies should deal with developing this into semi-

automatic and in the longer term full automatic tools for

embedding the structures in real-world networks. Such tools

can be based on GIS data, and their performance should be

verified through case studies under different geographical

and demographic conditions.

Currently, the method proposed in this paper applies only

to wired networks. Based on GIS information, and taking

the coverage of wireless networks into account, the method

could be extended to cover also wireless and combined

wired and wireless networks. Following this track, a

significant contribution would be to develop models and

tools supporting planning of networks for 4G and beyond.
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We expect development of automatic tools for network

planning to become an increasingly important research area

over the coming years. In addition to properties strictly

related to physical topologies and embeddings, such tools

must take into account a number of other aspects including

security, traffic models, and advanced financial models. The

latter is particularly important, as it can be used for fitting

network planning strategies with business models and

investment strategies.
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