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Abstract— Proportional delay differentiation (PDD) model is
an important approach to relative differentiated services provi-
sioning on the Internet. It aims to maintain pre-specified packet
queueing-delay ratios between different classes of traffic at each
hop. Existing PDD packet scheduling algorithms are able to
achieve the goal in long time-scales when the system is highly
utilized. This paper presents a new PDD scheduling algorithm,
called Little’s average delay(LAD), based on a proof of Little’s
Law. It monitors the arrival rate of the packets in each traffic
class and the cumulative delays of the packets and schedules the
packet according to their transient queueing properties in order
to achieve the desired class delay ratios in both short and long
time-scales. Simulation results show that LAD is able to provide
predictable and controllable services in various system conditions
and that such services, whenever feasible, can be guaranteed,
independent of the distributions of packet arrivals and sizes. In
comparison with other PDD scheduling algorithms, LAD can
provide the same level of service quality in long time-scales and
more accurate and robust control over the delay ratio in short
time-scales. In particular, LAD outperforms its main competitors
significantly when the desired delay ratio is large.

I. I NTRODUCTION

The past decade has seen an increasing demand for pro-
visioning of different levels of quality of service (QoS) on
the Internet to support different types of network applications
and different user requirements. To meet this demand, two
service architectures have been proposed: Integrated Services
(IntServ) [3] and Differentiated Services (DiffServ) [2]. By
reserving routing resources along the service delivery paths,
IntServ is able to provide guaranteed service quality. In con-
trast, DiffServ aims to provide differentiated services among
classes of aggregated traffic flows within a router. Two dif-
ferent schemes exist for DiffServ: Absolute DiffServ and
relative DiffServ. Absolute DiffServ aims to guarantee a class’s
received resource, such as bandwidth. Relative DiffServ is to
quantify the quality spacing between different classes.

Recently, Dovrolis,et al. defined a proportional delay
differentiation (PDD) model in support of relative DiffServ [4],
[5]. It ensures the quality spacing between classes of traffic to
be proportional to certain pre-specified class differentiation pa-
rameters. Since then, many packet scheduling algorithms have
been developed to implement the PDD model. Representa-
tives of the PDD algorithms include backlog-proportional rate
(BPR) [4], joint buffer management and scheduling (JoBS) [8],
proportional average delay (PAD) [5], waiting-time priority
(WTP) [5], adaptive WTP [7], hybrid proportional delay
(HPD) [5], and mean-delay proportional (MDP) [9]. They

demonstrated various characteristics in support of the PDD
model in different class load conditions and different time-
scales. Most of them are capable of achieving desired delay
ratios, if the ratios are feasible, under heavy load conditions
and in long time-scales. However, for light load conditions and
in short time-scales, they exhibit various limitations. We shall
compare them with our algorithm in Section IV.

In this paper, we present a new PDD algorithm, called
Little’s average delay (LAD), based on a proof of Little’s
Law. Little’s Law regarding a queueing system states the
stationaryrelationship between queue length, arrival rate, and
queueing delay on average in the long run. Its proof reveals a
transient property regarding the queueing length [10]. That
is, the queueing length of a class at any time is equal to
the product of the traffic arrival rate and the waiting time of
backlogged packets, plus the experienced delay of departed
packets. Accordingly, LAD monitors the average arrival rate
of every traffic class and the queueing delay of arrived packets,
including both the waiting packets in the queue and departed
packets, for the purpose of controlling the delay ratio in both
long and short time-scales.

Simulation results show that LAD overcomes the limitations
of its main competitors: AWTP, HDP, and MDP. Specifically,
whenever the PDD model of a desired class delay ratio is
feasible, LAD is capable of providing more accurate and
robust control over the delay ratio than its competitors in
short time-scales. The improvement is significant when the
desired delay ratio is large. In long time-scales, LAD performs
no worse than its competitors under any load conditions.
Moreover, the performance of LAD is independent of the
distributions of packet arrivals and packet sizes because of
the generality of Little’s Law.

The remainder of the paper is organized as follows. Sec-
tion II gives an overview of the PDD model and a brief review
of the existing PDD algorithms. Section III presents the LAD
algorithm and discusses its design and implementation issues.
Section IV evaluates the algorithm via extensive simulation
and compares it with other PDD algorithms. We conclude this
paper in Section V.

II. BACKGROUND AND RELATED WORK

We consider packet scheduling of a lossless, work-
conserving, and non-preemptive link that servicesM (M ≥ 2)
first-come-first-served (FCFS) queues, one for each traffic
class. The lossless property requires that the average arrival



rate of the aggregate traffic must be less than the link capacity
and that there is enough queueing space to buffer backlogged
packets. The work-conserving property is that the link is never
left idle as long as there are backlogged packets waiting for
service in the queues. The non-preemptive property requires
the transmission of a packet cannot be interrupted. The ag-
gregate traffic of the queueing system is determined by the
superposition of theM traffic streams.

The objective of the PDD model is to control the qual-
ity spacing between different classes so that their average
delay ratios be proportional to certain class differentiation
parameters pre-defined by network operators. LetWi denote
the average delay of classi, and δi the pre-defined delay
differentiation parameter. The PDD model requires to ensure
that for any two classesi and j, 1 ≤ i, j ≤M ,

Wi

Wj
=

δi

δj
. (1)

Notice that the PDD model is not always feasible. The upper
bound of feasible delay ratio for a G/G/1 system can be
estimated using a strict priority based scheduling algorithm [5].

The PDD model requires the differentiated services be
predictable and controllable in the sense that network operators
should be able to adjust the service quality spacing between
any two classes by setting delay differentiation parameters
and that the average delay ratios of different classes be
consistent with their delay differentiation parameters in both
long and short time-scales. Such consistency should also be
maintained for individual packets departed successively from
different classes. In addition, the service differentiation should
be independent of class load traffic characteristics. Regardless
of the distributions of packet arrivals and sizes, the consistency
should be maintained whenever the PDD model is feasible.

Many packet scheduling algorithms have been proposed for
PDD service model. Rate-based algorithms, as exemplified by
BPR [4] and JoBS [8], adjust service rate allocations of classes
dynamically to meet the proportional delay differentiation
constraints. However, for accurate rate allocation, the system
should operate under high load conditions, this limits the
applicability of the rate-based PDD algorithms. In contrast, our
algorithm has good performance in various load conditions.

Time-dependent priority based algorithms adjust the priority
of a backlogged class according to the experienced delay of its
head-of-line packet. In WTP, the priority of a backlogged class
is adjusted to be proportional to its head-of-line packet’s delay
normalized with respect to its delay differentiation parameter.
Albeit simple, WTP implements the PDD model only when
the system utilization approaches unity[4]. To overcome such
limitation, adaptive WTP adjusts the priority of a class not
only according to its experienced delay, but also based on the
current class load condition. We find out that such adjustment
is valid for certain network traffic with small degree of self-
similarity. In contrast, the performance of our algorithm is
independent of network traffic characteristics and load condi-
tions.

Some algorithms determine the next packet according to

the average queueing delay of backlogged classes. It is known
that at timet, arrived packets of a class in a time window
[t− τ, t], can be in one of the two states: departed or waited
in the queue. PAD considers the average delay of departed
packets in the time window only. It is capable of achieving the
PDD model constraints in various load conditions. However,
PAD exhibits a pathological behavior in short time-scales;
that is, occasionally higher classes to experience larger delays
than lower classes, which is caused by its ignorance of those
backlogged packets. To address this issue, HPD was proposed
to take into account the average delay of departed packets,
and the delay of the head-of-line packet simultaneously. HPD
enhances the average control quality of PAD, and meanwhile
avoids its pathological behavior problem. However, in Sec-
tion IV, we will show that HPD achieves the class delay
ratio with large statistical variations in short time-scales. MDP
considers the delay of all arrived packets of each class in a
time window[t−τ, t]. In addition, it also takes into account the
estimated delay of backlogged packets when they are departed.
In Section IV, we shall show that MDP delivers performance
comparable to HPD. However, its performance deteriorates
as the target quality spacing between the classes is enlarged.
Note that PAD, HPD and MDP schedule backlogged packets
of different classes based on heuristic delay information of
arrived packets. LAD presented in this paper is based on a
proof of Little’s Law [10]. It considers the delay of departed
packets as well as the delay of the packets in the backlogged
queue in the time window[t− τ, t].

III. L ITTLE ’ S AVERAGE DELAY ALGORITHM

A. Little’s Law

For a G/G/1 queueing system, Little’s Law states that the
average number of packets in the system is equal to the product
of average arrival rate of packets and the average waiting time
of the packets in the system. DefineL(T ) as the average
number of the packets in the system during the time interval
[0, T ], W (T ) as the waiting time per packet averaged over all
packets,λ(T ) as the average arrival rate. SupposeW (T ) and
λ(T ) have limits asT →∞, that is

W = lim
T→∞

W (T ), andλ = lim
T→∞

λ(T ).

Then, the limit ofL(T ), denoted byL, exists and

L = λW. (2)

The beauty of Little’s Law (2) is that it does not depend
upon any particular queueing discipline (packet scheduling
algorithms); nor does it depend upon any specific assumptions
regarding the packet arrival distribution or the packet size
distribution. It is applicable to the queueing system of each
traffic class in the PDD model.

LAD algorithm controls the delay ratios between different
classes based on the Little’s Law. SubstitutingL/λ for W , the
objective of PDD model in (1) leads to a new constraint:

Li

λiδi
=

Lj

λjδj
, (3)
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for any two classesi and j. To ensure proportional delay
differentiation between two classes, their normalized queue
length with respect to their respective arrival rates and delay
differentiation parameters should be kept equal. The LAD
algorithm is to control the delay ratio by adjusting their
average queueing lengths according to their arrival rates.

Notice that (2) reveals an asymptotic (or stationary) rela-
tionship between the queue length, packet arrival rate, and
packet waiting time in the system. It is not enough to guide
PDD scheduling because the objective of proportional delay
needs to meet in small time windows. Because most of Web
requests are small in size [1], provisioning of relative delay
differentiation service in short time-scales is as important as
in long time-scales. LAD algorithm is based on a transient
property of the queueing system, as revealed by a proof of the
Little’s Law [10]. Following is a sketch of the proof.

Suppose that packetsp1, p2, . . . arrive at timet1, t2, . . . (0 ≤
ti < ti+1), and depart attd1, t

d
2, . . . . The packets are not

necessarily forwarded in FCFS discipline. DenoteN(T ) the
total number of arrived packets in the time interval[0, T ];
Nd(T ) and N c(T ) the number of departed packets and the
number of waiting packets in queue, respectively. It follows
that at timeT ,

N(T ) = Nd(T ) + N c(T ). (4)

Define Ii(t) as the presentation function of packetpi at time
t, that is

Ii(t) =
{

1, if packetpi is present at time t;
0, otherwise.

Then, we have

N c(T ) =
N(T )∑
i=1

Ii(t). (5)

Since packetpi stays in queue during the interval[ti, tdi ] and
its queueing delaywi = tdi − ti, we have∫ T

0

Ii(t)dt =
{

wi, tdi ≤ T ;
T − ti, tdi > T.

(6)

Therefore, the cumulative queue length in the interval[0, T ]
is ∫ T

0

N c(t)dt=
Nd(T )+Nc(T )∑

i=1

∫ T

0

Ii(t)dt

=
∑

{i:td
i≤T}

wi +
∑

{i:ti≤T,td
i >T}

(
T − ti

)
, (7)

and the average queue length in interval[0, T ] is

L(T ) =
1
T

∫ T

0

N c(t)dt = λ(T )W (T ), (8)

where

λ(T )=
N(T )

T
, (9)

W (T )=

∑
{i:td

i≤T} wi

N(T )
+

∑
{i:ti≤T,td

i >T}
(
T − ti

)
N(T )

. (10)

Assume thatλ(T ) and W (T ) exist asT → ∞, (8) leads to
that

L = lim
T→∞

λ(T )W (T ) = λW. (11)

This completes the proof.

B. The LAD Algorithm

The basic idea of LAD algorithm is to control the delay
ratio of classes by monitoring their arrival rates and queueing
delays of their arrived packets based on transient relationship
between the queue length, arrival rate and waiting time, as
revealed by (8). In particular, (10) defines the average waiting
time per packet in a window of sizeT . The numerator of
the first term actually represents the accumulated delays of
all departed packets and the numerator of the second term
represents the accumulated waiting time of the packets in the
backlogged queue so far at timeT . Accordingly, we define
the LAD algorithm as follows.

For class i, the LAD scheduler maintains three control
variables to monitor its traffic flow over finite time windowT :
the cumulative delays of departed packetsW d

i ; the number of
arrived packetsNi; and current queue lengthN c

i . At the begin-
ning of each time window, these variables are (re)initialized.
Note that the size ofT is in terms of number of successively
departed packets from the system. These control variables are
updated according to the following rules:

1) At the beginning of each time window,Ni ← N c
i and

Wi ← 0.
2) Upon the receipt of a packet of classi, the packet is

timestamped andNi ← Ni + 1, andN c
i ← N c

i + 1.
3) After transmitting a packet of classi, N c

i ← N c
i −1 and

W d
i ←W d

i + w, wherew is the measured delay of the
packet.

Let W c
i denote the current cumulative delay of backlogged

packets in the queuei. According to (10), we set the priority
of classi as

Pi =
W d

i + W c
i

Niδi
. (12)

Whenever the queueing system is available for packet trans-
mission, a backlogged packet of classj∗ with the highest
priority is selected. That is,

j∗ = arg max
1≤i≤M

Pi. (13)

Ties for the highest priority are broken by serving the packet
that has entered the queueing system earliest. Note that the
validity of Little’s Law does not depend upon any particular
queueing discipline. Therefore, the next packet can be any
backlogged packet if a more complicated scheduling algorithm
is needed.

There are some important issues in the implementation of
the LAD algorithm. The foremost is the time window sizeT .
It is known that Little’s Law is valid when the time window
is sufficiently large. However, provisioning PDD services in
short time-scales is as important as in long time-scales. A good
choice ofT should strike a balance between system stability
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and responsiveness. On one side, a largeT would avoid
abrupt changes of average queueing delay due to bursty traffic.
Particularly, whenT is sufficiently large, the average delay of
the packets in the time window would hide the effect of the
distributions of packet arrivals and packet sizes. On the other
side, a smallT would lead to an agile scheduler that responds
to the change of traffic conditions quickly. Although we leave
T to be an adjustable parameter by network operators, in
our simulations, we show that LAD is able to provide PDD
services in both long and short time-scales.

Another important implementation issue is the calculation
of the cumulative delay of backlogged packets in each queue
W c

i . It is too costly to scan each queue to re-calculateW c
i

every time when a packet is to be transmitted and the priority
of each class needs to be adjusted. Instead, we calculate
W c

i recursively in the following way. Suppose that at time
u when the last transmitted packet was selected from class
i , the class hasm backlogged packetsp1, p2, . . . , pm and
their arrival times aret1, t2, . . . , tm, respectively. Since the
queueing system assumes no FCFS scheduling principle, the
next packet to be selected for forwarding from classi can be
any packet in the queue. Without loss of generality, we assume
packetpk is forwarded at timeu+ τ , that is, the time interval
between two successive packet departures isτ . Suppose there
aren new packet arrivals during the interval and their arrival
time aretm+1, tm+2, . . . , tm+n. It follows that

W c
i (u + τ) = W c

i (u)− (u− tk) + (m− 1)× τ

+
n∑

j=1

(u + τ − tm+j). (14)

Recall that the traffic of classi has an arrival rate ofλi.
During the interval ofτ , the average number of packet arrivals
is λiτ . Note thatE[τ ] is the average service time of a packet.
For a stable system, it should be less than or equal to the
average inter-arrival time. Thus, forE[n], the average number
of packets entering into the system duringτ , we haveE[n] =∑N

i=1 E[ni] ≤ 1. Therefore, the main computation overhead
of the updating is the multiplication, which is appropriate in
real environment [5].

For each packet transmission, LAD needs to calculate
and compare the priorities of all backlogged classes, which
requires at mostN calculations andN − 1 comparisons. The
calculation overhead is mainly due to the update of control
variables and timestamping operations. The cost for update is
small because it involves only a few number of add operations;
the timestamping operation is assumed in the implementation
of WTP and MDP as well.

IV. SIMULATION RESULTS

In this section, we present simulation results of LAD to
demonstrate its performance and properties. We also compare
LAD with other PDD algorithms, including WTP, AWTP,
PAD, HPD, and MDP. A primary performance metric is error
between desired class delay ratio and achieved ratio. The
results are an average of 1000 runs.

The experiments assumed the distributions of packet arrivals
and sizes are similar to those in [5], [7]. That is, the inter-
arrivals between packets of a class follow a Pareto or Poisson
distribution. The packets size are variable with a small number
of choices. The transmission time of a packet is proportional
to its size.

A. Predictability of LAD

We investigated the predictability of LAD in experiments
over three classes of Pareto distributed traffic (α = 1.5). Their
delay differentiation parameters (δ1, δ2, δ3) were set to (4, 2, 1)
and the class load distribution (λ1, λ2, λ3) varies between
(1, 1, 1), (1, 2, 4) and (4, 2, 1).

We obtained the simulations results in short (T = 100),
moderate (T = 1000), and long (T = 10000) time-scales, as
the system utilization rateρ varies. Due to space limitation,
Fig. 1 shows the results of short and long time-scales. In
short time-scales, we can observe that the resulted error
between achieved and desired delay ratios under moderate
system utilization rates is larger than that under high system
utilization. Such error is negligible in long time-scales. This
is mainly because the system utilization difference in short
and long time-scales. Although the experiment assumed stable
system utilization rates in the long run, the system utilization
rates were hardly maintained accurately in the short run. Due
to the burstiness of the Internet traffic, the system transient
utilization rates in short time windows were often lower than
the stationary rates. That means even when the desired delay
ratio can be achieved in long time-scales, it maybe infeasible
in short time-scales. Such behavior can be observed when the
system utilization is 65% and 80%.

Note that the feasibility of LAD is affected by the system
utilization rate does not mean that LAD has requirements for
an accurate estimation of the system utilization rate. It can be
seen from the results from the setting of class delay ratio of 2
in Fig. 1. As long as that the utilization is high enough for the
PDD ratio to be feasible, LAD can achieve ratio in both short
and long time-scales, independent of class load distributions.

To investigate the behaviors of individual packets from
different classes, we plot in Fig. 1(c) the individual delays
of packets departed from 3000th to 4000th time unit and
the system load is 90%. All classes had the same load (i.e.,
λ1 = λ2 = λ3). From this figure, we can see that individual
packets of a higher class exhibit smaller changes of delay than
those of a lower class in both dimensions of time (x axis) and
delay (y axis). More importantly, the packets from higher class
always have smaller delay than those from lower class. In other
words, LAD can provide predictable differentiated service.

B. Controllability of LAD

We studied the controllability of LAD through an experi-
ment over two classes of traffic with an equal load distribution
(i.e., λ1 = λ2). Fig. 2 plots the achieved class delay ratios in
long time-scales, in comparison with the desired delay ratios
as the system utilization rate changes. The results in short
time-scales are ignored since there is no significant difference.
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Fig. 1. Delay ratios of three classes in different system utilizations and time-scales.
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Fig. 2. Delay ratios of class 1 to class 2 in different system utilizations.

From this figure, it can be observed that LAD is capable of
achieving the target delay ratio of 2 under medium or high
system utilization rates. It shows that when the desired ratio
goes up to 8, LAD cannot meet the PDD constraints in the long
time-scale, unless the system utilization rate is higher than
70%. Aforementioned, this is because the ratio is infeasible
when ρ ≤ 70% in the long timescale. Whenever the ratio
is feasible, the service difference between these two classes
can be controlled accurately by network operators. With the
increase of the desired class delay ratioδ1/δ2, the minimum
system utilization rate that makes the given delay ratio feasible
increases.

C. Generality of LAD

Recall that the generality of a PDD algorithm means that
its performance should be independent of the distributions
of packet arrivals and sizes. We studied the generality of
LAD through experiments over two classes with equal class
loads in the long timescale. In addition, we assumed that
the packet arrivals of the same class followed a Pareto or a
Poisson distribution and that the packet sizes of each class
were variable. The variable packet sizes were set in the same
pattern as in [4].

We carried out the experiments for traffic with different
packet arrival distributions: Pareto, Poisson, and mixed distri-
butions. Due to space limitation, we only illustrate the results
for mixed distributions. In the mixed arrival distribution, we
assumed packets of class 1 followed a Poisson distribution and
packets of class 2 are Pareto distributed. To measure the actual
feasible range for the same packet stream, the results due to
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Fig. 3. Delay ratios of class 1 to class 2 using LAD and priority-based
packet scheduling algorithms.

the strict priority-based algorithm are included, as well.
From Fig. 3, we can observe that the feasible delay ratio

increases with the system utilization rate and that whenever the
desired ratio is feasible, it can be achieved by LAD accurately;
otherwise, the achieved ratio by LAD is very close to that
measured by the strict priority-based algorithm. For example,
Fig. 3 shows that the maximum achievable delay ratio is 22
when the system utilization rateρ = 85%. Although the
desired ratio of 32 is infeasible, LAD achieves the maximum
feasible ratio.

D. Comparison with Other PDD Algorithms

We compared LAD with other PDD algorithms, including
WTP, AWTP, PAD, HPD, and MDP. In the experiments, we
assumed two classes of traffic with the equal class loads. The
packet arrivals of each class followed a Pareto distribution
(α = 1.5) and all the packets had equal size. We generated
a stream of packets beforehand and assumed the same packet
stream for all the experiments with different PDD algorithms.
Recall that AWTP adjusts the feasible set of control parameters
according to the delay of the head-of-line packet in each class
and the system utilization. Our implementation of AWTP used
the jumping window method, as suggested in [7], to estimate
the arrival rate of traffic. HPD is a hybrid of WTP and PAD
with a weighting parameterg. We set the parameterg to 0.875
as recommended in [5]. MDP takes into account the delay of
departed packets and the estimated delay of all other waiting
packets in the determination of class priorities. Although the
MDP authors suggested a simplified method to approximate
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Fig. 4. Delay ratios of class 1 to class 2 using different PDD algorithms in
different system utilizations.

the average delay for all arrived packets to make a tradeoff
between quality and run-time overhead [9], we implemented
its original version in this experiment.

1) Comparison in short time-scales:We first compared the
short timescale performance of the algorithms under different
system utilization rates. The time window was set toT = 100
packets. The simulation results for the cases ofδ1/δ2 = 2 and
8 are plotted in Fig. 4(a) and Fig. 4(b), respectively.

Fig. 4(a) shows that all the PDD algorithms, except AWTP,
can meet the PDD constraints to an acceptable extent for
a small delay ratio under moderate and high system load
conditions. In particular, LAD achieves the desired delay
ratio with minimum errors consistently. In contrast, HPD and
MDP demonstrate good performance under moderate load
conditions, but yield relatively large errors when the system
utilization rate goes up to as high as 90%. Recall that HPD is
a hybrid of WTP and PAD. Both WTP and PAD gain perfor-
mance as the utilization rate increases, but their improvement
rates are different. Hence, a linear combination of the WTP
and PAD with a constant weighting parameterg in HPD is
expected to generate a convex performance plot with respect
to the utilization rate. This impact of linear combination can
be seen more clearly in Fig. 4(b) for the case of a large desired
delay ratio.

The reason for the inaccuracy of MDP in highly utilized
systems is the estimation error of the delays of backlogged
packets in a time window of[t−τ,∞) at any timet. Although
MDP can measure the delay of packets in the time window
[t − τ, t], MDP uses a lower bound to estimate the delay of
the packets in future[t,∞). With the increase of the system
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Fig. 5. Impact of scaling parameterα on AWTP when applied to Pareto
distributed traffic.δ1/δ2 = 2.

utilization, there are more packets in a backlogged queue
during the intervalτ , and consequently the estimation error
increases. When the system utilization rate goes beyond certain
point, the impact of estimation accuracy becomes significant
and the overall performance of MDP starts to deteriorate.
Fig. 4(b) shows that the estimation error is exaggerated in
the case of a large desired delay ratio and the gap between
LAD and MDP is enlarged.

Fig. 4 shows that WTP yields relatively large errors when
the system utilization rate is moderate. This is consistent with
the findings of other researchers [5], [7]. AWTP was proposed
as a remedy of this problem [7]. It relies on a policy iteration
algorithm to adjust the feasible set of control parameters
according to the delay of the head-of-line packet in each class
and the class load distributions. The algorithm is based on
an assumption that the arrival process of each traffic class is
a Poisson distributions. The authors showed that AWTP be
applicable to the traffic of aParetodistribution with the shape
parameterα = 1.9.

We note that the shape parameterα of a Pareto distribution
characterizes the degree of self-similarity and burstiness of
network traffic [6]. The largerα, the less bursty and self-
similar behaviors were observed in trace studies. Given the
fact that 0 < α < 2, the Pareto distribution withα = 1.9
bears much resemblance to a Poisson distribution. Fig. 4
shows the results from a Pareto distribution withα = 1.5.
We experimented with both AWTP and LAD for more Pareto
distributions with variousα and plotted the results in Fig. 5.
From this figure, we observe that the control parameters of
AWTP are unable to meet the PDD constraints over general
Pareto distributed traffic. By contrast, LAD is insensitive to
the Pareto distribution shape.

2) Comparison in long time-scales:We compared LAD
with other PDD algorithms, focusing on their robustness in
different timescales. The experiment settings remain the same
as in the last one, except that the system utilization rate is fixed
at 90%. Fig. 6(a) and Fig. 6(b) show three percentiles (the 5th,
50th, and 95th) of achieved delay ratios for the target ratio of 2
and 8, respectively. We give the numbers in the figures directly
for some of the large percentiles.

Fig. 6 shows that LAD achieves the target ratios accurately
in all of the timescales that we tested and outperforms its
competitors consistently in terms of the errors in various
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percentiles. This implies that LAD is more robust to keep the
class delay ratio under control and deliver the desired ratio
with small statistical variations. Although all the algorithms
are able to meet the PDD constraints in terms of their medians
with small deviations in long timescales, LAD is outstanding
to provide tight and robust control in a statistical sense over
the class delay ratio in short timescales.

Fig. 6(a) shows that all the PDD algorithms, except MDP,
are able to achieve the delay ratio of 2 with a high probability
in the short timescale of 100 packets. LAD demonstrates an
excellent robustness because more than 90 percentage of the
total runs would produce ratios between 1.6 and 2.4. MDP is
robust, as well, but its achieved ratios center around 1.6. In
contrast, AWTP, HPD, and PAD exhibit a “heavy tail” property
in that majority of the runs, under the control of the algorithms,
would lead to delay ratios that are close to the target ratio of
2, but the algorithms could lose the control in a few occasions.

Fig. 6(a) also shows that the success probability of the
algorithms increases with the time scale. In the long timescale
of 10000 packets, all the algorithms are able to achieve the
target delay ratio robustly.

In comparison with Fig. 6(b), we observe that all the PDD
algorithms lose certain degrees of robustness when the desired
delay ratio δ1/δ2 is large. In the short timescale of 100
packets, LAD performs slightly better than WTP and AWTP,
but outperforms PAD, HPD and MDP significantly in terms of
their medians. The goodness of WTP and AWTP are mainly
due to the high utilization ratio (90%) that we assumed in this
experiment. WTP and AWTP provide consistent levels of QoS,
independent of the desired delay ratio. This is because they
use extra control parameters to adjust the impact of the pre-
defined delay ratio. But they are lack of robustness because of
their medians with large statistical variations. PAD, HPD and
MDP perform in a similar way to LAD. They differ in the
way of delay estimation of arrived packets. Fig. 6(b) shows
that their performance gap in short timescales gets larger as
the delay ratio increases. As the timescale increases, all the
PDD algorithms gain more control over the delay ratio. In the
long timescale of 10000 packets, LAD provides similar levels
of QoS to HPD and MDP.

We conclude that in short timescales, LAD consistently
outperforms its competitors for large target delay ratios. For
small target ratios, most of the algorithms can provide an
acceptable level of quality of service. Under heavy load
conditions and in long timescales, LAD performs similarly
to HPD and MDP. WTP, AWTP, and PAD are not as robust
as the others due to their large statistical variations.

V. CONCLUSIONS

We have proposed a new proportional delay differentiation
algorithm, called LAD, to implement the PDD model. The
algorithm is derived from a proof of Little’s Law. It monitors
the arrival rate of the packets in each traffic class and their
cumulative delays and achieves the desired class delay ratios in
both short and long time-scales. Simulation results have shown
that LAD is able to meet the PDD constraints, independent
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Fig. 6. Percentiles of achieved delay ratios using different PDD algorithms
in different timescales.

of the distributions of packet arrivals and packet sizes. In
comparison with other PDD algorithms, LAD provides the
same level of service quality in long time-scales and more
accurate and robust control over the delay ratio in short time-
scales. Our future work will focus on the proportional loss
differentiation model and combine it with the PDD model.
The requirements for absolute QoS, such as the end-to-end
delay will also be investigated.
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