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Abstract— We introduce in this paper CHESS, an application-
aware space for enhanced scalable services in overlay networks.
In this new space, the proximity of peers is determined according
to a utility function that considers the network parameters (e.g.,
delay, bandwidth, and loss rate) impacting application perfor-
mance. We motivate the need for this new notion by showing
that the proximity in the delay space does not automatically lead
to a proximity in another space (e.g., space of the bandwidth).
For determining the proximity in CHESS, network parameters
must be estimated easily and scalably. Therefore, we use the
matrix factorization approach for estimating the delay and loss
parameters. Besides, we propose a scalable model that estimates
the bandwidth among peers using the bandwidth of the indirect
paths that join them via a set of landmarks1. Our idea is that an
indirect path shares the same tight link with the direct path with
a probability that depends on the location of the corresponding
landmark with respect to the direct path or any of the two
peers subject to bandwidth inference. The results show that
characterizing the proximity in CHESS provides a much better
quality than that obtained when using the delay proximity for
large file transfer applications. The whole study is supported by
real measurements carried out over Planetlab.

I. INTRODUCTION

In Peer-to-Peer and overlay networks, the quality of service
perceived by end-users can be optimized at the application
level by identifying the best peer to contact or to take as
neighbor. This requires to define a proximity function that
evaluates how much two peers are close to each other from
application point of view.

Different functions are introduced in the literature to char-
acterize the proximity of peers, but most of them [1], [2],
[3], [4] are based on simple metrics such as the delay, the
number of hops or the geographical location. We believe that
these metrics are not enough to characterize the proximity
given the heterogeneity of the Internet in terms of path
characteristics and access link speed, and the diversity of
application requirements. Some applications (e.g., transfer of
large files) are sensitive to other network parameters such as
the bandwidth.

Therefore, the proximity should be defined at the application
level taking into consideration the network metrics that decide
on the application performance. To this end, we introduce the
CHESS space where the proximity is characterized according

1The notion of landmark in our context of bandwidth estimation is different
from that used for delay estimation [3], [4], [8], [9]. Delay landmarks can
be seen as reference points for inferring peer’s network position. Bandwidth
landmarks can be seen as intermediate nodes connecting peers with indirect
paths that are suitable to the direct path bandwidth inference.

to a utility function that models the quality perceived by peers
at the application level. A peer is closer than another one to
some third peer if it provides a better utility function, even if
the path connecting it to the third peer is longer.

Based on extensive measurements over the Planetlab overlay
network [5], we motivate our work by studying how much
a proximity-based ranking of peers using the delay deviates
from that using other network parameters (e.g., available
bandwidth2, loss rate3). Our observation is that the delay
proximity is not always a good predictor of quality and that the
other parameters have to be considered as well. Particulary, the
best peer to contact is not always the closest one. Therefore,
the knowledge of the different network parameters between
peers helps in improving the performance of applications by
allowing the definition of better proximity models.

The main constraint for determining the proximity in
CHESS is how to infer the network parameters that impact
the utility function in an easy and scalable way. In other
terms, the estimation of the network parameters, between any
two peers in a large system, should be achieved with a small
measurement overhead and a limited cooperation among peers.

While there were several scalable models proposed recently
for estimating the delay [3], [4], [6], [7], [8], [9], [10], there
was to the best of our knowledge only one solution, called
BRoute[13], for estimating the bandwidth. BRoute assumes
that Internet bottlenecks are located on path edges (i.e., the first
and the last 4 links of a complete IP level path) and are shared
by many different paths. The tool proceeds first by measuring
the available bandwidth over the edge links. Then, it estimates
the end-to-end available bandwidth of a path as the minimum
bandwidth of the link edges it includes. The identification of
these edge links is done by calculating through BGP tables
the shortest AS (Autonomous System) path between the two
peers; then by mapping the edge links to this AS path. We
believe that these tasks are challenging [14], [15], [16] and
add a lot of complexity to the scheme.

In this work, we start by showing that the matrix factor-
ization [32], [33] approach, initially proposed for estimating
the end-to-end delay, is appropriate for estimating the end-to-
end loss rate as well. However, this is not the case for the

2Available bandwidth means the remaining bandwidth left on a path
between any two peers. It is determined by the link having the smallest
residual bandwidth. In the rest of the paper, we refer to this link by the
term tight link. Also, we use the term bandwidth to refer to the end-to-end
available bandwidth.

3We estimate the loss rate as the ratio of the number of lost packets and
sent packets.
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bandwidth which is far from being an additive metric. The
bandwidth depends on the bottleneck link that may appear
anywhere along an end-to-end path. Any model for bandwidth
estimation has to identify the route connecting each couple of
peers to be able to gauge the bottleneck link. The challenge
is that such model must be scalable and easy to deploy.

Therefore, we propose a model for a scalable estimation of
the bandwidth among peers that does not require AS-level path
and edge link identification as in [13]. Our model estimates
the bandwidth among peers using the bandwidth of the indirect
paths that join them via a set of well defined proxies or relays
that we call landmark nodes. Basically, the direct and the
indirect path share the same tight link with some probability
that depends on the location of the correspondent landmark
with respect to the direct path or to one of the path end points.
This probability is higher if the landmark is closer to one of
the path end points. It can be also higher if the delay of the
indirect path is nearer to that of the direct one. Thus, the
bandwidth of each indirect path contributes to the estimation
of the bandwidth of the direct one according to its assigned
probability. In this way, one do not care if the bottleneck is
on the edge links of the path joining the two peers or if it is
in the middle. Moreover, a peer does not need to determine
its AS-level source/sink trees to deduce the edge links that
join it to the other peers as done in BRoute. Instead of that,
peers have to identify the indirect paths that better represent
the direct ones. This task is much easier to realize since we
propose to obtain such information using the delay of the paths
connecting peers to the landmarks.

Again, using Planetlab measurements, we evaluate the so-
lution and analyze the impact of the location, and number of
landmarks on the accuracy of the estimation. Our experiments
show how a number of 40 to 50 landmarks is necessary for
estimating the bandwidth among a worldwide distributed set
of Planetlab nodes.

Finally, we compare the proximities in the delay and CHESS
spaces from application point of view. A typical file transfer
application is considered to evaluate the quality of service
perceived by peers when they choose their neighbors based
on these two distinguished proximity notions. We determine
the proximity in CHESS among a worldwide distributed set
of Planetlab nodes using a function that predicts the content
transfer time. We observe that the characterization of this
proximity, using our bandwidth estimation model, leads to a
much better quality than that obtained when using the delay
alone.

The outline of the paper is as follows. Next, we present
our measurement setup. Section III motivates the need to
consider the different network parameters when defining the
proximity among peers. We review, in Section IV, the network
embedding models proposed initially for estimating scalably
the delay. We introduce, in Section V, a scalable model for
estimating the bandwidth. In Section VI, we evaluate the
performance gain achieved when considering the bandwidth
estimations for determining the proximity in the CHESS space.
The paper is concluded in Section VII.

II. MEASUREMENT SETUP

Our experiments consist of real measurements run over
Planetlab platform [5]. Planetlab is an experimental network
built between hundreds of academical sites (i.e., universities,
research laboratories) worldwide distributed. Planetlab nodes
have high bandwidth connectivity (i.e., on the order of 10/100
Mbps). We do not claim that this platform is representative of
all networks, but we believe that it is the best evaluative testbed
available nowadays that satisfies the large scale feature that is
required for our study. Moreover, this platform has proved its
capability to be appropriate for measurements [17].

Our experiments on Planetlab consist in the following
measurement sets. We take 127 Planetlab nodes spread over
the Internet covering America, Europe, and Asia. Forward
and reverse paths between each pair of Planetlab nodes are
considered, which leads to 16002 measurements. For each
unidirectional path between two Planetlab nodes, we measure
the round-trip time D, the available bandwidth A, and the
packet loss rate P. These measurements were repeated three
times during the last week of February 2005. The measurement
process is realized as follows.

Each measurement set consists of measuring the end-to-end
network parameters of the paths connecting Planetlab nodes
by performing direct probing among the nodes; which is done
in a Round-Robin fashion. In other words, each Planetlab
node i (i = {1, ..., 127}) probes the rest 126 Planetlab nodes
consecutively. Once this is achieved, node i + 1 takes its turn
for probing the other nodes. Round-Robin probing has been
applied in order to avoid parallel probing among nodes, which
may have a large overhead on the network and subsequently
that may change its characteristics. Next, we assume that the
network characteristics remain steady during the Round-Robin
measurements as if the probing action is realized in parallel.
This is necessary for the validation of the models that will be
described later along the paper.

The measurement is realized using the Abing tool [18].
This tool is based on packet pair dispersion technique [19].
It consists of sending a total number of 20 probe packet-
pairs between the two end nodes of the measured path. Abing
has the advantage of short measurement time on the order
of the second. The short probing time is necessary for our
experiments in order to achieve the Round-Robin measurement
set in shorter interval of time4. Also, Abing tool provides a
rich set of results (e.g, bandwidth in both directions), and a
good functioning over Planetlab. The measurement accuracy
provided by Abing on Planetlab is quite reasonable compared
to other measurement tools [20]. All these features make the
Abing tool appropriate for our study.

In the rest of the paper, we call a Planetlab node a peer.
On the other hand, we select landmarks from a worldwide
distributed set of Planetlab nodes in the following three ways:
• Random

We randomly choose landmarks without considering their
pairwise distances.

4In our settings, each Round-Robin measurement set takes 4 to 5 hours.
But, network characteristics on the paths connecting Planetlab nodes does
not frequently change [27]. Then, this may consolidate our assumption which
consists of substituting the parallel measurements by the Round-Robin ones.
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• Maximum-distance
The maximum-distance algorithm consists in determining
the landmark set whose summed pairwise distance is
greedily maximized. This is realized as follows: (1) at
the beginning, we randomly choose one peer as the first
landmark, (2) from the rest of peers, we determine the
next landmark as the one having the maximum average
delay to the existing landmarks, (3) we repeat step (2)
until reaching the required number of landmarks.

• N-means
N-means is a well-known algorithm for grouping peers
into N clusters and then choosing the closest peers to
the clusters’ centroids as landmarks. We identify the N-
means landmark set with the following procedure: (1)
initially, we randomly choose N peers as landmarks, (2)
we assign each of the rest of peers to the cluster of the
closest landmark, (3) we re-determine the N landmarks
by identifying in each cluster the peer that minimizes the
summed delay with the other peers in the same cluster, (4)
we repeat step (2) and (3) until reaching an unchangeable
set of landmarks.

III. MOTIVATING CHESS

A. Overview

Different definitions were studied in the literature for char-
acterizing the proximity among peers, and hence for selecting
the appropriate peer to contact. These definitions can be
classified into two main approaches static and dynamic. The
difference between these approaches lies in the metric they
consider. Static approaches [2], [21] use metrics that change
rarely over time as the number of hops, the domain name and
the geographical location. Dynamic approaches [1], [21], [4]
are based on the measurement of variable network metrics.
They mainly focus on the delay and consider it as a measure
of closeness of peers; the appropriate peer to contact is often
taken as the closest one in the delay space. The focus on the
delay is for its low measurement cost (i.e., measurement time ,
amount of probing bytes). However, its use hides the implicit
assumption that the path with the closest peer (in terms of
delay) has the minimum (or relatively small) loss rate and the
maximum (or relatively large) bandwidth.

While we believe that the delay can be an appropriate
measure of proximity for some applications (e.g., non greedy
delay sensitive applications or those seeking for geographical
proximity), it is not clear if it is the right measure to consider
for other applications whose quality is a function of diverse
network parameters. Bandwidth greedy applications and mul-
timedia ones are typical candidates for a more enhanced
definition of proximity. To clarify this point, we use our
measurements results and study the correlation among path
characteristics. We want to check whether (i) the character-
istics are correlated with each other, and (ii) how much a
proximity-based ranking of peers using the delay deviates from
that using other path characteristics.

As we will see in this section, there is a clear low correlation
among path characteristics which motivates the need for an
enhanced model for proximity. The closest peer in terms of

delay is far from being optimal in the bandwidth space or loss
rate space, and vice versa.

B. Delay vs. available bandwidth

Take a peer p and let pd be the closest peer to p in terms
of delay and pa the best peer from p’s point of view in
terms of available bandwidth. First, we want to study how
much the available bandwidth on the path connecting p to pd,
A(p, pd), deviates from the largest one measured on the path
between p and pa, A(p, pa). Figure 1(a) shows the CCDF (i.e.,
Complementary Cumulative Distribution Function) of the ratio
A(p, pd)/A(p, pa). The curve is calculated over all peers and
for each data set. For a value x on the x-axis, the corresponding
value on the y-axis gives the percentage of peers having on
their path to the nearest peer an available bandwidth larger
than x times the maximum available bandwidth.

We can see that a small percentage of peers, between 5%
and 15%, have the maximum bandwidth on their path with
the nearest peer. A large proportion of peers, around 80%,
have less than 50% of the maximum bandwidth on this path.
This indicates that selecting the best peer in terms of delay
leads in most cases to an available bandwidth far from the
optimal. Applications having a high bandwidth requirement
could suffer from this choice.

In our setting, the delay and bandwidth are lightly negatively
correlated5 with a coefficient equal to −0.01. This can be also
observed in Figure 1(b) where we plot the available bandwidth
for peers of rank r in the delay space, r varying from 1 to
126, averaged over the 127 peers. The figure is plotted for
the three data sets. We note that looking at farther and farther
peers in the delay space does not lead to an important decrease
in the available bandwidth, and so there is a high chance of
having the optimal peer from bandwidth point of view located
far away (in the delay space) from the peer requesting the
service.

C. Delay vs. loss rate

Applications are sensitive to the loss rate. We want to check
in this section how well a definition of proximity based on
delay satisfies the loss rate. We find that all peers have, in our
setting, a null loss rate (P = 0) on their path with at least one
other peer. To check whether the nearest peer results in the
minimum loss rate (i.e., zero), we plot in Figure 2(a) the CDF
of the loss rate on the path connecting a peer p to its nearest
peer pd. The distribution is computed over the 127 peers and
for each data set. We can see that around 89% of peers have
the minimum loss rate (P = 0) on their path to the nearest
peer. Our measurements show that the delay and loss rate are
positively correlated with a coefficient equal to 0.38. Another
observation we made is that long as we move away from a
peer in the delay space, the loss rate jumps to values on the
order of several percents, then it increases slowly. This is well
illustrated in Figure 2(b) where we plot the packet loss rate
on the path connecting a peer to its neighbor of rank r in the

5One would have expected a coefficient closer to -1 than to 0.
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Fig. 2. Delay versus loss rate

delay space, r changing from 1 to 126. The figure is averaged
over the 127 peers and plotted for the three data sets.

In summary, the closest peer seems to give the minimum
loss rate in most cases. The reason could be the fact that both
are located in a non-congested neighborhood. Now, when it
comes to selecting more than one peer for a certain service
sensitive to the loss rate, taking the delay as a metric of
proximity stops being efficient, and the loss rate has to be
considered as well.

D. Discussion

The weak correlation among path characteristics pointed
out by our measurements motivates us to introduce the prox-

imity in CHESS. It consists in determining the proximity at
the application-level by estimating some utility function that
models the application quality such as the transfer time for
file transfer applications. Peers are ranked with respect to each
other using the values given by the utility function for the paths
joining them. In [31], we introduced CHESS for the first time
and validate it using direct path measurements. Current work
is about how to estimate the network parameters included in
the utility function in an easy and scalable way.

IV. NETWORK EMBEDDING

A. Overview

Inferring network parameters (e.g., delay, available band-
width, loss rate) among a large number of peers without
achieving a mesh-based measurements is a hard problem.
Many approaches [3], [4], [6], [7], [8], [9], [10] have been
proposed for estimating the end-to-end delay among peers
from a set of partially observed measurements. Most of these
solutions are based on the network embedding. It consists in
assigning to each peer a position (i.e., a vector of coordinates)
in a low dimensional space where the delay between any
two peers is estimated by their Euclidean distance. Peers’
coordinates are usually deduced from delay measurements to
a number N of landmarks L{L1, ..., LN}.

More formally, suppose that the network contains n peers
p = {p1, p2, ..., pn}. The delay on the paths joining peers is
represented by an n×n matrix D, where Dij is the measured
delay from pi to pj . A network embedding is a mapping C :
p− Rd in the following way:

Dij ≈ ‖−→C i −−→C j‖, ∀i, j = 1, ..., n (1)

where
−→
C i = (Ci1, Ci2, ..., Cid) is the coordinate vector of pi

giving its position in a d-dimensional Euclidean space. Thus,
the delay between any two peers pi and pj is estimated as the
Euclidean distance between their coordinates:

D̂ij = ‖−→C i −−→C j‖ =

(
d∑

k=1

(Cik − Cjk)2
) 1

2

(2)

The challenge of network embedding is to assign a coordinate
vector Ci to each peer pi from a partially observed delay
matrix D. Global Network Positioning System (GNP) [3] was
the first work in this field. In GNP, peers measure the delay
to a set of well-known landmark nodes. Then, the Simplex
Downhill method [25] is used to deduce peers’ coordinates
by minimizing an objective function representing the error
between the estimated and the measured delays. The same
algorithm has been applied in PIC [26], after investigating
issues related to security. In [1], Vivaldi simulates the overlay
network by a network of physical springs. It proposes to
determine peers’ coordinates in a distributed way without the
need to dispose of a fixed set of landmarks. Each peer contacts
a random set of peers and adjusts its coordinates permanently
until minimizing the potential energy of a spring system.
ICS [10] and Virtual Landmarks [4] are based on Lipschitz
embedding and Principle Component Analysis (PCA). They
embed the peers in a low dimensional Euclidean space char-
acterized using PCA.



5

Fig. 3. A network embedding example

These coordinates-based mechanisms suffer particularly
from the fact that they provide Euclidean distances which are
symmetric and satisfy the triangle inequality. This may not be
consistent with the real network topology [27], [28], [29], [30].
Moreover, the authors in [32] indicate one more limitation that
some peers probably do not have a direct path joining them. In
this case, the estimated delay of these paths is inaccurate. This
is illustrated in the example of Figure 3 where we present a
simple network topology containing four peers connected only
to their neighbors by unit delays. The estimated delays in the
two-dimensional embedding are D̂14 = D̂23 =

√
2 while the

real delays in this topology are D14 = D23 = 2. Similar cases
arise in tree-based topologies. In such cases, it may that there
is no Euclidean embedding that can model exactly the real
network delays.

B. Distance Matrix Factorization

In [32], [33], the authors propose to infer the network delay
in a way that is able to model the sub-optimal and asymmetric
routing that may exist in practice. This model is based on
the distance matrix factorization. Next, we describe briefly the
model and then we study its capacity to estimate the delay,
the loss rate and the available bandwidth.

Basically, nearby peers are expected to have similar delay
distances to all the other peers. Then, an n× n delay matrix
may contain dependent rows6. From linear algebra, such ma-
trix can be expressed as the product of two smaller matrices:

D ≈ XY T , (3)

where X and Y are n × d matrices with d ¿ n. In contrast
with the coordinate-based approaches that assign to each peer
a coordinate vector, a delay matrix factorization associates to
each peer pi two vectors

−→
Xi and

−→
Yi of d dimensions.

−→
Xi is

called the outgoing vector and
−→
Yi the incoming vector for peer

pi. Hence, the estimated delay from any peer pi to any peer
pj is simply the dot product between the outgoing vector of
pi and the incoming vector of pj .

The factorization of D (n×n) into two matrices of smaller
dimension can be done by its singular value decomposition
(SV D). The singular value decomposition of D can be
expressed as:

D = USV T , (4)

6Dependent rows are equal rows or rows that can be expressed as a linear
combination of other rows.

where U and V are n × n orthogonal matrices, and S is an
n × n diagonal matrix. Calculating SV D consists in finding
the eigen values and eigen vectors of the matrices DDT and
DT D. The matrix S contains the singular values of D ranked
in a decreasing order7 . The columns of the matrices U and
V are respectively the eigen vectors of DDT and DT D.

When the number of dependent rows in D increases, the
number of principle components decreases and subsequently
the number of singular values that are significant in magnitude
decreases as well. This is due to the property of the singular
values that measure the significance of the contribution from
each principle component. After eliminating the null and
negligible values, the remaining singular values get a number
d which is less or equal to n.

Thus, an n×n delay matrix D can be decomposed into two
smaller matrices X (n×d) and Y (n×d) which are computed
as the following:

Xij = Uij

√
Sjj, (5)

Yij = Vij

√
Sjj, (6)

where i = 1...n and j = 1...d. This leads to the matrix D̂ =
XY T which is a low-rank approximation to the real delay
matrix D. This approximation depends obviously on the choice
of d which can be determined by minimizing the following
squared error function:

n∑

i

n∑

j

(Dij −−→Xi · −→Yj)2, (7)

where
−→
X i ∈ Rd and

−→
Y j ∈ Rd.

1) Distance reconstruction: We evaluate the error occurred
from such approximation for different values of the reduced
dimension d. This is done for the delay, loss rate, and
bandwidth matrices. Note that in the literature only the delay
was studied. We want to check whether the matrices for the
other metrics can be compressed as well. This is important
for the design of the scalable CHESS space. We construct the
three matrices using our three measurement sets carried out
over the 127 Planetlab nodes. The diagonal of each constructed
matrix contains null values. These null values make difficult
the matrix dimensionality reduction which depends on the
linear dependency among rows. Therefore, we interchange
the diagonal values by values that simulate a peer clustering
process. For the delay and loss rate matrices, we fill the
diagonal values (resp. Dii, and Pii) by the minimum val-
ues of the correspondent rows (resp. minj={1..127}Dij , and
minj={1..127}Pij). For the available bandwidth matrices, we
fill the diagonal values (Aii) by the maximum value of the
correspondent rows (maxj={1..127}Aij).

We plot in Figure 4, the mean reconstruction error of
these matrices as a function of the reduced dimension d.
For different values of the reduced dimension d on the x-
axis, the y-axis draws the mean relative error (MRE) of
the approximated matrix values (estimated values D̂ij , i, j =
{1...n}) with respect to the real values (i.e., measured values

7The singular values are calculated as square roots of the nonzero eigen
values of DDT .
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Dij , i, j = {1...n}). More formally, MRE is computed as the
following:

MRE =
1
n2

n∑

i=1

n∑

j=1

|D̂ij −Dij |
Dij

(8)

Figure 4 shows how the reconstruction error (i.e., mean
relative error MRE on the y-axis) decreases when the matrix
dimension is less and less compressed (i.e., the value of d on
the x-axis increases). For the delay and loss rate matrices, the
figure shows that the reconstruction error is small even for a
large dimensionality reduction (as for d = 10, MRE between
0.4 and 0.6). This is not the case for the available bandwidth
matrix where the reconstruction error is more than twice that
obtained for reconstructing the delay and loss matrices. This
can be explained by the fact that the delay and loss parameters
are additive and subsequently it is expected to find a linear
dependency among their vectors. This is not the case for the
bandwidth parameter.

2) Distance prediction: We apply the matrix factorization
technique for estimating the network parameters among peers
that have not been used for constructing the network matrices.
This is already done for the delay, in [32], where the authors
estimate the delay on the path between two peers pi and pj

as the dot product between the delay outgoing vector of pi

and the delay incoming vector of pj . The two vectors are
calculated separately by probing a set of landmarks. In that
paper, the authors show that their matrix factorization model
provides more accurate delay estimations comparing to the
other network embedding approaches. We wonder whether
this model is able to estimate accurately the loss rate and the
bandwidth as well. Therefore, we take 40 nodes, out of the
127 Planetlab nodes, as landmarks8 and the rest 87 nodes as
peers.

We begin by constructing the delay and bandwidth matrices
using the measurements achieved among the 40 landmarks
over our three datasets. The landmarks are selected in three
ways: randomly, according to the maximum-distance algo-
rithm, and according to the N-means algorithm. More details
concerning these algorithms are described in Section II.

Then, we determine the delay, loss, and bandwidth outgoing
and incoming vectors for each peer from the measurement it
conducted to the landmarks. First, landmarks compute their
vectors by measuring the paths among each other (we take
d = n = 40). Next, peers infer their vectors in a distributed
way. We explain how this to be done for the delay. The loss
and bandwidth vectors are calculated similarly.

For a given landmark set, each peer p has to measure
the delay to and from each landmark. The delay from p to
landmark Li is denoted by Dout

i and that from the landmark
Li to p by Din

i . The outgoing (
−→
Xnew) and incoming (

−→
Y new)

vectors of p should satisfy the following equations:

Dout
i =

−→
Xnew · −→Y i (9)

Din
i =

−→
X i · −→Y new (10)

8Previous studies show that 20 landmarks can be enough for estimating the
delay among a wide distributed set of peers.

The solution of these equations can be obtained by mini-
mizing the square error summed over all landmarks:

−→
Xnew = arg−→

U∈RdMin

n∑

i=1

(Dout
i −−→U · −→Y i)2 (11)

−→
Y new = arg−→

U∈RdMin

n∑

i=1

(Din
i −−→X i · −→U )2 (12)

After determining the delay (resp. loss and bandwidth)
outgoing and incoming vectors, we estimate the delay (resp.
loss and bandwidth) between each pair of the 87 peers by
the scalar dot product of their vectors. We evaluate the
mean and the standard deviation of the absolute relative error
(denoted respectively by MRE and stdRE) of the estimated
delay (resp. estimated loss and bandwidth) compared to the
measured values. Tables IV-B.2, I, II show MRE and stdRE
of the delay, loss and bandwidth estimation error obtained
when using the different landmark sets and over our three
datasets. The table shows that the estimation accuracy is quasi-
similar when landmark sets are chosen using N-means, and
max-distance algorithms. In these cases, MRE and stdRE for
the delay estimation varies between 0.35 and 0.5. With the
random landmark set, the estimations are less accurate. We
note that these results are coherent with those obtained in [32].
Besides, we observe in the tables a good estimation accuracy
for the loss rate parameter when using the N-means and max-
distance landmark sets; MRE and stdRE varies respectively
in the intervals [0.25, 0.5] and [0.3, 0.7]. For the bandwidth,
the table shows that the estimations are not as accurate as
the delay and loss ones. A relatively large estimation errors
are obtained for the different landmark and measurement sets;
MRE and stdRE vary respectively in the intervals [1.5, 2.5]
and [1.5, 5].

Thus, while the matrix factorization approach provides
accurate estimations for the delay and loss rate parameters, it is
not the case for the bandwidth. This is because the bandwidth
is not an additive metric and it rather depends on the bottleneck
link that may appear anywhere along an end-to-end path. This
means that network embedding approaches are not expected to
be the appropriate tools for estimating this parameter. One may
conclude that a bandwidth estimation model must identify the
route connecting each couple of peers to detect its bottleneck
link. The challenge is that such model must be scalable and
easy to deploy.

V. SCALABLE END-TO-END BANDWIDTH INFERENCE

A. Model Overview

Our model9 consists in inferring the bandwidth between
any pair of peers based only on their bandwidth vectors. A
peer obtains its bandwidth vector by measuring the direct and
reverse bandwidth on its path to the landmarks. Hence, the
scheme is scalable since its overhead is linear with the number
of peers in the system. Also, it is easy to implement since (i)
peers do not need to know and probe each other; any node can

9We have introduced our bandwidth estimation model previously in [11],
[12].
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Fig. 4. Matrix reconstruction error after the reduction to the different dimensions over the 3 Planetlab datasets

MRE Random Max-distance N-means
Delay 1.2 0.52 0.5
loss 0.9 0.355 0.24

ABw 1.4 1.85 2.8
stdRE Random Max-distance N-means
Delay 0.66 0.4 0.43
loss 0.8 0.728 0.43

ABw 2.7 1.6 2.7

TABLE I
ESTIMATION ERROR BY SVD OVER DATASET 1

MRE Random Max-distance N-means
Delay 1.19 0.49 0.47
loss 0.65 0.28 0.25

ABw 2.5 2.3 2
stdRE Random Max-distance N-means
Delay 0.71 0.4 0.41
loss 0.43 0.32 0.34

ABw 4.8 5 4.7

TABLE II
ESTIMATION ERROR BY SVD OVER DATASET 2

MRE Random Max-distance N-means
Delay 1.3 0.49 0.5
loss 0.54 0.275 0.244

ABw 1.9 1.6 1.8
stdRE Random Max-distance N-means
Delay 0.70 0.37 0.42
loss 0.4 0.43 0.42

ABw 3.6 4.2 3.9

TABLE III
ESTIMATION ERROR BY SVD OVER DATASET 3

estimate the bandwidth between any two peers based on their
bandwidth vectors, (ii) no need for the routing information
used in [13] (described in Section I).

For a couple of peers, we denote by (i) direct path the
network path that joins them directly using IP routing, and
by (ii) indirect path the path that joins them by passing by a
landmark node. We note that N indirect paths (i.e., N being
the number of landmarks) are assigned to each direct path.

We estimate the end-to-end bandwidth of a path joining two
peers using the following class of linear functions:

EB =
N∑

i=1

wi ·BIi, (13)

where BIi is the bandwidth of the indirect path that passes

by the landmark Li, and wi is the normalized weight (i.e.,∑N
i=1 wi = 1) assigned to this indirect path according to the

location of its corresponding landmark with respect to the
two peers. The idea behind this definition of the estimation
function is as follows. We consider that the direct path shares
the same tight link with the indirect path that passes by
the landmark Li with some probability wi. This probability
depends on the location of the corresponding landmark with
respect to the direct path or to one of its end points. wi is
higher if for example Li is closer to one of the path end points
(to be validated in the next section). By varying the expression
of the probability wi, we are able to cover different policies for
bandwidth estimation ranging from the one that gives the same
priority to all landmarks to the one that privileges the landmark
that we deem the most suitable for bandwidth inference.

For example, take the case of Figure 5, where peers
{p1, p2, p3, p4} are connected to the network core via a set
of path edges. We suppose that there are three landmarks
distributed in the network core as intermediates nodes for
bandwidth inference. Thus, for the direct path joining p1 to
p3 (p1p3), there are three associated indirect paths {1, 2, 3}.
Each indirect path i (i.e., i = {1,2,3}) is composed of the two
IP path portions p1Li and Lip3.

Suppose that the direct path p1p3 passes by the routers
{R1a, R1b, R1e, R1i, R3i, R3d, R3b, R3a} and by some set of
routers in the network core. In this case, the direct path p1p3

overlaps with (i) the indirect path 1 by at least the two path
portions {p1R1aR1bR1eR1i} and {R3iR3dR3bR3ap3}, (ii) the
indirect path 2 by at least the two path portions {p1R1aR1b}
and {R3bR3ap3}, (iii) the indirect path 3 by at least the two
path portions {p1, R1a} and {R3a, p3}. Hence, the bandwidth
of the indirect path 1 must be assigned the largest weight when
estimating the bandwidth of the direct path p1p3 since these
two paths have the most common portions and subsequently
it is more probable that they share the same bottleneck link.

In our description, we focus on path edges since it is very
probable that the bottleneck is located on these edges as shown
in [13]; the authors of [13] obtain that it is almost 4 hops away
from the path end points. But contrary to [13], our solution
applies to other contexts where the bottleneck is not solely on
the edge. The key point is that estimating the bandwidth on
the path between two peers depends mainly on the location of
the landmarks with respect to these peers. This dependency is
explored in the next section.
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Fig. 5. Direct versus Indirect paths

B. Impact of landmarks’ locations

To evaluate the impact of landmarks’ locations on the
bandwidth estimation accuracy, we consider the following
real scenario conducted over Planetlab. We take 8 Planetlab
nodes distributed in different European countries as landmarks.
We also take 14 Planetlab nodes completely distributed in
Europe as peers. We ask the question of whether the European
landmarks can help to estimate accurately the bandwidth on
the path between European peer and any other peer. Therefore,
each of the European peers measures the RTT and the direct
and reverse available bandwidth to 34 Planetlab nodes dis-
tributed worldwide. This leads to 476 measured paths. Then,
we infer the bandwidth of these paths using Equation (13)
and we compare the estimations with the measured values.
This comparison is done for different weights in the estimation
function (Equation 13).

Our landmark nodes are chosen with the main concern to
have a high bandwidth connectivity to the Internet. This is
an important requirement since we want to avoid having the
bottleneck, of an indirect path, decided by the landmark itself.

We consider different forms of the probability wi, and
subsequently of the end-to-end bandwidth estimation function.
By doing that, we are able to study the correlation between
the estimation accuracy and the locations of the landmarks. We
divide the study into two main parts: (i) the estimation function
depends on the delay closeness between the direct path and the
indirect paths, (ii) the estimation function depends on the delay
closeness between the landmarks and the path end points.

1) Estimating bandwidth based on indirect paths’ delays:
One possibility is to estimate the end-to-end bandwidth of a
direct path using that of the indirect path having the shortest
delay. Even though we found satisfactory results, we believe
this method is not sufficient for providing accurate estimation
since direct IP routing may lead to an end-to-end delay larger
than the one of the shortest indirect path, with both paths
having different sets of links and hence different bottlenecks.
The accuracy could improve by considering more than one
indirect path in the estimation function while assigning more
weight to those having shorter delays. This consideration is
mainly recommended when there are more than one indirect
path having delays on the order of that of the shortest one.

Thus, we consider all the N indirect paths in the bandwidth

estimation function (Equation 13) with the following expres-
sion for the weight wi:

wi =
Ci∑N
i=1 Ci

, for i = {1, .., N} (14)

where,

Ci =
(

RImin

RIi

)α

, (15)

RIi is the round trip delay of the indirect path that passes by
the landmark Li, RImin is that of the shortest indirect path
among the N indirect paths, and α is a positive real number.

Hence, we obtain the following first expression of the
estimation function:

EB1 =
N∑

i=1

(
RImin

RIi

)α

∑N
i=1

(
RImin

RIi

)α ·BIi (16)

We draw in Figure 6(a) the CDF of the relative bandwidth
estimation error which is calculated as:

EB1 −Ameasured

Ameasured
, (17)

for all the bandwidth estimations and for different values of
α. The figure shows that when the α parameter increases, the
estimation accuracy improves. This is expected since when
α = 0, the bandwidth component of all the indirect paths gets
the same probability, and when α becomes large, the indirect
paths having shorter delays, and hence better representation of
the direct path, get more probability than those having larger
delays. For α > 3, we observe that the results become steady.
This can be explained by the fact that the estimation becomes
only dependent on the indirect paths having a delay on the
order of that of the shortest indirect path. For α = 4, the
figure shows that approximatively 40% of the estimations are
accurate within 25% and 70% of the estimations are accurate
within 50%.

To show the correlation between the estimation accuracy
and the difference in the delay between the direct and the
indirect paths, we plot Figure 6(b) for the case α = 4. For an
estimation error interval (on the x axis) of length 0.2, the y
axis shows the sum

∑N
i=1(wi ·RIi)/Rd, which is a weighted

average of the ratio of the indirect paths’ delays and the direct
path delay (Rd). This sum is averaged over each interval of
length 0.2. The figure shows a clear correlation between the
two entities plotted on the x and y axis. This means that
when some landmarks are located such that the delay of their
corresponding indirect paths is close to that of the direct path,
the estimation accuracy is high.

2) Estimating bandwidth based on the delay distance be-
tween landmarks and peers: Now, instead of relying our
estimation on the end-to-end delay of the indirect paths, we
focus on how close landmarks are to the direct path end points.
Thus, for each pair of peers, we consider the N indirect paths
in the bandwidth estimation model after assigning more weight
for those going through landmarks that are closer to any of the
two peers. Basically, we want to check if these latter indirect
paths are more representative of the direct path than the ones
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Fig. 6. Bandwidth estimations based on indirect paths’ delays

having smaller end-to-end delays. We express the coefficients
Ci as:

Ci =
(

Rmin

Ri

)α

, (18)

where,
Ri = min(Rxi, Ryi), (19)

Rxi represents the round trip delay between the peer x and
the landmark Li, and

Rmin = mini=1..NRi. (20)

We recalculate the wi function (Equation 14) and sub-
sequently the estimation function (Equation 13) with these
new coefficients Ci. Thus, we obtain the following second
expression of the estimation function:

EB2 =
N∑

i=1

(
Rmin

Ri

)α

∑N
i=1

(
Rmin

Ri

)α ·BIi (21)

Then, we plot in Figure 7(a) the CDF of the relative
estimation error which is calculated as:

EB2 −Ameasured

Ameasured
, (22)

for all the bandwidth estimations and for different values of
α. As before, when α increases, the indirect paths having
landmarks close to one of the two peers get more weight. The
results shown in the figure become stationary for α > 3. This
is because the bandwidth estimations become only dependent
on the few indirect paths having landmarks close to one of
the peers. The figure shows better results comparing to the
previous cases studied; around 57% of the estimations are
accurate within 25% and 93% of the estimations are accurate
within 50%.
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Fig. 7. Bandwidth estimations based on the delay distance between landmarks
and peers

To show the correlation between the estimation accuracy
and the landmarks’ closeness to the extremities, we plot
Figure 7(b) for the case α = 4. For an estimation error interval
(on the x axis) of length 0.2, the y axis shows

∑N
i=1 wi · Ri

averaged over the estimations inside the interval. The figure
shows a clear correlation between the two entities in the x
and y axis. This means that when some landmarks (among the
N ) are close to the path extremities, the estimation accuracy
improves. Furthermore, it becomes better than the case where
the estimation depends on the shortest indirect paths (see
Figures 6(a) and 7(a)).

This is due to the fact that the indirect paths, going through
landmarks which are close to path extremities, are more
expected to provide better representation of the direct path
since it is more probable that IP will route through them. In
such cases, we recommend the use of the estimation function
EB2 presented in this section. But for the couples of peers that
are relatively far from all the landmarks, the delay closeness
between landmarks and peers is not expected to be anymore
a good criterion for testing the representation of the indirect
paths with respect to the direct path. In such situations, the
location of the landmarks with respect to the direct path can
be more helpful for this purpose. Therefore, we propose the
use of EB1 (described in Section V-B.1) which depends on the
shortest indirect paths and it is expected to estimate accurately
the bandwidth when the delays of some indirect paths are close
to that of the direct one (as obtained in Figure 6(b)); even if
landmarks are far from path end points.

C. Bandwidth estimation function

Hence, for each couple of peers, we apply the following
statement for determining the expression of the bandwidth
estimation function (EB):
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EB =





EB2 if Rmin < Rthreshold,

EB1 elsewhere,
(23)

where Rmin is expressed in Equation 20, Rthreshold is a
threshold delay for examining the closeness between landmark
and peers, EB1 and EB2 are expressed respectively in Equa-
tions (16) and (21).

Thus, to estimate the bandwidth on the path between two
peers, we first check the delay closeness between landmarks
and peers by the statement Rmin < Rthreshold. We take
Rthreshold = 80ms based on what we have obtained in
Figure 7(b). In that figure, the estimations, that are within
the 50% accuracy, belong to the cases where at least one
landmark is close to one of the path endpoints by a distance
which is less than 80ms (i.e., Rmin < 80ms). In such cases,
the estimation function EB2, which depends on the delay
distance between landmarks and peers, is preferable to be
considered for inferring the bandwidth. Otherwise, landmarks
are relatively far from the path extremities and subsequently it
becomes more helpful to rely on the location of the landmarks
with respect to the direct path. In such cases, we use the
estimation function EB1 where the delay closeness between
the direct and indirect paths is the criterion.

The challenge appears when the overlay network contains
a large number of peers widely distributed. In this case, to
infer accurately the bandwidth on the path between any pair
of peers, a larger number of landmarks is obviously required
for our estimation model. This issue is explored in the next
section.

D. Impact of the number of landmarks

Instead of 8 landmarks distributed in Europe, we now infer
the available bandwidth, on the paths joining a worldwide
set of peers, using different landmark sets having the num-
bers N = {10, 20, 30, 40, 50} distributed worldwide. Each
landmark set is selected from 100 nodes having the highest
bandwidth connectivity among the 127 Planetlab nodes10.
Landmark selection is realized randomly, using the max-
distance algorithm, and using the N-means algorithm. See
Section IV-B for more details concerning these algorithms.

We plot in Figure 8 and 9 the mean (MRE) and the
standard deviation (stdRE) of the bandwidth estimation error
for the different landmark sets and over our three datasets.
MRE is calculated as follows. For each set of N landmarks
chosen from the 127 peers as described before, we infer the
bandwidth on the paths joining the rest of peers of number
127−N . This is done using the bandwidth estimation function
described in Section V-C. Then, MRE (resp. stdRE) is
computed as the mean (resp. the standard deviation) of the
absolute relative errors of the estimated values with respect to
the measured values (as computed in 8).

Figures 8 and 9 show that the bandwidth estimation error
decreases when the number of landmarks increases. This is
expected since with a wider coverage of the landmarks it

10We remind that this is an important requirement since we want to avoid
having the bottleneck, of an indirect path, decided by the landmark itself.

becomes more probable to find indirect paths which better
represent the direct ones. Besides, the smaller bandwidth
estimation error is obtained when using the N-means landmark
sets. MRE (resp. stdRE) is between 1.3 and 1.6 (resp.
between 3 and 4) for N equal 10 N-means landmarks and
it decreases when N increases to become between 0.2 and
0.5 (resp. between 0.2 and 0.4) for N equal 50.

The estimations obtained when using the max-distance sets
of landmarks are not as accurate as the case of the N-means
sets of landmarks. In the former case, MRE (resp. stdRE) is
between 1.6 and 2.1 (resp. between 5 and 7.1) for N equal 10
max-distance landmarks and it decreases when N increases to
become between 0.5 and 0.9 (resp. between 0.4 and 1) for N
equal 50. The worst case is obtained when using the random
sets of landmarks. In this last case, MRE (resp. stdRE) is
between 1.2 and 1.4 (resp. between 2.7 and 3.2) for N equal
50.

Moreover, we observe in the figures that it may happen that
for some number of random landmarks, MRE and stdRE are
larger than those obtained when a lower number of random
landmarks is used. This can be caused by the fact that the
smaller random set has a wider coverage than the larger
random one. One may conclude that the distribution of the
landmarks is as important as their number. A large number
of randomly chosen set of landmarks may not be appropriate
for bandwidth inference if they have a distribution covering a
small portion of the network space while the peers cover all the
space. In this case, a large number of direct and indirect paths
will be disjoint and subsequently a large number of inaccurate
estimations may occur. We note that when the indirect paths do
not overlap with the direct one, the model provides accurate
estimation only if the path bottleneck holds on the network
connectivity of the peers. Hence, a random set of landmarks
could be inappropriate for the bandwidth estimation model
even if it contains a large number of nodes.

This is not the case when using the N-means landmark
sets. N-means consists in grouping the peers into N clusters
and then choosing the closest peers to the clusters’ centroids
as landmarks. Such delay minimization between landmarks
and peers leads to better estimate the bandwidth on the paths
joining peers as obtained in Section V-B.2.

Thus, in our settings, a set of 40 to 50 landmarks having
an N-means distribution is appropriate for estimating the
bandwidth among a worldwide distributed set of Planetlab
nodes. In the next section, we evaluate the performance
gain achieved when considering the proximity in CHESS,
determined using our bandwidth estimation model, instead of
the delay proximity.

VI. ENHANCED PROXIMITY PERCEIVED BY THE
APPLICATION: A CASE STUDY

From the standpoint of a certain peer, we recall that peers
are ranked within the CHESS space in a decreasing order of
the utility function. Thus, close peers in the CHESS space
are those providing the best application quality despiting their
network locality. In[31], we have obtained that the proximity
in CHESS outperforms the basic delay proximity for different
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Fig. 8. Mean estimation error obtained for different number of landmarks chosen in a random, max-distance, and N-means ways
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Fig. 9. Standard deviation of the estimation error obtained for different number of landmarks chosen in a random, max-distance, and N-means ways

applications. This is obtained using the measured values of
the network parameters. However, determining the proximity
of peers using direct probing among them is not efficient due
to its heavy overhead in large scale networks. Therefore, we
use in this section our scalable bandwidth estimation model
(described in Section V-A) for characterizing the proximity
in CHESS. On the other hand, we use the measured values
of the delay and loss rate parameters in order to focus on the
impact of our bandwidth estimation approach on the proximity
characterization.

Therefore, we take the case of file transfer over the TCP
protocol. This case can be encountered in the emerging file
sharing P2P applications or in the replicated web server con-
text. Applications using TCP are known to form the majority
of Internet traffic [22]. For such applications, the optimal peer
to select is the one allowing the transfer of the file within the
shortest time. We call latency the transfer time.

The latency of TCP transfers is known to be a function of
diverse network parameters including the available bandwidth,
the loss rate, and the round-trip time [23], [24]. Peers are
ranked from the standpoint of a certain peer according to
an increasing vector of transfer latency. This ranking defines
the proximity among peers in the CHESS space. Any other
ranking results in a different vector and yields a latency
increase. We evaluate in this section the improvement of the
TCP latency when the proximity in CHESS is used instead of
the delay-based one to perform the ranking of peers from the
best to the worst.

To predict the TCP transfer latency, we consider the function
PTT (Predicted Transfer Time) that we compute in [24]. This
function is the sum of a term that accounts for the slow start
phase of TCP and another one that represents the congestion
avoidance phase. The function considers the case when a TCP

transfer finishes in the slow start with no losses. We omit the
window limitation caused by the receiver buffer to allow a
better understanding of the impact of path characteristics.

The latency of a TCP transfer depends on the file size.
Short transfers are known to be dominated by the slow start
phase which is mainly a function of the round-trip time. Long
transfers are dominated by the congestion avoidance phase
where the available bandwidth and the loss rate figure in
addition to the round-trip time. This sensitivity to network
parameters makes interesting the problem of peer ranking for
applications using large file transfer over TCP.

The enhancement of TCP latency between the proximity in
CHESS and the delay-based one is computed as follows. Take
a peer p and denote the peer having the rank r in the delay
space by pd(r), i.e., the peer having the r-th smallest RTT on
its path to p. Denote by pc(r) the peer having a rank r in
the CHESS space. This peer has, on its path with p, the r-th
smallest PTT.

Let PTT (x, y) denote the transfer latency between peer
x and peer y. We define the enhancement at rank r as
the relative error of PTT (p, pd(r)) calculated with respect to
PTT (p, pc(r)). More formally, the enhancement is calculated
as the following:

enhancement(r) =
PTT (p, pd(r))− PTT (p, pc(r))

PTT (p, pc(r))
(24)

This is realized using the bandwidth values estimated on
the paths between a peer p and the 86 other peers using
the 40 N-means landmarks. Besides, we use the measured
values of the delay RTT and the loss rate P instead of
the landmark-based estimated ones in order to focus on the
impact of our bandwidth estimation approach on the proximity
characterization. We determine the latency enhancement for
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large files transfer (i.e., S = {10MB, 50MB, 100MB}) on
each path. Then, we average all enhancement values at rank
r over the 87 peers. This study allows to evaluate how much
the proximity in CHESS outperforms the delay-based one on
average at the application level.

We plot in Figure 10 the transfer time enhancement as
a function of the rank r for the different file sizes. The
enhancement is computed for our three datasets and drawn
separately in Figure 10. The figure shows that, for low values
of the rank r, the enhancement improves considerably when
file size increases. It is between 50% and 200% when the
transfer is achieved from the closest peer in the CHESS
space. When the rank r increases, the enhancement decreases
and it becomes negative at some high ranks. This is due
to the fact that the peers having high ranks in the CHESS
space (resp. delay space) are those having low ranks in the
delay space (resp. CHESS space). The reason is that the
paths with farer peers have better performance (e.g., larger
available bandwidth) than those with close peers as obtained in
Section III. Hence, considering the delay alone for proximity
characterization is far from being a good approximation of
the proximity characterized in CHESS; this concerns long file
transfer applications. The proximity in CHESS provides much
better quality even when using the estimated values of the
bandwidth parameter.

VII. CONCLUSIONS AND PERSPECTIVES

We introduce in this paper a new notion of proximity in
the CHESS space. It consists of characterizing the proximity
among peers by considering the path characteristics and ap-
plication requirements. We motivate the need for this notion
by showing that the proximity in the delay space does not
automatically lead to a proximity in the bandwidth and loss
spaces. The proximity needs to be defined as a function of the
metrics impacting the application performance. While network
embedding approaches may be convenient for estimating the
delay and loss parameters, it is not the case for the bandwidth
parameter.

Therefore, we propose a model that infers easily and
scalably the bandwidth among peers using the bandwidth of
the indirect paths that join them via a set of relay nodes
that we call landmarks. Our model depends on the location
of the landmarks with respect to the direct path and to the
path endpoints. The results show that the required number of
landmarks depends on peers’ number and distribution. Our
experiments show how a number of 40 to 50 landmarks is
necessary for estimating the bandwidth among a worldwide
distributed set of Planetlab nodes. Finally, the proximity in
CHESS, which is determined using our bandwidth estimation
model, provides much better quality than that obtained when
using the delay proximity for large file transfer applications.

Our perspective concerning the deployment of the land-
marks in the real network is that it can be managed by the
content service provider. A content service provider can deploy
the landmarks according to the distribution of its clients. It
may also use an existing set of infrastructural nodes (e.g.,
DNS servers) as landmarks.

Regarding our future work, we plan to evaluate the profit
of characterizing the proximity in CHESS for different ap-
plications. On another venue, we will investigate further the
problem of scalable bandwidth estimation. In particular, we
will study the variability of bandwidth measurements and the
persistency of bottlenecks. This is important for determining
the measurement frequency of the bandwidth vectors neces-
sary for recomputing and updating the end-to-end bandwidth
estimations.
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Fig. 10. Transfer time enhancement when using the proximity in CHESS instead of the delay proximity
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