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Abstract

In the context of computer security, the first step to respond to an intrusive incident
is the detection of such activity in the monitored system. In recent years, research
in intrusion detection has evolved to become a multi-discipline task that involves
areas such as data mining, decision analysis, agent-based systems or cost-benefit
analysis among others. We propose a multiagent IDS that considers decision analysis
techniques in order to configure itself optimally according to the conditions faced.
This IDS also provides a quantitative measure of the value of the response decision
it can autonomously take. Results regarding the well known 1999 KDD dataset are
shown.
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1 Introduction

Intrusion detection systems (IDS) are software or hardware systems that au-
tomate the process of monitoring the events occurring in a computer system
or network, analysing them for signs of security problems [1]. A generic model
of intrusion detection can be defined by a set of functions. These functions
comprise raw data sourcing, event detection, analysis, data storage, and re-
sponse. Data sources can be drawn from audit records and network traffic as
well as from firewalls, switches and monitoring agents. The purpose of the
event detection function is to provide relevant information for use in the anal-
ysis function. This may include eliminating unnecessary data and extracting
relevant information from data sources. The data storage function is in charge
of storing security-related information (such as audit logs, suspicious source
sites, results of past analysis, and also profiles of known attacks and profiles of
normal behaviour) making it available for analysis at a later time. Thus, the
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analysis function processes data from both event detection and data storage
functions. Furthermore, event detection and analysis functions can produce
huge amounts of data that need the support of the storage function. Finally,
the response function includes a decision module and provides countermea-
sure capabilities that are typically grouped into active and passive measures.
Passive measures involve reporting IDS findings to humans, who are then ex-
pected to take actions based on these reports, while active measures involve
some automated intervention in order to stop the progress of the intrusion.

Each IDS function can use methodologies and paradigms from different sci-
entific disciplines. For instance, due to the nature of the event detection and
analysis functions, data mining is an appropriate approach because it deals
well with large amounts of information. Data mining is defined as the process
of discovering patterns in data automatically. Specifically, the research in data
mining applied to intrusion detection is related to the process of extracting
the relevant security features from raw data as well as building effective and
efficient machine learning algorithms to analyse the mined information. It is
a very active research topic [2—6].

With respect to the response function, decision analysis [7,8] and cost-benefit
modelling [9-12] are the most promising approaches. The former has been
used to model the decision making process of taking actions against suspicious
events and to evaluate IDS effectiveness. Nevertheless, this approach does not
consider the cost involved in the response to a suspicious event. The latter has
been used to calculate the cost of detecting and responding to an intrusion
and to determine the trade-off between costs and benefits for a network IDS.
The main handicap of the cost-benefit approach is the need to estimate every
cost and risk involved in the process. In this paper, we propose a response
function that simplifies the cost-benefit estimation while taking into account
the most relevant costs for the decision making process.

For the knowledge management of the different IDS functions, the agent
paradigm is a promising approach. Previous work in applying agents to intru-
sion detection was conducted at a number of research labs: the Autonomous
Agents for Intrusion Detection (AAFID) effort at Purdue University [13], the
Hummingbird project of the University of Idaho [14] and the Java Agents for
Meta-Learning (JAM) project at Columbia University [3]. More recently, the
main advances have been done on mobile distributed agents within the Mobile
Agent Intrusion Detection Detection project at Iowa State University [15] and
on lightweight agents at Queen’s University in Canada [16].

Unfortunately, these projects do not accomplish deliberative reasoning of agents
(their intelligence just relies upon learning) and do not deal directly with IDS
effectiveness, what make it difficult to compare them with our system. Never-
theless, there are two previous agent-based IDS that satisfy one of both issues



and therefore, to the best of our knowledge, they are the only precedents of
our work. One is the FAST system from the National Research Council of
Canada [17]. FAST agents logically reason with the information provided by
sensors at a higher level of abstraction in order to provide better analysis (due
to information sharing). This is the case of deliberative agents whose intel-
ligence relies upon an internal representation of the situation faced and the
mental state in the form of beliefs, desires and intentions [18]. In their work,
they do not show results about the system effectiveness. The other comes from
the University of Hong-Kong [19], and shows results about effectiveness, al-
though its agents make decisions with Fuzzy and Evolutionary Computation
techniques instead of deliberative reasoning. We use the results of this study
to measure the effectiveness of our design.

This paper proposes a deliberative multiagent system (MAS) which reasons
in order to provide an effective IDS that configures itself optimally, according
to the operating conditions. Moreover, it provides a quantitative estimation of
the value of the response decision it can autonomously take. The remainder of
this paper is organized as follows. Section 2 reviews the decision model analysis
used by the response and analysis functions of the system we propose. Section
3 describes the MAS design and implementation issues. Section 4 presents the
experimental setup. Section 5 shows results and discusses them and, finally,
Section 6 summarizes the main conclusions.

2 Decision Model Analysis

Decision theory has been successfully applied in areas such as Psychology [20],
Economy [21] or Meteorology [22]. In the computer security field, it has been
used to face the intrusion detection task in order to provide a methodology to
evaluate the effectiveness of different IDS under different operating conditions
[7]. In this section, we review this methodology and extend it to include the
response cost (the one incurred by taking action in order to avoid an intrusion).
In addition, we introduce a useful metric (economic value) to measure IDS
effectiveness.

The system to be protected can be in two possible states: an intrusive state (I)
or a non intrusive state (NI). Similarly an IDS, depending on the analysis of
data sources, can report an alarm (A) or not (NA). The conditional probabil-
ities P(A|I) (hit rate H) and P(A|NI) (false alarm rate F) are the variables
that define the detecting capabilities of the IDS. These probabilities are shown
in Table 1. One of the main goals of any detection system is to achieve high
values of H while keeping the F rate low. Nevertheless, as F' increases so does
H. On this basis, it is a desirable feature for an IDS to operate at different
pairs (F, H). Each of these pairs is called an operating point. Thus, a detec-



Table 1
Conditional probabilities that an IDS detects the system state. F' represents the
false alarm rate and H the hit rate

System state

Detector’s report | No intrusion (NI) | Intrusion (I)

No alarm (NA) 1-F 1-H
Alarm (A) F H

tor’s ROC curve describes the relationship between its probability of detection
(H) and its false alarm probability (F) for different operating points.

Lee [10] pointed out that a natural tendency in developing an intrusion de-
tection system (IDS) is trying to maximize its technical effectiveness while
neglecting the cost-benefit trade-off. An IDS needs to be cost-effective be-
cause it should cost no more than the expected level of loss from intrusions.
This requires that an IDS considers the trade-off among cost factors, which
at least should include the cost of damage caused by an intrusion, the cost
of manual or automatic response to an intrusion, and the operational cost,
which measures constraints on time and computing resources. Thus, damage
cost characterizes the amount of damage to a target resource by a successful
intrusion, whereas response cost is the cost of taking action in order to avoid
an intrusion. Operational cost is the cost of the analysis and processing of
the stream of events being monitored by the IDS. It is an important cost for
evaluating the efficiency of an IDS but it is not relevant for evaluating the
effectiveness.

Accordingly, we adopt a utility perspective in order to measure IDS effec-
tiveness. Thus, the best IDS is the one that contributes most effectively to
minimize expenses when defending a system. The expected cost of a detector
on a certain operating point can be computed analysing the corresponding
decision tree. Our tree is similar to the one proposed by Gaffney [7] but ours
does not only consider the damage cost (L) but also the response cost (C'). The
decision tree relates the report of the IDS, the system state, the response of the
decision module, the probabilities involved in the process and the consequence
of all of the above (see Figure 1).

Decision or action nodes, which are displayed as squares, are under the control
of the decision maker, who will choose which branch to follow. Conversely, the
circles represent event nodes that are subject to uncertainty. A probability dis-
tribution represents the uncertainty about which branch will happen following
an event node. Event node probabilities are defined as follows:

e p;: is the probability that the detector reports no alarm.
e po: is the conditional probability of no intrusion given that the detector



Report Response Condition Consequence

Fig. 1. Decision tree of the detector’s expected cost that considers the response cost

Table 2
Expected cost of response decisions depending on the detector’s report

Response
Detector’s report No Yes
No alarm L(1—po) = L(lng)p Cpa+C(1l—py)=C
Alarm L(1—p3) = fjﬁ Cps+C(1—ps3)=C

reports no alarm.
e p3: is the conditional probability of no intrusion given that the detector
reports an alarm.

An IDS can take some precautionary action depending on the likelihood of an
intrusion occurring. Taking precautionary action incurs a cost C', irrespective
of whether the intrusion occurs or not. However, if the intrusion occurs and
no action has been taken, then a loss L is incurred. If there is no response and
there is no intrusion, no cost is incurred. The decision maker (i.e. the network
administrator or the decision module of the IDS if the response is automatic)
will follow the strategy that minimizes the expected cost. In order to compute
this expected cost it is necessary to calculate the expected cost conditional
on the detector’s report. The four possibilities are summarized in Table 2,
where the prior probability of an intrusion happening is represented by p. The
expected cost of each response is calculated by taking the sum of the products
of the probabilities and costs for the node following each response.

Thus, if the report of the detector is known, the minimal expected cost can



be computed. If there is no alarm the expression for the expected cost under
this condition is:

(1-H)p

Mya=min{L(1 —py),C} = min{L . ,C} (1)

Similarly, the expected cost given an alarm is:

LHp
,C 2
.0 @)

My =min{L(1 — p3),C} = min{

Finally, the expected cost of operating at a given operating point, is the sum
of the products of the probabilities of the detector’s reports and the expected
costs of operating conditioned by these reports. On this basis, the expected
cost per unit loss (M) is:

M =min{(1 —H)p,g((l —F)1—p)+(1—H)p)} +

Fmin{Hp, S (F(1—p) + Hp)} Q

It is important to note that this formulation includes the possibility of taking
actions against the report of the detector if these actions lead to a lower
expected cost.

2.1 Metric of econmomic value

This subsection introduces a metric that measures the value of an IDS. In
order to proceed, some concepts need to be defined first. The expected cost
per unit loss of a perfect IDS (the one that achieves H=1 and F=0) is (from
expression (3)):

) C , C
Mper = mln{p7 fp} = pmln{L Z} (4)

In addition, an expression is needed for the expected cost when only informa-
tion about the probability of intrusion is available (no IDS working). In this
situation, the decision maker can adopt two alternative strategies: always pro-
tect, taking some precautionary action (incurring then in a cost C) or never



protect (incurring in losses pL). Consequently, the decision maker will respond
if C' < pL and will not if C' > pL. Then, the expected cost per unit loss is:

_ C
Mprob - mln{p7 Z} (5>

Accordingly, the value of an IDS (V) is defined as the reduction it gives on
the expected cost over the one that corresponds only to the knowledge of the
probability of intrusion, normalized by the maximum possible reduction.

Mo — M
V= prob (6)
Mp’rob - Mper

As a result, if an IDS is perfect at detecting intrusions its value is 1. Con-
versely, an IDS that does not improve a predictive system solely based on the
probability of intrusion has a value less or equal to 0.

The metric of value is very useful because it includes all the relevant param-
eters involved in the evaluation of IDS effectiveness. A similar metric was
proposed by the authors in [23] but it did not manage the possibility of a
decision being made contrary to the detector’s report as it is proposed in this
publication.

3 The Multiagent System

3.1 Design of the Multiagent System (MAS)

Our system is composed of several cooperative agents that try to improve the
overall IDS effectiveness through an autonomous adaptation. Agents play one
of the following roles: sensor, evaluator or manager. We assume that several
detection techniques are applied to the same source of information. Thus,
each sensor agent applies a specific detection algorithm to infer a prediction
about the intrusive nature of the analysed events. The predictions (often just
a binary statement: intrusive/non-intrusive) are sent to evaluator agents that
combine them to produce a final conclusion that is sent to the manager agent.
Evaluator agents can apply different criteria to compute the conclusion. In
this paper, two of them are considered:

e Threshold: the evaluator agent considers an event as an intrusion if the
number of sensor agents that state the event as intrusive is greater than a
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Fig. 2. Interactions between agents in the evaluation mode. Sensor agents make
predictions about events and send them to evaluator agents that combine them to
produce a final conclusion that is sent to the manager agent. Then, the manager
informs the evaluator agents about their effectiveness

prefixed threshold.

e Weighted sum: the evaluator agent weights each sensor before the compar-
ison with the prefixed threshold is done. The weights are updated after an
event takes place according to the historical effectiveness of each sensor.

Finally, the manager agent may act in two different modes of behaviour: evalu-
ation mode or operating mode. The former assumes the manager agent has the
knowledge about the real nature of events, so it is able to inform the evaluator
agents about their effectiveness. Evaluator agents will use this information to
update the weights of sensor agents in order to improve future predictions.
The latter consists of planning a response to intrusions, according to the be-
liefs previously acquired about the environment where events are taking place,
and about the results provided in the evaluation mode. Figure 2 shows, in a
general way, the interactions that take place between the agents of our system
in the evaluation mode.

Let us now describe in detail the design of the multiagent system depending
on the criteria used by the evaluator agent.

3.1.1 Fvaluator agent applying thresholds

Parametric IDS are able to operate at different operating points. Axelsson
[24] pointed out how important it is to tune IDS according to the environment
faced. Sensor agents are based on different detection techniques that do not use
parameters themselves. Nevertheless, the evaluator combines these techniques
making the system parametric. The way the parameter is used to tune the IDS
is now described. Assuming that sensor agents communicate binary statements
(whether or not the events have an intrusive nature), the evaluator agent
uses a probability threshold p; to reach a final decision about the nature of



an event. If the percentage of sensor agents that consider this event as an
intrusion is greater than this p;, then the evaluator agent will consider it an
intrusion. Accordingly, the hit and false alarm rates of the MAS considered
as a single IDS become: H = H(p;) and F' = F(p;) Vp; € [0, 1]. Hence, the
value of the resulting agent system also depends on such threshold as follows:
V =V(p) Vp:€]0,1]. Given a relationship between C' and L, the optimum
value will then be V,,; = max,; V(p:) Vp: € [0, 1]. Thus, the manager agent
may compute and show the results of the IDS effectiveness in the evaluation
mode for different p;. In the case of sensors that classify events according
to specific types of intrusion, the evaluator agent would observe which of
these types is the one detected by the majority of the sensor agents. It would
then reach a final conclusion about the nature of the event according to the
threshold, similarly to the process previously described.

3.1.2  FEvaluator agent applying dynamic weights

In this setup, we assume that sensor agents that were more successful in the
past, are also going to be more successful with future events. This assumption
is the motivation of the adaptive computing of sensor agent weights. These
weights are computed using the economic value of the optimal operating point.
For the model presented in Section 2, this point corresponds to % = p. Thus,
the adaptive process depends on the optimal operating point of each sensor,
the probability of intrusion, and the damage and response costs corresponding
to this operating point. As events are taking place, the economic value of each
sensor agent will change and, therefore, the influence of each sensor in the
computing of the evaluator’s final conclusion.

If sensor agents distinguish between different types of intrusion, the evaluator
agent would weight each sensor agent according to the level of success for each
type of intrusion. Hence, the evaluator agent would compute the average sum
of the sensor agent weights for each type. The type with the greatest value
would be the candidate to be predicted. If the weighted sum for this type of
intrusion overcomes the corresponding threshold, the evaluator agent would
state that there is an intrusion.

We cannot assume that the manager agent has a posterior: information about
the intrusive nature of every event (otherwise, the complete IDS would not
make any sense). Therefore, the adaptation process should be done off-line
under a training scenario where the manager agent knows the nature of the
processed events. Once the MAS has been trained, weights are fixed and the
IDS can be tested under realistic conditions. Our experiments test the effec-
tiveness of this approach.



3.2 Reasoning model of agents

Research on agents can be split into two main trends: one is related to agent
reaction facing external stimulus and the other is focused on agents with sym-
bolic internal models. The intelligence produced by these internal models is
based on a deliberation about the state of the outside world (and its past evo-
lution), and the events that may take place in the future. Since in our domain
evaluator agents need some deliberation about past observations to improve
their future behaviour, the use of a memory of past changes in the outside
world, and a certain level of planning becomes appropriate. Therefore, the
agents of our IDS multiagent system should be intelligent or, in other words,
they should make use of a symbolic internal model.

To build agents with such deliberation ability, several architectures, inspired
from different disciplines such as psychology, philosophy and biology, can be
applied. Most of these are based on theories for describing the behaviour of
individuals. Among them, we have chosen the BDI model [18] to implement
the deliberation of our agents since it is, by far, the most popular way of
implementing deliberative agents due to its simplicity and psychological back-
ground. In order to act rationally, the BDI model represents the situation faced
internally and the mental state in the form of beliefs, desires and intentions.

Let us now outline the sequence of intentions forming the plans of sensor,
evaluator and manager agents.

e The plan that produces the corresponding predictions of sensor agents is
composed only of a single chain of three intentions:

- Communicative Intention Wait_event: Wait until a new event is received
from the evaluator agent.

- Internal Intention Predicts: Compute the prediction about the intrusive
nature of the event.

- Communicative Intention Send_prediction: Send the corresponding pre-
diction to the evaluator agent.

e The plan that combines the conclusions from sensor agents into a final
prediction to be sent to the manager agent:

- Communicative Intention Wait_event: Wait until a new event is received
from the manager agent.

- Communicative Intention Send_request_prediction: For each sensor agent
that belongs to the system: ask for a prediction and wait for the corre-
sponding answer.

- Internal Intention Combine_predictions: Compute the final detection for
different thresholds (p;), applying the corresponding weights to the con-
clusions received from the sensor agents.

- Communicative Intention Send_detection: Send the final detection to the
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manager agent.

- Communication Intention Wait_ HVF: Wait for the H, F and V values for
each agent from the manager agent.

- Internal Intention Update_weights: Update the weights of sensor agents
according to their H, F'; and V values.

e The plan followed by the manager agent consists of the next cycle:

- Communicative Intention Send_event: Send a new event to the evaluator
agent.

- Communicative Intention Wait_detection: Wait for the corresponding mes-
sage from the evaluator agent which includes a final conclusion about the
intrusive nature of the event.

- Internal Intention Apply_detection: Compute H, F and V for each agent,
including the sensor agents and the evaluator agent.

- Communicative Intention Send_HVF: Send H, V and F to the evaluator
agent.

When our agents become trained, they will act in operating mode, where
the reasoning of the manager and the evaluator agent is different. It is now
orientated to the selection of the best automatic response to incidents while
evaluator agents do not change the weights along the execution. Therefore,
the role of the manager agent is focused on the right tuning of the optimal
operating point with the current beliefs about the characteristics of the en-
vironment and with data about the economic value of the system, previously
obtained during the evaluation mode.

Thus, the plan followed by the evaluator agent in operating mode will be:

e Communicative Intention Wait_tuning_information: Wait until the corre-
sponding tuning information arrives from the manager agent.

e Communicative Intention Wait_event: Wait until a new event is received
from the manager agent.

e Communicative Intention Send_request_prediction: For each sensor agent
that belongs to the system: ask for a prediction, wait for the corresponding
answer.

e Internal Intention Combine_predictions: Compute the final detection with
the received p; threshold, applying fixed weights to the conclusions received
from the sensor agents.

e Communicative Intention Send_detection: Send the final detection to the
manager agent.

The last two intentions of the plan that was applied in the evaluation mode
are now ignored. The plan followed by the manager agent in operating mode

will be:

e Communicative Intention Send_tuning_information: According to its beliefs,
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Fig. 3. Communicative intentions of agents in the operating mode. The manager
agent sends the tunning information to the evaluator agent according to its beliefs.
When a new event arrives, the manager sends it to the evaluator and waits for
its opinion. Finally, the autonomous response plan taken by the manager depends
on this opinion and its beliefs about the environment, the decision model and the
results of the evaluation mode

send the optimum p; threshold to the evaluator agent.

e Communicative Intention Send_event: Send a new event to the evaluator
agent.

e Communicative Intention Wait_detection: Wait for the corresponding mes-
sage from the evaluator agent which includes a final conclusion about the
intrusive nature of the event.

e Internal Intention Create_plan: analyse both the internal beliefs about the
characteristics of the environment and the economic value information avail-
able about the system. Apply then the decision model in order to produce
a plan automatically to react or not to the incident.

Figure 3 shows graphically the interactions that take place in the operating
mode.

3.8 Implementation of the multiagent system

The foundation for most implemented BDI systems is the abstract interpreter
proposed by Rao and Georgeff (see Algorithm 1) [25]. Although many adhoc
implementations of this interpreter have been applied to several domains, the
recent release of JADEX [26] is obtaining increasing acceptance. JADEX is
an extension of JADE [27] which facilitates FIPA communications between
agents, and is widely used to implement intelligent and software agents. But
JADEX also provides a BDI interpreter for the construction of agents. The be-
liefs, desires and intentions of JADEX agents are defined easily with XML and
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Table 3

FIPA-ACL messages exchanged between agents in the proposed system

sender recetver | Communicative act | Content
Manager | Evaluator request Detection
Evaluator Sensor request Prediction

Sensor Evaluator inform Prediction
Evaluator | Manager inform Detection
Evaluator | Manager mform Prediction
Manager | Evaluator mform HF,V

Java enabling researchers to quickly exploit the potential of the BDI model.
It is a promising technology that may soon become an unofficial standard on
which to build deliberative agents.

Thus, the final implementation of the multiagent system includes 5 plans: sen-
sor, evaluator-evaluation-mode, manager-evaluation-mode, evaluator-operation-
mode and manager-operation-mode. The corresponding intentions of these
plans: 9 communicative intentions, and 5 internal intentions, were imple-
mented as JAVA methods integrated into JADEX infrastructure. Finally, firing
conditions of plans, and the definition of beliefs is defined in a single XML
file.

The 6 messages exchanged between agents in our system adopt the performa-
tives shown in Table 3.

4 Experimental Setup

Any experiment related to IDS effectiveness faces similar problems. It is diffi-
cult to use real data for evaluation purposes because of privacy concerns. An
alternative possibility is to use artificial data but the similarity of artificial
events with real ones remains an open question. Therefore, adhoc methodolo-
gies that use proprietary data remain prevalent, making it very difficult to
evaluate the significance of the different proposals [28]. Another problem is
to choose a unit of analysis. Each IDS analyses the data sources at a certain
level. Thus, the analysis process is done at different network layers and with
different logging depth depending on the IDS. As a consequence, comparison is
not easy. An exhaustive review of the inherent difficulties for IDS evaluation
can be found in [29]. Although the handicaps related to artificial data and
the difficulties associated to building a universal benchmark, there is a need
of public datasets. In fact, there is a frequently used one. It was created in
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1998 and 1999 in MIT Lincoln Laboratories in order to test different IDS [30].
A military network was simulated. Although this artificial dataset has been
criticized [31,32], it has been and is still used by the scientific community. It is
also important to note that security threats have changed since 1999 although
the dataset is still valuable as a public reference.

In order to model the sensor agents of our system, different detection tech-
niques were used on the same dataset. As previously mentioned, it was impor-
tant that these detection techniques shared a common unit of analysis. For
this reason, we chose for the experiments the well known 1999 KDD dataset !
[33] that derives from MIT/LL 98 evaluation. The KDD dataset is the most
frequently used dataset to test machine learning algorithms in the intrusion
detection domain (e.g. [34-36]). Training and testing datasets were created
at Columbia University. The KDD dataset was first employed for a machine
learning competition in order to test different classifiers over the intrusion
detection domain. A complete description of the data mining process can be
found in [37] and is currently available at California University website?. Let
us now review the dataset briefly (a general description can be found in [33]).
Each connection record defines a TCP session and is described by 41 attributes
(38 numeric and 3 nominal), and the corresponding class which indicates if
the record represents normal or hostile activity. The number of normal and
attack examples are summarized in Table 4. As can be seen, the percentage of
attacks is extraordinary high both in training and test datasets. This situation
is not expected in a real environment because the probability of intrusion is
usually very low. However, we have shown in Section 2 the importance of the
probability of intrusion (p) when evaluating IDS effectiveness. Consequently,
the experiments we carried out were done over original and filtered data. The
former allowed the comparison with previous research whereas the latter fo-
cused on a more realistic situation. The filtering process consisted of getting
rid of the most common attack types both in training and test datasets in
order to get an attack rate under 5% (this filtering rate has also been chosen
by [35]). It is important to comment that the detection process becomes a
harder task after filtering. The resulting number of examples after filtering
the original dataset is summarized in Table 5.

The experimental setup is the same regardless of whether the data is filtered
or not. On the one hand, 10 sensor models were built from the training dataset
distinguishing normal from intrusive events. These correspond to 10 different
machine learning algorithms. Two are based on decision trees (ADTree, J48),
five on rules (ConjuctiveRule, DecisionStump, DecisionTable, OneR, PART),
one on bayesian learning ( NaiveBayes) and two on simpler techniques ( Hyper-

! In fact the reduced version of the dataset (10% of the complete one)
2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Table 4
Number of attack and normal instances in the original KDD training and test
datasets. It is important to note that the percentage of attacks in both datasets is

over 80%

Table 5

Number of attack and normal instances in the filtered training and test datasets.
After the filtering process the percentage of attacks remains under 5% in both

Training | Test

Normal instances 97277 60593
Attack instances 396743 | 250436
Total 494020 | 311029

% of normal instances 19.69 19.48
% of attack instances 80.31 80.52

datasets
Training | Test
Normal instances 97277 | 60593
Attack instances 4887 2650
Total 102164 | 63243
% of normal instances | 95.22 95.81
% of attack instances 4.78 4.19

Pipes, VFI)?. It is important to note that these models were not customized
in order to optimize their effectiveness. On the other hand, the test dataset
was used to test the multiagent system in the evaluation mode. Four different
experiments were done. First, the sensor models were tested alone and com-
pared by means of the metric of value defined in Section 2. Second, the MAS
in the configuration in which the evaluator agent did not update the weights
for the sensors (threshold criteria) was considered. Third, the MAS with the
weighted sum criteria was analysed over the whole test dataset. Finally, the
fourth experiment took into account that usually there is only partial forensic
information available in order to adapt the decisions of the evaluator agent.
Therefore, the weight adaptation was made just over 10% of the test dataset.

3 The names correspond to the implementation name in WEKA software [38]
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Fig. 4. Value curves of the four proposed configurations computed over the original
test KDD dataset. a) represents the results of the more significant sensor agents
trained over the original training dataset. b), ¢) and d) show the results of the MAS
in the three different configurations for those p; that contribute to form the envelope.
Specifically, b) corresponds to the MAS in the pure threshold configuration, c) to
the MAS with a continuous update of the sensors weights over the original test
dataset and d) to the MAS with a partial weight update. The envelope of the MAS
value curves in each configuration represents the MAS effectiveness

5 Results

First, the results obtained for the original dataset in the evaluation mode
are exposed. Figure 4 shows the value curves that correspond to the four
experiments previously described. Value curves represent the value of each
system versus different % relationships. For the three MAS settings, results
are shown for different tuning of the parameter p;. Thus, if % > 0.5, the
results for the best sensor (PART) are very similar to the MAS in any of its
three configurations (Figure 6 b), ¢) and d)). Nevertheless, for £ < 0.5 our
multiagent approach clearly outperforms any of the sensors. Furthermore, in
this case, the continuous weight updating configuration overcomes both the
threshold and partial weight updating configuration. For instance, for % =0.2
all the sensors are worthless, but the MAS has a value that is about 20% of a
perfect IDS.

Let us now compare the results of our system with previous research. The
comparison is done against two systems that use the original KDD test dataset
for their experimental work. One is the winner of the KDD cup learning contest
[39] and the other is the agent-based system MOGF-IDS [19]. Figure 5 shows
the value curves of our multiagent approach (with partial weight updating)
versus these systems. As can be seen from the envelope of the MAS, our
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Fig. 5. Comparison of the KDD winner, the MOGF-IDS and the MAS with par-
tial weight updating. The MAS system outperforms the KDD winner and the
MOGF-IDS for low and high % relationships because, in such cases, the envelope
of the MAS value curves covers the value curve of the other two systems

system is the most effective for low % relationships (% < 0.45). Contrary, for
intermediate %, either the winner of the KDD or MOGF-IDS outperforms the
MAS. Finally, for % > (.95 our system is again the best one. It is important
to note that the choice of the sensor agents was not optimized. For instance,
if MOGF-IDS had been used as a sensor agent (unfortunately the code is not
publicly available), it is reasonable to think that the MAS effectiveness would
have improved. From this point of view, the results of our system are even
better.

Second, the results in the evaluation mode obtained filtering the dataset are
exposed. Although many studies filter the dataset, it is not easy to compare
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Fig. 6. Value curves of the four proposed configurations computed over the filtered
test KDD dataset. a) represents the results of the best three sensor agents trained
over the filtered training dataset. b), ¢) and d) show the results of the MAS in
the three different configurations for those p; that contribute to form the envelope.
Specifically, b) corresponds to the MAS in the pure threshold configuration, c) to
the MAS with a continuous update of the sensors weights over the filtered test
dataset and d) to the MAS with a partial weight update. The envelope of the MAS
value curves in each configuration represents the MAS effectiveness

results because the resultant filtered datasets are not usually available?. As a
consequence, results are presented for the four experiments referred in Section
4. Figure 6 shows the corresponding value curves.

Threshold MAS clearly outperforms any of the sensor models alone. This
statement derives from the fact that the envelope of the threshold MAS curves
includes the envelope of the individual model composition. In other words,
there is no cost relationship where a single sensor outperforms the MAS. The
maximum value of the threshold MAS is 9.3% higher than the maximum
of the best sensor (Naive Bayes) and the range with positive value is also
bigger. In addition, for low £ relationships (0.00012< £ <0.018), none of the
sensors separately gets possitive value in contrast to the MAS. There are many
scenarios where the response cost is much lower than the cost of suffering an
intrusion. Hence, this is an important advantage of the threshold MAS over
the individual models.

Both the MAS with continuous weight updating and partial weight updating

obtain similar results. The envelope of curves in Figure 6d) covers the envelope
of curves in Figure 6b). Therefore, the adaptation process obtains good results.

4 The original and filtered datasets we have used are available at http://www.lab.
inf.uc3m.es/~adiaz/ids/index.htm

18



Thus, the increase in range with positive value is 5% and the maximum value
is 3.9% higher. The advantage of a greater range is the IDS is valuable under
more different operating conditions. For instance, a denial of service attack
often produces more damage to an e-commerce site than to a personal website.
The response cost for stopping the attack is similar in both cases (perhaps the
cost of filtering traffic from a certain subnet), but the damage cost of not
giving service for hours is clearly higher for the e-comerce site. Therefore, %
relationship depends on the specific scenario and so does IDS effectiveness. It

is a desirable feature for an IDS to be effective in both scenarios.

To summarize, the multiagent system is more effective than any of the single
sensor it is composed of. Furthermore, better results are achieved if the eval-
uator agent decision is taken updating the influence of each sensor agent on
their past success.

Third, let us now explain how the decision response is taken in the operating
mode. The manager beliefs are the value curves previously described (obtained
in the evaluating mode), the decision model of Section 2 and an estimation of %
relationship for the environment faced. For instance, if the manager beliefs are
the curves in Figure 6d) and the response cost is a hundred times smaller than
damage cost (& = 0.01), then the tuning information sent to the evaluator
agent will be p; = 0.134 (because this p; provides the greatest possible value).
When the manager asks the evaluator if it considers an event as intrusive, the
answer will be made according to this threshold. The decision (to respond or
not) will be taken according to Table 2 (updating H and F' considering the
current event). According to Figure 6d), this decision will have a value that
is 82.9% of the one expected from a perfect IDS.

Possible responses include to notify the alarm to a human expert, to make
the system collect additional information, to change the environment (e.g.
reconfigure the routers and firewalls) or even to disconnect the system from
the network to protect it. Each measure will have a different response cost.

6 Conclusion

This paper has proposed a multiagent system that covers the analysis and re-
sponse functions of an IDS. The deliberative nature of the implemented agents
explains the reasoning of the IDS both in the processes of detection and re-
sponse. The adaptive process based on the past success of sensors has been
proved to be a good strategy. In addition, although the use of agents imposes
an operational cost overhead, we have shown that the effectiveness of decisions
taken by the MAS during an evaluation stage provides knowledge to configure
the IDS optimally to face different operating conditions. Thus, the presented
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IDS is able to autonomously decide if it is appropriate to take actions against
a suspicious event or not, while assessing the value of the decision. This deci-
sion is taken reasoning about the evaluation stage results, the probability of
intrusion, the costs of the environment faced, and the decision model adopted.

For both the analysis and response functions, a decision model that considers
cost-benefit analysis has been proposed. The main problem of cost-benefit
models is the need to estimate too many parameters. Our approach only needs
to estimate the relationship between the damage and response cost to evaluate
IDS effectiveness.

This paper has also introduced a metric of economic value that allows to know
how far an IDS is from the perfect one, in what conditions an IDS is worthless
and how to compare IDS effectiveness. Results regarding this metric have been
presented for the well-known KDD dataset. The effectiveness of our system is
comparable to state of the art approaches, overcoming them or not depending
on the operating conditions.

The sensor agents of our system were trained with different supervised machine
learning algorithms in order to classify events just as normal or intrusive.
Future work will consider the different nature of attack events. Thus, the sensor
agents will be trained to distinguish between different types of intrusion. The
analysis and response processes will surely become more complex but hopefully
more accurate.
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