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Abstract—Massive content distribution on overlay networks
stresses both the server and the network resources because of the
large volumes of data, relatively high bandwidth requirement,
and many concurrent clients. While the server limitation can
be circumvented by replicating the data at more nodes, the
network limitation is far less easy to cope with, due to the
difficulty in determining the cause and location of congestion
and in provisioning extra resources. In this paper, we present
novel schemes for massive content distribution, that assign the
clients to appropriate servers, so that the network load is reduced
and also well balanced, and the network resource consumption
is low. Our schemes allow scaling to very large system because
the algorithms are very efficient and do not require network
measurement, or topology or routing information. The core
problems are formulated as partitioning the clients into disjoint
subsets according to the degree of interference criterion, which
reflects network resource usage and the interference among the
concurrent connections. We prove that these problems are NP-
complete, and present heuristic algorithms for them. Through
simulation, we show that the algorithms are simple yet effective
in achieving the design goals.

Index Terms—Node Selection, Server Selection, Overlay Net-
works, Hypercube, Content Distribution Networks, Peer-to-Peer
Networks

I. INTRODUCTION

One of the distinct trends related to the Internet is that it
is being applied to the transfer of more and more massive
content. This can be long and high-quality streaming content
— including high-definition DVD movies sold or rented online,
live events, recorded TV programming and long-running video
conferencing sessions — mountains of scientific data and all
other automatically collected data such as consumer, market
or economic data. Most of the recently proposed or operational
distribution systems, to which this paper is relevant, rely on
the overlay-network approach. These include the web content
distribution networks (CDN) (e.g., Akamai [1]) and web
caches, various peer-to-peer (P2P) file-sharing networks such
as BitTorrent [2], and tree-based end-system multicast (e.g.,
[3], [4]). Recently, it is increasingly recognized that overlay
networks are more than attractive platforms for deploying
network applications and services. They can also be used as
the substrates of virtual networks for deploying new network
architectures [S] or other specialty networks such as those
for E-science or grid computing. They also allow decoupling
of the operator of the physical network from the service
providers. For advanced services, the service providers may
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compose their own application-level networks with required
connectivity, route capacity and reliability.

A significant feature of this type of application-level overlay
networks is that data (as apposed to only queries for data) is
routed on the overlay network instead of the underlay network.
Since the leased overlay network capacity can be costly,
prudent use of the network resources is important. On the
other hand, massive content distribution over such networks
poses some challenges because of the large volumes of data
and relatively high bandwidth requirement. Careless design
can lead to very inefficient use of the network resources.
Furthermore, if the application involves streaming media, the
quality experienced by a user is not only affected by the
server’s capacity but also by the network load, which is likely
to be contributed by the concurrent streams.

In this paper, we consider the server/client selection problem
in content distribution on such overlay networks with the
objective of reducing the network load and resource usage.
One can imagine that there exist a set of nodes (servers)
containing the data and a large number of nodes (clients)
requesting all or portions of the data.! Due to the capacity
limitation, each server can service a subset of all the clients at
a time. We call a server and the associated clients serviced by
the server a session. The problem addressed in this paper is
how to assign the clients to appropriate servers subject to the
server capacity constraint so that the network load is reduced
for each session and also well balanced across the sessions,
and that the total network resource usage is also reduced. This
node selection problem is fundamental in content distribution
systems and deserves a systematic investigation. Performance
can vary dramatically for different assignments. While node
selection under server capacity limitation alone has been
widely investigated [6], [4], much less attention has been paid
to the network load and resource usage due to the difficulty
of the problem.

While the overlay network may in general have an arbitrary
topology, in this paper, we consider one of the most popular
structured networks, the hypercube, because of its simplicity
and versatility. It is well known ([7], [8], [9], [10], [11], [12])
that the structural regularity of the hypercube often makes par-
allel or distributed algorithms extremely simple and efficient.
The same is expected for many networking algorithms on
the hypercube. For instance, routing can be performed based
on a pre-specified convention without the need of a routing
protocol. The chance is high that the hypercube will be the
topology of choice for many applications that employ virtual

't is not required that the clients request identical data, e.g., the same file.



networks. To further support its importance, the hypercube
network with prefix-based routing as specified in this paper is
related to other important structured networks that are based
on the distributed hash table (DHT): It is a special case of
Plaxton-type networks [13] and a relative to Pastry [14] and
Tapestry [15].

Our server selection algorithms on the hypercube can be
done efficiently without the knowledge of the current network
condition, not even the topology or routing information, hence,
avoiding the expensive overhead of network measurement
or passing control messages. The only requirement is that
each server can obtain the IDs of the clients and other
servers through the overlay network. This is usually done by
searching a DHT-based distributed directory [16], [17], [15],
possibly augmented by some gossip protocol [2], [18] when
the network is very dynamic. The efficiency and simplicity of
the algorithms allow scaling the network to very large size,
capable of handling massive content distribution.

To summarize this paper, the core problems are formulated
as optimally partitioning the clients into disjoint subsets (ses-
sions) according to the degree of interference (DOI) criterion,
which reflects network resource usage, degree of congestion
and the interference among the concurrent connections. We
prove that these problems are NP-complete by reducing a
well-known NP-complete problem, the resource constrained
scheduling problem, to the single-server partition problem
(SSPP), and then reducing the SSPP to the multi-server
partition problem (MSPP). Then, we present novel, heuristic
algorithms for solving the problems. This work extends our
earlier work on node selection [19], which minimizes the DOI
of a single session corresponding to a single server. This paper
deals with minimizing the worst DOI of multiple sessions
and is naturally applicable to the more general multiple-
server situation. Using simulation, we show that the proposed
algorithms are simple yet effective in achieving the design
goals on both the hypercube and the underlay Internet-like
network.

This paper is organized as follows. In Section II, we
review previous work on node selection in overlay or P2P
networks and introduce the hypercube network. In Section
III, we describe two performance measures and some related
definitions and facts. In Section IV, we state the two partition
problems and prove that they are NP-complete. In Section V,
we present novel heuristic algorithms for the problems. We
evaluate these algorithms through simulation in Section VI.
Finally, the conclusions are drawn in Section VII.

II. BACKGROUND
A. Previous Work on Server Selection

The literature on node selection is vast. We will mainly
review the most relevant studies in overlay content distrib-
ution systems, which handle node selection in a variety of
(usually ad-hoc) ways.> We can roughly classify the overlay
content distribution systems into three categories, which are
likely to continue their coexistence. In the first category, the

2Not all systems frame or handle the node selection problem explicitly. But
all should have at least an implicit selection algorithm.

infrastructure-based content distribution networks (CDN) (e.g.,
Akamai [1]) and web caches generally assign the closest server
to each client. The second category is tree-based end-system
multicast, (e.g., Bayeux [3], CoopNet [4], Narada [20], NICE
[21]), where all clients are typically served by the common
tree root. But, the node selection problem still occurs during
the construction of the multicast tree when some nodes are
assigned as the children of existing nodes on the tree. This
process is often carried out incrementally as nodes explicitly
join the tree, and the assignment is essentially determined by
the unicast routing.

The third category is mesh-based P2P systems, which typ-
ically employ the techniques of file striping and collaborative
download (e.g., BitTorrent [2], PROMISE [22], Splitstream
[23], FastReplica [24], Bullet [18]). Their node selection al-
gorithms vary a lot. In SplitStream [23], and FastReplica [24],
server selection is essentially done randomly. Other systems
employ a server or peer ranking function. A node favors
those peers with high ranking. The ranking function may
be the nodal load (CoBlitz [25]), the round-trip time (RTT)
(ChunkCast [26]), the sending and/or receiving bandwidth to
and from each peer (Bullet’ [27], Slurpie [28] and BitTorrent
[2]), and the degree of content overlap between the receiver
and the server candidate (Bullet [18]). One common practice is
that a node initially selects some random peers, but gradually
probes other peers and dynamically switches to those with
better ranking over the course of downloading. Julia [29]
assumes a structured but locality-aware P2P network, where
each peer exchanges file chunks with direct neighbors in
differential amount, more with closer neighbors. This reduces
the total work, which is defined as the weighted sum of the
total network traffic during the entire distribution process,
where the weights are the distances traveled by each bit. In
[30], several continuous optimization problems are formulated
for peer selection in P2P file download or streaming.

In more traditional server selection literature, [31] presents
a dynamic server selection scheme based on instantaneous
measurement of the RTT and available bandwidth. Similar
research work is also reported in [32], [33].

Only a small subset of these earlier studies are concerned
with the bandwidth bottleneck and congestion created by
the concurrent connections. But, they do not deal with this
issue systematically. (See also [3], [34], [22].) Many others
ignore the issue. Very few consider the total network resource
usage. [22] proposes a selection scheme based on the traffic
condition and available bandwidth of network segments, as
well as the performance information of the servers. Unlike
ours, this scheme requires the network topology and routing
information, and network measurement; the selection objective
is to optimize the aggregate rate at the receiver. Our paper
is fairly unique in emphasizing both the network-related and
user-related performance metrics.

B. The Hypercube Network

In this section, we introduce the definition of the hypercube
network and some of its properties that make node selection
based on the DOI criterion efficient and easy.



The overlay network we consider is a hypercube with N
nodes, numbered 0,1,..., N —1. Suppose N = 2™, where m
is a positive integer. The node IDs can be expressed as binary
strings, and two nodes are linked with an edge if and only if
their binary strings differ in precisely one bit. The routing rule
is as follows. At each node s and for the destination d, let [
be the first bit position, counting from the right, that s and d
have different values. Then, the next hop on the route to d is
the neighbor of s that differs with s in the I** bit. Consider
the example where N = 25 the source node is 10110 and the
destination node is 00000. The route consists of the following
sequence of nodes: 10110 — 10100 — 10000 — 00000.

The hypercube is among the most popular networks studied
by researchers due to its useful structural regularity. Many
have studied its topological properties and communication
capability for parallel and distributed computing applications.
(See [7], [81, [9], [10], [11] for a small sample and [12] for a
comprehensive textbook treatment.) In the area of communi-
cation networks, [35] investigates how the hypercube affects
the spread of worms and viruses. [36] considers a multiple
access protocol in wireless ad-hoc networks with the hyper-
cube topology. [6] provides analysis of a hypercube-based
distributed hash table (DHT) that achieves asymptotically
optimal load balance. [37] proposes a failure recovery protocol
for structured P2P networks that use hypercube routing. We
are not aware of any prior node-selection algorithms on the
hypercube that are similar to ours.

In most earlier work, especially in the parallel computing
community, the definition of a hypercube only specifies how
nodes are connected. In this paper, as in many structured
overlay networks, the routing rule is an important part of the
definition. With the above routing rule, the hypercube network
is a special instance of the Plaxton-type networks [13], which
are broad enough to also include Pastry [14] and Tapestry
[15], and are fundamentally related to Chord [17] and CAN
[16]. We also note that the hypercube clearly requires that
every position of the name space is occupied by a node, which
is our current assumption. (In Section VI-C, we consider the
situation where the name space of the overlay network is not
fully populated by nodes.)

A helpful device for visualizing the hypercube and its
routing is the embedded tree consisting of all valid routes
allowed by the routing rule from node O to all nodes, as shown
in Fig. 1. It is known that such a tree is a binomial tree [38].
The binomial tree embedded in the hypercube network is a
labeled tree, where the label of each node is the node’s ID. By
the symmetry of the hypercube, there is an embedded binomial
tree rooted at every node where the tree paths are the valid
routes to the root node. Given the labeled binomial tree rooted
at node 0, an easy way to derive the labels for the binomial
tree rooted at node d # 0 is to XOR the node labels of the
former tree with d.

Throughout the paper, let us denote the k-level binomial
tree rooted at node 0 by 7 = Bj. Let us denote the ID of
node u by I(u). When there is no confusion, we will use u
and I(u) interchangeably to denote node u. With the above
XOR transformation, the root node O is understood as a server.

[0100 | [0010 | [o001 ]

[1200 | [1010] [2001] [0210] [o101] [o011 |
\

1000

[1220 | [2101] [2011]
|

Fig. 1. A labeled 4-level binomial tree By

III. NETWORK LOAD METRICS

We introduce two performance metrics, the worst link stress
(WLS) and the degree of interference (DOI), that can capture
network load.

Definition 1: Suppose S = {s1,...,5,} is a set of nodes in
7T and E = {ey,...,e;} is the set of edges used by the paths
from the root to the nodes in S, called the S-paths. The link
stress of an edge e in 7, denoted by LS(e), is the number of
S-paths via e. Let F be the set of all edges in 7. The worst
link stress (WLS) is defined as max.cg LS(e).

The WLS is the largest number of downloading streams on
any link. Assuming the links have roughly identical bandwidth,
the WLS is directly related to the worst congestion level in
the network, an important performance concern for network
and service providers. The minimum WLS corresponds to the
best-balanced network load. A balanced use of the network
allows it to accommodate more traffic, i.e., to improve the
overall throughput. The issue of reducing link stress has
also been considered in several other overlay networks [34],
[3], [20], [39]. Furthermore, applications such as multimedia
streaming are very sensitive to bandwidth availability. Lower
WLS implies better performance for these applications. In the
case of elastic data transfer, the inverse of the WLS provides
an alternative performance perspective: It yields the maximum
achievable throughput of the parallel download sessions, which
determines the shortest download time.

Definition 2: Suppose S = {s1,...,8,} is a set of nodes
in 7. The degree of interference (DOI) of nodes s1, ..., S,
denoted by d(S) or d(s1,--.,8n), is

!
d(s1,...,8,) = Z (number of S-paths via e; — 1)

= (average path length) — [. (D

For example in Fig. 1, if v = 1100, v = 1101 and w =
1010, then d(u,v,w) = 3 because the number of S-paths on
edge (1100, 1000) is 2 and on edge (1000, 0000) is 3.

The DOI will be the performance measure to be minimized.
It is closely related to the network resource usage and the
degree of congestion in the network, both of which are among
the most important performance metrics to be minimized. The
following gives a justification. Suppose the nodes in S are
clients, each receiving a data stream from the server (root). Let
the base case for comparison be that every edge involved in the
data transmission session sees exactly one stream. The DOI
measures the difference between the total number of streams



seen by all edges and the base case. From a slightly different
viewpoint, suppose there is one unit of cost associated with a
packet traversing an edge, and suppose every client receives
one packet from the server. The DOI is the difference between
the actual total cost and the cost of the base case where each
edge sees exactly one packet.

Note that the total network bandwidth consumed by the
base case is less than any other distribution method without
network coding. If all clients request the same data, the
base case is realized by the tree-based multicast. Then, the
comparison is between the total network bandwidth consumed
by a unicast-based distribution method and that by a multicast-
based method. Therefore, the DOI is useful to measure the
total network bandwidth usage by the session beyond the
absolute minimum. It can also be interpreted as the degree
of overall congestion throughout the network, as apposed to
the worst-case link congestion.

Also note that minimizing the DOI is not the same as min-
imizing the average path length, which is an easier problem.
But, the DOI tends to be small when the average path length,
hence the average path delay, is small. Since the aggregate
bandwidth used by all connections in a session is proportional
to the average path length from the clients (See (1).), this
is another way to see that DOI measures the total network
resource usage, including the total bandwidth and the number
of links used by the session. Finally, as will be shown by
our experimental results in Section VI, the DOI tends to be
correlated with the WLS. Hence, minimizing the DOI usually
also reduces the worst-case link congestion. The reason is that
the minimum DOI usually occurs when none of the links have
many data streams on them, that is, none of the links are highly
congested.

Let us denote the longest common prefix (LCP) of a set of
m-digit binary labels, R = {b!,... b}, by LCP(b,... b¥)
or LCP(R), and denote the m-digit label equal to the
concatenation of LC'P(R) with an appropriate number of
0’s by A(R) or (b}, ..., b¥). For instance, LC'P(01110,
01011) = 01, and A(01110, 01011) = 01000. For a set of
nodes S = {s1,...,8p}, LCP(S) or LCP(s1,...,sy) are the
simplified notations for LCP(I(sy), ..., I(s,)), and A(S)
or A(s1,...,s,) are the simplified notations for A(I(s1), ...,
I(sy,)). The following results proven in [19] will be used later.

Definition 3: The lowest common ancestor (LCA) of a set
of nodes S = {s1,...,8,}, where n > 2, in a rooted tree is
the deepest node in the tree that is a common ancestor of all
nodes in S. It is denoted by LC'A(S) or LC'A(s1, ..., Sn).

Lemma 1: Suppose S = {s1,...,8,}, where n > 2, is a set
of nodes in 7. Then, the node ID of LC'A(S) is A(S1,- .., Sn)-

Lemma 2: Suppose S is a set of two nodes in 7. The DOI,
d(S), is the depth of LC'A(S).

For each node u in 7, denote the depth of u by [(u). By
convention, the root has depth 0.

Lemma 3: Suppose S = (s1,...,5p) is a sorted list of
distinct nodes in 7 by their IDs, for some 1 < n < 2™,
Then,

n—1

d(S) =Y ULCA(s;, si11))-

=1

Lemma 4: Suppose (s1,...,8y,) is a sorted list of distinct
nodes in 7 by their IDs, for some 1 < n < 2™, Then,

d(s1,...,8,) =d(s1,82) +d(s2,83) + ...+ d(Sn-1,Sn)-

IV. TWO SERVER SELECTION PROBLEMS AND THEIR
HARDNESS

Suppose that there exist one or more servers containing the
data and a large number of clients requesting the data. Due
to the server capacity limitation (e.g., computational power,
outbound bandwidth), each server can service a subset of all
the clients at a time. The problem is how to partition the
clients into disjoint sessions subject to the server capacity
constraint so that the DOI is reduced for each session and also
well-balanced across the sessions. We consider two versions
of the problem, the single-server partition problem (SSPP)
and the multi-server partition problem (MSPP). In the SSPP,
the complete client set is partitioned into disjoint subsets (or
sessions) and the only server in the system services each
session sequentially. In the MSPP, the client set is partitioned
into disjoint sessions and each session is assigned to a different
server to be serviced in parallel. These two are the most
frequently encountered problems in distribution systems and
are fundamental in content distribution networks. They deserve
a systematic investigation. In this section, we will formally
describe the SSPP and the MSPP. We prove that both problems
are NP-complete by reducing a well-known NP-complete
problem, the resource constrained scheduling problem, to the
SSPP, and then reducing the SSPP to the MSPP.

A. Resource Constrained Scheduling Problem

We consider the following resource constrained scheduling
problem. Let J = {ji,...,jn} be a set of independent
jobs. Each job j; requires a processing time t; and one unit
of resources for its completion. Let P = {pi,...,pm} be
a set of identical non-preemptive processors. There are n
units of resources available. Each processor is allocated up
to [ 2] units of resources. In other words, each processor can
accommodate up to [] jobs due to the limitation of the
resources. Let D be a deadline for the jobs. Let a4, be the
latest completion time of any job, i.e.,

> te -

k:j, assigned to p;

Umar = 1NAX
1<i<m

The resource constrained scheduling problem asks the follow-
ing question: Is there a schedule (assignment) of all the jobs
in J on the m processors in P such that au,q, < D?

Lemma 5: The resource constrained scheduling problem is
NP-Complete [40].

It can be shown easily that a restricted version of the
problem, where t1,...,t, are all distinct integers, is still NP-
complete. The proof is by reducing the general version of the
problem to the restricted version.



B. Single-Server Partition Problem (SSPP)

Given a single server and a set C = {c,...,c,} of
clients in 7', suppose the server can serve a maximum of [ ]
clients simultaneously because of its capacity limitation (e.g,
bandwidth, computation power). In order to efficiently serve
all the clients, the server partitions the clients into m disjoint
groups, C1,...,C,,, and serves each group sequentially. Let
D be a targeted DOI cost. Suppose (4. is the worst cost of
all sessions defined by

ﬁmaw - 121%)1(71 d(Cz)
The SSPP is to find a partition of the client set so as to
minimize (,,q,. For convenience, in the following, we will
consider the decision version of the SSPP, which asks: Is there
a partition of C' into m disjoint subsets such that 3,,,,, < D?

Therorem 6: The single-server partition problem is NP-
complete.

Proof: The problem is clearly in NP: The verification is
just by calculating the DOI of each subset and comparing it
to D. The calculation of the DOI of a session can be done in
O(n) time by Lemma 1, 2, and 3.

We prove that the single-server partition problem is NP-hard
by showing that the resource constrained scheduling problem
is polynomial-time reducible to it. The reduction takes as
input an instance, (J = {j1,...,jn}, T = {t1,...,tn}, P =
{p1,...,pm}, D) of the resource constrained scheduling prob-
lem. The output of the reduction is an instance, (C =
{c1,...,Cnytm},m, D) of the SSPP. Without loss of gener-
ality, we make the assumption that t; < t2 < ... < t,,. The
reduction generates the set C' = {c1,...,¢pn, Cnt1, - -
of clients, where I(c;) < I(ci4+1) for all ¢, and

9 Cn+m}

d(ci7ci+1) = ti, 1f1§z§n
d(ci,cipt1) > @, ifn<i<n+m
d(e;,¢j) =t, fl1<i<n,n+1<j<n+m,

2
where we define ® = """, ¢; and assume ® > D. The idea
is to force the ¢;’s, n +1 < j < n + m, to be assigned in
different subsets because they have much larger DOIs.

A reduction example is,

t1 tn—11 D—t,+m
~ N ——
cg=1...10... 0 0...0
to tn—ta P—tn,+m
——
cg=1... 10...0 0...0
tn D—t,+m
——
=1 ... ... 1 0...0, and
P m
———
eni1=1 ... ... 1 01
P m
—
Cpyn=1 ... ... 1 10
P m
—f

It is easy to see that the reduction can be performed in
polynomial time. The set C' contains n + m elements, each of
which has ® 4 m bits.

We now show that a4, < D if and only if G4, < D.
First, suppose apqr < D. Then, we can generate m disjoint
subsets of C, C4,...,C,,, where, for 1 <i <m,

C; = {ck| ji is assigned to p;, 1 <k <n} U {cpii}
Let o; and 3; be the completion time of processor p; and

the DOI of C;, respectively. Then, the completion time of
processor p; is equal to the DOI of C;. By Lemma 4 and (2),

a; = > ty = d(Ci) = B;. 3)
k:jr assigned to p;
Hence,
Cmaz = WAX ;= max Bi = Bmaz- 4)

Thus, if e < D, then B0, < D.

Conversely, suppose e < D. Take any such partition
Ci,...,C,,. None of these subsets can contain more than one
¢, n+1 <17 < n+m, since the DOI of the subset would then
be greater than D. Let J; be the set of jobs corresponding to
C; —{cn+i}, and assign J; to p;, 1 < i <m. Jy,..., Jp, will
be a valid assignment for the resource constrained scheduling
problem satisfying a4, < D, because (3) and (4) still hold.

|

C. Multi-Server Partition Problem (MSPP)

The problem addressed in this section is about m servers
and n clients, where 1 < m < n. Given a set S =
{81,...,8m} of servers and a set L = {ly,...,l,} of clients
in the hypercube, each server selects [ -] clients to serve with
no clients left unserved. Let us first define the DOI cost of a
set of clients with respect to a particular server, say s.

Definition 4: Consider a root node s and a set of nodes
Q={q,--.,qn} Let @ represent the bit-wise XOR operator.

ds(Q) = d(S@Q1,75€Bqn)
Let L; be the set of clients selected by server s;, 1 <1 <
m, L; C L, and let D be a targeted DOI cost. Let 0,4, be
the worst cost defined by,

Omaz = max dg,(L;).
1<i<m
The MSPP is to find a partition of the client set so as to
minimize d,,4,. Again for convenience, we will consider the
decision version of the MSPP, which asks: Is there a partition
of L into m disjoint subsets (sessions), each served by a
different server such that 6,,,, < D?
Therorem 7: The multi-server partition problem is NP-
complete.
Proof: See Appendix A. |



V. PARTITION ALGORITHMS
A. Single-Server Partition Algorithm

1) Recursive algorithm for the power-of-two case: Algo-
rithm 1 can be used to find sub-optimal solutions for the SSPP
in the special case where the total number of clients, n, and
the number of partitions, k, are each a power of two. It takes
two arguments as input, a set of clients sorted in increasing
order of their IDs and the number of partitions to be created.
Inside the loop between line 7 and 12, the server calculates
the DOI of each client with its predecessor in S,® selects a
pair of adjacent clients whose DOI is the maximum, splits
them into two new sets, S; and S,, and removes the two
clients from the set S. The procedure repeats until the set
S becomes empty. In line 13 and 14, the same procedure
described above is applied recursively to the sets S; and Ss,
with the number of partitions equal to k/2 for each set. The
intuition is that, by Lemma 4, the DOI of a set is equal to
the sum of the pair-wise DOIs of adjacent clients, assuming
the client list is sorted. In order to reduce the DOI of each
of the two subsets, we may greedily split adjacent client-pairs
that contribute large DOIs into the separate subsets. For the
power-of-two case, our simulation results show that Algorithm
1 almost always achieves the optimal WLS. We suspect that
it also achieves near optimal DOI. But, it is difficult to verify
this with experiments since there is no known algorithm for
finding the optimal DOI without enumerating all possibilities.

Algorithm 1 SSP(S, k)

1: input: S = {s1,..., sy}, aclient set with increasing order
of IDs; an integer k: <n
if £ =1 then
return
end if
51 — @
SQ — @
while S # 0 do
Calculate the DOI of each client in S with its prede-
cessor in S
9:  Find s; in S who has the maximum DOI with its
predecessor, s;, in S
10:  Add s; to set S; and s; to set Sy
11:  Remove s;, s; from S
12: end while
13: SSP(S1, &)
14: SSP(S2, 5)
15: return

2) Running time of Algorithm 1: The running time of
Algorithm 1 is as follows. Inside the while loop between
line 5 and 12, calculating the DOI of each client with its
predecessor and finding the largest one take O(n) by Lemma
1 and 2. Hence, the entire while loop takes O(n?) time. Thus,
the recurrence for the running time is,

1 if k=1,
T(n>k) = { 2T(%7 %) + 0(n2) otherwise.

3By convention, the first client’s DOI with its predecessor is 0.

By expanding the recursion, the running time of the algorithm
can be shown to be O(n?).

For the general case of arbitrary n and k, we do not have
an algorithm yet. But, we do have one for the more important
multi-server problem, which is shown next.

B. Multi-Server Partition Algorithm

Suppose there are m servers and n clients, where m < n.
Each server is to select k = [*] clients to serve.

1) The building block - a single-server selection algorithm:
Our algorithm will be built upon Algorithm 2, given in [19],
which addresses the problem of how a single server selects
a subset of the clients to serve from a larger candidate set.
In Algorithm 2, node O is assumed to be the server. More
precisely, given a set of n clients and a positive integer k,
k < n, Algorithm 2 allows the server to select an optimal set
of k clients that has the minimum DOI. The running time of
the algorithm is O(nlogn).

Algorithm 2 CLIENT-SELECTION-DOI(S, k)

1: input:S = {s1,..., s, },a client set;an integer k < n

2: output: GG, an 0pt1mal set with k clients w.r.t. the DOI
cost

3G+ 10

4: Sort S in increasing order of the node (client) ID

5:d[1]=0

6: for i =2 ton do

7

8

9

d[Z] = d(Si_l, Si)

: end for

: fori=1to k do
10:  Find s; in S whose d[j] is the minimum
11:  Add s; to the client set G
12 Remove s; from §
13: end for
14: return G

2) Multi-server partition (MSP) algorithm: Let S =
{s1,...,8m} be the set of servers and L = {ly,...,[,} be
the set of clients. The algorithm consists of two phases.

o PHASE 1: The servers sequentially select clients in an
arbitrary order. At its turn, a server selects k clients from
the current client (candidate) pool using Algorithm 2.
After the server makes its selection, the selected clients
are removed from the client pool. At the end of this phase,
every server has its own set of clients.

o PHASE 2: A threshold value is determined based on the
DOI values of all sessions. In this paper, we only consider
a simple case: The average DOI across the sessions
is computed, and the threshold value is set at twice
the average DOI. All sessions whose DOI is above the
threshold value are identified. For each such session, the
server makes a fresh selection of clients using Algorithm
2, from the client set L. For each selected client that is not
already in the server’s client set from the first phase, the
server exchanges an unwanted client with another server
who has that wanted client.



3) Running time and message complexity: Phase 1 requires
O(mnlogn) running time. However, in practice, the servers
will run this phase separately for the most part, with the
help of a distributed protocol for coordination. In the sim-
plest implementation, one of the servers is elected as the
coordinator using any typical leader-election algorithm. The
coordinator is responsible for serializing the client-selection
operations taken by the servers and for maintaining the server-
to-client assignment information temporarily. It can achieve
the serialization by granting permission to each of the servers
according to an ordered list; this takes only several messages
per server. After a server selects its clients, it reports the
selected clients back to the coordinator. Then, the coordinator
sends messages to the subsequent servers in the ordered list
for them to remove those clients from their candidate sets. The
last server in the list receives m such messages, which is the
worst-case message complexity experienced by any ordinary
server. However, the coordinator needs to transmit a total of
m(m+1)/2 such messages. Implemented this way, the running
time at each server is O(nlogn). But, the entire phase 1 takes
O(mnlogn) running time.

In phase 2, each of the servers with a high DOI value selects
clients again from the original candidate set, independently
and in parallel. This takes O(nlogn) running time at each of
these servers. Then, each of these servers reports the selected
clients back to the coordinator. For each such server, the
coordinator checks if any of its clients has already been taken
by another server as the result of phase 1. In a straightforward
implementation, this step takes O(m?logm) total running
time. (Note that, in general, m < n.) If any of the clients
is assigned to two servers, the coordinator requests the two
servers to initiate a client exchange operation. Overall, there
are no more than O(n) such operations, which take at most
O(n) messages.

To make the presentation easier, we assume the algorithm
is carried out before actual content distribution. The worst-
case waiting time before a client can download the content
is given by the running time of the algorithm. However, in
actual operation, a client can be served immediately once it is
assigned to some server during the execution of the algorithm,
even if the assignment may be temporary. Some clients can
start the download as early as the beginning of phase 1. Since
the servers execute the algorithm sequentially in phase 1, in
the worst case, some clients have to wait until the end of phase
1 and the waiting duration is O(mnlogn). In phase 2, it can
happen that a client is reassigned to another server. This only
causes temporary service interruption. The service is resumed
as soon as the client makes a connection to the new server.

VI. EVALUATION

In this section, we present simulation results demonstrating
the benefits of the proposed schemes. We compare our algo-
rithms with (1) the random scheme where, for each session,
the server chooses k clients uniformly at random from the
client pool, (2) the closest scheme, where the server chooses
k clients with the shortest round-trip times (RTTs) from the
client pool. These two schemes are the most typical strategies
used in related studies [30], [22], [32], [33].

The running times are as follows. In the random scheme, the
running time is O(k) for each server, if it selects k = n/m
clients. In the closest scheme, it takes O(n) time for each
server to calculate the distances from the server to the clients,
and O(nlogn) time to sort them. Hence, the running time of
the closest scheme is O(nlogn) for each server. These should
be compared to the running times of our algorithms presented
in Section V. The worst-case waiting time by a client before
it can download the content is determined by the algorithm
running time. In the random scheme, the waiting time is O(k);
in the closest scheme, it is O(nlogn).

Two metrics that can capture the performance objective are
the WLS and the DOI of each session. We report the worst
WLS and DOI across all sessions.

A. Single-Server Partition

In this experiment, we show the goodness of the client
partition scheme for the single-server case. Here, Algorithm
1 is performed on the overlay hypercube network, where
each overlay link is an end-to-end IP path. We will show by
simulation that, despite being implemented at the overlay level,
Algorithm 1 leads to reduced link stress and DOI for both the
overlay links and the underlying physical links.

1) Performance on the overlay network: First, we show
the simulation results at the overlay hypercube network. The
size of the overlay network is 4096 nodes, with 1024 clients
uniformly distributed over the hypercube. We vary the size of
the each partition from 8 to 128 clients. The delays on the links
are assumed to be the same constant. The simulator counts
the number of data streams on each overlay link. We run
each experiment with different seeds for the random number
generator and present the average of the results obtained.

Fig. 2 shows the distribution of the WLS of the sessions
when the size of each partition is 32 clients. For each sim-
ulation run, we sort the measured WLS for the sessions in
increasing order. Fig. 2 reveals that Algorithm 1 yields results
very close to the ideal one. It brings the WLS of the sessions
very close to each other, leading to very well balanced network
load across the sessions. The WLS of the worst session is also
much smaller than the worst WLS in either the random scheme
or the closest scheme.

Fig. 3 shows the distribution of the DOI of the sessions
when the size of each partition is 32 clients. For each
simulation run, we sort the measured DOI for the sessions
in increasing order. Algorithm 1 yields the most uniformly
distributed DOI. Moreover, the average DOI of all sessions is
much lower than the other two schemes. The saving in network
bandwidth usage is substantial. We also conducted simulations
for different partition sizes and observed the same trend.

Fig. 4 shows the WLS of the worst session, for different
partition sizes under the three schemes. In all cases, Algorithm
1 generates the best results, and the closest scheme performs
the worst. Algorithm 1 is effective in reducing the bottleneck
stress. Comparing with the closest scheme, improvement of
up to 43% is observed.

Fig. 5 shows the DOI of the overlay links for the worst
session. When compared with the random scheme or the
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Fig. 2. Distribution of the WLS at the overlay network for the single-server
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Fig. 3. Distribution of the DOI at the overlay network for the single-server
case. The size of each partition is 32 clients.

closest scheme, Algorithm 1 clearly produces better results
over all the partition sizes. For example, when the partition
size is 16, the worst DOI can be reduced from 58 to 20, if we
use Algorithm 1 rather than the closest scheme.

2) Performance on the physical network: In this case,
the overlay hypercube network is built on top a physical
network represented by the transit-stub network model [41].
The transit-stub model uses a 2-level hierarchy of routing
domains with the transit domains interconnecting the lower-
level stub domains. The model is often used to represent
part of the physical Internet. The simulations run on network
topologies consisting of 4200 nodes split into 10 Autonomous
Systems (AS). The average diameter of the network is 10.
The size of the overlay network is 4096 nodes, with 1024
clients uniformly distributed over the name space. We show
the simulation results for the same performance metrics.

Fig. 6 shows the number of streams on the most stressed
physical link, i.e., the WLS of the physical link, of the worst
session. In all cases, Algorithm 1 generates the best results.
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Fig. 4. The worst WLS of the overlay link for the single-server case
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Fig. 6. The worst WLS of the physical link for the single-server case

Improvement of up to 35% is observed. Fig. 7 shows the DOI
of the physical links for the worst session. The trend is the
same as in Fig. 5, which is for the overlay links.

We also observed that the distributions of the WLS or
DOI on the physical links across the sessions show the same
trends as the overlay-link cases. Overall, these results have
demonstrated the effectiveness of Algorithm 1 in reducing the
link stress and DOI at the physical links as well as at the
overlay links.

B. Multi-Server Partition

1) Performance on the overlay network: In this experiment,
the overlay network has 4096 nodes, a quarter of which are
clients. We vary the number of servers from 8 to 128. The
servers are ordered arbitrarily in the client-selection process.
The clients and servers are both uniformly distributed over the
4096 nodes.

Fig. 8 depicts the WLS of the overlay link for the worst
session, for different numbers of servers. It shows that our
multi-server partition algorithm (labeled MSP) is effective in
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Fig. 7. The worst DOI of the physical links for the single-server case
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@ Random W Closest O MSP
600

500
400
300
200
100 -
0 L= . ool | ’_._‘ . .
8 16 32 64 128

Size of partition

Worst DOI

Fig. 9. The worst DOI of the overlay links for the multi-server case

reducing the stress at the bottleneck link. For example, when
the number of servers is 32, the worst WLS can be reduced
from 30 to 15, if we use our algorithm rather than the closest
scheme. Fig. 9 shows the DOI of the overlay links for the
worst session.

Fig. 10 and 11 show the distribution of the WLS and DOI
across the sessions when the size of each partition is 32
clients. One can observe that our MSP algorithm can reduce
the average WLS or DOI by as much as a half.

2) Performance on the physical network: The simulation
results on the transit-stub model are plotted in Fig. 12 and 13.
Fig. 12 depicts the WLS of the physical link for the worst
session. Fig. 13 shows the DOI of the physical links for the
worst session. One can observe that the general trend of the
distributions of the WLS and DOI on the physical links are
the same as the overlay cases.

C. Name Space Not Fully Occupied

In this subsection, we consider the situation where the name
space is not fully populated by nodes. This is the most likely

[~—Random = Closest - MSP

WLS

0 5 10 15 20 25 30
Sessions

Fig. 10. Distribution of the WLS across the sessions at the overlay network
for the multi-server case. The size of each partition is 32 clients.
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Fig. 11. Distribution of the DOI across the sessions at the overlay network
for the multi-server case. The size of each partition is 32 clients.
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Fig. 12. The worst WLS of the physical link for the multi-server case

scenario for an overlay network where nodes join and leave
frequently. We modify the routing as follows. When a message
for destination d arrives at a node, the next node will be
the first available node on the hypercube path to d. In this
experiment, the physical network is again modeled as a transit-
stub network with the same parameters as in Section VI-A2
and VI-B2. The overlay network has a name space size 4096,
but only contains 2048 actual nodes, uniformly distributed
throughout the name space.

The performance results for the single-server case are shown
in Fig. 14 and 15. The performance results for the multi-server
case are shown in Fig. 16 and 17. It can be observed that,
compared with the results for the fully occupied networks
in Section VI-A2 and VI-B2, the performance gains by our
algorithms hold up.

VII. CONCLUSIONS

In this paper, we make an in-depth investigation on the
issue of client/node selection, which is a fundamental prob-
lem in massive content distribution on overlay networks. We

4500
4000
3500
3000
2500
2000

@ Random M Closest O MSP
1500

1000 -
500
= [ m . I .

8 16 32 64 128
Size of partition

Worst DOI

Fig. 13.  The worst DOI of the physical links for the multi-server case
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overlay network has a name space size 4096 and contains 2048 nodes.
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overlay network has a name space size 4096 and contains 2048 nodes.
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Fig. 17. The worst DOI of the physical links for the multi-server case. The
overlay network has a name space size 4096 and contains 2048 nodes.

envision a hypercube as the overlay network and give novel
server/client selection schemes. As a result of the schemes, the
network load of each session is reduced and also well balanced
across the sessions and the network resource consumption
is low. Our schemes do not require measurement of some
network performance metrics or the network topology or
routing information. The assumption is that each server can
obtain the IDs of the clients and other servers through the
overlay network. Being free from network measurement and
having low implementation complexity make the algorithms
scalable.

In the paper, the core problems are formulated as partition-
ing the clients into disjoint subsets according to the degree
of interference criterion, which reflects network resource us-
age and the interference among the concurrent connections.
We prove that these problems are NP-complete and present
heuristic algorithms for them. Using simulation, we show that
the algorithms are simple yet effective in achieving the design
goals, particularly in reducing the worst-case link stress and
the network bandwidth usage. Moreover, lower WLS implies
less network congestion created by concurrent streams, hence,
better quality of for streaming applications.

Due to the close relationship between the hypercube and
the popular Tapestry, Pastry and Chord networks, the prob-
lem formulation, algorithms, and performance metrics in this
paper are relevant and may be extended to those networks.
The methodologies proposed in this paper can have many
applications, including P2P file downloading or media stream-
ing, multicast group member selection, and edge-mapping in
content distribution networks.
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APPENDIX A
PROOF OF THEROREM 7

Therorem 7: The multi-server partition problem is NP-
complete.

Proof: This problem is obviously in NP, since it is easy

to verify whether dg,(L;) < D, 1 <i<m.

We prove that the multi-server partition problem is NP-
hard by showing that the SSPP is polynomial-time reducible
to it. The reduction takes as input an arbitrary instance of

the

reduction is an instance of the MSPP, (S = {s1, ..

{0,

reduction generates a set S = {sq,..

and it generates a set L = {ly, ..

SSPP, (C = {c1,...,¢n},m, D). The output of the
i Sm}v L=
.yln}, D). Suppose the name space is r bits. The

., Sm | of servers, where

/—/TH/—L

$59=0...00 ... 0
T m

S9 = 00... 01

— ——

s3=10 0... 10
T m

$m=0...001 ... 0,

., In} of clients, where

m

—N—
llzl(Cl)O ... 0
/—L
ZQZI(C2)O ... 0
/—L

l3=[(03)0 ... 0

——
ln=1I(cy)0 ... 0.

The reduction can be performed in polynomial time.
We now show that (4, < D if and only if 6,4, < D.

First, suppose (C = {ci,..
of the SSPP and the subsets C1, ..

.yCnt,m, D) is a “yes” instance
., Cy, are the partition. We



can partition L into the corresponding m subsets, L1, ..., L,
where

Li = {lglex € C;,1 <k <n}, 1 <i<m.
We assign L; to server s;, 1 < ¢ < m. Then,
ds, (L) = d(C;).
Thus, L1,..., L,, will work in the MSPP by the assumption.

Conversely, suppose (S = {s1,...,8m} L =
{li,...,ln},D) is a “yes” instance of the MSPP, and
Ly,...,L, C L are the corresponding assignments of the

clients to the servers. Take any server s; and the associated
client set L;. We have,

ds,(Li) = d(L;),

where d(L;) is the DOI of the clients in L; with respect to
node 0. Thus, Ly, ..., L,, form a “yes” instance for the SSPP.
|



