
Computer Communications 32 (2009) 154–158
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
A dandelion-encoded evolutionary algorithm for the delay-constrained
capacitated minimum spanning tree problem

Angel M. Pérez-Bellido a, Sancho Salcedo-Sanz a,*, Emilio G. Ortiz-Garcı́a a,
Antonio Portilla-Figueras a, Maurizio Naldi b

a Departament of Signal Theory and Communications, Universidad de Alcalá, Campus Universitario, Alcala de Henares, 28871 Madrid, Spain
b Dipartimento di Informatica, Sistemi e Produzione, Universitá di Roma ‘‘Tor Vergata”, Rome, Italy
a r t i c l e i n f o

Article history:
Received 4 June 2008
Accepted 25 September 2008
Available online 10 October 2008

Keywords:
Delay-constrained capacitated minimum
spanning tree
Evolutionary algorithms
Dandelion encoding
Heuristics
0140-3664/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.comcom.2008.09.030

* Corresponding author. Tel.: +34 91 885 6731; fax
E-mail address: sancho.salcedo@uah.es (S. Salcedo
a b s t r a c t

This paper proposes an evolutionary algorithm with Dandelion-encoding to tackle the Delay-Constrained
Capacitated Minimum Spanning Tree (DC-CMST) problem. This problem has been recently proposed, and
consists of finding several broadcast trees from a source node, jointly considering traffic and delay con-
straints in trees. A version of the problem in which the source node is also included in the optimization
process is considered as well in the paper. The Dandelion code used in the proposed evolutionary algo-
rithm has been recently proposed as an effective way of encoding trees in evolutionary algorithms. Good
properties of locality has been reported on this encoding, which makes it very effective to solve problems
in which the solutions can be expressed in form of trees. In the paper we describe the main characteristics
of the algorithm, the implementation of the Dandelion-encoding to tackled the DC-CMST problem and a
modification needed to include the source node in the optimization. In the experimental section of this
article we compare the results obtained by our evolutionary with that of a recently proposed heuristic for
the DC-CMST, the Least Cost (LC) algorithm. We show that our Dandelion-encoded evolutionary algorithm
is able to obtain better results that the LC in all the instances tackled.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Network topology consists of specifying the configuration of the
computer connections in a given network [1,2]. The design of the
topology is also a key point in the deployment of computers and
communications networks. Topology affects to very important
points such as communication costs, transmission speed, average
time delay of the network, etc [1,2]. There are several research
works about topology design, both in backbone and local networks
[3–5]. Regarding local networks, these can be modeled as a back-
bone node (source node) and several trees that cover all end user
nodes to satisfy the constraints of traffic volume [1,2].

In the literature, the works related to topology discovery of local
networks can be classified in two main problems: Capacitated Min-
imum Spanning Tree (CMST) and Delay-Constrained Minimum
Spanning Tree (DCMST) problems [6–10]. The CMST problem con-
sists of finding a set of minimum spanning trees rooted at the
source node which satisfies a set of traffic constraints [8]. This
problem is known to be NP-complete [9], and several heuristic ap-
proaches have been applied to solve it [6,7]. On the other hand, the
DCMST problem consists of finding the least cost broadcast and
ll rights reserved.

: +34 91 624 8749.
-Sanz).
multi-cast trees rooted at the source node, which have the mini-
mum total cost among all possible spanning trees, and also have
a maximum end-to-end delay bounded by a given delay constraint
D [10,11].

Recently, two innovative works have proposed the joint optimi-
zation of the network topology in terms of the traffic capacity and
its mean time delay. This joint optimization allows obtaining rea-
sonable quality of service (QoS) rates in the current communication
networks. The joint optimization of the network taking into account
traffic and delay constraints, produces the so called Delay-Con-
strained Capacitated Minimum Spanning Tree (DC-CMST) problem,
which was first presented in [1], and successfully solved using an
ad-hoc heuristic called Least-cost (LC) heuristic. The LC heuristic
starts from the solution to the CMST problem provided by the Esau
and William’s algorithm [7] (EW solution), and then applies two
different versions of the Mean Delay Capacity Allocation Algorithm
(MDCAA) in order to obtain feasible solutions for the DC-CMST. In
a more recent paper [2], the same authors proposed an exact algo-
rithm for the DC-CMST, which provide the optimal solution to the
problem. They show that this exact algorithm can compute the
DC-CMST solution in reasonable time only for small networks, of
less than 30 nodes. For real-size networks, in which the number
of nodes is larger, exact algorithms are computationally inefficient,
and thus heuristics approaches are usually a better option.

mailto:sancho.salcedo@uah.es
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

A.M. Pérez-Bellido et al. / Computer Communications 32 (2009) 154–158 155
In this paper we propose an evolutionary algorithm to solve the
DC-CMST, which uses a Dandelion encoding to represent the com-
plete local network. The Dandelion encoding has been recently
proposed as an effective method to represent trees in evolutionary
algorithms [12], with good properties of locality (small changes in
the representation make small changes in the tree). This locality
produces a more effective evolutionary search than using other
tree encodings such as Prüfer encoding [14]. In the paper we de-
scribe the main characteristics of the algorithm and the implemen-
tation of the Dandelion-encoding to tackle the DC-CMST problem.
We also consider a different version of the DC-CMST problem, in
which the source node is also part of the optimization process
(in the traditional DC-CMST problem this source node is previously
fixed). In the paper we discuss several modifications needed to
tackle this new version of the problem. In the experimental section
of this article, we compare the results obtained by our evolutionary
with that of the Least Cost (LC) algorithm in [1].

The rest of the paper is structured as follows: next section intro-
duces the DC-CMST problem following the description in [1]. Sec-
tion 3 presents the main characteristics of the Dandelion-encoding
evolutionary algorithm proposed in this paper. Special analysis of
the encoding, initialization, evolutionary operators and adaptation
to include the source node in the optimization problem are carried
out. Section 4 shows the performance of the proposed approach by
comparing the results obtained in different DC-CMST instances
against that of the LC heuristic. Section 5 closes the paper giving
some final remarks.

2. DC-CMST problem formulation

The DC-CMST problem has been recently proposed in [1]. In the
formulation of the DC-CMST problem, a set of assumptions must be
made:

1. There is only one source node, with unlimited capacity.
2. The traffic generated at a given node (qi) cannot exceed the

maximum traffic covered by one tree (max(qi) 6 e, i = 1,� � �,n).
3. The traffic at a given node is not splintered.
4. The total traffic exceeds the maximum traffic served by one of

the trees conforming the network ð
Pn

i¼1qi > eÞ.
5. The arrival of packets is based on a Poisson distribution.
6. The service time of packets is exponentially distributed.

With these assumptions, our formulation of the DC-CMSTP fol-
lows the one given in [1]: Obtaining a tree network with minimum
total link cost, which satisfies that the total network delay time (T)
is bounded by a given time (D), and also that the traffic capacity
limitation is less than a given value e in each subtree. Fig. 1 shows
k

k k

Fig. 1. An example of the DC-CMST problem.
an example of the problem definition. In order to provide a math-
ematical formulation of the DC-CMST problem, we need first to de-
fine several parameters of the problem. Let T be the mean time
delay of the network, it can be defined as:

T ¼ 1
m
Xn

k¼1

kkTk ð1Þ

where m stands for the total traffic of the network (traffic between
all source-destination pairs), kk is the traffic flow on link k in the
current topology (packets/s) and Tk is the mean delay time of link
k in the current topology. Since each link k can be regarded as an
independent M/M/1 queue, the mean delay Tk of link k is given by
the following equation [1]:

Tk ¼
1

ðl � Ck � kkÞ
ð2Þ

where 1
l is the average packet length (bits/packet), and Ck stands for

the capacity of link k in the current topology (bits/s). If we include
this expression in (1), we obtain the following equation for the total
network mean time delay T:

T ¼ 1
m
Xn

k¼1

kk
1

ðl � Ck � kkÞ

� �
ð3Þ

The DC-CMST problem can now be mathematically stated, in the
following way:

min Dcost ¼
Xn

k¼1

d � Ck � dk

 !
ð4Þ

subject to:

kk

l
6 Ck ð5Þ

T ¼ 1
m
Xn

k¼1

kk
1

ðl � Ck � kkÞ

� �
6 D ð6Þ

X
i2Rj

qi � xij 6 e ð7Þ

X
i;j

xij ¼ n ð8Þ

xij 2 f0;1g ð9Þ

where, the objective function of the DC-CMSTP is given by Eq. (4),
and consists of finding a collection of trees with minimal link cost
(Dcost). Note that Dcost depend on the values of Ck (capacity of link
k in the current topology (in seconds), d unit cost of link capacity
and dk defined as the distance between node k in a given tree and
its antecessor node in that tree (note that this distance may be dif-
ferent depending on the considered tree). The constraints of the DC-
CMSTP are the following: the average traffic flow on a link must be
smaller than the capacity of the link, Eq. (5). The mean delay of the
network has to be dropped within allowable mean delay time (D),
Eq. (6). The total traffic flow in one tree (Rj) must be below a value
e, Eq. (7). Finally, Eq. (8) ensures that n nodes are included in the fi-
nal solution. Note that variable xij is 1 if there is a link between
nodes i and j in the current topology, and 0 otherwise, as Eq. (9)
states.

2.1. DC-CMST problem with source node optimization

In this paper we consider a modification of the DC-CMST prob-
lem consisting of including the selection of the optimal source
node in the DC-CMST problem. In the DC-CMST definition giving
in [1 and 2], the source node was previously fixed, and it is not con-
sidered in the optimization process. In fact, if the network to be
optimized is denoted as a graph G(V,E), with V the set of nodes

(4, 6, 2, 5, 9, 1, 12, 6, 2, 9)a

b

Fig. 2. (a) Example of a Dandelion code; (b) The final tree after the decoding
process.

156 A.M. Pérez-Bellido et al. / Computer Communications 32 (2009) 154–158
and E the set of edges, the number of nodes involved in the DC-
CMST is n = jVj � 1, since the node 0 is considered to be the source
node [1,2]. Note that this version of the DC-CMST is equivalent to
launch n + 1 algorithms for the classical DC-CMST problems. Note
also that, for large values of n, the computation time of algorithms
for this new version of the problem may be unaffordable.

The mathematical formulation of this new version of the prob-
lem is quite similar to the traditional DC-CMST, but in this case the
parameters dk, Ck, kk, m depend on the specific tree and also on its
root r (in the traditional DC-CMST definition these parameters only
depend on the current topology considered, since the root node is
always the node 0).

The DC-CMST problem with source node optimization can be
stated in the following way (remaking the specific dependence
on root node r):

min Dcost ¼
Xn

k¼0

d � Cr
k � d

r
k

 !
ð10Þ

subject to:

kr
k

l
6 Cr

k ð11Þ

T ¼ 1
mr

Xn

k¼1

kr
k

1
ðl � Cr

k � kr
kÞ

� �
6 D ð12Þ

X
i2Rr

j

qi � xij 6 e ð13Þ

X
i;j

xij ¼ n ð14Þ

xij 2 f0;1g ð15Þ
3. A Dandelion-encoded evolutionary algorithm for the DC-
CMST problem

3.1. Algorithm encoding

The Dandelion code is a Cayley-like encoding [12] which has
been recently described and used for encoding trees in genetic
algorithms [12,13]. There are several decoding algorithm (string
to tree) for the Dandelion code. In this paper we use the so-called
fast algorithm, proposed by Piccioto in [15], which has been also
used in [13]:

� Input: A Dandelion code C = (c2,c3,� � �,cn�1).
� Output: The tree T 2Tn corresponding to C.
� Step 1: Define the function /C:[2,n � 1] ? [1,n] such that

/C(i) = ci for each i2[2,n � 1].
� Step 2: Calculate the cycles associated to the function /C,

Z1,Z2,� � �,Zk. Let bi be the maximum element in cycle Zi. We
assume that the cycles are recorded such that bi is the rightmost
element of Zi, and that bi < bj if i < j.

� Step 3: Form a single list p of the elements in Z1,Z2,� � �,Zk, in the
order they occur in this cycle list, form the first element of Z1 to
the last element of Zk.

� Step 4: Construct the tree T 2Tn corresponding to C in the fol-
lowing way: take a set of n isolated vertices (labeled with the
integers from 1 to n), create a path from vertex 1 to vertex n
by following the list p from left to right, and then create the edge
(i,ci) for every i 2[2,n � 1] which does not occur in the list p.

We will illustrate this fast algorithm using the example in Fig. 2.
This figure proposes the Dandelion code C = (4,6,2,5,9,1,12,6,2,9).
Note that there are three cycles in this case, Z1 = (6,9), Z2 = (5)
and Z3 = (2,4). Note also the order in which we have recorded these
cycles follows the indications in the step 2 of the fast decoder algo-
rithm. We form then the list p=[6,9,5,2,4], and construct the first
part of the tree T starting from vertex 1, ending in vertex 12, and
following the numbers in p. The rest of the tree is constructed by
creating the corresponding edges (i,ci) for i which are not in the list
p, in this case the vertices 7,3,11,10 and 8.

3.2. Initialization of the evolutionary algorithm

In order to initialize the algorithm, we start from the EW solu-
tion, given by the algorithm in [7]. Recall that this ensures a feasi-
ble solution for the CMST. The next step is to convert this EW tree
to its corresponding Dandelion code, following the tree-to-code
procedure described in [12]:

� Input: The EW solution (from the algorithm in [7]) for the CMST
problem.

� Output: A Dandelion code CEW = (c2,c3,� � �, cn�1) corresponding to
the EW solution.

� Step 1: Find the unique path from one to n in T, and let p be the
ordered list of intermediate vertices.

� Step 2: Recover the cycles {Zi} by writing p in a left-to-right list,
and closing the cycle immediately to the right of each right-to-
left minimum.

� Step 3: The Dandelion code corresponding with T is the unique
code CEW = (c2,c3,� � �,cn�1) such that: a) the cycles of the function
/C(i) = ci are {Zi}, where/C(i) stands for the value of the ith position
in string CEW; b) for each i2[2,n � 1] which does not occur in p the
first vertex on the path from vertex i to vertex n in the tree T is ci.

Using this code CEW, we generate the initial population of our
Dandelion-based evolutionary algorithm by applying mutations
to CEW (we call C0EW to a given mutation of CEW), in such a way that
C0EWðiÞ 2 ½2;n� 1�. The delay constraint to obtain a solution to the
DC-CMST is tackled by the objective function of the algorithm, as
we will show later.

3.3. Evolutionary operators

Our evolutionary algorithm is structured in the traditional form
of a classic genetic algorithm [16], with procedures of Selection,
Crossover and Mutation. The Selection procedure is the standard
roulette wheel, in which the probability of survival of a given indi-
vidual is proportional to its fitness value. A two-points Crossover
operator is applied, where the parents are randomly chosen among
the individuals in the population. The Mutation operator changes
specific values of C, substituting its value by a different one in [2,
n � 1]. Regarding the parameters of the algorithm, we have imple-
mented the standard values of Crossover (Pc = 0.6) and Mutation
(Pm = 0.01) operators. The population size is 100 and the genera-
tions number has been fixed to 1000, after which we keep the best
tree encountered so far.

Table 1
Results of the Dandelion-encoded EA proposed, and comparison with the results
obtained by the LC algorithm in [1].

Instance # Size (nodes) LC algorithm in [1] Dandelion EA

Best Mean Std. Dev.

1 30 2180.86 2139.52 2162.58 15.65
2 30 1926.01 1751.49 1772.10 20.66
3 30 1855.45 1671.56 1721.30 32.31
4 30 2147.29 2086.38 2120.09 20.87
5 30 1844.00 1787.00 1787.24 0.76
6 50 3136.46 3015.61 3085.15 40.73
7 50 3550.55 3449.32 3503.89 22.47
8 50 2956.75 2709.80 2797.22 63.07
9 50 2488.86 2414.22 2452.38 16.11

10 50 2479.62 2299.15 2356.25 51.82
11 70 5403.27 5293.44 5320.54 14.77
12 70 3899.74 3693.69 3736.63 24.94
13 70 4960.57 4800.59 4847.00 33.23

A.M. Pérez-Bellido et al. / Computer Communications 32 (2009) 154–158 157
In addition to the standard operators, we include a local search
consisting in applying the Prim’s algorithm [17] over each sub-tree
of the individuals, in every generation of the algorithm. This makes
that each sub-tree in the network is a MST. Since the objective
function consists of a sum involving the distances between nodes
belonging to the same sub-tree, it is expected that this procedure
improves the quality of the final solution of the algorithm.

3.4. Constraints requirements of the DC-CMST and objective function

In [1] is shown that if we consider a restriction to the DC-CMST
as:

min Dcost ¼
Xn

k¼1

d � Ck � dk

 !
ð16Þ

subject to:

1
m
Xn

k¼1

kk

l � Ck � kk

� �
¼ D ð17Þ

values of Ck can be calculated as

Ck ¼
kk

l
1þ

Pn
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � kj � dj

p
m � D �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � kk � dk

p
 !

; ð18Þ

note that if we use these values of Ck, we ensure that the generated
tree always fulfils Constraints (5) and (6), and we only have to man-
age Constraint (7) in our evolutionary algorithm.

The objective function of our Dandelion evolutionary algorithm
is given next. First we define the following parameter:

I ¼
Y

j

1
e
X
i2Rj

qi � xij

0
@

1
A; ð19Þ

where j is the set of values such that
P

i2Rj
qi � xij > e. Note that this

parameter measures the excess of traffic in sub-tree Rj. The idea is
to include it in the objective function, in order to correct the traffic
excess in sub-trees by means the evolution process. The objective
function considered for the DC-CMST is then:

f ðTÞ ¼
Xn

k¼1

d � Ck � dk �I ð20Þ
14 70 3842.11 3639.38 3695.26 55.49
15 70 5826.47 5707.86 5835.26 68.71

2190

2195

2200

2205

2210

2215

tiv
e

fu
nc

tio
n

3.5. Tackling the source node optimization

The Dandelion-encoded evolutionary algorithm proposed can
be adapted to solve the DC-CMST with source node optimization,
by including the root node into the algorithm’s encoding. In this
case, a given individual of the algorithm can be encoded as
x=[C,r], where C is a dandelion code representing the tree, and
r2[0,n] is a number representing the node which must be used as
source node. This way we avoid having to launch the evolutionary
algorithm n times, once per possible root node. Of course, the
search space in which the evolutionary must search for is larger
now than in the traditional DC-CMST.
0 200 400 600 800 1000
2165

2170

2175

2180

2185

Generations

O
bj

ec

Fig. 3. Evolution of the EA in DC-CMST instance #1.
4. Experiments and results

In order to test the performance of our proposal, we have done a
computational experience similar to the one shown in [1]. For
comparison purposes we have implemented the LC algorithm fol-
lowing its description in [1], and we compare our results with that
of this approach. A set of 15 DC-CMST instances have been con-
structed, in networks of 30, 50 and 70 nodes (5 networks of each
case), following the instance construction procedure given in [1].
Our first experimental analysis consists of comparing the Dan-
delion EA proposed in this paper with the LC algorithm in the tra-
ditional DC-CMST. Table 1 reports the details of this comparison.
Note that the LC algorithm is deterministic, so one value for each
instance is obtained. On the other hand, our EA algorithm has been
launched 30 times, and we provide the best, mean and standard
deviation values for each instance. Our EA has been run using a
population of 100 individuals during 1000 generations.

The results showed in Table 1 confirm the good performance of
our approach. The Dandelion-encoded EA is able to obtain better
results than the LC algorithm in all cases considered. In all the in-
stances tackled, the best value found by our Dandelion-encoded EA
is better than the result obtained by the LC algorithm. Moreover,
we find that in all instances considered but one (instance 15),
the mean value of the 30 runs with the EA is better than the result
obtained by the LC algorithm. The differences between the pro-
posed EA and the LC algorithm are larger as the instances’ size
grows. This means that our EA is more scalable than the LC algo-
rithm. Fig. 3 shows the evolution of the best run for DC-CMST in-
stance #1. Note that the algorithm’s evolution has the form of
steps, with flat zones between improvements. This behavior is con-
sistent with the algorithm proposed: recall that we include a MST
local search in each sub-branch of the tree, so small improvements
in the objective function (associated with small changes in sub-

Table 2
Results of the Dandelion-encoded EA with source node optimization (sno). A
comparison with the Dandelion-encoded EA without sno optimization is provided.

Instance
#

Dandelion EA
(sno) Best

Dandelion EA
(sno) Mean

Dandelion
EA Best

Dandelion EA
Mean

1 2000.50 2019.03 2139.52 2162.58
2 1445.07 1511.57 1751.49 1772.10
3 1527.69 1557.42 1671.56 1721.30
4 1523.44 1561.22 2086.38 2120.09
5 1758.50 1771.94 1787.00 1787.24
6 2956.55 2999.85 3015.61 3085.15
7 2511.06 2603.81 3449.32 3503.89
8 2530.11 2558.49 2709.80 2797.22
9 2153.20 2216.13 2414.22 2452.38

10 2138.65 2204.32 2299.15 2356.25
11 3983.96 4073.21 5293.44 5320.54
12 3352.02 3415.24 3693.69 3736.63
13 4088.08 4141.13 4800.59 4847.00
14 3483.83 3629.22 3639.38 3695.26
15 4097.51 4271.95 5707.86 5835.26

158 A.M. Pérez-Bellido et al. / Computer Communications 32 (2009) 154–158
branches) are discarded. The improvements are obtained when
individuals with a better structure appear, which will be quite dif-
ferent from existing individuals.

The second round of experiments performed consists of solving
the DC-CMST with source node optimization. Using the 15 DC-
CMST instances considered before, we apply the Dandelion EA
modified to tackled this problem, and compare the results with
the proposed EA algorithm without source node optimization
(sno). Table 2 shows these results. As expected, the optimization
of the source node within the algorithm provides better networks
in terms of the objective function given by Eq. (20). The computa-
tion time of the EA algorithm with sno optimization is similar to
the EA without sno, since both algorithms are launched with the
same number of individuals in the population and same number
of generations. Note that the alternative to the EA with sno (i.e.
launching one EA for each possible source node) is computationally
infeasible in the majority of cases, and the EA with sno is a good
alternative.

5. Conclusions

In this paper we have presented a Dandelion-encoded evolu-
tionary algorithm for the Delay-Constrained Capacitated Minimum
Spanning Tree (DC-CMST) problem. This problem arises in the
topological design of communication networks, and is complicated
because it considers optimization of the network topology in terms
of the traffic capacity and its mean time delay. Due to this com-
plexity, only heuristic approaches have been applied to this prob-
lem. Specifically, the best algorithm to solve the DC-CMST is
known as the Least-Cost heuristic (LC). In the paper we show that
the Dandelion-encoded evolutionary algorithm we propose is able
to improve the results of the LC heuristic in several DC-CMST prob-
lem instances.

References

[1] Y.J. Lee, M. Atiquzzaman, Least cost heuristic for the delay-constrained
capacitated minimum spanning tree problem, Comput. Commun. 28 (2005)
1371–1379.

[2] Y.J. Lee and M. Atiquzzaman, Exact algorithm for delay-constrained
capacitated minimum spanning tree network, IET Communications 1(6)
1238-1247.

[3] T. Thomadsen, J. Larsen, A hub location problem with fully interconnected
backbone and access networks, Comput. Operations Res. 34 (2007) 2520–
2531.

[4] I. Astic, O. Festor, A hierarchical topology discovery sevice for IPv6 networks,
in: Proceedings of the IEEE/IFIP Network Operations and Management
Symposium, 2002, pp. 497–510.

[5] Y. Bejerano, M. Breitbart, R. Rastogi, Physical topology discovery for large multi
subnet networks, in: Proceedings of IEEE INFOCOM’03, 2003, pp. 342–352.

[6] B. Gavish, Parallel savings heuristic for the topological design of local access
tree networks, in: Proceedings of IEEE INFOCOM’03, 1986, pp. 130–139.

[7] L. Esau, K. Williams, On teleprocessing system design, part II, IBM Syst. J. 3
(1996) 142–147.

[8] K.M. Chandy, T. Lo, The capacitated minimum spanning tree, Networks 3
(1973) 173–181.

[9] C. Papadimitriou, The complexity of the capacitated minimum spanning tree
problem, Networks 8 (1978) 217–230.

[10] A. Karaman, H. Hassanein, DCMC–delay constrained multipoint
communication with multiple sources, in: Proceedings of the IEEE
International Symposium on computers and Communications, 2003.

[11] D.S. Reeves, H.F. Salama, A distributed algorithm for delay-constrained unicast
routing, IEEE/ACM Trans. Netw. 8 (2) (2000) 239–250.

[12] T. Paulden, D.K. Smith, From the Dandelion code to the rainbow code: a class of
bijective spanning tree representations with linear complexity and bounded
locality, IEEE Trans. Evol. Comput. 10 (2) (2006) 108–123.

[13] E. Thompson, T. Paulden, D.K. Smith, The Dandelion code: a new coding of
spanning trees for genetic algorithms, IEEE Trans. Evol. Comput. 11 (1) (2007)
91–100.

[14] N. Deo, P. Micikevicius, Prüfer-like codes for labeled trees, Congressus
Numerantium 151 (2001) 65–73.

[15] S. Piccioto, How to encode a tree, Ph.D. dissertation, Univ. California, San Diego,
1999.

[16] [16] D. Goldberg, Genetic algorithms in search, optimization and machine
learning, Addison-Wesley, Reading, MA, 1989.

[17] R.C. Prim, Shortest connection networks and some generalisations, Bell Syst.
Tech. J. 36 (1957) 1389–1401.

	A Dandelion-encoded Evolutionary Algorithm dandelion-encoded evolutionary algorithm for the Delay-Constrained Capacitated Minimum Spanning Tree Problemdelay-constrained capacitated minimum spanning tree pr
	Introduction
	DC-CMST problem formulation
	DC-CMST problem with source node optimization

	A Dandelion-encoded evolutionary algorithm for the DC-CMST problem
	Algorithm encoding
	Initialization of the evolutionary algorithm
	Evolutionary operators
	Constraints requirements of the DC-CMST and objective function
	Tackling the source node optimization

	Experiments and results
	Conclusions
	References

