
 1

Implementation and Experimental Performance Evaluation of a
Hybrid Interrupt-Handling Scheme

K. Salah** A. Qahtan
Department of Information and Computer Science
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Email: {salah,kahtani}@kfupm.edu.sa

Abstract

The performance of network hosts can be severely degraded when subjected to heavy traffic of today's Gigabit

networks. This degradation occurs as a result of the interrupt overhead associated with the high rate of packet

arrivals. NAPI, a packet reception mechanism integrated into the latest version of Linux networking subsystem,

was designed to improve Linux performance to suit today’s Gigabit traffic. NAPI is definitely a major step up

from earlier reception mechanisms; however, NAPI has shortcomings and its performance can be further

enhanced. A hybrid interrupt-handling scheme, which was recently proposed in [3], can better improve the

performance of Gigabit network hosts. The hybrid scheme switches between interrupt disabling-enabling (DE)

and polling (NAPI). In this paper, we present and discuss major changes required to implement such a hybrid

scheme in the latest version of Linux kernel 2.6.15. We prove experimentally that the hybrid scheme can

significantly improve the performance of general-purpose network desktops or servers running network I/O-

bound applications, when subjecting such network hosts to both light and heavy traffic load conditions. The

performance is measured and analyzed in terms of throughput, packet loss, latency, and CPU availability.

KEYWORDS: High-Speed Networks, Operating Systems, NAPI, Linux, Interrupts, Livelock

1. Introduction

1.1. Background

Using today’s general-purpose Gigabit network adapters (also termed as NICs), an incoming packet gets

transferred (or DMA’d) through the PCI bus from the NIC to a circular buffer in the kernel space known as

DMA Rx Ring. After the packet has been successfully DMA’d, the NIC generates an interrupt to notify the

kernel to start protocol processing of the incoming packet. During protocol processing, other packets may

arrive and get queued into the DMA Rx Ring. Protocol processing typically involves TCP/IP processing of the

incoming packet and delivering it to user applications. The packet does not need to be delivered to user

applications if the receiving host is configured for IP forwarding, routing, filtering or NATing.

** Corresponding Author: Prof. K. Salah, PO Box 5066, ICS Department, KFUPM, Dhahran 31261, Saudi Arabia

 2

The performance of network hosts can be significantly degraded when subjected to heavy traffic load such as

that of Gigabit networks, and thus resulting in poor host performance perceived by the user. This is because

every incoming packet triggers a hardware interrupt, which involves a context switching of saving and

restoring processor’s state and also in a potential cache/TLB pollution. More importantly, interrupt-level

handling, by definition, has an absolute priority over all other tasks. If the interrupt rate is high enough, the

system will spend all of its time responding to interrupts, while nothing else would be performed. This will

cause the system throughput to drop to zero. This situation is called receive livelock [1]. In this situation, the

system is not deadlocked, but it makes no progress on any of its tasks, causing any task scheduled at a lower

priority to starve or have no chance to run.

A number of schemes to mitigate interrupt overhead and resolve receive livelock exists in the literature.

Among the most popular ones are normal interruption, interrupt disabling and enabling, interrupt coalescing,

and polling. In normal interruption, every incoming packet causes an interrupt to trigger protocol processing

by the kernel. Typically protocol processing is performed by a deferrable and reentrant high-priority kernel

function (e.g., tasklet in Linux). The idea of interrupt disable-enable (a.k.a. DE) scheme [2,3] is to have the

received interrupts of incoming packets turned off (or disabled) as long as there are packets to be processed by

kernel’s protocol stack, i.e., the protocol buffer is not empty. When the buffer is empty, the interrupts are

turned on again (or re-enabled). This means that protocol processing of packets by the kernel is processed

immediately and at interrupt priority level. Any incoming packets (while the interrupts are disabled) are

DMA’d quietly to protocol buffer without incurring any interrupt overhead. With the scheme of interrupt

coalescing (IC) [4], the NIC generates a single interrupt for a group of incoming packets. This is opposed to

normal interruption mode in which the NIC generates an interrupt for every incoming packet. There are two IC

types: count-based IC and time-based IC. In count-based IC, the NIC generates an interrupt when a predefined

number of packets has been received. In time-based IC, the NIC waits a predefined time period before it

generates an interrupt. Finally, the basic idea of polling is to disable interrupts of incoming packets altogether

and thus eliminating interrupt overhead completely. In polling [1,5-8], the OS periodically polls its host system

memory (i.e., protocol processing buffer or DMA Rx Ring) to find packets to process. In general, exhaustive

polling is rarely implemented. Rather, polling with quota or budget is usually the case whereby only a

maximum number of packets is processed in each poll in order to leave some CPU power for application

processing.

In [3], we utilized both mathematical analysis and discrete-event simulation to study the performance of those

most popular interrupt-handling schemes which included normal interruption, polling, interrupt disabling and

enabling, and interrupt coalescing. For polling, we studied both pure (or FreeBSD-style) polling and Linux

 3

NAPI polling. The performance was studied in terms of key performance indictors which included throughput,

system latency, and CPU availability (i.e., the residual fraction of CPU bandwidth left for user applications).

Based on the study carried out in [3], it was concluded that no particular interrupt handling scheme gives the

best performance under all load conditions. Under light and heavy traffic loads, it was shown that the scheme

of disabling and enabling interrupts (DE) outperforms, in general, all other schemes in terms of throughput and

latency. However, when it comes to CPU availability, polling is the most appropriate scheme to use,

particularly at heavy traffic load. Based on these key observations and in order to compensate for the

disadvantages of DE scheme of poor CPU availability, we proposed in [3] a hybrid scheme that combines both

DE and polling. Such a hybrid scheme would be able to attain peak performance under both light and heavy

traffic loads by employing DE at light load and polling at heavy load.

In [11], we presented preliminary experimental results to show that the performance of I/O bound applications

can be enhanced when using the Hybrid scheme. In this paper we considerably extend the work presented in

[11] and provide in-depth details of implementing the Hybrid scheme in the latest Linux version 2.6.15. The

paper also shows how to measure experimentally the performance of Hybrid, DE, and NAPI. In addition, the

paper addresses important implementation issues which include identifying the switching point between DE

and NAPI, real-time measurement of incoming traffic rate, and the selection of proper NAPI budget or quota

size during the polling period. The performance of the Hybrid scheme is evaluated in terms of throughput,

latency, CPU availability, packet loss, and interrupt rate.

The rest of the paper is organized as follows. Section 2 gives a brief background and related work on the

hybrid scheme. It discusses how different our hybrid scheme from those proposed in the literature. Section 3

details the inner-workings of Linux NAPI. Section 4 presents major changes required by network device driver

to implement DE and Hybrid in latest version of Linux 2.6.15. Also the section addresses important issues as

operation overhead, adjusting NAPI budget, identifying the cliff point, and switching mechanism. Section 5

describes experimental setup, then Section 6 presents performance measurements. Finally, Section 7 concludes

the study and identifies future work.

2. Hybrid Scheme

A hybrid scheme of normal interruption and polling was first proposed in [2]. Later, it was implemented and

utilized in [5,8,9,10]. In this hybrid scheme, normal interrupt was used under both light and normal network

traffic load, whereas polling was used under heavy network traffic load. In sharp contrast, our hybrid scheme

(which we initially proposed in [3]) differs from previously proposed scheme in three significant ways: (1)

Under light and normal loads, our hybrid scheme utilizes the scheme of DE as opposed to normal interruption

 4

which was used in [2,5,8-10]. (2) Our hybrid scheme switches between DE and NAPI based on the estimated

incoming traffic rate. (3) The switching point is identified experimentally, rather than arbitrarily.

It was demonstrated in [3] that normal interruption performs relatively poorly under light and normal traffic

loads in terms of system throughput, CPU availability, and latency. This was due to the fact that normal

interruption introduces interrupt overhead for each packet arrival and thereby leaving limited CPU power for IP

processing and user applications. On the other hand, DE gave acceptable performance in terms of system

throughput, CPU availability, and latency under low and normal traffic loads.

To identify the severity of traffic load conditions, and as opposed to other hybrid schemes proposed in [2,5,8-

10], our hybrid scheme switches between DE and NAPI based on the estimated incoming packet arrival rate.

In particular, our hybrid scheme estimates the traffic rate periodically and uses two thresholds for switching.

As will be discussed in Section 4.2, two thresholds are used to minimize repeated switchings (or oscillation)

around the saturation point in the presence of a traffic load that is highly fluctuating at the point of saturation.

Moreover, the saturation point was not identified arbitrary but using before-hand experimentation discussed in

Section 4.2. On the other hand, different ways to identify severity of traffic load conditions as well as the

switching point were used in [2,5,8-10].

In [2,9,10], the utilization (or level of occupancy) of application or socket receive buffers was used. A receive

buffer that has a utilization of 5% indicates low traffic load, while a buffer that has a utilization of 70%

indicates high utilization. Switching based on buffer utilization has major drawbacks. First, a host system has

multiple buffers of interest that could potentially be used to indicate traffic overload conditions, and therefore

making it impractical to implement a comprehensive solution. For example, for IP forwarding hosts, socket or

protocol processing buffer can be used. In application hosts such as web servers, user application buffer is

more appropriate. In particular, the protocol receiver buffer was used in [2], while in [9,10], the application

receive buffer was used. Secondly, the buffer utilization can be high for a number of reasons other than traffic

load, e.g. starvation or bursty traffic. Starvation of a consumer process (i.e., user application or protocol

processing) is a possibility as the CPU power is being allocated for other highly important tasks or processing.

In addition, instantaneous traffic burst can fill up the buffer very quickly and thus cause sharp increase in buffer

utilization. Thirdly, selection of utilization levels or thresholds is somewhat and always done arbitrarily.

According to [2], determining the upper and lower level of occupancy thresholds is arbitrary and in reality not a

trivial task.

In [8], a watchdog timer is used for switching between normal interruption and polling. Upon a packet arrival a

predefined watchdog time is started. If a packet is not removed within this predefined time through polling, an

 5

interrupt is generated. In today’s network adapters or host hardware, such a feature of monitoring a packet

consumption is not supported. A special hardware support has to be introduced to generate an interrupt if a

packet is not removed from the DMA Rx Ring within the predefined amount of time. In addition, determining

a proper value for the watchdog timer is not trivial, and often defined arbitrarily. A Small value will resort to

normal interruption while a large value will resort to polling.

In [5], the rate of incoming traffic is periodically estimated to switch between normal interruption and polling.

The estimation is based on the packet interarrival times. Arbitrary thresholds were used for determining the

level of frequency and predictability of packets. Simulation was used to study the performance of such a

scheme. In reality, such a scheme is not practical and not implemented in today’s network adapters.

Estimation of packet arrival rate based on interarrival times is computationally expensive and requires

hardware support by network adapters. Network adapters would require to timestamp each packet when

received. Estimation of the average packet arrival rate can be done by the adapter or the kernel. Clock

synchronization may be required between the network adapters and the kernel if estimation is to be carried out

by the kernel.

In contrast with [5], our hybrid scheme is more practical. It is computationally inexpensive, and requires no

hardware support. Our hybrid scheme uses a simple estimator of packet arrival rate [12]. The estimator is

highly cost-effective as its computation is not carried out upon the arrival of each incoming packet and does not

require measurement of interrarival times of incoming packets. The estimator makes use of the number of

packets received within a predefined time window. Almost all today’s network adapters provide a total count

of received packets. In [12], the quality and performance of the estimator was evaluated experimentally and

shown to be highly effective in terms of computational cost, accuracy, agility, and stability.

3. Linux NAPI

New API (NAPI) [6] is a packet reception mechanism which is implemented in Linux 2.6 to alleviate the

problem of receive livelock. Figure 1 illustrates the algorithm of how NAPI works. Upon the arrival of a

packet, NAPI disables the received interrupt (RxInt) of the network device to stop the generation of further

interrupts and then raises a softirq of NET_RX_SOFTIRQ type to schedule polling. Softirq is a non-urgent (or

deferrable) interruptible kernel event that gets handled by __do_softirq kernel function. __do_softirq gets

invoked (if there are any pending softirqs) typically at the end of I/O and timer interrupts [13]. Other than

NET_RX_SOFTIRQ, a total of six softirq types (0-5) are currently defined in Linux 2.6. During the execution

of __do_softirq, softirq types of lower values (such as HI_SOFTIRQ, TIMER_SOFTIRQ, and

NET_TX_SOFTIRQ) are processed before NET_RX_SOFTIRQ which has a type of 3 [13]. This means that

 6

the beginning of the polling period in Linux is not deterministic and a non-uniform delay can be encountered

before the actual processing of packets.

The actual polling and processing of packets take place during the execution of net_rx_action which is the

handling function of NET_RX_SOFTIRQ softirq. Up to budget B packets are processed in net_rx_action for

all network devices or interfaces and up to quota Q packets are processed per interface. This is done to ensure

fairness of packet processing in case of a host having multiple network interfaces. poll_list is used to process

packets per network interface in a round robin fashion. In Linux 2.6, the budget B and quota Q are set to 300

and 64, respectively.

RxInt:

1. Disable RxInt of this
network device

2. Add device to poll list

3. Raise sofirq of type
NET_RX_SOFTIRQ

net_rx_action:

Start timer T

Initialize budget B = 300, quota Q = 64

while poll_list is not empty do

1. if B <= 0 or T expired then

raise again softirq of type NET_RX_SOFTIRQ

break
end if

2. Extract a device from poll_list

3. For this device, process up to min(Q,B) packets or

until no more packets in DMA Ring of device

4. Decrement B by the number of packets processed

5. if device’s DMA Rx Ring is empty then

remove device from poll_list and enable its RxInt

else

place device at the end of poll_list

end if

end while

Figure 1. NAPI polling algorithm

NAPI’s polling period in Linux is not exhaustive and is designed to leave CPU processing power for other

tasks in order to prevent starvation. This is accomplished using budget and handling time bounds (as shown in

Step 1 of net_rx_action algorithm). Handling time is configured to be at least one jiffy. Budget and time

basically limit the number of packets that get processed per NET_RX_SOFTIRQ handling. If there are

remaining packets in the DMA Rx Rings to be processed or handling time has expired, softirq of

NET_RX_SOFTIQ type will be raised and therefore will be shown pending in __do_softirq. Pending softirqs

will be processed by __do_softirq repeatedly up to a maximum of MAX_SOFTIRQ_RESTART (set to 10 by

default). After reaching this maximum limit and if there are still pending softirqs, __do_softirq will no longer

handle softirqs. Softirqs will be handed by ksoftirqd which is a lower priority kernel thread with a nice value of

 7

19. This will prevent starvation of user-level processes which run with a default nice priority value of 0 (which

is much higher priority than 19).

In order to prevent starvation of user processes under severely high traffic load, ksoftirqd will typically get

awakened. When ksforitqd is awakened, it is to be noted that user processes will be given more CPU share

than ksoftriqd, as ksoftriqd will be running with lower priority than user processes. User processes will

preempt ksoftirqd before the basic quantum of ksoftirqd gets exhausted. In some situations, e.g. IP forwarding,

this is not desirable as it will have a negative impact on the performance of kernel processing of received

packets, and thus degrading the overall forwarding capacity. Therefore, adjusting the priority of user processes

or ksoftirqd is required to achieve the desirable user-softirq balance.

In addition, the current default configurations of budget B and MAX_SOFTIRQ_RESTART may not be proper

for user processes. With budget B and MAX_SOFTIRQ_RESTART set to 300 and 10, respectively, a total of

3000 packets can possibly get processed by the kernel per polling period. In moderate or low-end CPU hosts,

this constitutes a major consumption of CPU cycles and thus may cause starvation to user processes at light and

normal traffic loads, i.e., way before awakening ksoftirqd. To alleviate such a problem, budget B has to be

adjusted to suit user processes. According to our experimental results (shown in Section 6 and Figure 7) for

determining a proper budget to suit the execution of a network I/O process running at the user-level, we found

that a budget of 2 or 6 will outperform the default configuration of 300 in terms of throughput and latency.

Other hosts with more emphasis on underlying protocol processing by the kernel than user processes may

require a different budget. For example a PC-based router would require a large budget. Thus, the best way

to determine the proper budget is through experimentation, as will be demonstrated in Section 6.

4. Implementation

This section describes modifications and major changes to be introduced to network device drivers to integrate

and implement both schemes of DE and Hybrid. With our implementation, the kernel code was not modified.

The changes were only made to the driver code, which was compiled as a kernel loadable module. In this

section, an adequate level of details is provided so that such changes can be easily integrated in different or

newer versions of drivers. In particular we present and discuss major changes made to BCM5752 network

drivers to support DE and Hybrid. We also discuss switching mechanism and how to experimentally identify

the proper switching point.

4.1. Driver’s Support

 8

In our implementation, we used BCM5700 network driver [14]. BCM5700 driver was used as opposed to the

default tg3 because BCM5700 source code, available from [14], was better commented and offered more

features. One of these features is the support for both non-NAPI and NAPI. We found this feature attractive to

experiment with at an early stage. A second feature is that BCM5700 offers code to disable RxInt individually

whereas tg3 disables all NIC interrupts altogether. Such an option was very useful to properly implement

NAPI. In order to understand the major changes needed to support DE and Hybrid, we first present the

sequence of function calls that are already in place to support the default NAPI. Figure 2 presents the sequence

of function calls for both interrupt and softirq handlings. Interrupt handling is part of the driver code, while

softirq handling is part of the kernel code.

Figure 2. Sequence of driver and kernel functions calls to support NAPI

At the driver level, all NIC interrupts are handled by bcm5700_interrupt() function which calls

LM_ServiceInterrupts() to read NIC’s status registers to find the cause of interruption. If the interrupt is caused

by the arrival of a new packet into the DMA Rx Ring, LM_ServiceRxInterrupt() is called to decide to process

the packet using non-NAPI or NAPI. In case of NAPI, MM_ScheduleRxPoll() is called which then calls

__netif_rx_schedule() which in turn raises a softirq of NET_RX_SOFTIRQ type to schedule polling. When

 9

control returns back to LM_ServiceRxInterrupt(), RxInt is disabled. It is to be noted that every NIC has a single

interrupt line and thus all types of interrupts that belong to a particular NIC are shared and masked during the

execution of bcm5700_interrupt() function. Therefore, it dos not matter if RxInt is disabled early on or later

during the handling of LM_ServiceRxInterrupt().

At the kernel level, NET_RX_SOFTIRQ softirq is handled by net_rx_action() which gets called by

__do_softirq() to process pending softirqs. net_rx_action() extracts a network device from poll_list and its

respective poll virtual function. For the BCM5700 driver, bcm5700_poll() function is called which in turn calls

LM_ServiceRxPoll(). These two latter functions are part of the BCM5700 driver. In LM_ServiceRxPoll(), the

descriptors of packets are dequeued from the DMA Rx Ring and inserted in a device queue

RxPacketReceivedQ for further protocol processing. LM_ServiceRxPoll() terminates when the minimum of

quota Q or budget B packets is processed or when the Ring becomes empty, as illustrated in the algorithm

shown in Figure 1. MM_IndicateRxPackets() then gets called to dequeue each packet (using pointer

manipulation) from RxPacketReceivedQ into sk_buff buffer and calls the kernel function netif_receive_skb() for

further processing. netif_receive_skb() routes packets to its respective packet handler function for protocol

processing. For IP processing, the kernel function ip_rcv() is called. Refilling of Rx DMA Ring is carried out

by LM_QueueRxPackets(). Typically refilling is not done on every poll, but rather when a group of 64 packets

is consumed. Finally it is to be noted that RxInt gets re-enabled in bcm5700_poll() for a device whose

respective Rx Ring became empty and was removed from poll_list.

Interrupt handling

Figure 3. Sequence of driver and kernel functions calls to support DE

DE Implementation. To implement DE scheme, interrupt handling has to be changed as shown in Figure 3.

The driver has to be modified so that protocol processing of all queued packets in the DMA Rx Ring is done

during LM_ServiceRxInterrupt(). Any incoming packets (while the interrupts are disabled) are DMAed quietly

to Rx Ring without incurring any interrupt overhead. This means that processing of received packets by the

 10

kernel is started immediately and executed at interrupt priority level. And this way, deferring protocol

processing of received packets using softirq is mitigated. This change is only done for RxInt, and all other

interrupts including errors and TxInt are left untouched. It is also to be noted with this change packet reception

is given more priority than packet transmission, as packet transmission remains deferred with softirq. Figure 3

shows briefly the sequence of function calls. LM_ServiceRxInterrupt() directly calls LM_ServiceRxPoll().

LM_ServiceRxPoll() terminates after all packets in Rx Ring are dequeued and inserted in RxPacketReceivedQ

for further protocol processing. LM_ServiceRxInterrupt() then calls MM_IndicateRxPackets() to dequeue the

packets into a sk_buff structure and calls netif_receive_skb() for further protocol processing. Lastly, and before

returning from interrupt handling, bcm5700_interrupt checks the NIC status register and if more packets got

DMA’d during packet processing, LM_ServiceRxInterrupt handling will be activated again. In BCM5700

driver, there is no need to specifically disable RxInt and then enable it again in interrupt handler

bcm5700_interrupt(). The interrupt handler disables all types of device interrupts at beginning of handling and

re-enables them all again just before retuning.

Overhead of DE vs. NAPI. With this implementation, it is critical to note that DE incurs far less overhead

than NAPI. First, as opposed to DE in which processing of packets is executed immediately and at interrupt

level, processing of packets in NAPI is deferred and executed at a lower priority using softirq. Second, all

softirqs are reentrant, i.e., they run with interrupts enabled and therefore can be preempted at any time to handle

a new incoming interrupt, therefore handling of a softirq may stretch due to other interrupt handling activities

in the system. Third, a softirq may also stretch considerably due to processing of other softirqs, as __do_softirq

does not handle only softirq of NET_RX_SOFTIRQ type for received packets, but also five other softirq types

which include soft timers, high and low-priority tasklets, transmission of packets, and SCSI handling. Fourth,

net_rx_action algorithm of NAPI is more computationally expensive than DE. NAPI incurs non-ignorable I/O

write latencies to disable and enable RxInt [15], and also requires enforcing upper bounds for budget, quota,

and handling time, besides the management of poll_list to provide fairness and avoid starvation. In contrast,

DE simply performs exhaustive processing of received packets.

Hybrid Implementation. Hybrid scheme operates at any given time either as DE or NAPI. This requires

maintaining the current state of operation: DE or NAPI. For this a global variable RxScheme is defined and

assigned an enumerated value of DE or NAPI. Driver functions (specifically bcm5700_interrupt,

LM_ServiceRxInterrupt, and LM_ServiceRxPoll) are instrumented to check RxScheme in order to properly

operate in either DE or NAPI. It is to be noted when Hybrid operates as NAPI, its budget has to be configured

to a value of 2. This does not require modification of the kernel’s budget netdev_budget, as budget is

configurable through the /proc file system, specifically with /proc/sys/net/core/netdev_budget. Changing

operation mode is based on the estimated traffic rate. An experimental evaluation and detailed implementation

 11

of the packet rate estimation for BCM5700 driver is given in [12]. The estimation is based on a simple packet

rate estimator which exhibits a good estimation quality in terms of accuracy, agility, and stability, and more

importantly requires minimal computational cost. Minimal cost was achieved by using shift operations and

thus avoiding CPU expensive operations of multiplication and division.

4.2. Identifying the Cliff Point and Switching Mechanism

Identifying the proper switching point is critical to achieve sustained performance at different traffic load

conditions. There are primarily two methods to experimentally identify the cliff point: internal and external

measurements. Internal measurement includes profiling and instrumentation of Linux kernel code [16] and

may involve the use of logic analyzer or oscilloscope [17]. The objective is to measure the cost of interrupt

overhead, protocol processing, and application processing. Closed-form solutions derived in [3,18] can then be

used to identify the cliff point for kernel’s protocol processing or application processing. For example, to

identify the cliff point cliffλ for kernel’s protocol processing, the following formula derived in [3] can be used:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= 141

2 r
r

cliff
µλ ,

where 1/µ is the mean time the kernel takes to process one packet and deliver it to user application. r/1 is the

mean time for interrupt handling an incoming packet. This mean time is essentially the overall interrupt cost

which includes interrupt overhead and handling.

Internal measurement is tedious and can be impractical when dealing with closed operating systems such as

Windows or Mac OS. In such a case external measurement is the best choice. With external measurement, the

host is dealt with as a black box and is subjected to various network traffic loads generated by specialized

traffic generators. Performance metrics such as throughput, latency, packet loss, and system CPU utilization are

then measured and plotted in relation to generated traffic rate. By eyeballing the curves of plotted relations, the

cliff or saturation point can be identified. The saturation point can be identified by multiple signs. It is

approximately the arrival rate at where the throughput starts to flatten off or reaches its peak, or where packet

loss or latency starts increasing sharply, or more precisely where the system CPU utilization approaches 100%.

A CPU with 100% system utilization indicates that the kernel is consuming most of the CPU power and leaving

little CPU to other tasks. For example in our experiment described later in Section 5, the CPU utilization

consumed by system and shown with Linux “top” and “mpstat” utilities approaches close to 100% when traffic

rate is around 100 Kpps. Therefore, we will use 100 Kpps as the cliff point in our implementation of the

Hybrid scheme.

 12

Both commercial and open-source traffic generators are available. Commercial traffic generators are available

from IXIA, Agilent, Spirent, Simena, and Cisco. Open-source traffic generators are not as powerful in terms of

generating traffic rate but can also suffice. We experimented with various traffic generators and found out that

kernel-based generators such as KUTE [19] and pktgen [20] can produce up to 700 Kpps using a Pentium IV

3.2 GHz with 512 MB RAM and a BCM5752 network adapter. In addition we found out experimentally that

D-ITG (which is an application-level generator) [21] can produce up to 115 Kpps using the same hardware.

With a dual-processor machine running at 3.6 GHz and 4 GB RAM, we were able to produce 235 Kpps with D-

ITG. In order to generate further more powerful traffic load using publicly available generators, it is possible

to use multiple machines to generate individual traffic, and then use a switch to aggregate these individual

traffic into a more powerful load, as was done in [22]. This works nicely for studying the performance

measurement for throughput, packet loss, but not for latency. With latency, there is a need for clock

synchronization between all generators and receiver. Unfortunately and according to our experience, publicly

available network synchronization protocols such as NTP do not provide accurate and fine-grain timing

measurements.

It is possible that repeated switchings (or oscillation) between normal interruption and NAPI can occur around

the saturation point in the presence of a traffic load that is highly fluctuating at the point of saturation. In order

to alleviate this, two thresholds for arrival rate are used around the saturation or cliff point cliffλ . Particularly,

these two threshold can be expressed by the following formulas: () clifff1clif λε ×−= 1 and () cliffcliff2 λε ×+= 1 ,

where ε is a tunable design parameter. cliff1 acts as a lower threshold and cliff2 acts as an upper threshold.

Switching from DE to NAPI only occurs when the estimated traffic arrival rate is greater than cliff2. Switching

from NAPI to DE only occurs when the estimated arrival rate is lower than cliff1. No switching takes place if

estimated arrival rate is between cliff1 and cliff2. A simulation study was conducted in [23] to determine the

proper relation of these thresholds with respect to a given arrival rate for a cliff point such that minimal

switching is achieved when generating Poisson and highly fluctuating bursty traffic with a mean rate of the

given cliff point cliffλ . Based on the reported results in [23], the least number of switchings was achieved

when 15.0=ε .

 13

Figure 4. Switching mechanism in Hybrid

A flowchart of the switching mechanism that was implemented in Linux kernel is shown in Figure 4. At

initialization, specifically in bcm5700_open(), the estimated timer is configured to fire every 8 ms and DE

scheme is set by default. Periodically on every 8 ms, the arrival rate is estimated and checked against cliff2 and

cliff1. It is possible that some packets can arrive during rate estimation, so it is important to process those

packets before the start time of next arrival or scheduled poll. When switching to DE, the network device has

to be removed from poll_list if it is already there.

5. Experimental Setup

In order to test our implementation and evaluate the performance of the three schemes (viz. DE, NAPI, and

Hybrid), we set up an experiment comprised of two Linux machines of a sender and a receiver connected with

1 Gbps Ethernet crossover cable (as shown in Figure 5). The sender has two Intel Xeon processors running at

 14

3.6 GHz with 4 GB of RAM. It has an embedded Intel 82541GI Gigabit Ethernet NIC running with the e1000

driver. The receiver is an Intel Pentium 4 processor running at 3.2 GHz with 512 MB of RAM. It has a 3COM

Broadcom NetXtreme Gigabit Ethernet card with BCM5752 controller. This NIC is running with a loadable

kernel module of the modified BCM5700 driver version 8.2.18 that implements the schemes of DE and Hybrid.

Both sender and receiver use Fedora Core 5 Linux 2.6.15. To minimize the impact of other system activities on

performance and measurement, we boot up both machines with run level 3, and we made sure that no services

are running in the background. We also disabled Ethernet link flow control. For both machines, the timer

interrupt frequency or HZ was set to 250. The timer for packet rate estimation was set to fire every two jiffies

(i.e., every 8 ms).

Figure 5. Experimental Setup

To generate traffic from the sender machine, we used the open-source D-ITG 2.4.4 generator [21]. D-ITG is a

user-level generator and requires installation of ITGSend at the sender and ITGRecv at the receiver. ITGSend

has the ability to generate different types of network traffic with defined random distribution for interarrival

times and packet sizes. For all of our generated traffic, we used UDP packets with a constant 64-byte packet

sizes and constant interarrival times. The reason we used UDP is to ensure that at the receiver we have 1:1

mapping between incoming packets and generated interrupts. This makes it easier to analyze results and source

of delays and overhead. Unlike TCP, multiple packets can be generated by sender to successfully transmitting

a single TCP packet, and thus causing multiple interrupts to be generated at the receiver. With this setup,

ITGSend was able to produce up to 235 Kpps for one flow.

6. Performance Measurements

For evaluating performance, several measurements of various metrics were taken in relation to generated traffic

load. These metrics include the average throughput, packet loss, latency, CPU availability, and interrupt

frequency. For all of experimental results reported and shown in this section, we performed three experimental

trials and final results are the average of these three trials. For each trial, we recorded the results after the

generation of a flow with a specific rate for a satisfactory duration of 30 seconds. Longer durations gave little

or no difference. The average throughput and packet loss were recorded by decoding the logs produced by

 15

ITGRecv. D-ITG provides a decoding utility called ITGDec for this purpose. Average latency is the average

round-trip time for a packet to be sent by ITGSend at the sender to ITGRecv at the receiver and returned back

by ITGRecv to ITGSend at the sender. In order to avoid clock synchronization between the sender and

receiver, we used the sender to send and receive packets. In our experiment, we did not use NTP protocol for

clock synchronization between sender and receiver, as NTP did not give acceptable synchronization. Clock

drifting was a persistent problem and required frequent synchronization. As for measuring the average CPU

availability and interrupt rate, we used the “sar” Linux utility at the receiver. There was no synchronization

between starting ITGSend and starting the measurement of “sar”. For this reason, we started “sar” manually

on the receiver after 5 seconds from starting ITGSend on the sender. “sar” also has to be terminated 5 seconds

before the termination of ITGSend flow. So for a flow duration of 30 seconds, “sar” was thus run for a

duration of 20 seconds.

Before embarking on taking performance measurement, it is imperative to find the appropriate value of the

NAPI’s budget that can yield the best performance using our hybrid scheme. As discussed in Section 3, the

default NAPI’s budget may not be appropriate and needs to be adjusted depending on what the system is

primarily utilized for. In NAPI and with the default budget of 300 and under high traffic rate, up to 3000

packets can be processed by the kernel before giving a chance (via ksoftirqd) to user-applications to run. Under

our experimental setup shown in Figure 5, we found out that ksoftirqd does not get awakened under the

maximum possible generated traffic rate by D-ITG, which is 235 Kpps. We used KUTE [19] on the sender

machine to generate a traffic of a maximum rate of 700 Kpps. Under this setup, we observed that ksoftirqd

starts being awakened at a rate of 300 Kpps. As will be concluded next from Figure 6, the default

configuration of budget 300 is huge and not appropriate for network I/O-bound applications such as ITGRecv.

a

0 50 100 150 200
0

20

40

60

80

100

Arrival Rate (Kpps)

T
hr

ou
gh

pu
t (

K
pp

s)

Budget 2
Budget 6
Budget 300

b

0 20 40 60 80 100 120
0

0.5

1

1.5

Arrival Rate (Kpps)

La
te

nc
y

(m
s)

Budget 2
Budget 6
Budget 300

Figure 6. Impact of NAPI Budget on throughput (a), and latency (b)

 16

Figure 6 compares NAPI performance in terms of average throughput and latency for three different values of

budget (viz. 2, 6, and 300). The average throughput is recorded by ITGRecv at the receiver. The latency is the

average round-trip time recorded by ITGSend at the sender. In measuring the latency, the sender was able to

generate a traffic rate of up to 120 Kpps. This is due to the fact that sender processing has doubled as it is not

only generating packets but also receiving packets from ITGRecv at the receiver. Figure 6(a) shows that with a

budget of 300 and 6, the throughput starts to fall; while a budget of 2 gives a more acceptable throughput. The

reason for this is that a smaller budget would give more CPU time for D-ITG to process packets as it will allow

ksoftirqd to be awakened earlier, i.e., after reaching a maximum of 20 packets are processed in one polling

period as opposed to 3000 packets in the default configuration. It is to be noted that at around 170 Kpps the

throughput with a budget of 6 starts to improve. This is because ksoftirqd gets awakened at this point after

processing a maximum of 60 packets in one polling period, and thus allocating more CPU to ITGRecv. Figure

6(b) shows that a budget of 2 results in a relatively higher latency at high rates. Budgets of 6 and 300 give

comparable results at low and high rates. With the sender’s limited generated rate of up to 120 Kpps, a budget

of 6 allowed the kernel to process all the packets queued in DMA ring in one polling period. In conclusion a

budget of 2 gives a reasonable and acceptable compromise for performance in terms of throughput and latency

for a network I/O-bound process such as ITGRecv. For our hybrid scheme, we will use a budget of 2 for all

measurements.

 17

a

0 50 100 150 200 250
0

20

40

60

80

100

Arrival Rate (Kpps)

T
hr

ou
gh

pu
t (

K
pp

s)

HYBRID
DE
NAPI

b

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

Arrival Rate (Kpps)

P
ac

ke
t L

os
s

(%
)

HYBRID
DE
NAPI

c

0 20 40 60 80 100 120
0

0.5

1.0

1.5

Arrival Rate(Kpps)

La
te

nc
y

(m
s)

HYBRID
DE
NAPI

d

0 500 1000 1500 2000 2500
130

135

140

145

150

155

160

Arrival Rate (pps)

La
te

nc
y

(µ
s)

HYBRID
DE
NAPI

e

0 50 100 150 200 250
0

10

20

30

40

50

Arrival Rate (Kpps)

In
te

rr
up

t R
at

e
 (

R
xI

nt
s/

s
in

 th
ou

sa
nd

s) HYBRID
DE
NAPI

f

0 50 100 150
0

20

40

60

80

100

Arrival Rate (Kpps)

C
P

U
 A

va
ila

bi
lit

y
(%

)

HYBRID
DE
NAPI

Figure 7. Performance measurements in relation to incoming traffic rate

 18

Next, we study and compare experimental performance results of the schemes of Hybrid, DE, and NAPI.

Performance is reported as shown in Figure 7 for a number of important metrics which include throughput,

packet loss, latency, interrupt rate, and CPU availability. In terms of throughput and packet loss (exhibited in

Figure 7(a) and (b)), Hybrid outperforms both NAPI and DE. At heavy load, Hybrid gives more acceptable and

sustainable throughput; whereas the throughput of NAPI and DE starts to degrade as traffic load increases.

This is primarily due to the fact that Hybrid, after reaching cliff2 (which is set to 115 Kpps), switches to NAPI

with a budget of 2, and thereby giving ITGRecv adequate CPU time to process packets. In DE and NAPI, the

residual CPU time for ITGRecv starts to diminish gradually with higher traffic rate. This shows that adjusting

the budget is critical. It is also depicted that DE gives more throughput and less packet loss than NAPI. As

noted in Section 4.1, the main reason for this is that DE runs at interrupt level and incurs far less overhead than

NAPI.

Figure 7(c) exhibits the average round-trip latency recorded by ITGSend with respect to the generated traffic

rate. The figure shows that Hybrid and DE outperform NAPI because NAPI incurs more overhead. Also both

Hybrid and DE give comparable results up to a rate of around 115 Kpps (which is cliff2). Hybrid latency

approaches that of NAPI beyond 115 Kpps as Hybrid switches to operate in NAPI. Figure 7(d), which is a

zoom-in of Figure 7(c) at low traffic rate, shows that at severely low rate of less than 200 pps, the latency for

all schemes are relatively large, with NAPI exhibiting the largest latency. The reason for this is that an

overhead (from interrupt or softirq scheduling) is incurred separately for almost every incoming packet. As the

arrival rate increases, the incurred overhead is aggregated for multiple packets. At very low rate, NAPI

exhibits the most overhead as noted in Section 4.1. Lastly, it is observed in both figures that the overhead

involved in estimating traffic rate in Hybrid did not introduce a noticeable additional delay when Hybrid

operates in DE of up to a rate of 115 Kpps. This was expected as the implementation of rate estimation was

performed every 8 ms and its code uses shift operations to avoid CPU expensive operations of multiplication

and division.

Figure 7(e) compares the three schemes in terms of mitigating the interrupt rate. It is observed that under a rate

below 50 Kpps, the interrupt rate increases linearly in relation with the arrival rate for all three schemes.

Shortly after that the interrupt rate drops significantly, and then it starts increasing again. This is in line with

the expected behavior. Below 50 Kpps, the interrupt rate is low and host is able to finish interrupt handling and

processing of packets before the next interrupt. The period of disabling and enabling RxInts (i.e., interrupt

masking period) for all of the three schemes finishes before the occurrence of next interrupt. As incoming rate

increases beyond 50 Kpps, multiple packet arrivals or interrupts occur within this masking period, and thus

showing a significant drop of interrupt rate shortly after 50 Kpps. After 60 Kpps the interrupt rate starts

increasing again but very slowly with respect to the arrival rate. There is still interrupt masking occurring;

 19

however, the masking period is not stretching considerably with higher rate. The CPU still has the power to

handle and process packets relatively quickly. For Hybrid, at around 130 Kpps, the interrupt rate gradually

drops to zero. This is due to the fact that masking period for Hybrid stretches considerably with such a high

rate, and therefore forces Hybrid to operate in NAPI with the limited budget of 2. Under such high rate, NAPI

with budget of 2 would not be able to exhaust all packets in one polling period and never re-enable RxInt. At

severely high rate beyond 235 Kpps, it is expected that the interrupt rate in both NAPI and DE would decrease

as the masking period starts stretching more in both. As NAPI polling is not exhaustive, it is expected that the

decrease of interrupt rate under NAPI will occur more rapidly than DE.

The CPU availability is highly affected by the interrupt rate. This is clearly demonstrated in Figure 7(f) where

it shows a comparison of the three schemes in terms of the percentage of residual CPU power or bandwidth left

after processing packets by both Kernel and ITGRecv. As shown, NAPI results in the least residual CPU

bandwidth. This is expected as noted in Section 4.1 that NAPI requires the most overhead. It is also shown

that curves of DE and Hybrid are comparable with no noticeable impact due to rate estimation. It is observed

that at around incoming rate of 50-70 Kpps, the CPU availability does not increase linearly (and in fact is more

in NAPI at 60 Kpps than 50Kpps). The reason for this is that the corresponding interrupt rate at rate 50 Kpps

(as shown in Figure 7(e)) falls considerably, and therefore results in less overhead. The figure shows that CPU

availability at 100 Kpps approaches zero for all schemes. At this point the CPU is fully consumed by both

kernel processing as well as ITGRecv.

a

0 2000 4000 6000 8000
110

115

120

125

130

135

Arrival Rate(pps)

La
te

nc
y

(µ
s)

HYBRID
DE
NAPI

b

0 200 400 600 800 1000
110

115

120

125

130

135

Arrival Rate(pps)

La
te

nc
y

(µ
s)

HYBRID
DE
NAPI

Figure 8. Average latency reported by “ping” utility

Finally, we investigate the performance of the three schemes with respect to processing received packets only

at the kernel level with no involvement of user processes. We use “ping” utility. At the sender “ping” issues

ICMP echo request packets which get processed by ICMP protocol at the kernel level and then transmitted back

 20

to the sender. The same experimental setup was used as shown in Figure 5. The sender machine was

configured to issue “ping” with different arrival rates for a duration of 30 seconds for each trial. The results

shown in Figure 8 are the average of three trials. We excluded outliers particularly those observed at the

beginning of the flow due to ARP caching. We were able to obtain a maximum generate traffic of around 8

Kpps with “ping –f” (a.k.a. ping flooding). We were not able to generate traffic rate with fine granularity. This

was a shortcoming of “ping” utility. Figure 8 confirms that DE and Hybrid outperform the default NAPI.

Figure 8(b) is a zoom-in version of Figure 8(a). As was the case in Figure 7(d), Hybrid exhibits slightly more

delay than DE. This is due to the overhead introduced by rate estimation in Hybrid. Additionally, the shape of

three curves of Figure 8 are very similar to those of Figure 7(d), showing high latency at extremely low packet

rate.

7. Conclusion

We presented and discussed major changes required to implement a hybrid interrupt-handling scheme in the

latest version of Linux kernel 2.6.15. We also identified and addressed important implementation issues related

to adjusting the NAPI budget and also determining the cliff or saturation point. It was demonstrated that the

default configurations of NAPI were not suitable for network I/O applications. We proved experimentally that

the Hybrid scheme can improve the performance of network I/O applications under low and high traffic rate.

We measured and compared the performance of DE, NAPI, and Hybrid schemes in terms of throughput, packet

loss, latency, and CPU availability. The Hybrid scheme clearly shows noticeable performance gain for general-

purpose network desktops or servers running network I/O-bound applications as that of ITGRecv. Such gain

can also be achieved for today’s general-purpose servers running critical and popular network I/O applications

such as web, IRC, database transactions, networked data acquisition, network intrusion detection and

prevention, deep-packet analysis, packet logging and monitoring, etc. Also Hybrid scheme has the potential of

improving the performance of general-purpose servers configured as NAT/firewalls or routers. This was

demonstrated briefly using “ping” utility, but requires more thorough testing. To accomplish this, we plan to

evaluate experimentally the performance of Hybrid for hosts configured for IP-forwarding. The measurements

will be conducted using IXIA traffic generator which is a more powerful and precise traffic generator and

analyzer. We also plan to extend the implementation of Hybrid and evaluate its performance for Linux hosts

with a quad-core processor and multiple network interfaces.

Acknowledgements

We acknowledge the support of King Fahd University of Petroleum and Minerals in completion of this work.
This work has been funded under Project #INT-383. We are also very thankful to Robert Olsson and Jamal
Salim Hadi for their valuable replies and comments to some of the issues faced throughout this work.

 21

References

[1] K. Ramakrishnan, “Performance Consideration in Designing Network Interfaces,” IEEE Journal on Selected Areas in

Communications, vol. 11, no. 2, February 1993, pp. 203-219.

[2] J. Mogul, and K. Ramakrishnan, “Eliminating Receive Livelock in an Interrupt-Driven Kernel,” ACM Trans.

Computer Systems, vol. 15, no. 3, August 1997, pp. 217-252.

[3] Salah, K., El-Badawi, K., and Haidari, F., “Performance Analysis and Comparison of Interrupt-Handling Schemes in

Gigabit Networks,” International Journal of Computer Communications”, Elsevier Science, Vol. 30(17) (2007), pp.
3425-3441.

[4] K. Salah “To Coalesce or Not to Coalesce”, International Journal of Electronics and Communications (AEU), vol. 61,

no. 4, 2007, pp. 215-225.

[5] C. Dovrolis, B. Thayer, and P. Ramanathan, “HIP: Hybrid Interrupt-Polling for the Network Interface,” ACM

Operating Systems Reviews, vol. 35, October 2001, pp. 50-60.

[6] J. H. Salim, “Beyond Softnet,” Proceedings of the 5th Annual Linux Showcase and Conference, November 2001, pp

165-172

[7] L. Deri, “Improving Passive Packet Capture: Beyond Device Polling,” Proceedings of the 4th International System

Administration and Network Engineering Conference, Amsterdam, September 2004.

[8] O. Maquelin, G. R. Gao, H. J. Hum, K. G. Theobalk, and X. Tian, “Polling Watchdog: Combining Polling and

Interrupts for Efficient Message Handling,” Proceedings of the 23rd Annual International Symposium on Computer
Architecture, Philadelphia, PA, 1996, pp. 178-188.

[9] X. Chang, J. Muppala, P. Zou, and X. Li, “A Robust Device Hybrid Scheme to Improve System Performance in

Gigabit Ethernet Networks”, Proceedings of the 32nd IEEE Conference on Local Computer Networks, Dublin,
Ireland, October 15-18, 2007, pp. 444-451.

[10] X. Chang, J. Muppala, W. Kong, P. Zou, X. Li, and Z. Zheng, “A Queue-based Adaptive Polling Scheme to Improve

System Performance in Gigabit Ethernet Networks”, Proceedings of the 26th IEEE International Conference on
Performance, Computing, and Communications Conference (IPCCC 2007), New Orleans, Louisiana, April 11-13,
2007, pp. 117-124.

[11] K. Salah and F. Qahtan, “Experimental Performance Evaluation of a Hybrid Packet Reception Scheme for Linux

Networking Subsystem,” Accepted for publications in the 5th IEEE International Conference on Innovations in
Information Technology, 2008, Al Ain, UAE, pp. 1-5.

[12] K. Salah, F. Haidari, A. Bahjat, and A. Mana, “Implementation and Experimental Evaluation of a Simple Packet Rate

Estimator”, International Journal of Electronics and Communications (AEU), Elsevier Science, In Press.

[13] D. Bovet and M. Cesati, “Understanding the Linux Kernel,” O’Riley Press, 3rd Edition, November 2005.

[14] “3Com® 10/100/1000 PCI-X Server Network Interface Card,” Available from

ftp://ftp.3com.com/pub/nic/3c996/linux-8.2.18.zip

[15] J. Salim, “When NAPI Comes to Town,” Proceedings of Linux 2005 Conference, Swansea, U.K., August 2005.

[16] B. Moore, T. Slabach, and L. Schaelicke, “Profiling Interrupt Handler Performance through Kernel Instrumentation,”

Proceedings of the IEEE 21st International Conference on Computer Design, Los Alamitos, California, October 13-15,
2003, pp. 156-163.

 22

[17] R. Hughes-Jones, S. Dallison, G. Fairey, P. Clarke and I. Bridge, “Performance Measurements on Gigabit Ethernet
NICs and Server Quality Motherboards”, Proceedings of the 1st International Workshop on Protocols for Fast Long-
Distance Networks (PFLDnet 2003), Geneva, Switzerland, February 2003.

[18] K. Salah, “Modeling and Analysis of Application Throughput in Gigabit Networks,” International Journal of

Computers and Their Applications, International Journal of Computers and Their Applications, ISCA Publication,
Vol. 12(1) (2005), pp. 44-55.

[19] S. Zander, D. Kennedy, and G. Armitage, “KUTE – A High Performance Kernel-based UDP Traffic Generator,”

CAIA Technical Report 050118A, January 2005. Available from http://caia.swin.edu.au/genius/tools/kute/

[20] R. Olsson, “Pktgen the Linux Packet Generator,” Proceedings of Linux Symposium, Ottawa, Canada, 2005.

[21] D. Emma, A. Pescape, and G. Ventre, “D-ITG, Distributed Internet Traffic Generator”, Available from

http://www.grid.unina.it/software/ITG

[22] C. Murta and M. Jonack, “Evaluating Livelock Control Mechanism in a Gigabit Network,” Proceedings of 15th IEEE

Computer Communications and Networks (ICCCN 2006), Arlington, Virginia, October 2006, pp. 40-45.

[23] F. Haidari., “Impact of Bursty Traffic on the Performance of Popular Interrupt Handling Schemes for Gigabit-

Network Hosts,” M.S. Thesis, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, May 2007.

