
A Combinatorial Algorithm for the Maximum Lifetime Data

Gathering with Aggregation Problem in Sensor Networks

Konstantinos Kalpakis∗,a, Shilang Tanga

aComputer Science & Electrical Engineering Department, University of Maryland Baltimore
County. 1000 Hilltop Circle, Baltimore, MD 21250, USA

Abstract

Performing tasks energy efficiently in a wireless sensor network (WSN) is a critical
issue for the successful deployment and operation of such networks. Gathering
data from all the sensors to a base station, especially with in–network aggregation,
is an important problem that has received a lot of attention recently.

The Maximum Lifetime Data Gathering with Aggregation (MLDA) prob-
lem deals with maximizing the system lifetime T so that we can perform T rounds
of data gathering with in–network aggregation, given the initial available energy of
the sensors. A solution of value T to the MLDA problem consists of a collection
of aggregation trees together with the number of rounds each such tree should be
used in order to achieve lifetime T .

We describe a combinatorial iterative algorithm for finding an optimal con-
tinuous solution to the MLDA problem that consists of up to n−1 aggregation trees
and achieves lifetime To, which depends on the network topology and initial energy
available at the sensors. We obtain an α–approximate optimal integral solution by
simply rounding down the optimal continuous solution, where α = (To−n+1)/To.
Since in practice To � n, α ≈ 1. We get asymptotically optimal integral solutions
to the MLDA problem whenever the optimal continuous solution is ω(n). Further-
more, we demonstrate the efficiency and effectiveness of the proposed algorithm
via extensive experimental results.

Key words: wireless sensor networks, lifetime maximization, combinatorial
algorithms, linear programming

1. Introduction

Recent technological advances have led to the development of wireless net-
works of micro–sensors [17, 25, 31]. Such networks are expected to consist of numer-
ous inexpensive micro–sensors, readily deployable in various physical environments
to collect useful information (e.g. seismic, acoustic, medical and surveillance data)
in a robust and autonomous manner. However, there are several obstacles that

∗Corresponding author.
Email addresses: kalpakis@csee.umbc.edu (Konstantinos Kalpakis),

stang2@csee.umbc.edu (Shilang Tang)

Preprint submitted to Computer Communications May 30, 2009



need to be overcome before this vision becomes a reality – see Akyildiz et al [1]
for a comprehensive survey of issues arising in wireless sensor networks. These ob-
stacles are due to the limited energy, computing capabilities, and communication
resources available to the sensors. Often, replenishing the energy of the sensors
by replacing their batteries is cost prohibitive or even infeasible. Conserving the
sensor energy, so as to maximize the system’s lifetime, has been one of the key
challenges.

In this paper we consider the problem of Maximum Lifetime Data Gathering
with in-network Aggregation (MLDA) in wireless sensor networks. This problem
deals with maximizing the system lifetime T so that we can perform T rounds of
data gathering with in–network aggregation, given the initial available energy of
the sensors. A solution of value T to the MLDA problem consists of a collection of
aggregation trees together with the number of rounds each such tree should be used
in order to achieve lifetime T . The notion of a data aggregation tree is introduced
in [18, 9] to specify how data are gathered and aggregated from the sensors to the
base station, which is a directed tree in which every sensor has a directed path
towards the base station.

Data gathering with in-network data aggregation is a useful paradigm for
increasing the system’s lifetime [15, 23, 24]. In–network aggregation allows sensors
to aggregate multiple input data packets into one output data packet; often, in each
round, a sensor aggregates all the data packets it receives with its own data packet.
In-network aggregation is most useful in computing for each round various easily
computable and composable (i.e. suitable for in–network aggregation) statistical
descriptors of the sensor measurements, such as the minimum, maximum, average,
variance, approximate histograms, uniform fixed-size samples, measurements of
high frequency, and various sketches [10, 13, 30, 34].

Although the MLDA problem is NP–hard, heuristics in [18] show that
(1) tight approximate solutions to the network design problem can be obtained
in reasonable time for small to medium–size networks, and (2) a collection of
aggregation trees, together with the number of rounds each such tree is to be used
in order to achieve lifetime T , can be determined in polynomial–time.

Based on the formulation in [9], we present a simple and efficient combina-
torial iterative algorithm for the MLDA problem, while implicitly considering all
the up to nn−2 aggregation trees for a WSN with n nodes. Our algorithm finds
optimal solutions of small number of aggregation trees, which is desired since the
sensor nodes are computation and communication resources limited. Our algo-
rithm is based on the Revised Simplex method with a column generation scheme.
In summary, our original contributions are as follows:

• provide an efficient combinatorial iterative algorithm (called RSM–MLDA)
for finding an optimal continuous solution to the MLDA problem. The
solution consists of at most n− 1 aggregation trees for a WSN with n nodes.

• find α–approximate integral solutions to the MLDA problem for a WSN
with n nodes and optimal continuous lifetime To, where α = (To−n+1)/To.
Such solutions are computed from rounding down solutions obtained by the
RSM–MLDA algorithm. Since in practice To � n, α ≈ 1.

2



• provide an upper bound on the system lifetime, which is easily computable
during each iteration of the RSM–MLDA algorithm. This upper bound
enables us to estimate a lower bound on the approximate ratio of the solution
at each iteration of RSM–MLDA, and hence terminate early if that ratio
exceeds a desired threshold.

• provide sensitivity analysis of the solution for bounding the change of data
gathering energy budget of each sensor. The energy variability bound can be
used by sensors to set up or adjust their energy spending profile.

Moreover, we conduct an extensive experimental evaluation of the proposed ap-
proach illuminating its practicability.

The rest of the paper is organized as follows. In section 2 we give the
network model and the notations used in this paper. We describe our combinatorial
algorithm for the MLDA problem in section 3. Estimating an upper bound on the
optimal solution of the MLDA problem is given in section 3.3. We analyze the
sensitivity of the optimal solutions to bound the changes of data gathering energy
budget of the sensors in section 4. Experimental results are provided in section 5.
We discuss related work in section 6, and conclude in section 7.

2. Preliminaries

Consider a wireless sensor network (WSN) with n nodes. One node, denoted
b, is designated as the base station, with the remaining nodes being sensors. Sensors
are assumed to have limited non–replenishable energy while the base station has no
energy limitations. Time is discrete, and at each time period, we are interested in
gathering the data from all the sensors to make them available at the base station.
During data gathering, in–network aggregation is assumed, i.e. any number of
incoming data packets at a node can be aggregated into a single outgoing data
packet. 1 Without loss of generality (w.l.o.g.), we assume that data packets have
fixed size. The system lifetime T is the earliest time at which one or more sensors
deplete their available energy. 2

Given a graph G, we denote its vertex and edge sets with V [G] and E[G]
respectively. For brevity, we often write v ∈ G instead of v ∈ V [G] for a vertex
v, and ij ∈ G instead of ij ∈ E[G] for an edge ij. A subset of vertices S ⊆ V [G]
induces the subgraph G[S] = (S, E[S]) of G where E[S] = E[G]∩S×S. A subset
E ′ ⊆ E of edges induces the subgraph G[E ′] = (V, E ′) of G.

The topology of the wireless sensor network is modeled by a directed graph
(digraph) G, with V [G] = {1, 2, . . . , n} and E[G] ⊆ V × V . There exists an edge
ij ∈ E[G] whenever i can successfully send a packet to j. Let dij be the distance

1Incoming and outgoing packets carry concise fixed–size summaries of the sensor data.
2Or more precisely, the system lifetime T is the earliest time at which one or more sensors

deplete their energy budgeted for data gathering communications. In this work, we assume
each sensor has an energy spending profile and has made such a budget. It is a more realistic
assumption than that data gathering communications can use all the energy of the sensors, and
has no impact on the applicability of our algorithm.

3



between i and j. Let τij be the energy consumed by node i in order to transmit a
single packet to node j, and let rj be the energy needed to receive such a packet
at node j. Often τij is monotonically non–decreasing with the Euclidean distance
between nodes i and j, i.e. the same or more energy is required to transmit a
packet at longer distances. Let εi be the energy available at node i. We assume,
w.l.o.g., that εb = ∞, rb = 0, τbi = 0, ∀i ∈ V . For simplicity we consider sensor
networks with a single base station. Sensor networks with multiple base stations
can be easily handled as follows. Introduce a new node, b′, to serve as the new
single base station, and then append to G, for each current base station i, the new
edge ib′ with τib′ = 0.

Given a digraph G, a branching T rooted at node b ∈ V [G] is a subgraph
of G such that each node has a directed path to b in T , and its undirected version
is a tree spanning all the nodes in V [G]. In the context of WSNs, we refer to such
a branching T as an aggregation tree since it indicates how to gather data from all
the sensors to the base station with in–network aggregation.

We denote with I = 〈G, b, τ , r, ε 〉 an instance of the MLDA problem for a
a wireless sensor network G with base station b, node transmit and receive energy
costs τ and r, and node energy budget ε. A solution to I with lifetime T consists
of a collection of aggregation trees T together with the number of rounds each tree
is to be used to achieve the maximum lifetime T (which is obviously equal to the
total number of rounds).

Given an instance I of an optimization problem, let opt(I) and sol(I)
be an optimal and a feasible solution to I, respectively. For brevity, opt(I) and
sol(I) will also indicate the value of the corresponding solution. The relative
error of a solution sol(I) is |opt(I)− sol(I)| /opt(I) and its approximation
ratio is sol(I)/opt(I). We refer to continuous (integral) solutions to instances of
optimization problems, whenever fractional values for their unknowns are allowed
(not allowed).

We denote vectors and matrices with lower and upper case bold letters, e.g.
xn×1 and An×m is an n–dimensional vector and an n×m matrix respectively. For
brevity we omit the vector and matrix dimensions when they are clear from the
context. Given an n×m matrix An×m and two index sequences I ⊆ {1, 2, . . . , n}
and J ⊆ {1, 2, . . . , m}, we denote by AI,J the sub–matrix X|I|×|J | = (xij) of A
where xij = aIi,Jj

, and by AJ the sub–matrix Xn×|J | = (xij) of A, where xij = aiJj
.

For brevity, we indicate the ith column of A with Ai. We denote the transpose of
a matrix A with AT . The support of a vector x is defined as I(x) = {i : xi 
= 0}.
Given two vectors x,y ∈ R

m, we say that x dominates y and write x ≥ y, if
xi ≥ yi for i = 1, 2, . . . , m. We say that x is lexicographically larger (smaller) than
y if the smallest index non–zero component of x− y is positive (negative).

3. A Combinatorial Algorithm for the MLDA Problem

In this section we describe our combinatorial algorithm for the MLDA
problem using the same LP formulation used in [9], while considering all of the up
to nn−2 aggregation trees of a WSN with n nodes. Our algorithm is based on the

4



Revised Simplex method with the lexico–min rule. 3

Consider an instance I = 〈G, b, τ , r, ε 〉 of the MLDA problem. For brevity,
let V = V [G] and E = E[G] be the set of vertices and edges of G respectively.
Let T be the set of all aggregation trees (branchings rooted at b) for the instance
I. A feasible solution to I can be described by a collection of aggregation trees
(or branchings) Ti ∈ T together with the number of rounds xi each such tree is
used. There is a natural bijection between the branchings of G which are rooted at
b and the up to |V ||V |−2 labeled spanning trees of G: direct all edges of a labeled
spanning tree towards b to get the corresponding branching. Hence, the size of
T is at most |V ||V |−2 (since G may not be the complete graph). Let µj(Ti) be
the energy consumed by node j when performing data gathering with in–network
aggregation using the branching Ti ∈ T .

A continuous (integral) solution to the MLDA problem instance I can be
found by solving the following linear (mixed integer) program

LP:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
∑

Ti∈T xi such that
sj +

∑
Ti∈T xi · µj(Ti) = εj , ∀j ∈ V

xi ≥ 0, ∀Ti ∈ T
sj ≥ 0, ∀j ∈ V

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1)

Extend x with n components, such that xm+i is identified with the ith slack variable
si, where m = |T |. Define the n × (m + n) matrix A so that Ai = µ(Ti), i =
1, 2, . . . , m, and Am+i is the ith column of the n × n identity matrix In, i =
1, 2, . . . , n. Let c ∈ R

m+n have its first m components equal to −1, and with all
the rest equal to 0. Let b ∈ R

n be equal to the vector of initial energies ε of the
sensors budgeted for data gathering communications. The LP above is now in the
standard form

LP:

⎧⎪⎨
⎪⎩

min cT · x such that
A · x = b,
x ≥ 0,

⎫⎪⎬
⎪⎭ (2)

The value cT · x of each feasible solution x is the achieved system lifetime. An
initial feasible basis for LP is B = 〈m + 1, m + 2, . . . , m + n 〉, with corresponding
bfs xB = b = ε. In our algorithm for solving the LP above, we explicitly store up
to n columns of A at any point in time. All other columns of A will be generated
on demand as needed.

Consider a feasible basis B of the the LP above. The shadow prices vector
for B is πT = cB ·A−1

B . We define the unit energy price for a node j to be equal to
φj = −πj , and the energy cost of a branching Tk ∈ T to be equal to

∑
j∈V φjµj(Tk).

Observe that the energy cost of Tk is equal to

∑
j∈V

φj · µj(Tk) =
∑
j∈V

φj

⎛
⎝ ∑

ji∈Tk

τji +
∑

ij∈Tk

rj

⎞
⎠

=
∑

ij∈Tk

(φiτij + φjrj)

3We provide an overview of some concepts in linear programming used by this section in
Appendix A. The reader is referred to a text such as [20, 4] for further details.

5



=
∑

ij∈Tk

wij = w(Tk), (3)

where we define the weight of an edge ij ∈ E to be equal to wij = φiτij + φjrj.

Consider now a non–basic column Ak corresponding to a branching Tk ∈ T .
The relative cost of Ak is

c̄k = ck − πT · µ(Tk)

= −1− πT · µ(Tk) = w(Tk)− 1. (4)

Column Ak may enter the current basis B if its relative cost is negative. Hence,
the branching Tk is a candidate to enter B if its energy cost w(Tk) is less than 1. 4

Therefore, it is sufficient to find a branching Tk ∈ T with minimum energy cost,
and if its cost is < 1, then Tk enters B, otherwise, the algorithm has found an
optimal basis and it terminates. Upon finding such a branching Tk, the variable xk

enters the basis B, and a basic column Al is chosen to leave B using the lexico–min
rule. The basic column Al corresponds to the branching TB(l), if B(l) ≤ m, or to
the slack variable sB(l)−m otherwise. 5

The complete description of our iterative RSM–MLDA algorithm for find-
ing a continuous optimal solution to the MLDA problem is given in Algorithm 1.
Our algorithm finds minimum weight branchings in a digraph using an algorithm
given in section 3.2 below. The correctness of our algorithm follows from the discus-
sion above and the properties of the Revised Simplex method with the lexico–min
rule. The memory requirements of our algorithm is O(V 2). The worst–case run-
ning time of each iteration of our algorithm is bounded as follows: O(V E +V 2) for
finding a minimum weight branching, O(V 3) to invert the matrix D, and O(V 2)
total time for all other operations, for a grand total of O(V 3) worst–case running
time per iteration. The running time can be reduced to O(V E + V 2) by utilizing
the matrix–inversion lemma to update D−1 after each pivoting step in O(V 2) time
instead of recomputing D−1 each time from scratch.

3.1. Getting α–approximate Integral Solutions

Consider an instance I = 〈G, b, τ , r, ε 〉 of the MLDA problem and a con-
tinuous optimal basic solution x with lifetime T , computed by the RSM–MLDA
algorithm. Since the support of x has size at most |V [G]| and the slack variable
that corresponds to b is always basic, the number of distinct aggregation trees in
the continuous optimal bfs is ≤ |V [G]|−1. By rounding down the components of x,
we get an integral solution to I with lifetime ≥ T−|V [G]|+1, i.e. we get an integral
solution to MLDA which is optimal within a factor of α = (T −|V [G]|+1)/T . For
example, if T = 1000 and |V [G]| = 50, we get an integral solution which is optimal
within a factor of 95%. Whenever T = Θ(ε) = ω(|V [G]|), we find asymptotically
optimal integral solutions to the MLDA problem.

4The energy cost of the branching that corresponds to a basic column is equal to 1.
5The slack variable xm+b never exits the basis, since εb > 0 and µb(Ti) = 0 for all Ti ∈ T .

6



Algorithm 1 The RSM–MLDA algorithm for finding an optimal continuous
solution to the MLDA problem.

Input: MLDA instance I = 〈G, b, τ , r, ε 〉
Output: maximum lifetime T , together with at most |V | − 1 branchings rooted

at b and their #rounds
// initialize

1: D←− identity matrix of order |V |
2: let di denote the ith row of D
3: for each 1 ≤ i ≤ |V | do
4: branching[i]←− null
5: rounds[i]←− 0
6: c[i]←− 0

// iterate
7: for at most |V ||V −2| iterations do
8: φ←− −c ·D−1 and x←− D−1 · ε
9: for each edge ij ∈ E do

10: wij ←− φiτij + φjrj

// find candidate branchings to enter and leave the current basis
11: Tk ←− GetMWB (G, b,w)
12: if w(Tk) ≥ 1 then
13: break
14: u←− D−1 · µ(Tk)
15: if the support I(u) is empty then
16: return instance is unbounded
17: l ←− arg lexico–min{[xi,di]/ui : i ∈ I(u)}
18: branching[l]←− Tk

19: Dl ←− µ(Tk)
20: c[l]←− −1

// update the rounds for each branching in the basis
21: rounds←− D−1ε
22: for 1 ≤ i ≤ |V | and branching[i] = null do
23: rounds[i]←− 0

// return optimal solution
24: T ←− sum of all rounds[i]
25: return 〈 T, rounds, branching 〉

7



3.2. Computing Minimum Weight Branchings

We turn our attention to finding a minimum weight branching for a digraph
G = (V, E) rooted at a node r ∈ V and with edge weights w : E −→ R. Tar-
jan [36] provides an more efficient algorithm for the minimum weight branching
for a digraph G whose running time is O(min{E log V, V 2}). We provide a sim-
ple, but slower, algorithm whose detailed description is given in Algorithm 2. The
algorithm is an instance of the local–ratio algorithm design paradigm [3]. Cor-
rectness of the algorithm can be shown by induction on the number of iterations
of the outer–loop, and using the following observation. For each iteration and
each strongly connected component (SCC) Gi found during that iteration, any
minimum weight branching must use an edge leaving each such Gi that does not
contain the root. Since each iteration of the outer–loop takes O(V + E) time, and
the number of iterations is at most |V |, the worst–case running time of GetMWB
is O(V 2 + V E) = O(V 3). Its total memory requirements is O(V 2).

Algorithm 2 The GetMWB algorithm for finding a minimum weight branching
rooted at r.
Input: 〈G = (V, E), r,w 〉
Output: minimum weight branching T rooted at r
1: while at most |V | iterations do
2: let Eo = { e ∈ E : we = 0}
3: let Go = (V, Eo)
4: let T be the transpose of a BFS tree of GT

o rooted at r
5: if T spans all the nodes in V then
6: return T
7: for each SCC Gi = (Vi, Ei) of Go do
8: ∂ ←− E ∩ Vi × Vi

9: θ ←− min{we : e ∈ ∂}
10: for each e ∈ ∂ do
11: we ←− we − θ
12: return no branching exists

3.3. An Upper Bound on the Lifetime

We compute an upper bound on the lifetime during each iteration of the
RSM–MLDA algorithm using duality theory of linear programming. Consider an
instance 〈G, b, τ , r, ε 〉 of the MLDA problem, a convenient way to write a primal
linear program equivalent to the one in (1) is⎧⎪⎨

⎪⎩
max1T · x such that
A · x ≤ ε,
x ≥ 0, x ∈ R

|T |

⎫⎪⎬
⎪⎭ (5)

where the matrix A has as columns the vectors µ(Tk), for all branching Tk ∈ T ,
and T is the set of all branchings of G rooted at b. The dual of this linear program
is ⎧⎪⎨

⎪⎩
min εT · y such that
AT · y ≥ 1,
y ≥ 0, y ∈ R

|V |

⎫⎪⎬
⎪⎭ (6)

8



Observe that both primal and dual linear programs above are feasible, which im-
plies that strong duality holds. Consider a pair of feasible solutions x and y to the
linear programs in (5) and (6). Strong duality implies that

1T · x ≤ εT · y (7)

with equality when both x and y are respectively optimal.

Algorithm 3 The GetUB procedure for computing an upper bound on the system
lifetime.
Input: MLDA instance 〈G, b, τ , r, ε 〉 and energy prices φ
Output: upper bound on the system lifetime.
1: z←− max{−φV −b, 0}
2: for each edge ij ∈ E do
3: wij ←− ziτij + zjrj

4: Tk ←− GetMWB (G, b,w)
5: y←− z/w(Tk)
6: θ←− εT · y
7: return θ

In Algorithm 3, we provide the detailed description of the GetUB algo-
rithm for computing an upper bound on the lifetime of the given MLDA instance
and node energy prices φ ∈ R

|V |. Recall that the shadow prices for the constraints
of the linear program in (5) correspond to the negated energy prices of the nodes.
Let z = max{−φ, 0}. Consider the edge weight function w : E −→ R that corre-
sponds to z, i.e. wij = ziτij + zjrj for each edge ij ∈ E. Let Tk ∈ T be a minimum
weight branching for the edge weights w. Observe that each row of AT · z is equal
to the energy cost of the corresponding branching, with energy prices given by z,
which in turn is equal to the weight of the same branchings under the edge weights
w. Therefore,

AT · z ≥ w(Tk) · 1. (8)

Consequently, the vector y = max{−φ, 0}/w(Tk) is a feasible solution to the dual
linear program in (6). Moreover, εT · y is an upper bound on the system lifetime
for the given MLDA instance and energy prices φ.

The RSM–MLDA algorithm, computes at each iteration a basic feasible
solution x for the primal linear program in (5), together with a vector of node
energy prices φ. By calling the GetUB routine with parameters I and φ, we
obtain an upper bound on the optimal system lifetime. At each iteration of the
RSM–MLDA algorithm, we use the smallest upper bounds computed so far as our
best upper bound on the system lifetime. Therefore, we can continuously assess the
distance of the current feasible solution x from optimality, and we can terminate
the RSM–MLDA algorithm early if that distance is below some desired threshold.

4. Sensitivity to the Variability of Initial Data Gathering Energy Budget

We consider the impact of changes on the sensor’s data gathering energy
budget ε to the optimal solution for MLDA instances found by our RSM–MLDA

9



algorithm. In real deployment, it is not uncommon for the available data gathering
energy of sensors to become different to the initial value ε during the operation of
the network. Such changes may be due to a number of factors, e.g. unexpected
computations, battery leakages, extra energy for transmissions due to channel er-
rors, etc.

Let B and x be the basis and the corresponding bfs of the optimal solution
by RSM–MLDA algorithm. Suppose that the energy budget of a single sensor
i changes from εi to εi − δi, while the energy budget of all other sensors remains
the same. Since the current solution x is still feasible when δi ≤ 0, we limit our
attention to the cases where δi ≥ 0, i.e. a sensor has less energy budget for data
gathering than initially assumed.

We compute upper bounds on δi to achieve certain goals. Let e(i) be the
ith unit vector in R

n and ν(i) = A−1
B · e(i). Intuitively, to compensate for the loss

of a unit of energy at sensor i, the number of rounds of the jth aggregation tree
needs to be reduced by ν

(i)
j . Observe that when the energy budget changes from ε

to ε− δi · e(i), the current bfs changes from x = A−1 · ε to

A−1 · (ε− δi · e(i)) = x− δiν
(i). (9)

Therefore, in order for the current basis B to still be feasible, we need x−δiν
(i) ≥ 0,

which implies that it is both necessary and sufficient to have

δi ≤ min
ν
(i)
j >0

{ xj

ν
(i)
j

} = δ
(max)
i . (10)

Intuitively, δ
(max)
i is the maximum energy loss at sensor i that can be compensated

by reducing the number of rounds of each aggregation tree with ν
(i)
j > 0 without

affecting the energy balance of the other sensors. 6

We may desire to achieve additional goals besides feasibility of the current
basis B. We consider two such additional goals below. First, we may want to bound
the change in the number of rounds that any single aggregation tree is used under
the modified energy budget by some parameter |�x|. To this end, it is sufficient to

ensure that |δiν
(i)
j | ≤ |�x| for all 1 ≤ j ≤ n. Hence, to maintain feasibility of the

current basis and bound the change on the number of rounds of any aggregation
tree, it is both necessary and sufficient to have

δi ≤ min
ν

(i)
j �=0

{ |�x|
|ν(i)

j |
}. (11)

Second, we may want to ensure that when the energy budget changes from ε to
ε− δi · e(i), the optimal lifetime changes from T to T −�T ≥ (1− α)T , for some
parameter α. Since �T = cT · (δiν

(i)) and T = cT ·A−1
B · ε, we need

cT · (δiν
(i)) ≤ α · cT ·A−1

B · ε. (12)

6If ν
(i)
j < 0 then the number of rounds of the jth tree is increased.

10



Therefore, to ensure both the feasibility and the the upper bound on the change
of the optimal lifetime it is both necessary and sufficient to have

δi ≤ min

{
α
cT ·A−1

B · ε
cT · ν(i)

, δ
(max)
i

}
. (13)

The above analysis assumes that the energy budget changes for a single
sensor only, while the energy budget of all other sensors remains the same. We
can extend this analysis to compute energy budget bounds for individual sensors
to the case where any subset of k ≤ n sensors experiences a change in their energy
budget. To this end, we simply divide the bounds on the change of the data
gathering energy budget given by in Eqs. (10), (11), or (13) by k.

The bounds δi on the change of the data gathering energy budget of a
sensor i provided by Eqs. (10), (11), or (13) can be utilized reactively and/or
proactively. In reactive mode, each sensor i is required to notify the base station
when its data gathering energy budget is reduced by more than δi. Upon receiving
such notification, the base station may need to update the number of rounds that
each aggregation tree is used, or re–run the RSM–MLDA algorithm to find a new
optimal solution. In proactive mode, each sensor i would dynamically adjust its
energy spending profile to ensure that its data gathering energy budget stays is at
least εi − δi.

Figure 1: Energy sensitivity map of a network instance of 40 sensors deployed in a 50m× 50m
field.

To visualize the impact on the network lifetime and the intolerance to the
changes of data gathering energy budget for each sensor in the current feasible
solution, we plot a sensitivity map. The intolerance to energy budget change for
sensor i is the inverse of its bound δ

(max)
i given in Eq. (10). In this map, each

sensor is marked by a colored circle at its location in the field. The radius of a
sensor’s circle is proportional to its intolerance to energy changes. The color of the
circle indicates the impact (change) of a unit energy of the sensor on the optimal

11



lifetime, from red for the highest impact to blue for the lowest impact. Fig. 1 shows
an example sensitivity map for a network instance of 40 nodes with each sensor
having 1J as its initial data gathering energy budget. Such a sensitivity map helps
us to quickly and visually identify sensitive sensors, for instance sensors 13 and 35
which have red–colored circles with rather large radius, and to develop network
management strategies accordingly.

5. Experimental Evaluation

To evaluate the performance of our RSM–MLDA algorithm, we consider
sensor networks in which sensors are uniformly distributed in a 50m×50m sensing
field while the base station is fixed at location (45, 45). We generate 20 random
networks for each network size n, where n takes values between 10–100 in multiples
of 10. Our algorithm requires as input the transmit and receive energies τij and
rj for each sensor node i and j, respectively. To this end, in our experiments, we
assume packets of size 1000 bits, and we use the simple first order radio model
introduced by the seminal paper of Heinzelman et al [11].

The first order radio model [11] has four parameters: the energy/bit dis-
sipated at the transmitter circuitry (ETx), the receiver circuitry (ERx), and the
power amplifier circuitry (Eamp), and a path loss exponent α. The path loss ex-
ponent α depends on the propagation environment and typically varies between
2 (for free–space communications) and 4 (for areas with obstacles etc) [19]. 7 In
the first order radio model the energy required to transmit a k–bit message at
distance d is (ETx + Eamp · dα) · k and the energy to receive a k–bit message is
ERx · k. The default values for these parameters, as given in Heinzelman et al [11],
are ETx = 50nJ/bit, ERx = 50nJ/bit, Eamp = 100pJ/bit/m2, and α = 2. These
default parameter values provide energy consumption that is similar to the actual
energy consumption of various low–power radios [29]. 8 We refer to the first order
radio model with the default parameter values as the default (first order) radio
model. Hereafter, unless we state otherwise, we assume the default radio model,
and hence we have ri = 5 mJ and τij = (5 + 0.1 · d2

i,j) mJ for each sensor node i
and j.

Each sensor has a data gathering energy budget of 1J . All of our experi-
ments were done in Matlab running on a standard desktop PC.

First, we evaluate the practicality of our algorithm. We see in Fig. 2 that
the RSM–MLDA algorithm takes a considerable number of iterations to reach the
optimal continuous lifetime when the network size n becomes big, while in Fig. 3 we
see that it gets within a large percentage of the optimal lifetime with few iterations

7The first order radio model considers only path loss and ignores more complex wireless
channel effects such as fading, absorption, multi–path loss, etc.

8For Bluetooth radios with EDR operating at 2.7V, with peak current < 65mA, and 3Mbps
(eg. BlueCore4 [6], BR-C46AR [5]) we have ETx = ERx = 2.7V × 65mA÷ 3Mbps ≈ 56nJ/bit.
For low–power Bluetooth radios (eg. BlueCore7 [6]) we have ETx = ERx ≈ 20mW ÷ 2Mbps ≈
10nJ/bit. For the nFR2401 radio [26] we have ERx = 3V × 19mA÷ 1Mbps ≈ 56nJ/bit, ETx =
3V × 13(8.8)mA ÷ 1Mbps ≈ 38(26)nJ/bit at 0 (-20) dBm. For the CC2420 radio [38] we have
ERx ≈ 162nJ/bit, ETx ≈ 143(70)nJ/bit at 0 (-25) dBm.

12



for all the network sizes n considered in our experiments; e.g. for networks of size
n = 100, it takes 2300 and 4200 iterations on average to reach 90% and 95% of
the optimal lifetime, respectively. In practice, for medium–to–large WSNs, it may
be acceptable to terminate the RSM–MLDA as soon as it reaches a user defined
threshold for the approximation ratio, e.g. 95%. In such scenarios, we believe the
RSM–MLDA would be very useful and effective.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

Network Size (N)

A
vg

 N
um

be
r 

of
 It

er
at

io
ns

 R
ea

ch
 O

pt
im

al
 L

ife
tim

e
Standard deviation centered at avg 

Figure 2: Average number of iterations for the RSM–MLDA algorithm to reach the optimal
continuous lifetime.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Number of Iterations

P
ct

 (
%

) 
of

 O
pt

im
al

 L
ife

tim
e

 

 

N = 10
N = 20
N = 30
N = 40
N = 50
N = 60
N = 70
N = 80
N = 90
N = 100

Figure 3: Average approximation ratio vs. number of iterations of the RSM–MLDA algorithm
for different network sizes n.

We provided GetUB, an algorithm for computing a running upper bound
of the system lifetime during the execution of the RSM–MLDA algorithm. Such
an upper bound can be used to terminate the algorithm early, as soon as the
estimated approximation ratio exceeds a user defined threshold. We evaluate the
performance of the RSM–MLDA algorithm with early termination as well as the
quality of the estimated upper bound on the lifetime, for two threshold values:

13



10 20 30 40 50 60 70 80 90 100
85%

90%

95%

100%

Network Size (N)

A
vg

 P
ct

 (
%

) 
of

 A
ch

ie
ve

d 
Li

fe
tim

e 
ov

er
 O

pt
im

al
 L

ife
tim

e

 

 

threshold = 80%
threshold = 90%

Figure 4: Average approximation ratio achieved by the RSM–MLDA algorithm with early ter-
mination.

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

Network Size (N)

A
vg

 N
um

be
r 

of
 It

er
at

io
ns

 

 

threshold = 80%
threshold = 90%

Figure 5: Average number for iterations for the RSM–MLDA algorithm with early termination.

80% and 90%, see Figs. 4 and 5. We note that the approximation ratio achieved at
early termination can be higher than the chosen threshold — as shown in Fig. 4, on
average the approximation ratio achieved is 92% and 95% for threshold 80% and
90%, respectively. Fig. 5 shows the average number of iterations for the estimated
approximation ratio to exceed the chosen threshold — RSM–MLDA exceeds that
threshold within a small number of iterations.

Next, we compare our RSM–MLDA algorithm with an iterative algorithm
proposed by Stanford and Tongngam [35], which we call the GK algorithm, as it is
based on the Garg–Konemann approach [12]. We run both algorithms on all the
generated networks of various sizes n. For the GK algorithm, we use ε = 0.1. We
allow each algorithm to iterate at most 5n times.

Fig. 6 shows the approximation ratio achieved by the GK and RSM–MLDA
algorithms – each point in the figure corresponds to a network instance. The

14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GK

R
S

M
−

M
LD

A

 

 

N = 10
N = 20
N = 30
N = 40
N = 50
N = 60
N = 70
N = 80
N = 90
N = 100
diagonal line

Figure 6: Approximation ratio achieved by the GK and RSM–MLDA algorithms for each net-
work instance.

approximation ratio is calculated as the lifetime achieved at termination over the
optimal lifetime for that network. We see that RSM–MLDA outperforms GK
in every network instance. Moreover, the minimum number of aggregation trees
generated by GK at termination is 3, 69, 146, 200, 250, 300, 350, 400, 450, and 500
for networks of size n = 10, 20, . . . , 90, 100, respectively. The number of aggregation
trees used by the GK algorithm seems to be close to the number of iterations it
performs. Given the limited computational resources of the sensors, and the large
number of iterations for GK to converge for small ε, distributing the relevant
information about a large number of aggregation trees to the sensors is challenging
and limits the usability of the GK algorithm. For example, as we see in Fig. 6,
since GK achieved an average approximation ratio of 30% for networks of 50 nodes
by 250 iterations, one needs to use 250 trees to get 30% of the optimal lifetime
using the GK algorithm vs. at most 50 trees to get over 75% of the optimal lifetime
using our RSM–MLDA algorithm.

5.1. On the impact of the radio model and size of the sensing field.

Next, we consider two additional factors, the radio model parameter values
and the size of the sensing field, that affect the transmit and receive energies,
and how they may impact the RSM–MLDA algorithm. Note that RSM–MLDA
always converges to an optimal solution irrespective of the exact values of the
transmit and receive energies.

We conduct experiments with the first order radio model with parameter
values that approximately match the energy consumption profile of the commonly
used Chipcon CC2420 radio [38]. We estimate ETx and Eamp using the transmit
current consumption at -25dBm and 0dBm to correspond to transmission distances
of 0m and 100m (its outdoors transmission range) respectively. In particular,
ETx = 2.1V ×8.5mA÷250Kbps = 69.7nJ/bit, ERx = 2.1V ×19.7mA÷250Kbps =
161.6nJ/bit, and Eamp = 2.1V × (17.4mA − 8.5mA) ÷ 250Kbps ÷ (100m)2 =
7.3pJ/bit/m2. We refer to this model as the CC2420–based (first order) radio

15



model. The main differences between the CC2420–based and the default radio
models are that (a) in the CC2420–based radio model the packet receive energy is
larger than the packet transmit energy for distances less than ≈ 112.2m, and (b)
the CC2420–based radio model has larger packet transmit energy than the default
radio model for distances less than ≈ 14.57m.

We also consider sensing fields of various sizes. To this end, we scale our
default 50×50 sensing field by a factor of λ = 2, 4, and 10, so that a sensor located
at (x, y) in the default field is located at (λx, λy) in the scaled field. Increasing the
scaling factor increases the transmit energy without affecting the receive energy of
any sensor.

For each instance of the problem we compute the following five metrics.
The number of iterations to converge within a factor of 99.9% of the optimal
lifetime Topt (which is set to the upper bound on the optimal lifetime computed
by our GetUB algorithm), and the difference gap99.9% between the lifetime T99.9%

achieved and Topt. For each aggregation tree T , we compute its height h(T ), the
in–degree ∆base(T ) of the base station, and the maximum in–degree ∆sensors(T ) of
the sensors. For each problem instance, we compute the average h, ∆base, ∆sensors

of these three metrics weighted by the number of rounds each aggregation tree is
used, for example

∆sensors =

∑
T rounds[T ] ·∆sensors(T )∑

T rounds[T ]
. (14)

We report the average of these metrics across all the problem instances for the two
radio models and the four scaling factors in Table 1.

Even though, the average number of iterations is still increasing exponen-
tially with the number of sensor nodes, as the receive energy becomes significantly
larger than the transmit energy or vice versa, fewer iterations are needed to con-
verge to a near optimal solution. Furthermore, despite the early termination, on
average, RSM–MLDA finds solutions with lifetimes that are within at most 9
rounds of the optimal lifetime. The behavior of the RSM–MLDA algorithm is
consistent and robust under different sensing field sizes and radio model parame-
ters. Moreover, as expected, the radio model parameters and sensing field size can
have a significant impact on the (optimal) system lifetime.

We also observe that as the transmit energy becomes significantly larger
than the receive energy, the aggregation trees use edges of smaller length (leading
to an increase of tree height), the maximum in-degree of the sensor nodes slowly
increases, while the in–degree of the base station decreases (as fewer sensors tend
to transmit directly to the base station).

We note that the average in–degree of the sensors in the aggregation trees
the RSM–MLDA algorithm finds is ≤ 4.03 for networks with up to n ≤ 30
nodes. Therefore, even though any number of input packets is allowed to be ag-
gregated into a single output packet, only a small number of input packets need to
be aggregated into a single output packet in the aggregation trees our algorithm
computes. Having sensors with small in–degree is beneficial for constructing small
latency collision–free schedules of all the packet transmissions prescribed by each
aggregation tree [14, 27, 37].

16



Table 1: Impact of different sensing field sizes and radio model parameter values on RSM–MLDA
and its computed solutions, with an early termination threshold of 99.9%. Number of iterations
(#iters99.9%), sensor and base station in–degrees (∆sensors and ∆base), aggregation tree height
(h), lifetime achieved (T99.9%), and difference from optimal lifetime (gap99.9% = Topt − T99.9%),
averaged over 20 network instances, each with n nodes placed in the sensing field scaled by a
factor of λ.

n λ #iters99.9% ∆sensors ∆base h T99.9% gap99.9%

CC2420–based radio model
10 1 25.35 0.36 8.61 1.35 11443.60 1.76
10 2 30.55 0.73 8.00 1.71 8181.81 1.86
10 4 37.20 1.31 4.94 3.77 4693.89 1.70
10 10 43.45 2.15 1.99 5.64 2431.77 0.24
20 1 156.20 0.42 18.23 1.36 11498.88 7.04
20 2 237.90 0.86 16.93 1.66 8180.60 6.00
20 4 233.85 1.67 9.20 5.83 4856.13 3.77
20 10 366.40 2.84 2.17 10.47 3215.05 0.45
30 1 534.20 0.63 27.77 1.50 11525.10 8.74
30 2 801.95 1.11 25.75 1.72 8282.97 6.93
30 4 678.10 1.88 14.66 6.43 4966.30 4.29
30 10 1396.40 2.79 2.60 14.47 3551.45 1.70

Default radio model
10 1 44.75 1.71 2.39 5.89 8597.31 1.28
10 2 48.15 2.42 1.83 5.22 4830.74 5.47
10 4 33.50 2.48 1.77 5.12 1691.03 0.08
10 10 31.40 2.29 1.79 5.33 304.31 0.32
20 1 297.20 2.27 3.67 9.78 9526.24 4.72
20 2 339.00 3.40 2.18 9.11 6676.06 2.32
20 4 207.65 3.19 2.08 9.16 2795.26 0.48
20 10 175.15 2.89 1.97 9.41 538.49 0.33
30 1 874.15 2.30 5.46 12.35 9844.28 4.83
30 2 1374.90 3.96 2.47 12.14 7433.17 2.06
30 4 771.55 4.03 2.20 10.50 3195.92 0.59
30 10 529.95 3.06 1.92 12.37 621.56 0.36

17



6. Related Work

In wireless sensor networks, the notion of in-network fusion or aggregation
was first introduced by Intanagonwiwat et al [16] to opportunistically eliminate
duplicates in the context of directed diffusion. Intanagonwiwat et al [15] extend
this work by constructing a routing tree where paths are shared as much as possible
to increase the possibilities of duplicate elimination. The potential benefits of in-
network duplicate elimination have been studied from a theoretical perspective
in [21]. Data gathering with in-network data aggregation is a useful paradigm for
increasing the system’s lifetime, since it leads to significant energy savings [15, 23,
24].

Kalpakis et al [18] tackle the MLDA problem by reducing it to a directed
network design problem: maximize T such that all sensor–base station directed cuts
have capacity of at least T while the total energy consumed by sending/receiving
messages along the edges incident to each sensor does not exceed each sensor’s
available energy. They first use linear programming to find tight approximate
solution T to the network design problem, and then derive a collection of aggrega-
tion trees together with the number of rounds each tree is to be used in order to
achieve lifetime T . We propose a new efficient combinatorial algorithm that finds
near optimal solution directly.

Dasgupta et al [9] consider an equivalent formulation of the MLDA problem
and provide approximate solutions by selecting aggregation trees from a pool of
randomly constructed aggregation trees T , and then using linear programming to
determine the number of rounds each tree in the pool should be used in order
to maximize the lifetime. The number of the aggregation trees included in the
pool limits the approximation ratio achieved by them. Our algorithm considers,
implicitly, all the up to nn−2 aggregation trees for a WSN with n nodes. Dasgupta
et al [9] also consider a partial in–network aggregation where some fixed number
K of input packets can be aggregated into a single output packet, and they find
that as K decreases from ∞ to 2 the optimal system lifetime decreases by about
50%.

Stanford and Tongngam [35] give an (1 − ε)2–approximation iterative al-
gorithm, based on the Garg–Konemann approach [12] for solving packing linear
programs, where the linear program is the same LP formulation of the MLDA
problem considered here. Their approximation algorithm inherits the properties
of Garg–Konemann approach. A markable limitation of the Garg–Konemann ap-
proach is the slow convergence for small ε due to the large number of iterations. A
large number of iterations typically leads to a drastic slowdown of this algorithm.
Moreover, it does not guarantee a small number of aggregation trees – a property
that is critical in WSNs since the overhead of distributing information about these
trees to the sensors must be limited. In addition, the integral solution obtained by
rounding down the achieved continuous solution may have substantially reduced
lifetime.

Xue at al [39] approach the MLDA problem as a maximum concurrent mul-
ticommodity flow problem in digraphs. Their tree–based (1 − ε)2–approximation
algorithm is also based on the Garg–Konemann approach [12] therefore it inherits

18



its performance characteristics as well. Furthermore, it turns out, as Stanford and
Tongngam [35] point out, that the model used by Xue at al [39] does not allow the
same manner of data aggregation we consider here.

There has been a considerable amount of work on the maximum lifetime
data gathering problem without in–network aggregation. Chang and Tassiulas [8]
propose a shortest path routing algorithm using link costs that reflect both the
communication energy consumption rates and the residual energy levels at the
two end nodes. Sankar and Liu [33] provide a distributed algorithm for maximiz-
ing the lifetime for data gathering in wireless sensor networks without in–network
aggregation. They adapt a technique developed for distributed maximum flow com-
putations by Awerbuch and Leighton [2]. Yu, Prasanna, and Krishnamachari [40]
consider minimizing the total additive energy for data gathering without aggrega-
tion in WSNs subject to latency constraints. They present off–line and distributed
on–line algorithms for scheduling packet transmissions on a data gathering tree by
exploring energy-latency tradeoffs. Luo and Hubaux [22] combine mobility strate-
gies with routing to increase the lifetime of WSNs in the the Chang–Tassiulas
model [8]. They find that when the base station is static, the sensors close to it
deplete their batteries early, leading to smaller lifetimes. They show that a mobile
base station offers better load balancing, reducing substantially the load of the
most loaded sensors. Pan et al [28] present methods for the placement of base sta-
tions in WSNs to achieve maximum lifetime for data gathering without in–network
aggregation.

Finally, let us comment on the work by Garg and Konemann [12]. Garg
and Konemann [12] describe an important approach to obtain simple iterative al-
gorithms with provable approximation ratios for the maximum multicommodity
flow, packing linear programs, maximum concurrent flow, and minimum cost mul-
ticommodity flow problems. These algorithms utilize a parameter ε, and at each
iteration compute a variable of least relative cost whose value is incremented by a
certain small amount. For the maximum multicommodity flow and the packing LP
problems they achieve an (1−ε)2 approximation ratio with at most km�log1+ε m/ε�
iterations, where m is the number of edges and constraints and k is the number
of commodities or 1, respectively. For the maximum concurrent flow and min-
imum cost multicommodity flow problems they achieve an (1 − ε)3 approxima-
tion ratio with at most 3k lg k�log1+ε ( m

1−ε
)/ε iterations, where m is the number

of edges and k is the number of commodities. Note that, in all four problems,
the number of iterations needed to achieve an approximation ratio of α ≤ 1 is
O([(1 − K

√
α) log (2− K

√
α)]−1) for fixed problem size, with K = 2 or 3. Further,

when applied to solve packing linear programs, it finds solutions whose support
can be as high as the number of iterations. Nevertheless, the Garg–Konemann
approach is attractive since it takes considerable time to solve such problems using
traditional linear programming algorithms as the size of the problem increases,
and this beautiful approach has been applied to various problems in WSNs, e.g. to
the maximum lifetime routing problem [7] and to the problem of maximum data
collection in store–and-extract networks [32].

19



7. Conclusions

In this paper we consider the problem of Maximum Lifetime Data Gather-
ing with in–network Aggregation (MLDA) in wireless sensor networks. This is a
NP–hard problem and the size of the solution, which consists of a collection of ag-
gregation trees together with the number of rounds each such tree should be used, is
desired to be small, given the limited computation and communication resources of
sensor nodes. We describe a simple and efficient combinatorial iterative algorithm
for finding an optimal continuous solution that has up to n − 1 aggregation trees
and achieves lifetime To, which depends on the network topology and initial energy
available at the sensors. We obtain an α–approximate optimal integral solution by
simply rounding down the optimal continuous solution, where α = (To−n+1)/To.
Since in practice To � n, α ≈ 1. We get asymptotically optimal integral solutions
to the MLDA problem whenever the optimal continuous solution is ω(n). We also
present sensitivity analysis of the solution that can be used to bound the change
of data gathering energy budget of each sensor, and demonstrate the practicability
of the proposed algorithm via extensive experimental results.

As part of future work, we plan to extend our approach to obtain distributed
and adaptive algorithms for the MLDA problem with provable performance guar-
antees.

Acknowledgments.

We thank the referees for their thoughtful comments and suggestions.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubermanian, and E. Cayirici. A survey of
sensor networks. IEEE Communications Magazine, 40:102–114, 2002.

[2] B. Awerbuch and F. T. Leighton. Improved approximation algorithms for
the multi–commodity flow problem and local competitive routing in dynamic
networks. In Proc. ACM Symposium on Theory of Computing, pp. 487–496,
1994.

[3] R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz. Local ratio: A
unified framework for approximation algorithms. ACM Computing Surveys,
36(4):422–463, 2004.

[4] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

[5] BlueRadios, BR-C46AR Datasheet. http://www.blueradios.com

[6] CSR, BlueCore4 and BlueCore7 Datasheets. http://www.csr.com

[7] J. H. Chang and L. Tassiulas. Fast approximate algorithm for maximum
lifetime routing in wireless ad-hoc networks. In Networking 2000, volume
LNCS 1815, pages 702–713, 2000.

20



[8] J.-H. Chang and L. Tassiulas. Maximum lifetime routing in wireless sensor
networks. IEEE/ACM Transactions on Networking, 12(4):609–619, 2004.

[9] K. Dasgupta, K. Kalpakis, and P. Namjoshi. Improving the lifetime of sensor
networks via intelligent selection of data aggregation trees. In Proc. of the
Communication Networks and Distributed Systems Modeling and Simulation
Conference, Orlando, Florida, January 2003.

[10] A. Deligiannakis, Y. Kotidis and N. Roussopoulos. Processing Approximate
Aggregate Queries in Wireless Sensor Networks. Information Systems, 31 (8),
pp. 770–792, 2006.

[11] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient
Communication Protocol for Wireless Microsensor Networks. In Proc. of the
33rd Hawaii International Conference on System Sciences 2000.

[12] N. Garg and J. Konemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In IEEE Symposium on Founda-
tions of Computer Science, pages 300–309, 1998.

[13] M. Garofalakis. Processing Massive Data Streams. Invited full-day seminar
at the 2008 VLDB Database School, Cairo University, Cairo, Egypt, March
2008. http://www.softnet.tuc.gr/ minos/Talks/vldbSchool08.pdf

[14] S.C.H. Huang, P. Wan, C. T. Vu, Y. Li, and F. Yao. Nearly Constant Ap-
proximation for Data Aggregation Scheduling in Wireless Sensor Networks.
In Proc. IEEE INFOCOM, pp. 366-372, 2007.

[15] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of
network density on data aggregation in wireless sensor networks. In In Proceed-
ings of International Conference on Distributed Computing Systems (ICDCS),
Vienna, Austria, July 2002.

[16] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable
and robust communication paradigm for sensor networks. In Proc. of 6th
ACM/IEEE Mobicom Conference, 2000.

[17] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile Networking for Smart
Dust. In Proc. of 5th ACM/IEEE Mobicom Conference, 1999.

[18] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Efficient algorithms for maximum
lifetime data gathering and aggregation in wireless sensor networks. Computer
Networks, 42(6):697–716, 2003.

[19] H. Karl and A. Willig. Protocols and architectures for wireless sensor networks.
John Wiley and Sons, 2005.

[20] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer Verlag, 1991.

[21] B. Krishanamachari, D. Estrin, and S. Wicker. The impact of data aggregation
in wireless sensor networks. In In International Workshop of Distributed Event
Based Systems (DEBS), Vienna, Austria, July 2002.

21



[22] J. Luo and J.-P. Hubaux. Joint mobility and routing for lifetime elongation
in wireless sensor networks. In Proc. of INFOCOM, pages 1735–1746, 2005.

[23] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny
aggregation service for ad-hoc sensor networks. In Proc. of 5th Symposium on
Operating Systems Design and Implementation, pages 131–, 2002.

[24] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting Aggre-
gate Queries Over Ad-Hoc Wireless Sensor Networks. In Proc. of 4th IEEE
Workshop on Mobile Computing and Systems Applications, 2002.

[25] R. Min, M. Bhardwaj, S. Cho, A. Sinha, E. Shih, A. Wang, and A. Chan-
drakasan. Low-power wireless sensor networks. In VLSI Design, 2001.

[26] Nordic Semiconductor, nRF2401 Datasheet. http://www.nordicsemi.com

[27] K. Oikonomou and I. Stavrakakis. An Adaptive Time-Spread Multiple-Access
Policy for Wireless Sensor Networks. EURASIP Journal on Wireless Com-
munications and Networking, Vol. 1, pp. 24–32, 2007.

[28] J. Pan, L. Cai, Y. T. Hou, Y. Shi, and S. X. Shen. Optimal base-station
locations in two-tiered wireless sensor networks. IEEE Transactions on Mobile
Computing, 4(5):458–473, 2005.

[29] J. Polastre, R. Szewczyk and D. Culler. Telos: Enabling Ultra-Low Power
Wireless Research. In Proc. of IPSN, pp. 364–369, 2005.

[30] V. Puttagunta and K. Kalpakis. Accuracy vs. Lifetime: Linear Sketches for
Aggregate Queries in Sensor Networks. Algorithmica, 49 (4), pp. 357–385,
2007.

[31] J. Rabaey, J. Ammer, J. da Silva Jr, and D. Patel. PicoRadio: Ad-hoc wireless
networking of ubiquitous low-energy sensor/monitor nodes. In Proc. of the
IEEE Computer Society Annual Workshop on VLSI, 2000.

[32] N. Sadagopan and B. Krishnamachari. Maximizing data extraction in energy-
limited sensor networks. In Proc. of INFOCOM, 2004.

[33] A. Sankar and Z. Liu. Maximum lifetime routing in wireless ad-hoc networks.
In Proc. of INFOCOM, 2004.

[34] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and Beyond:
New Aggregation Techniques for Sensor Networks. In Proc. ACM SenSys,
2004.

[35] J. Stanford and S. Tongngam. Approximation algorithm for maximum life-
time in wireless sensor networks with data aggregation. In Proc. of the Sev-
enth ACIS International Conference on Software Engineering, Artificial In-
telligence, Networking, and Parallel/Distributed Computing (SNPD’06), pages
273–277, Washington, DC, USA, 2006.

[36] R. Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977.

22



[37] Y.C. Tay, K. Jamieson and H. Balakrishnan, Collision-minimizing CSMA and
its applications to wireless sensor networks. IEEE Journal on Selected Areas
in Communications, 22(6), pp. 1048–1057, 2004.

[38] Texas Instruments, Chipcon CC2420 Datasheet. http://www.ti.com

[39] Y. Xue, Y. Cui, and K. Nahrstedt. Maximizing lifetime for data aggregation
in wireless sensor networks. Mobile Networks and Applications, 10(6):853–864,
2005.

[40] Y. Yu, V. K. Prasanna, and B. Krishnamachari. Energy minimization for
real-time data gathering in wireless sensor networks. IEEE Transactions on
Wireless Communications, 5(11):3087–3096, 2006.

Appendix A. Linear Programming Primer

This appendix provides an overview of some concepts in linear programming
used in this paper. Further details can be referred in a text such as [4, 20].

Consider a linear program in standard form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min cTx such that

A · x = b

x ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15)

where A ∈ R
n×m, c,x ∈ R

m, b ∈ R
n, and n ≤ m. The linear program above defines

a convex polyhedron P = {x : Ax = b,x ≥ 0}. For convenience, and without
loss of generality, suppose that the constraint matrix A is of full–rank n and that
b ≥ 0. The case where A has rank less than n leads to degeneracies requiring
special handling, see [4]. We further assume, w.l.o.g., that the polyhedron P is
bounded and non–empty, i.e. the linear program has a bounded optimal solution.

Let B be a sequence (ordered set) of n column indexes in {1, . . . , m}. Let
AB be the n×n sub–matrix of A whose ith column is AB(i). A sequence B is called
a base if AB is of full-rank (invertible). It is called a feasible basis if A−1

B b ≥ 0.
Since A is of full–rank and the linear program is feasible, a feasible basis always
exists. A variable xi (column Ai) with index in B is called a basic variable (basic
column), otherwise it is called a non–basic variable (non–basic column).

Construct a feasible solution x corresponding to a feasible base B by taking
xB = A−1

B b and xB = 0. Such a solution is called a basic feasible solution (bfs).
There is a bijection between basic feasible solutions and vertices (extreme points)
of the polytope defined by A. Furthermore, an optimal solution always occurs at
one of its vertices.

Associate with each constraint a shadow price (or dual variable). The
shadow prices π ∈ R

n corresponding to a base B is given by

πT = cBA
−1
B . (16)

23



The relative cost c̄j of each non–basic column Aj is given by

c̄j = cj − πTAj (17)

The Simplex method, discovered by Dantzig, systematically explores the
set of basic feasible solutions, starting from an initial bfs, until an optimal bfs is
found. The process of moving from a bfs to an adjacent bfs is called pivoting. In
pivoting, we exchange a basic column with a non–basic column, without increasing
the cost of the best feasible solution so far.

We describe next a variant of the Simplex method, the Revised Simplex
Method (RSM) with the lexico–min rule. An arbitrary non–basic column Aj enters
the current base B if its relative cost c̄j < 0. If all non–basic columns have relative
cost ≥ 0, then the current bfs is optimal and Simplex terminates. Otherwise, a
basic column to exit the current base B needs to be selected. There are multiple
approaches to do so. We describe the lexico–min approach for choosing the basic
column to exit the current basis B, since it guarantees termination in a finite
number of pivoting steps [4]. Let ai denote the ith row of the matrix AB. Let l be
the index of the lexicographically smallest row [xi, ai]/ui with ui > 0,

l = arg lexico–min

{
[xi, ai]

ui
: ui > 0

}
, (18)

where u = A−1
B Aj and x = A−1

B b. Column Aj enters the base B replacing column
AB(l), i.e. B(l)←− j. An index l always exists, since otherwise ui ≤ 0 for all i and
the problem is unbounded.

Extensive computational experience since the discovery of the Simplex method
demonstrated that in practice it is an efficient algorithm. The Revised Simplex
method offers computational advantages for linear programs with sparse constraint
matrices. Moreover, observe that RSM allows us to solve linear programs with ex-
ponentially many variables by performing few pivots in practice, provided that we
can either find, in polynomial–time, a non–basic column with negative relative cost
or show that no such column exists.

24


