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Abstract

Measurement is a required process in high performance networks for efficient quality-of-service (QoS) pro-
visioning and service verification. Active measurement is an attractive approach because the measurement
traffic injected into the network can be controlled and the measurement tasks can be distributed through-
out the network. However, the execution of measurement tasks in common parts of a network may face
contention for resources, such as computational power, memory, and link bandwidth. This contention could
jeopardize measurement accuracy and affect network services. This contention for limited resources defines
a conflict between measurement tasks. Furthermore, we consider two sets of measurement tasks, those used
to monitor network state periodically, called periodic tasks, and those for casual measurements issued as
needed, called on-demand measurement tasks. In this paper, we propose a novel scheduling scheme to resolve
contention for resources of both periodic and on-demand measurement tasks from graph coloring perspective,
called ascending-order of the sum of clique number and degree of tasks. The scheme selects tasks according
to the ascending order of the sum of clique number and conflict task degree in a conflict graph and allows
concurrent execution of multiple measurement tasks for high resource utilization. The scheme decreases the
average waiting time of all tasks in periodic measurement tasks scheduling. For on-demand measurement
tasks, the proposed scheme minimizes the waiting time of inserted on-demand tasks while keeping time space
utilization high. In other words, the total time spent on finishing all the tasks is shortened. We evaluate our
proposed schemes under different measurement task assignment scenarios through computer simulations,
and compare the performance of this scheme with others that also allow concurrent task execution. The
simulation results show that the proposed scheme produces effective contention resolution and low execution
delays.

Key words: Scheduling, Network Measurement, Active Measurement, Graph Coloring, Clique, Quality of
Service, QoS, List Coloring

1. Introduction

Some applications, such as voice over IP (VoIP),
streaming video and online gaming have stringent
requirements for Quality-of-Service (QoS) provi-
sioning, which further requires accurate and up-
to-date information of the network performance,
through measuring and monitoring tools to esti-
mate and collect those data. Therefore, network
measurement becomes an important subject driven
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by Internet Service Providers (ISPs) to quantify
network status, monitor existing traffic, and ser-
vice verification on service agreement compliance
for applications with QoS requirements.

Measurement techniques can be coarsely divided
into passive and active approaches. Passive mea-
surement uses traversing traffic, whether carrying
users’ data or network control packets, to deter-
mine the network state. The accuracy of passive
measurement is a function of the amount of exist-
ing traffic. On the other hand, active measurement
has controllable properties that are independent of
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the absence of user traffic, thus making it an at-
tractive approach [1]-[12]. In active measurement,
a measurement point, which can be a router or end
host or some equipment attached to them, creates
and sends probing packets to the target (destina-
tion) measurement point with controlled departure
times. Either the destination measures the arrival
time in a synchronized network, or the source esti-
mates the delay time by using the response of the
destination point [13]-[16]. Figure 1 shows an ex-
ample of a network with active measurement for
(a) end-to-end (using end hosts) paths, or (b) lo-
cal links (between neighbor routers). Without loss
of generality, Figure 2 shows a measurement infras-
tructure designed by Internet2 E2E piPEs projects
[18]. The network information obtained by active
measurements can be, for example, available band-
width, capacity, one-way delay, round-trip time
(RTT), jitter, and topology data. The adoption of
active measurement can be found in several large-
scale networks [20]-[23].
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Figure 1: Network measurement implementation topology.

Examples of active measurement tools that can
be deployed in any network in general, range from
the simple ones, such as Ping and Traceroute, to the
more sophisticated, such as Pipechar [24], Pathload
[25], Cing [26], Clink [27], Nettimer [28], Pathrate
[29], Pathchar [30], and Yaz [31], among others. A
network measurement toolkit includes the various
measurement tools to evaluate the different QoS
parameters. The toolkit shown in Table 1, though
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Figure 2: An example of network measurement infrastruc-
ture.

Table 1: Selected measurement tools for QoS parameters.

QoS Parameter Tool

One-way delay OWAMP[32]

Round-trip delay Ping

Available bandwidth Pipechar, Pathload

Topology Traceroute

Bandwidth capacity Pathchar

not an exclusive one, is an example. Different tools
require different network resources and execution
times. The measurement tools are normally run pe-
riodically to monitor the consecutive network sta-
tus, by which the tasks are called periodic mea-
surement tasks. These tasks are known in advance
and can be scheduled before their execution starts.
Moreover, the tools can also be invoked once (or
for short periods) at any arbitrary time to measure
a network parameter as needed. These tasks are
referred to as on-demand tasks. On-demand tasks
emerge at any time and need to be scheduled in
combination with the periodic tasks while the net-
work is in operation.

Independently of the measurement approach
used, probing overhead is a general concern for ac-
tive measurement mechanisms as it may affect the
user traffic. For example, an active measurement
experiment [19] showed that a 700-Byte packet size
used in 60-packet probing trains can achieve suffi-
ciently accurate results of available bandwidth mea-
surement per path on the Internet. In this case,
one path overhead is about 42KB, and so mea-
suring all end-to-end paths in a 200-nodes bidirec-
tional mesh system requires about 1.7GB for just
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Table 2: Comparison of network consumption of sample
tools.

Tool CPU/ Bandwidth Time

Memory

Ping very low very low ≤2s

Pipechar Low Low ≥20s

Pathload Low Medium 7s

one snapshot if all network links are simultaneously
tested. Therefore, the network resources need to be
efficiently managed under active probing.

In addition, distributed measurement tasks may
be executed simultaneously at one measurement
point in a network. Hence, it is possible that dif-
ferent measurement tasks contend for network re-
sources, including transmission channels and band-
width. Measurement processes that are executed in
different common points also contend for resources,
such as processing time, bandwidth, and memory.
The accuracy of some measurement processes may
be affected by other measurement processes run
concurrently. This contention for resources is called
measurement conflict problem. To gain insight of
the implications of contention for resources, we ex-
ecuted Pipechar, Pathload, and Ping in a host, all
at the same time, and used them to measure several
parameters in the transmission from one host to an-
other through a 100-Mbps fast Ethernet link [16].
We observed that the measurement resources and
measurement processing time had a large discrep-
ancy among those measurement tools, as shown in
Table 2, and the obtained measurement results are
instable because of the disturbance from other mea-
surement processing. Sommers and Barford [17]
also implemented a testbed through which the ex-
periment results show that the measurements of
packet loss and delay from active probes can be
skewed significantly due to the contention of prob-
ing packets. Thus, the active measurement tasks
that are performed at each measurement point need
to be scheduled to avoid both potential resource
contention and measurement disturbance from each
other while achieving a satisfactory measurement in
terms of time and accuracy.

To solve the above problem, we provide a solution
to schedule the periodic and on-demand measure-
ment tasks to achieve the following four goals:

1. Avoid conflicts among concurrent executed
measurement tasks.

2. Network resources are not exhausted by mea-

surement tasks.
3. Shorten the waiting time of each measurement

task for the execution.
4. Shorten the total completion time of measure-

ment tasks set, that is, improve the resource
utilization.

To comply with the above requirements, we pro-
pose an algorithm to schedule periodic tasks and to
improve the measurement efficiency. We also pro-
pose an algorithm to schedule on-demand measure-
ment tasks that minimize the delay of both periodic
tasks and the incoming on-demand tasks. Both al-
gorithms are based on graph coloring theory, where
each measurement task is treated as a vertex in a
graph, and the contention/conflict by two tasks is
represented as an edge connecting those two ver-
tices.

The remainder of this paper is organized as fol-
lows. Section 2 analyzes the contention problem
of distributed network measurement tasks. Section
3 introduces related scheduling algorithms for net-
work measurement. Section 4 describes the mod-
eling of measurement tasks for scheduling by us-
ing a coloring approach. Section 5 introduces our
proposed scheduling schemes for periodic and on-
demand measurement tasks, respectively. Section
6 shows the performance evaluation obtained by
computer evaluation, and analysis of the proposed
schemes and other comparable schemes. Section 7
presents our conclusions.

2. Problem Analysis

According to the classification approach of
scheduling introduced by Graham et al. [33], the
task scheduling problem is defined in terms of a
three-tuple classifications [α, β, γ], where α defines
the machine (processor) environment, β specifies
the job’s characteristics, and γ denotes the optimal-
ity criterion. Following this classification method,
the measurement scheduling problem can be de-
scribed as [P, {rec, ri} ,

∑
Ci]. Here, P is the num-

ber of identical parallel processors to perform the
required jobs. However, different from that ap-
proach [33], P is a variable instead. The value of P
depends on the number of measurement tasks run
simultaneously. Considering that n tasks need to
be processed, the following relationship exists:

P ≤ n (1)
3



rec refers to the constraints on the resources used
by the execution of measurement tasks. In order to
minimize or to avoid the impact of probing pack-
ets on the performance of regular data traffic, a
network resource constraint, such as the maximum
bandwidth, is set at each measurement point. This
is called measurement resource constraint (MRC) in
this paper. Scheduling measurement tasks need to
ensure that the total amount of resources consumed
by the measurement tasks are within this constraint
rec. Measurement task i is denoted as τi in the re-
mainder of this paper. The parameter ri denotes
the release time of a measurement task τi, upon
which one instance of the task τi becomes available
for processing or execution.

∑
Ci indicates that

the optimal criterion chosen is to minimize the to-
tal completion time on P parallel processors, where
Ci denotes the completion time of the measurement
task τi. This optimal criterion reflects the fourth
goal listed in Section 1. It is easy to see that the
third goal listed in Section 1 is the sufficient and
necessary condition of the fourth goal, as described
by Lemma 1. Therefore,

∑
Ci can cover both the

third and fourth goals.

Lemma 1. Minimizing the total completion time
of a set of measurement tasks is equivalent to mini-
mizing the average waiting time of the measurement
tasks in this set.

Proof. For a measurement tasks set, the completion
time of task τi is:

Ci = ei + wi (2)

where ei is the execution time of measurement task
τi and wi is the waiting time of task τi. Hence, the
total completion time of the measurement tasks set
is:

∑
Ci =

∑
ei +

∑
wi

=
∑

ei + m × wavg (3)

where m is the number of measurement tasks in
the set and wavg is the average waiting time of the
tasks. Since the execution time of each measure-
ment task is a constant, the sum of the execution
time

∑
ei is a constant too. According to Equation

3, minimizing
∑

Ci is equal to minimizing m×wavg,
and thus is equal to minimizing wavg.

A scheduling algorithm can be further classified
as preemptive or non-preemptive. In preemptive

scheduling, the execution of a task can be inter-
rupted prior to completion and resumed later. On
the other hand, in non-preemptive scheduling, a
task must be executed to completion once execu-
tion has started. In general, measurement task
scheduling is regarded as non-preemptive schedul-
ing as the measurement results are expected at com-
pletion and the measurement results may be time
sensitive. Another issue with this problem that dif-
ferentiates it from the others is the potential con-
flict that measurement tasks have with each other.
This characteristic increases the complexity of the
scheduling scheme because the tasks cannot be just
sorted according to one parameter (e.g., deadline
or execution time of the task), but also the conflict
with scheduled tasks has to be considered.

3. Related Work

Round robin is one of the simplest scheduling
schemes [22, 34, 35] where the tasks are executed by
a fixed order in uni-processor systems and only one
task is executed at a time. This scheme requires
the longest processing time for measurement tasks
as it does not admit concurrent execution.

Network Weather Service (NWS), a well-known
network measurement infrastructure, adapts a to-
ken passing scheme [36] to ensure mutual exclusion
between measurement tasks. In this scheme, the
measurement point that receives a token is entitled
to execute a measurement task. Afterwards, the
measurement point releases the token to a succes-
sor. However, this method does not allow concur-
rent execution of measurements.

Deadline driven scheduling (DSS), also known
in the literature as the Earliest Deadline First
(EDF) scheduling scheme [37], selects tasks based
on their deadlines, and was originally defined for
uni-processor execution.

It is shown that the problem of determining
whether a given periodic task system is non-
preemptively feasible on either a single processor or
multiprocessors is NP-hard in a strong sense [38],
[39]. To provide network measurement scheduling,
a scheduling algorithm based on EDF that allows
multiple concurrent executions, referred to as EDF-
CE [40], was recently proposed. This approach ini-
tializes a queue that stacks all pending tasks to be
processed in an EDF order, where the deadline is
defined as the time before the task must be executed
again. Whenever a task is ready to be released
or a task finishes execution, the available tasks in
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the queue are scheduled. This method introduces
the possibility of overlapping multiple tasks in some
time slots, but it does not consider the utilization
ratio; in other words, sorting the tasks in the pend-
ing queue with their deadlines ignores the fact that
the concurrent execution of multiple tasks greatly
depends on the existing conflicts between the tasks
as much as on the tasks’ deadlines.

4. Modeling of Network Measurement
Scheduling Schemes

4.1. Definitions

Let τ = {τ1, τ2, . . . , τn} represent the measure-
ment tasks set with up to n measurement tasks to
be executed in the network. Here, τi is character-
ized by a three-tuple of parameters:

• a (τi): the time the measurement task is re-
leased, which is the task’s arrival time.

• e (τi): the execution time required by a mea-
surement task to complete the measurement.

• p (τi): the period of the measurement task, or
the time to execute task τi after the previous
instance. This parameter describes how often
a measurement task is executed.

A timetable of periodic measurements is con-
structed by sequences of tasks, each of which is ex-
ecuted again in p (τi) units of time, and each task
requires execution of e (τi) time units. The jth job
(or repetition) of measurement task τi is denoted
as τij . Thus, the first job, τi1, of measurement task
τi occurs at time a (τi); consecutive jobs generated
by τi occur exactly p (τi) time units apart. Figure 3
illustrates an example delineating the terms defined
above.

In a set of periodic tasks where the tasks (and
the number of them) do not change and where each
task can have any particular period, the combina-
tion of tasks’ release times is finite. This is, after
a long period of time, because of the task periodic-
ity, the combination of release times repeats again.
Therefore, for the measurement set τ , we define the
term hyperperiod ph to be the period of time where
all tasks in the set occur at different times and with-
out replication of the combination of release times.
That is, all periodic tasks in one hyperperiod are
able to follow the same schedule as used in the pre-
vious hyperperiod. The hyperperiod is defined as

e( i)

a( 1)

a( 3)

11 12 13 14

21 22 23

31 32 33

...

i1 i2 i3 i4 i5 i6

p( i)

p( 3)

a( i)

a( 2) e( 3)

p( 2)

e( 2)

e( 1)

p( 1)

t

t

t

t

Figure 3: Illustration of network measurement tasks.

the least common multiple of the periods of all mea-
surement tasks in τ .

ph = lcm (p (τ1) , p (τ2) , . . . , p (τn)) (4)

Without loss of generality, we define the execu-
tion time e (τi), initial available time a (τi), and
the period p (τi) as integer multiples of a time unit
which is referred to as a time slot. The deadline
of each job d (τij) coincides with the period, that
is, the job τij should be completed before the next
job τi(j+1) is available to be executed. According to
this definition, Lemma 2 can be readily obtained:

Lemma 2. Given a measurement tasks set τ =
{τ1, τ2, . . . , τn}, at any time instance, there is at
most one job available to be executed for any mea-
surement task τi ∈ τ .

Proof. At any time instance, there must be a job
available for execution at the beginning of that pe-
riod. If there are some jobs generated from previ-
ous periods still pending for execution, those post-
poned jobs passed their own deadlines and they are
considered as missed jobs. Hence, there is at most
one job for each measurement task at any time-
instance.

4.2. Modeling of Measurement Scheduling

Our scheduling algorithms are based on graph
theory. In the literature, there are some articles
using graph coloring to solve time slots assignment
problem [41, 42, 43], but most of them are designed
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for single processing, which are not fit for multi-
task processing such as the network measurement
scenario.

Consider a measurement tasks set τ =
{τ1, τ2, . . . , τn} to be executed in a network. Each
measurement task can be represented as a node
(∈ V ) in a graph and any two measurement tasks
are connected by a link (∈ E) if they are to be
executed with mutual exclusion on the measure-
ment point or channel. These tasks are said to be
adjacent to each other. The graph G(V, E) that
describes these nodes and links is called a conflict
graph. Figure 4 illustrates an example of a conflict
graph where two measurement tasks are to be exe-
cuted between measurement points 1 and 2 in a full-
duplex connection. Assume that task τ1 contends
with τ2 for the available memory at measurement
point 1, and at the same time, it contends for the
transmission channel with τ3. Task τ3 also contends
with τ4 for available memory at measurement point
2. Therefore, these four tasks comprise a conflict
graph with three links. In this example, measure-
ment tasks τ1 and τ4 (represented by shaded nodes),
or τ2 and τ3 (represented by unshaded nodes) can
be concurrently executed.

1

2

3

4

1 3

2 4

measurement
point 1

measurement
point 2

Figure 4: Illustration of the relationship between measure-
ment tasks by a conflict graph.

In our considered network, there is a central con-
troller to compute the schedule of all measurement
tasks and to send out the schedule information to
each measurement point. This central management
mode is feasible and adopted in real network mea-
surement frameworks. Scheduling is requested each
time when a new job is available for execution and
when a job execution has been completed. We name
these time instances as scheduling points. There is

a waiting queue to store the jobs available for ex-
ecution. At each scheduling point, jobs stored in
the waiting queue become eligible candidates for
the scheduler. Based on the conflict relationship
between the measurement tasks, these jobs that
belong to different measurement tasks construct a
conflict graph at the job level. The conflict rela-
tionship between jobs follows the same conflict re-
lationship between measurement tasks. For peri-
odic tasks, the conflict relationship among them
is known prior to performing scheduling because
the submitted tasks and the amount of resources
they consume are both known in advance. For on-
demand tasks, the attributes of measurement tools
are a priori so the tasks’ conflicts are known once
an on-demand task emerges.

As the measurement results obtained by earlier
periodic measurement tasks are used to describe
the current network performance, it is desired that
the measurement tasks can be completed as soon
as possible after a task is available for execution.
Therefore, the scheduling problem is converted into
a process to schedule the available jobs at each
scheduling point so as to minimize the job waiting
time for execution. At the same time, the schedul-
ing of measurement jobs at one scheduling point
is enunciated as the arrangement of the vertices of
graph G at the job level such that none of the nodes
connected with each other are scheduled for simul-
taneous execution. This process can be described
as a vertex coloring problem as follows.

Scheduling of Measurement Tasks: Given a
conflict graph G(V, E) with vertices V = V (G), as-
sign each vertex a color out of the range [1, 2, . . . , k]
such that no two adjacent vertices have the same
color.

Here, each color maps to one time slot. The color
set to be used by a vertex vij in the conflict graph
is mapped to the time range [tc, d (τij)] as described
by Equation 5, where tc is the current scheduling
point and d (τij) is the deadline of the job mapped
by vertex vij . That is, the scheduler only considers
the time slots prior to a job’s deadline.

[1, 2, . . . , k] → [tc, d (τij)] (5)

Each measurement point is considered to have
limited processing and storage (memory) capabili-
ties, and each channel to have a limited bandwidth
capacity. Therefore, the load of intrusive prob-
ing packets in active measurement needs to be re-
stricted within a range, so as to minimize the dis-
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turbance of the measurement of the existing data
traffic, as described by MRC values. We propose
to use a consumption matrix to describe such con-
straints. Let us denote the number of schedule slots
and the number of the measurement jobs as the col-
umn and row of a matrix as shown in Figure 5. The
resource utilization objective can be described as
follows:

1

2

3

4

1

2

3

4

1

2

3

t0 t5 t10 t15 t20

time slot

At each time slot, consumption of resources  MRC

Figure 5: Consumption matrix.

Resource Utilization of Measurement
Tasks: Jobs of measurement tasks set τ =
{τ1, τ2, . . . , τn} with execution times e (τ1), e (τ2),
. . ., e (τn), can be represented as a ph ×n consump-
tion matrix A, where a row indicates the task and
its duration in time slots and the column indicates
the time slot. The maximum number of rows is
bounded by the amount of processing resources con-
strained by Equation 1. Each column as circled in
Figure 5 represents the consumption of network re-
sources at that particular time slot.

The objective is to place the measurement tasks
in the consumption matrix such that

∑n
j=1 Aij ≤

MRC, ∀i ∈ [1, 2, . . . , ph], where ph is the hyper-
period duration, i.e., the total consumption of re-
sources by measurement tasks per time slot is
within the measurement resource constraint.

5. Proposed Scheduling Schemes

This section introduces our scheduling schemes
for periodic and on-demand measurement tasks.
The following definitions are used in the descrip-
tion of the proposed schemes.

• Clique: a maximal set of adjacent vertices of
graph G.

• Clique number: the number of vertices in the
largest clique of G, denoted as ω(G).

• Degree: degree of vertex v in graph G is the
number of adjacent vertices of v in G, denoted

as dG(v); the maximum degree of graph G is
the largest number of dG(v), and it is denoted
as Δ(G).

5.1. Periodic Measurement Tasks Scheduling
Scheme

Following the model of the scheduling prob-
lem described in Section 4.2, our proposed al-
gorithms consider the jobs stored in the wait-
ing queue for scheduling at each scheduling point.
If a job can be scheduled in the time range
[current scheduling point, deadline of job] with-
out any conflict with already scheduled jobs at any
given time slot, this job is removed from the waiting
queue and the corresponding time slots for execu-
tion are marked in the consumption matrix; oth-
erwise, the job is kept in the waiting queue and
waits for consideration at the next scheduling point.
Hence, the goal is to find a feasible scheme to sched-
ule the maximum number of concurrent jobs at each
scheduling point, so that the most time space in the
consumption matrix can be utilized.

Consider available jobs in the waiting queue.
Since their execution times are integer multiples of
a time slot and the time slot can be mapped to a
vertex, each task can be divided into a set of sub-
vertices as follows:

In a conflict graph G(V, E) at the job level, each
vertex vij that maps job τij has a set of sub-vertices
(τ1

ij , τ
2
ij , . . . , τ

α
ij), where α is the length of e(τij) in

time slots.

As the sub-vertices of vij represent the different
but consecutive time slots of a task, they are said to
contend with each other (or to have a conflict with
each other). These conflicts can be described by a
complete sub-graph Gij as in the example shown in
Figure 6. Conflict graph G is further represented
by its sub-vertices and it is denoted as Gs (V s, Es).
The clique number of a sub-graph Gij is equal to
the number of vertices in Gij . Here, Gs is the graph
constructed by sub-vertices.

As each color represents one time slot, each sub-
vertex in graph Gs is a candidate for a color assign-
ment, so that any two adjacent sub-vertices must
not possess the same color. Each sub-vertex is re-
stricted to allowed colors that satisfy the relation-
ship denoted by Equation 5. This is called the list
coloring problem. To solve this problem, we pro-
pose to sort the sub-vertices in the ascending order
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of their degree in graph Gs:

ds
G(vl

ij) = dG(v) + ω(Gij) = dG(v) + e(τij), (6)

∀vl
ij ∈ Gij

The rationale to schedule jobs in this fashion is the
expectation that a sub-vertex with a small degree
has a few conflicts; therefore, a large number of
tasks might be scheduled at the same time. In a
network with a measurement scheduling environ-
ment, this can be described by two aspects. For a
sub-vertex vl

ij and its adjacent sub-vertex vx:

• vl
ij and vx map to the same job: Then, the low

degree implies the job has a short execution
time. This part is represented as the execu-
tion time of the vertex e(τij), or by the clique
number of the sub-graph ω(Gij). Scheduling a
job with a short execution time will leave more
available time slots for other jobs in the waiting
queue.

• vl
ij and vx map to different job: Then, the low

degree of the sub-vertex indicates the job might
have few conflicts with other available jobs in
the waiting queue. Scheduling a job with few
conflicts allows additional jobs to be executed
concurrently, thus increasing the resource uti-
lization.

The scheduling procedure is described below:

Step 1. At current scheduling point tc, check if
there is a new job available for execution.

If so, the new job is placed in the waiting
queue.

Step 2. Map the candidate jobs in the waiting
queue to a conflict graph G and convert
G into sub-graph Gs.

Step 3. Sort the sub-vertices in the ascending order
of their degree, as described by Equation 6.

Step 4. Schedule the first job as indicated by
the sorted sequence. Any sub-vertex
vl

ij selected to be scheduled will be col-
ored with other sub-vertices belonging to
the same job τij with consecutive col-
ors. The used colors are the intersection
set as colorsin−conflict ∩ [tc, d (τij)] where
[tc, d (τij)] is the time interval from tc to
d (τij), colorsin−conflict is the set of avail-
able colors possessed by the on-going con-
flict jobs, and colorsin−conflict is the com-
plementary set of colorsin−conflict, i.e., the
available colors that can be used by vl

ij .
Step 5. Check if the colored job and other on-going

jobs violate the resource constraint MRC.
If there is no violation, remove the colored
job from the waiting queue, remove the cor-
responding sub-vertices from the sorted se-
quence, and add the completion time of the
job to the scheduling point list.

Step 6. Color the next sub-vertex in the sorted se-
quence. Repeat Steps 4 to 5.

Step 7. Go to the next scheduling point. Repeat
Steps 1 to 6.

The algorithm of periodic measurement-tasks
scheduling is described by the pseudo code in Fig-
ure 7.

5.2. On-Demand Measurement Tasks Scheduling
Scheme

During the execution of the periodic measure-
ment, a network administrator may request spo-
radic on-demand measurement tasks to test spe-
cific network performance parameters at a partic-
ular time. Furthermore, on-demand tasks might
conflict with some periodic or on-demand tasks.
Each on-demand task has also defined execution
and deadline times, and it is considered with ei-
ther a priority higher than or equal to that of the
scheduled periodic tasks. The proposed scheduling
scheme for on-demand measurement tasks is able
to handle both of these two cases adaptively. The
goal of scheduling on-demand tasks with higher pri-
ority is to execute the on-demand tasks as soon as
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Periodic Tasks Scheduling Algorithm
Input: measurement task set τ

3-tuple parameters of tasks a(τi), e(τi), p(τi)

tasks conflict matrix F

measurement resource constraint MRC

Output: start time of jobs T

Initialize hyperperiod ph

Initialize scheduling point list S

Initialize waiting queue Q = {}
while S is not empty

if new available job τnew ∈ Q

remove the old instance of τnew due to expiration

end

Q = Q + τnew

set up conflict graph with sub-vertices f : (F, Q) → Gs(V s, Es)

sort Q by ascending order of degree of sub-vertices d
GS (v)

for each job τij in sorted Q

find the available colors range R

if consecutive sequence L = e(τij) exists in R

& consumption of τij and on-going jobs satisfies MCR

assign the first long enough consecutive colors L to τij

Q = Q − τij , record start time of τij in T

update scheduling point list:

S = S + completion time of τij

end

end

Go to next scheduling point

end

Figure 7: Pseudo code of scheduling algorithm for periodic
measurement tasks.

possible while minimizing the latency of the peri-
odic tasks caused by the insertion of on-demand
tasks. On the other hand, scheduling on-demand
measurement tasks with the same priority as peri-
odic tasks aims to shorten the average waiting time
for all measurement tasks including on-demand and
periodic tasks.

The proposed method schedules all the tasks with
higher priority first, and then schedules the remain-
ing on-demand and periodic tasks according to the
ascending order of the degree of sub-vertices, as ex-
plained below:

Step 1. When a new on-demand task arrives at tc,
check the priority type of the on-demand
task. If its priority is high, store this
on-demand task to the waiting queue of
high priority tasks Qhigh. If the priority
is equal to that of the periodic tasks, the
on-demand task is stored to Qregular .

Step 2. Schedule all the candidate jobs in the wait-
ing queue of high priority tasks Qhigh. In
the pre-computed schedule, all the jobs
of periodic tasks that finish their exe-
cution before tc and the jobs that are
still being executed at time tc are dis-
carded/cancelled. The jobs that start pro-
cessing after tc are considered as resched-
uled. Follow Steps 2 to 6 of the previ-
ous scheduling procedure for periodic tasks.
Note that the scheduling points are up-
dated so the completion time of the sched-
uled jobs in Qhigh are added into the
scheduling points list. After this step, all
the possible jobs in Qhigh must be either
scheduled or expired because there are no
available time slots to be scheduled before
the job’s deadline.

Step 3. Add those jobs that start processing after tc
in the pre-computed schedule to the wait-
ing queue of regular priority tasks Qregular .
Schedule all candidate jobs in Qregular fol-
lowing the previous scheduling procedure
for periodic tasks.

Figure 8 shows an example to illustrate this
scheduling procedure. In this example, the on-
demand task τod conflicts with periodic tasks τ1

and τ3, as shown in Figure 8.a. If the priority of
τod is higher than that of other periodic tasks, then
when it arrives at tc, all periodic jobs that start the
execution after tc are stored in Qregular while τod

is stored in Qhigh. Thus, τod is the first to obtain a
schedule. As shown in Figure 8.b, τod is first sched-
uled and only the schedule of job τ32 is changed. If
τod has same priority as other periodic task, then
τod and all periodic jobs that start the execution
after tc are stored in Qregular and sorted in the
ascending order of sub-vertices’ degree. As shown
in Figure 8.c, τod is scheduled with longer waiting
time than in Figure 8.b, but rescheduling for other
periodic jobs is unnecessary.

The algorithm of on-demand measurement tasks
scheduling is described by the pseudo code shown
in Figure 9.

5.3. Computational Complexity Analysis

According to Lemma 2, there are at most n jobs
in the waiting queue if there are n tasks in the mea-
surement tasks set. Using a simple sorting algo-
rithm such as binary tree sort, the computational

9



executearrive

rescheduled

executearrive

tc

tc

tc

(a)

11 12 13 14

21 22 23

31 32 33

1 2

3 od

od

11 12 13 14

21 22 23

31 32 33

od

(b)

11 12 13 14

21 22 23

31 32 33

od

(c)

Figure 8: Example of scheduling on-demand measurement
task: (a) pre-computed schedule; (b) on-demand task has
higher priority; (c) on-demand task has same priority as pe-
riodic tasks.

complexity of sorting n jobs is n lg(n). In one hy-
perperiod, assume there are m scheduling points
which indicate the time jobs arrive, then the com-
putational complexity of the proposed algorithm is
mn lg(n). Let’s denote C as the number of unique
completion times of all jobs and K as the total num-
ber of jobs to be executed in a hyperperiod. There-
fore, we get:

K =
n∑

i=1

ph

p(τi)

and so the following relationship exists:

m ≤
n∑

i=1

ph

p(τi)
+ C ≤ 2

n∑

i=1

ph

p(τi)

Therefore, the computational complexity of the
proposed algorithm is n lg(n)

∑n
i=1

ph

p(τi)
, and thus

the complexity can be decreased by limiting the
upper-bound of ph. Some previously proposed
methods aimed to achieve this goal [44], but this
is out of scope of this paper.

On-demand Tasks Scheduling Algorithm
Input: measurement task set τ

3-tuple parameters of tasks a(τi), e(τi), p(τi)

tasks conflict matrix F

on-demand task τod

measurement resource constraint MRC

pre-computed schedule To

Output: start time of jobs T

Initialize hyperperiod ph

Initialize scheduling point list S

Initialize waiting queue Qhigh = {}, Qregular = {}
if priority of τod is high

Qhigh = Qhigh + τod

elseif priority of τod is regular

Qregular = Qregular + τod

end

set up conflict graph with sub-vertices:

f : (F, Qhigh) → Gs
high(V s

high, Es
high)

sort Q by ascending order of degree of sub-vertices d
GS

high
(v)

schedule each job in Qhigh and update scheduling point list

set up conflict graph with sub-vertices:

f : (F, Qregular) → Gs
regular(V s

regular , Es
regular)

sort Q by ascending order of degree of sub-vertices d
GS

regular
(v)

schedule each job in Qregular and update scheduling point list

Figure 9: Pseudo code of scheduling algorithm for on-
demand measurement tasks.

6. Simulation Results

To study the performance of the proposed algo-
rithms, we compared them with other scheduling
algorithms.

6.1. Schemes for Comparison
We considered algorithms able to process multi-

ple measurement tasks at the same time for a fare
comparison to the proposed algorithms for their
execution on an infrastructure with sufficient re-
sources. All of these algorithms have the same com-
putational complexity as the proposed ones. These
algorithms are described next:

6.1.1. Round-Robin
We improve the original round robin scheme to

empower it with the concurrent execution capabil-
ity. The improved scheme selects tasks for execu-
tion by following a pre-defined order. The scheme
performs scheduling at each scheduling point. At a
scheduling point, all the available jobs waiting to be
scheduled are selected in a pre-defined round-robin

10



order. If there is no conflict with current on-going
task, the job is scheduled; otherwise, the job is kept
in the queue to be considered/scheduled at the next
scheduling point. This algorithm is described in
Figure 10.
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Figure 10: Illustration of the improved round robin schedul-
ing algorithm.

6.1.2. Descending Order of Sub-Vertices’ Degree
(DOSD)

This scheme, also introduced here for comparison
purposes, follows a similar procedure as described
in Section 5.1 for the ascending order version, ex-
cept that this scheme sorts the jobs in the waiting
queue in the descending order of the degree of the
sub-vertices mapped to the jobs, in Step 3.

6.2. Evaluation Method
The algorithms are compared in terms of the av-

erage normalized waiting time of all jobs in one hy-
perperiod that is defined as below:

Avg. normalized waiting time = avg(
∑ w(τij)

p(τij)
)

where w(τij) is the waiting time of the job τij .
w(τij) is formally defined as the difference between

the time that the job starts execution and the be-
ginning time the job is available to be executed.
In the worst case, some measurement jobs may be
missed due to time expiration (i.e., the waiting time
exceeds the task period). We define the waiting
time of the missed job equal to its period time.

As the network performance is monitored by peri-
odic measurement requests, the measurement jobs
are expected to be scheduled at desired sampling
times that the interval time between any two con-
secutive samplings is a constant. However, because
of the conflict of the network measurement tasks,
the measurement jobs are scheduled at the time de-
viated from the desired sampling times. The aver-
age normalized waiting time is used to reflect how
severe such deviation impacts the acceptance of the
measurement sampling results. For example, if a
measurement task with period equal to 20 minutes
waits for 1.5 minute to start execution, the mea-
surement result is still acceptable to be used as pe-
riodic samples. However, if a measurement task
with period 2 minutes waits for 1.5 minute for ex-
ecution, the measurement sample obtained is far
from the expected measurement sampling time.

Another evaluation parameter is the execution
success ratio of jobs to be executed, which is defined
as:

Execution success ratio =

number of executed jobs in one hyperperiod

number of total jobs in one hyperperiod

6.3. Simulation Results of Periodic Tasks Schedul-
ing

In this simulation, the period of the periodic mea-
surement tasks is uniformly distributed in the range
of [11,100] time units, and the execution times of
the periodic measurement tasks are uniformly dis-
tributed in the range of [2,10] time units. The initial
time of task a (τi) is randomly selected in the range
of [1,5] time units. We observed the performance
of algorithms for different conflict probability val-
ues from 0 to 1.0 with increments of 0.05. A con-
flict probability of 0 between two tasks means that
there is no conflict between them, therefore there
is no edge connecting these two vertices in the con-
flict graph. A conflict probability of 1.0 means that
there is a conflict between any two tasks, corre-
sponding to a fully connected conflict graph. There
might be a high conflict probability in a real net-
work where the ongoing measurement tasks demand
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network resources for exclusive use. As an example,
the simultaneous measurement of bandwidth, delay,
jitter and other parameters at a gateway in a small
network could be a network performance bottleneck
as all measurement tools contend for the memory,
processing time, and uplink/downlink bandwidth
of that gateway. To observe the maximum perfor-
mance of the scheduling schemes, the measurement
resource is assumed to be large enough so there is no
MRC constraint on measurement tasks. We com-
pare the performance of the algorithms with 10 and
20 periodic tasks scenario. The simulation is run
1000 times (i.e., for each time a random tasks set
and the conflict relationship are generated) for each
scenario.

Figure 11 shows the average normalized waiting
times of 10 periodic tasks for these schemes. The
figure shows that the proposed scheme has the low-
est average normalized waiting times, and EDF-CE
has the highest.
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Figure 11: Normalized waiting time for 10 periodic measure-
ment tasks.

Figure 12 shows the success ratio of 10 periodic
tasks of the compared schemes. The figure shows
that as the conflict probability increases, the suc-
cess ratio of the schemes decreases. Here, the suc-
cess ratio of the proposed scheme is the highest
among other schemes as this scheme misses schedul-
ing the fewest number of tasks as compared to the
other schemes, while DOSD, which sorts the task
in the opposite order, has the lowest success ratio.
The combination that increases the success ratio
seems to be the selection of a small task and with
a small number of conflicts.

Figure 13 shows the normalized waiting times of
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Figure 12: Execution success ratio for 10 periodic measure-
ment tasks.

these schemes with 20 tasks. The outcome for 20
tasks is similar to the case with 10 tasks, where
the proposed scheme achieves the lowest waiting
time. The advantage of using the proposed scheme
is more pronounced for scenarios with a larger num-
ber of tasks.
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Figure 13: Normalized waiting time for 20 periodic measure-
ment tasks.

Figure 14 shows that the proposed scheduling
scheme and the EDF-CE scheme provide similar
execution success ratio, which is the highest suc-
cess ratio as compared to round robin and DOSD
schemes. We can see that when the conflict proba-
bility is lower than 0.5, the performance of all algo-
rithms is similar, but as the conflict probability in-
creases, the performance differences of the schemes
become more pronounced. As an interesting obser-
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vation, when the conflict probability is 1, where no
more than one job can be executed at a time by any
of the schemes, the waiting time and success ratio
of the schemes show differences. The low success
probability of DOSD is expected as it selects jobs
with long execution time first, and the remaining
time will then be left to a large number of tasks
that may be delayed close to or beyond the end of
their periods; therefore, a large number of jobs are
missed. In the proposed scheduling algorithm, the
degree of a sub-vertex is decided by the length of
the execution time of the job, so that scheduling by
the ascending order of the degree means that the
job with the shortest execution time is scheduled
first. This selection can potentially save a larger
number of time slots for the subsequent jobs in the
waiting queue. Therefore, the performance of this
algorithm is also the highest with the conflict prob-
ability of 1.0.
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Figure 14: Execution success ratio for 20 periodic measure-
ment tasks.

We also simulated a scenario where the execu-
tion times of periodic measurement tasks are non-
uniformly distributed. The periodic measurement
task set is composed of 10 measurement tasks. The
execution time of 5 measurement tasks are uni-
formly distributed in the range of [2,10] time units
while the execution time of the rest of 5 tasks are
randomly selected in the range of [8,10] time units.
The period of the tasks is uniformly distributed in
the range of [11,100] time units. The initial avail-
able time of a task is randomly selected in the range
of [1,5] time units. The simulation is run 1000
times.

Figure 15 shows the average normalized waiting

times under non-uniform distribution in the execu-
tion time of the 10 tasks. The large number of
tasks with long execution times is not beneficial
to the proposed scheme, but the proposed scheme
still achieves the lowest normalized waiting time
among all compared schemes. The round-robin
scheme achieves similar normalized waiting times
(although slightly higher) to those of the proposed
scheme. The other schemes are favored by this dis-
tribution of execution times, but their normalized
waiting times are larger than those of the proposed
scheme. This indicates that the measurement sam-
ples generated by scheduling schemes in comparison
are more biased from the regular measurement sam-
pling points, so that the jitter of the time intervals
between any two inter-sampling points is large.
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Figure 15: Normalized waiting time for 10 periodic measure-
ment tasks with non-uniformly distributed execution times.

Figure 16 shows the execution success ratios of
these schemes for tasks with non-uniformly dis-
tributed execution times. The results show that
the execution success ratios of all these schemes
are lower than the values obtained under execution
times with a uniform distribution. The considera-
tion of a larger number of tasks with long execution
times makes the scheduling schemes less efficient,
and more tasks miss their executions. Nevertheless,
the results show that the proposed scheme achieves
the highest execution success ratio.

6.4. Simulation Results of On-Demand Tasks
Scheduling

We also simulated the scheduling of periodic
tasks combined with on-demand tasks and evalu-
ate the performance of the scheme according to the

13



0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Conflict probability

E
xe

cu
tio

n 
su

cc
es

s 
ra

tio

 

 

Round robin
EDF−CE
DOSD
Proposed scheme

Figure 16: Execution success ratio for 10 periodic measure-
ment tasks with non-uniformly distributed execution times.

average waiting time instead of average normalized
waiting time of the jobs since there is no period for
the on-demand tasks. In this scenario, there are
10 periodic tasks, and on-demand tasks are created
at arbitrary time slots. We combine the periodic
tasks with on-demand tasks created at arbitrary
time slots, where the arrival of an on-demand mea-
surement task is created with a probability of 0.05
for each time slot. For scheduling (and execution),
the priority of on-demand tasks is set to be equal
to that of periodic tasks.

The execution and period times are uniformly
distributed in the ranges of [2,10] and [11,100] time
slots, respectively. As in the previous section, we
considered the conflict probability among all mea-
surement tasks (including both periodic and on-
demand tasks) increasing from 0 to 1.0 with steps
of 0.05. We ran the simulation for 500 times.

Figure 17 shows the average waiting times mea-
sured only on the on-demand tasks. The results
indicate that the proposed algorithm can achieve
the lowest waiting time for on-demand tasks among
the considered algorithms as all task are considered
with the same priority levels. However, different
from the cases with periodic tasks only, the round-
robin scheme shows the lowest performance (the
longest average waiting time) as some tasks can-
not be re-organized with the addition of on-demand
tasks because periodic tasks would still follow the
pre-determined round-robin order. However, the
other schemes follow similar trends as those ob-
served for periodic tasks only.

Figure 18 shows the average waiting times of the
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Figure 17: Average waiting time for on-demand measure-
ment tasks of on-demand tasks in a combination with peri-
odic tasks.

periodic tasks only, under this scenario. The results
show that the periodic tasks undergo similar aver-
age waiting times as in the case of periodic tasks
only, and the round-robin scheme and the proposed
scheme achieve the lowest average waiting times.
The performance of round-robin is high in this sce-
nario as the pre-determined order followed by this
scheme isolates the periodic task from the arrivals
of on-demand tasks. The proposed scheme, how-
ever, accommodates the on-demand tasks and still
achieves an efficient outcome, or the lowest average
waiting times.
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Figure 18: Average waiting time of periodic tasks when they
are combined with on-demand tasks.

Figure 19 shows the normalized waiting times
of the periodic measurement tasks. This graph
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also corroborates the previous observations, where
the periodic tasks have similar results to the case
of only periodic tasks, with the proposed scheme
achieving the highest performance and the EDF-
CE scheme achieving the lowest performance.
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Figure 19: Normalized waiting time of periodic tasks when
they are combined with on-demand tasks.

7. Conclusions

In this paper, we have analyzed the problem of
contention for resources in network active measure-
ment. The scheduling of active measurement tasks
can be used to resolve this contention to allow high
utilization of network resources and to provide ac-
curate measurement results and least disturbance
to users’ data traffic. Critical contentions for any
resource are defined as conflicts.

Based on graph coloring theory, we have pro-
posed to describe the measurement tasks relation
by using a conflict graph, and to convert this
scheduling problem into a graph coloring problem.
We have also proposed two algorithms to schedule
tasks according to the ascending order of the degree
of sub-vertices in the conflict graph, one for periodic
measurement tasks, and another for on-demand
measurement tasks. Each sub-vertex represents one
basic time unit for the execution time of the task.
The results showed that the proposed scheduling
schemes provide the shortest average waiting time
for cases where periodic tasks are considered in the
network as well as when on-demand task are added
in a network with existing periodic tasks. The pro-
posed schemes also achieve the highest utilization of

network resources as shown by achieving the high-
est execution success ratios in the presented results.

In addition, the schemes are able to schedule
the on-demand tasks with either higher or equal
priority with respect to that of the periodic mea-
surement tasks.
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