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In this paper, we present and evaluate a protocol that enables fast and accurate range-query execution in
Distributed Hash Tables (DHTSs). Range queries are of particular importance when the network is popu-
lated with groups or collections of data items, whose respective identifiers are generated in a way that
encodes semantic relationships into key distances. Contrary to related work in the same direction, our
proposed query engine is aware of data replicas at the DHT level and by grouping related nodes into rep-
lica neighborhoods, resolves queries with the minimum amount of messaging overhead. Moreover, we
suggest pairing respective operations with the core DHT routing mechanics, which allows for reusing
existing management and monitoring structures and automatically adapting the query path to the
dynamic characteristics of the overlay. We also present an application scenario and the respective
deployment details of a prototype implementation in the context of the Gredia project.
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1. Introduction

Peer-to-peer computing has been widely accepted as a robust,
easily deployable paradigm on which fully distributed, scalable
applications can be built. Respective protocols focus on defining
the transactions between autonomous network endpoints that col-
lectively form an extensible and resilient substrate — a network
overlay, which can operate unsupervised and dynamically adjust it-
self to unadvertised node arrivals and departures, or sudden net-
work black-outs. Structured systems, also commonly known as
Distributed Hash Tables (DHTs), represent a major class of peer-
to-peer arrangements that abstract the aggregate network as a
key-value based indexing and storage facility. All available designs,
share the common concept of hashing both peers and data values to
identifiers that represent slots of a pre-defined virtual fabric. In the
identifier space, each node takes on the responsibility of storing
values and managing operations that refer to data with IDs “close”
to its own. DHT implementations are designated by the shape of
the identifier space used and consequently the corresponding dis-
tance function [1]. Kademlia [2] uses an XOR metric, which implies
placement at the leaves of a binary tree, while Chord [3] organizes
all IDs clockwise around a circle.

DHTs pose as perfect candidates for replacing “traditional” cen-
tralized or layered global-scale databases of information that can
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be easily transformed to a key-value form (i.e. DNS records [4]).
Their simple put/get interface allows the direct application of tradi-
tional programming models to a global scale. Nevertheless, their
applicability is limited, due to the lack of inherent support for pro-
cessing related subsets, or ranges of data identifiers. Expressing
range queries in multiple simpler primitive lookups for all interme-
diate IDs is not scalable. Ideally, such operations should be inter-
nally handled by the overlay, while both respecting and
sustaining the scalability and fault-tolerance mechanics that have
made DHTs a prominent platform for supporting distributed
applications.

This also reflects a common focus of many recent research ini-
tiatives, that propose advanced or complex DHT lookup functions
- functions which exploit semantic relationships between data
items, including similar or nearest neighbor searching or process-
ing aggregate sets of closely related items. As group operations re-
quire data ordering, the hash function for placing values into the
identifier space is usually replaced with a locality-preserving map-
ping scheme. When the data to be distributed is already tied to one
or more indices, such a scheme can transform their numeric repre-
sentations to a single identifier, while maintaining their original
organizational and clustering properties. Example mapping func-
tions for multi-dimensional values may be based on the Z or Hilbert
space-filling curves (SFCs).

Motivated to implement a DHT capable of performing range
queries on multi-dimensional data, we have investigated numer-
ous systems presented in related work and found that most exhibit
shortcomings that originate from their two-level architecture,
choice of range-query resolution algorithms, or both. Using sepa-
rate layers for query handling and routing complicates operations,
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as each layer’s data structures must be properly maintained and
synchronized to propagate new values or node membership
changes. Additionally, the process of translating multi-dimensional
ranges to DHT identifier segments of the routing layer may be a
very demanding processing task. A common trend to avoid the pro-
cessing load is to distribute it among the nodes of the DHT, via a
query refinement process. Such systems match the recursive trans-
lation algorithm to a tree-like ordering of peers. This may incur
heavy loads at the nodes placed at the higher levels of the overlay’s
structure and by design does not solve the problem of computing
the ID segments corresponding to each multi-dimensional range
request. Furthermore, to our knowledge, no range-query capable
system is compatible with DHT protocols that inherently handle
data replication. While pioneering DHTs could only ensure data
reliability via well-defined node disconnect procedures, modern
overlays self-replicate each stored value to a dynamic group of
close peers. Related multi-dimensional query platforms usually
build upon a simple DHT substrate, optimized for routing, and del-
egate data management and replication to a separate layer. How-
ever, when such copies are already available in the overlay, the
query engine should account for them accordingly.

In this paper, we present the necessary protocol enhancements
that enable a DHT to handle range queries. We do not propose a
new peer-to-peer architecture, but rather exploit existing internal
structures to introduce a novel routing strategy for looking-up
ranges of identifiers. In contrast to other designs, we do not employ
a recursive multi-dimensional range to segment conversion, but
apply a serial, segment-to-segment hopping algorithm that in
addition to its improved efficiency allows the query process to be
easily distributed and parallelized. Analogous query resolution
mechanisms have been extensively used in database-related con-
texts, but not in DHTs.

Moreover, by working directly at the DHT level, we achieve sev-
eral benefits. First, range queries self-manage the path taken
throughout the network and avoid visiting nodes which would
otherwise reply with duplicate values - replica awareness has been
an important challenge throughout the design process. To this end,
we introduce the notion of peer neighborhoods, as groups of peers
that store the same replica set. Neighborhoods interact directly
with the query engine and serve as a tool to help us estimate
and measure the performance characteristics of the network, as
well as balance the load over peers of the same group. Inherent
DHT replication is not considered an obstacle, but is exploited in
favor of faster query resolution. Second, the resulting DHT requires
no extra management to support range queries. Since we do not
introduce any new routing tables or other internal structures, there
is no need for additional continuous or periodic maintenance.
Therefore, we stress the importance of embedding range-query
support at the core of the protocol. Implementing advanced func-
tions at the lowest level, allows us to exploit the underlying DHT
mechanics and let the query automatically adjust its execution
depending on the ongoing node and data-placement relationships
in the overlay. This degree of integration is also one of the main
contributions of this work.

The remainder of this paper is organized as follows: In the next
section we discuss on related work in the area. Section 3 introduces
our protocol starting with the single-dimensional case, before
moving on to multiple dimensions. In Section 4 we present both
a formal and an empirical approach to estimate the performance
of the proposed algorithm, show evaluation results and elaborate
on its behavior under different overlay runtime parameters and
data distributions. We then describe the scenario that has moti-
vated us to deal with the problem, the final implementation and
deployment details and conclude. A working prototype has been
incorporated in the EU-funded Gredia project [5] infrastructure to
provide an efficient and scalable solution for metadata search.

2. Related work

DHT overlays [2,3,6-8] have been established as an effective
solution for data placement and exact match query routing in scal-
able network infrastructures. In respective protocols, values can
only be located if the their exact keys are known in advance, while
keys - randomly generated by a cryptographic hash function - do
not contain any semantic information about the content. As appli-
cations demand more complex types of queries, capable of exploit-
ing inter-relationships between data, research efforts have focused
on developing corresponding algorithms and mechanisms. Resolv-
ing range queries in a peer-to-peer network requires the ordering
of values, which comes in conflict with the random assignment
of items to nodes. The methodology used to solve this problem,
provides a basic categorization of proposed systems encountered
in the bibliography:

e Overlays that rely on an existing DHT protocol and either mod-
ify/replace the hashing function or add additional indexing
structures on top of the DHT.

e Overlays that distribute the dataset to peers, while not directly
utilizing any existing DHT protocol.

In the rest of the section, we elaborate on related work from the
field of structured peer-to-peer overlays, starting from systems
supporting range queries for data items described by a single attri-
bute, before proceeding to platforms that support multi-attribute
range operations.

An early approach to support range queries in a DHT overlay is
presented by Gupta et al. [9]. The authors store partitions of a rela-
tional database in a DHT and enable querying ranges one attribute
at a time, by mapping them to identifiers via a special hash func-
tion. Nevertheless, hashing ranges is not efficient, as it is possible
that similar or overlapping spaces are mapped to different nodes.
To avoid flooding the network or following various distributed
indices to reach the requested data, they introduce Locality Sensi-
tive Hashing, so mappings preserve locality with high probability.
However, the probabilistic scheme returns approximate results,
whose quality depends on the complexity of the function. Addi-
tionally, there are load-balancing issues. Another method of
adjusting hashing to enable range queries is described by And-
rzejak and Xu [10], where the Hilbert space-filling curve is used
for mapping ranges of an attribute’s values to parts of a CAN-based
overlay. The SFC offers the advantage that nearby attribute ranges
are mapped to nearby CAN zones. A query is initially routed to the
node responsible for the middle point of the range and then recur-
sively propagated according to three proposed and evaluated
‘flooding’ strategies.

A common solution for the execution of range queries is the
exploitation of trees as additional indexing structures on top of
DHT-based, independent routing substrates. Gao and Steenkiste
[11] implement a Range Search Tree (RST) on top of a DHT overlay,
such as Chord. Each level of the tree corresponds to a different
granularity of data partitioning, while content is registered with
all or various levels of the RST and the corresponding physical
nodes of the DHT. Distributed Segment Trees [12] are similar. P-
Trees [13] are also decentralized indexing structures, maintaining
parts of semi-independent B+ trees on top of a Chord ring. Their
purpose is to help route range queries to the appropriate nodes. Be-
cause of complex cross-structure management, the authors note
that every query cannot be guaranteed to terminate - for example,
if a node crashes. Other efforts target the distribution of tries. Tries
are a generalization of trees for storing and processing strings in
which there is a node for every common prefix. In tries, the actual
data is stored in the leaf nodes and thus lookups are resolved by
finding the leaf whose label is a prefix of the queried value. The
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Prefix Hash Tree (PHT) [14] is such a trie-based structure layered
on top of a DHT to enable one-dimensional range queries. A range
query is performed by various DHT lookups and the query cost is
data dependent. Chawathe et al. [15] adapt PHTs in the 2-dimen-
sional space of a geographic application. The keys indexed by the
PHT are generated by a linearization technique based on the Z-
curve. The Distributed Lexical Placement Table (DLPT) [16] is a
dynamically constructed trie for indexing, enabling service discov-
ery in grid environments. A trie index, as a semantic overlay on top
of a DHT, is also used by the IMAGINE-P2P platform [17]. Queries
are forwarded in an index which contains the semantic relation-
ships of data items stored in a Chord ring. In all aforementioned ap-
proaches, the underlying DHT serves as an efficient and scalable
layer providing primitive operations, on which generic and easily
deployable solutions are based. However, the superimposed struc-
tures increase complexity and require additional maintenance and
management procedures. Moreover, the adaptability of the system
to node arrivals and departures decreases and special care should
be taken for keeping all indices consistent. Datta et al. incorporate
a PHT in the structure of the P-Grid overlay [18] by suitably orga-
nizing the routing tables. The P-Grid tree-based topology resem-
bles Kademlia and the sequential querying algorithm is akin to
our methodology for the resolution of one dimensional range que-
ries. Nevertheless, the proposed structure is only designed for han-
dling one attribute. The authors consider the fact of using multiple
P-Grids, one for each attribute, as a solution for supporting multi-
dimensional ranges. However, this would require an increased
query cost for searching in all rings, as well as filtering redundant,
duplicate results.

Various proposals eliminate the DHT and construct a similar
structured overlay that preserves the ordering of stored values.
The Skip Graph [19] distributed structure is based on skip lists
[20], which is an increasingly sparse set of sorted double-linked
lists of keys. Since skip lists are vulnerable to node failures and lack
redundancy, a skip graph combines multiple lists at each level. All
the nodes participate in the lowest level, while higher levels are
used as shortcuts to reach peers at greater distances. Skip Tree
Graphs [21] is a complementary architecture, which uses skip trees
instead, and supports aggregation queries and multicast/broadcast
operations. Bharambe et al. designed Mercury [22], a system con-
sisting of multiple circular overlays. Each overlay corresponds to
a different attribute and each node is responsible for a particular
range. Nodes are partitioned into groups called attribute hubs
and data items are indexed to the corresponding hub for each indi-
vidual attribute. A query for more than one attribute is considered
as a conjunction of predicates and is routed to all relevant hubs.
Since the elimination of the hash function may result in non-uni-
form partitioning of data among nodes, Mercury emphasizes in
load balancing, using random sampling to avoid problems with
skewed data distributions. Chord® [23] is also a circular Chord-
based overlay, which stores keys in lexicographical order. SONAR
[23] is the extension of Chord* to support range queries over mul-
tiple attributes, although in a topology that resembles CAN. Each
node includes neighbors for each dimension in its routing table,
to enable range-query processing. Defining a new peer ordering,
requires developing explicit methods for reestablishing properties
inherently supported by a DHT (logarithmic routing, recovery after
node arrivals and departures, load balancing etc). Replication is an-
other issue faced orthogonally in these works. The order preserving
property requires that replication cannot be natively implemented
and another layer is usually added for this reason.

To support the concurrent resolution of ranges referring to
more than one attribute, respective systems construct keys based
on all available value identifiers. It is considered that all attributes
form a multi-dimensional space, which is commonly mapped to
one dimension and vice versa using a space-filling curve. Similar

methods have been used for indexing multi-dimensional data in
database systems [24-26], image processors, etc. An analysis in
[27] shows that mappings based on a Hilbert SFC exhibit better
clustering properties, namely the locality between objects in the
multi-dimensional space is best preserved in the linear space. In
structured peer-to-peer systems, the hash function can easily be
replaced with an SFC-based mapping. Squid [28] is a Chord-based
overlay enhanced with facilities for partial keyword, wildcard and
range searches. Data items described by attributes, are assigned an
ID by a function that maps corresponding values to a Hilbert index.
A range query is resolved with multiple DHT lookups, by recur-
sively searching SFC clusters. At each search step, longer prefixes
of candidate clusters are looked up. If a node is responsible for
the IDs with the prefix in question, then it queries its local data-
base. Otherwise, it initiates new lookups for more specific sub-
clusters. Despite distributing the calculation of SFC clusters among
overlay peers, the process still imposes relatively large computa-
tional and messaging costs. Also, the peers responsible of high or-
der ID bits suffer from congestion, since each query is initially
forwarded to them. To avoid load imbalance, Squid relies on the
fact that the d-dimensional keyword space is sparse and so the
data items are assigned to peers roughly in the same way. Multi-
dimensional indexing via a Hilbert SFC is also employed by the CISS
framework [29]. Assuming a hierarchy for each attribute, perform-
ing a range query requires the node responsible for the first key of
a candidate cluster to be looked up, before forwarding to succeed-
ing peers, until all relevant objects are retrieved. Load balancing is
handled either locally, by exchanging items among heavily loaded
nodes and their neighbors, or globally by detecting lightly loaded
nodes in the system. SCRAP [30], also enables range queries for
one or more attributes, by using an SFC to produce single-dimen-
sional indices for values, which in turn are partitioned to nodes.
Range queries are resolved by computing the clusters answering
the query and routing them in a Skip Graph network. However,
the number of calculated ranges may be very large and definitely
depends on the refinement level of the SFC curve. The latter is
important because it defines the number of bits used for represent-
ing each attribute’s value. In our case, we completely avoid the
computationally intensive method of mapping range queries to
key clusters, in order to provide a realistic and scalable solution.
Some multi-dimensional range query capable systems do not
use an SFC for replacing the hash function, but define their own
data organization scheme. MURK [30] implements a distributed
kd-tree in order to partition the data space to rectangles and assign
them to participating nodes. Each node is aware of its neighbors
and queries are forwarded along these links. However, load balanc-
ing remains a tricky point - especially for dynamic workloads. A
distributed quadtree is implemented for indexing and querying
of spatial data in [31]. The centroid of each quadtree block is
hashed and inserted in a Chord overlay. ZNet [32] dynamically par-
titions space according to Z-ordering and uses Skip Graphs as the
network overlay. The nodes may be responsible for continuous
ranges of Z-addresses of different lengths according to the order
of the curve for the specific interval. A range query is initially for-
warded to the nodes assigned with the shorter prefixes, before
being further refined by computing the next recursion of the curve
for producing more specific candidate intervals. Armanda [33],
which utilizes FissionE [34], a structured overlay composed
according to the properties of a Knautz graph, uses algorithms
for single and multi-attribute hashing that preserve entire and par-
tial order, based on the graph properties. These algorithms assign
data items to peers in such a way that each peer is responsible
for a specific interval of an attribute’s adjacent values. The search
procedure has been adapted to the naming scheme and ranges
with common prefixes can be searched. Again, these approaches
do not provide functionalities already available from DHTSs, or re-
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quire complex procedures for synchronizing data structures at dif-
ferent levels.

3. Supporting single and multi-dimensional range queries in a
DHT

In the following paragraphs, we describe the proposed range-
query protocol in the context of a Kademlia-based routing scheme.
First, we elaborate on how the single-dimensional range resolution
can be encoded into a series of DHT routing and lookup commands
that retrieve respective values while avoiding replicas. Then, we
extend into the multi-dimensional scenario, in order to derive a
unified range-query protocol. While we discuss on how the peer
neighborhood concept can also be applied to circular identifier
spaces, we use a binary tree structure to present and evaluate
our algorithm, due to its unique symmetrical replication character-
istics. Our prototype implementation is also based on Kademlia.
Accordingly, we employ a Z-curve as the SFC for translating multi-
ple indices to DHT identifiers, due to its simplicity, although any
mapping function can be used - we have implemented both Z
and Hilbert curves.

3.1. Looking-up ranges

Looking-up an identifier in a DHT involves hopping from node
to node, using the corresponding routing tables, going at each step
closer to the specified key. The closest node in the virtual space
must store the value, else the key is non-existent. Disregarding
replication, performing a range query for all identifiers in-between
a given set of Qg and Q.,q, requires repeating the above steps for
each subsequent node in the interval. In a DHT, each node may store
multiple identifiers in a range, thus range processing should pro-
ceed from node to node - not based on identifiers. Given the sparse
distribution of keys in a DHT’s address space, unless [Qgqre, Qena] iS
an extremely small interval, iterating the lookup process over each
Q will result in a large number of unsuccessful operations.

Moreover, in overlays that replicate keys to close participants,
the algorithm should automatically skip over peers storing repli-
cated values. To avoid wasting time and bandwidth, starting from
the node responsible for Qg,:, the query should proceed to the
next node holding different identifiers, etc. until reaching the one
closest to Q,.nq. The number of nodes that should be bypassed at
each iteration can only be defined when knowing the details of
the virtual space that accommodates the participants, as well as
the exact replication mechanics.

Kademlia applies the closest-nodes replication scheme via the x
parameter — a key must be stored to at least x of its closest nodes.
Visualizing this in the context of the binary tree structure implied
by the overlay’s distance function (XOR), a key along with its rep-
licating nodes share positions at the leafs of a common subtree.
Consider the following definitions when discussing replica place-
ment in Kademlia: Given an identifier, let sub-neighborhood be
any subtree containing it, as long as it has a node population of less
than k. We call the largest sub-neighborhood of a key its unique
neighborhood. In a neighborhood’s range of identifiers
RN = [Nstart, Nena), @any node in Ry stores at least all replicas whose
keys fall in Ry. Or: All data keys in Ry are replicated at least to all
nodes in Ry. Naturally, more replicas may still be found in adjacent
nodes (outside Ry), as each neighborhood’s node-size is always less
than the replication factor.

In a deployment of less than x participants, there is only a single
group, whose subtree coincides with the whole identifier space. All
nodes are neighbors and share copies of all available data. As the
node population increases, immediately upon reaching x, the sin-
gle neighborhood splits in two - each corresponding to one of

the left and right branches of the tree structure. The process re-
peats each time the number of nodes in a neighborhood reaches
the limit set by the replication factor. A simple example for kK = 2
is presented in Fig. 1. As nodes gradually populate the network, a
new neighborhood is formed for every new participant.

The definition of neighborhood as a utility is extremely helpful
for implementing and evaluating range operations in DHTs, as it
imposes a grouping of nodes that can be directly used as hops by
the query algorithm. Neighborhood borders are reported by peers
when contacting them, as a pointer to how much of the identifier
space can be safely ignored at the next iteration. Each peer is well
aware of its neighbors, as it has a better knowledge of close iden-
tifiers, so it can easily devise and return the current relationship
between close routing table entries and replicas of data items.

In Kademlia, neighborhoods are by definition distinct, non-
overlapping node groups. The bidirectional nature of XOR, pro-
duces a symmetric replication scheme, which allows for picking
any node from Ry as a valid contact for processing a query referring
to all data items in Ry. In circular overlay arrangements, where
each key-value pair may be automatically replicated to its f succes-
sors — as a variation of Chord’s algorithm that places each value to
its immediate successor, neighborhoods, in the same sense, cannot
be easily defined. Replication ranges overlap. Nevertheless, for an
identifier area Ry, containing < f nodes, all nodes in
[Rimids Rend); Rstart < Rmia < Reng  share all values with keys in
[Rstart, Rmia]. Upon contacting a node in [Ryig, Rend], @ Tange query
can continue with one of its f predecessors with ID < Ryq. If repli-
cas are placed to an identifier’s f; successors andé predecessors [7],
all ranges containing < f/2 nodes are neighborhoods. There is still
overlapping, so avoiding duplicate values may require jumping
over f adjacent peers at each step.

In Kademlia, nodes organize their contacts into 160 buckets,
each representing an exponentially larger part of the 2'% id-space
as the distance from the node increases. In practice, a peer keeps K
contacts for half the structure that does not include itself (the left
or right primary subtree), k for half of the remaining structure that
does not include itself (a second-level subtree), etc. Using this rout-
ing table setup, each peer can find its neighboring nodes by tra-
versing the buckets sequentially, from the closest onwards, as
long as the total neighbor-count remains within limits.

On the other hand, contacts may be dynamically managed. In
related literature, Kademlia designers use a static routing table
structure to explain the protocol, but also propose a dynamic
implementation where buckets are created only when necessary.
Dynamic contact management is reminiscent of the aforemen-
tioned neighborhood construction process. Each node has one dy-
namic bucket, which holds its closest contacts. Each time the
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Fig. 1. Example of neighborhood formation for x = 2. The identifier space is
represented horizontally, as empty slots, filled gradually with nodes (grey dots).
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Fig. 2. Routing table implementations for a sample node (dark grey) in a Kademlia overlay with x = 4. A dynamic routing table’s first bucket contains all neighbors and

defines the identifier range of the neighborhood.

dynamic bucket’s contact count reaches x, it spawns a static buck-
et containing peers that belong to a specific range of identifiers — a
distant subtree. New contacts that fall within the range of a static
bucket are managed as usual, while all others are added into the
dynamic structure. The closest static bucket marks the border be-
tween close and distant nodes. It separates the network into the
branch containing the node and its less than k close peers, and
all other subtrees. In this type of routing tables, neighborhood
information is directly accessible at no extra cost. The first bucket
(dynamic) contains all neighboring nodes, while the distance be-
tween the first and second buckets reveals the identifier range of
the node’s neighborhood - it defines the subtree’s edges (Fig. 2).

In our implementation we have replaced Kademlia’s FIND_VA-
LUE/VALUE message pair with FIND_RANGE/RANGE. A FIND_RANGE
query specifies the range of identifiers that interest the issuer. A
RANGE reply should contain all stored values in the requested
range, plus information about the node’s neighborhood - which
part of the virtual structure is covered by the node. Thus, a range
query takes the following steps:

. SetQ = Qstart'

. Lookup the closest nodes to Q.

. Send a FIND_RANGE to the top node in the list.

. Collect values received in the RANGE reply. Add the returned
coverage to the total range of covered identifiers.

. Set Q to the next identifier outside the covered area.

. If Q is in the lookup range, repeat the process from the second
step.

AW N =

(o))

The whole procedure is end-to-end coordinated by one node.
This is in agreement with typical DHT mechanics, as it assures that
the participant with the incentive to do the operation will also
manage its completion. Additionally, it provides a level of fault-tol-
erance. If, for any Q, a remote node fails to reply, the process can
continue with any peer from the same neighborhood. In the exam-
ple of Fig. 3 (x = 4), the node placed at 3, requires three successful
FIND_RANGE RPCs to complete the query for range [7,20]. Q is ini-
tially set to 7, which falls inside the neighborhood [4,7]. Assuming
a RANGE reply from 6, Q is set to 8, which belongs to the neighbor-
hood [8,15]. Looking up the new Q’s closest nodes, results to 8, 13,
15, 0. If node 8 fails to respond, 3 will pick the next peer from the
list, namely 13, which should provide an equal data and coverage
reply. Faithful to the autonomous nature and the self-management

| |
1 |

properties of the DHT, the algorithm will automatically skip the
appropriate number of peers at each query step, according to
pre-defined parameters and the current status of the network.
Moreover, to completely match the original lookup process em-
ployed by Kademlia, we allow for an optional asynchronous query
step: When getting a RANGE reply, the issuer may send parallel
FIND_MORE requests to all other participants in the peer’s coverage
in order to retrieve any extra values that may have been missed by
previous nodes. FIND_MORE RPCs contain the list of data keys al-
ready found. In highly dynamic setups, because of the continuously
changing associations between nodes and stored values, Kademlia
requires that all of a key’s k closest nodes are visited before con-
cluding on whether a data item is indeed not in the network. An
unsuccessful point lookup request will not end until all closest
nodes found have replied to FIND_VALUE requests. We address
this issue via FIND_MORE messages, but deem their use optional,
because the usefulness of the extra communication depends on
the deployment environment and the application requirements.
It may be known beforehand that the overlay will not experience
extreme node churn, or the application may allow for a subset of
in-range values to be returned for it to proceed with other tasks.

3.2. Going multi-dimensional

Multi-dimensional values are values that have multiple keys -
an identifier for each dimension. In some applications, assigning
multiple identifiers for each data item is crucial for pertaining to
the semantics of a value. A large amount of related literature is de-
voted on how to efficiently handle such data: how to store multi-
dimensional datasets and how to perform fast and accurate point
and range queries in respective collections. A key aspect behind
most corresponding proposals is the use of a space-filling curve
function that maps all indices to a single number. The function is
called “space-filling”, because it emulates a line that passes contin-
uously through all points of the multi-dimensional space imposed
by the values’ indices. A key property of an SFC is that it preserves
locality in all dimensions during the conversion process, which
means that semantically close ranges also fall in neighboring
points on the curve. This locality can be exploited either way: In
database software, for example, range queries are served using a
smaller set of memory page accesses, and the system can automat-
ically deduce related values [35].
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Fig. 3. Performing a range query requires one successful FIND_RANGE RPC per neighborhood of query coverage.
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There are many SFC algorithms. The simplest mapping can be
obtained by concatenating keys to get the aggregate index. While
this tactic has some advantages, it preserves locality only in one
dimension. Usually, picking an SFC involves balancing the local-
ity-preserving characteristics of the algorithm with its computa-
tional complexity. Two widespread SFCs that also scale well in
multiple dimensions are the Z (Morton order) and the Hilbert
curves. Space-walking on the Z-curve is accomplished by interlac-
ing the binary digits of each dimension’s index. On the other hand,
the Hilbert curve follows a self-similar, recursive geometrical pat-
tern, which is constructed in steps, called orders. A first order curve,
that passes through 2' bits in D dimensions can be generated by
the corresponding Gray code for D bits. Higher orders require
rotating parts of the graph to avoid intersections. As such, the Hil-
bert curve is more difficult to implement than the Z order, but
achieves better locality.

We have extended our DHT implementation to support multi-
dimensional data, by incorporating the aforementioned curve gen-
eration functions within (both Z and Hilbert). When storing or
locating multi-indexed values, the key used in the DHT corre-
sponds to the point of the SFC for the given coordinates. Thereby,
assuming that each index represents specific characteristics of
the value, the SFC will attempt to place semantically close values
near each other in the DHT’s virtual identifier space. In this setup,
range queries become an almost essential feature of the network,
in order to take advantage of the relationships encoded in neigh-
boring data items.

Before examining the required steps, consider that, in addition
to the one-dimensional case described in the previous section, a
range query in multiple dimensions should be converted to a series
of corresponding ranges at the level of the SFC. Each space-filling
algorithm provides the means of mapping multi-dimensional key
ranges to ranges of identifiers on the resulting curve. Nevertheless,
the process of computing the later may be extremely time consum-
ing and should be avoided at all costs. A seemingly simple multi-
coordinate lookup will commonly produce numerous non-contigu-
ous segments on the curve. Some of these segments may even be
single identifiers. It is evident, that computing all segments and
issuing a direct or range lookup for each one at the DHT level is
not sufficient. Again, the challenge lies in outperforming the naive
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approach of iteratively going over each part of the overall range,
without taking into account that the parts may not necessarily
be completely independent.

We propose an approach that exploits the properties of peer
neighborhoods. In accordance to the one-dimensional protocol,
the goal is to traverse each relevant peer neighborhood at most
once per range query. At each step, a node should reply with all
values that fall within its coverage - the borders of its neighbor-
hood. To jump over to the next node, we use a special SFC function
called find_next (query, id) that returns the next key, after the
id, that is inside the query [25]. The complexity of find_next ()
depends on the SFC type, but in any case it is much more efficient
to serve the query from the neighborhood point-of-view, than
attacking the problem from the SFC algorithm, even if the re-
quested range covers a large portion of the index space and there-
fore, requires visiting a large number of neighborhoods.

The process is shown in Fig. 4. The top part illustrates a sample
six-bit, two-dimensional space filled with a Z-curve. A range query
in two dimensions is represented as a bounding box containing all
values that should be returned. The equivalent Kademlia network
at the bottom of the figure is formed by 13 nodes - their positions
in the overlay result in the neighborhood borders indicated by the
bold, dashed lines. There is a one-to-one relationship between DHT
neighborhoods and respective parts of the Z-curve. For example,
the first half of the curve corresponds to the left first-level subtree
of Kademlia. Thus, neighborhood borders are also shown in the
context of the two-dimensional space. The simple query box may
cross over four neighborhoods, but produces seven distinct seg-
ments at the SFC-level (four of which are single points). However,
the range query requires only one visit to each neighborhood and is
completed in four steps, instead of seven. Individual query seg-
ments that fall in the same neighborhood are processed all to-
gether by the same node.

Most of the range query steps previously discussed remain un-
changed, except for step 5 which uses the find_next () function
to get the next Q outside the aggregate coverage. The next Q may
be the next identifier if the previous node’s coverage stops in the
middle a segment, or a distant key if the coverage overlaps the
respective ranges. Also, FIND_RANGE messages contain the original
range query, as issued in multiple dimensions, so the receiver can
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Fig. 4. A representation of a two-dimensional range query in both its Z-curve and DHT equivalents. Neighborhood borders are shown with dashed lines in both structures. A
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easily infer the locally stored values that should be replied. Local
replicas are stored using their dimensional indices, therefore this
requires a simple local database lookup. Moreover, the single-
dimension scenario can now be considered as a sub-case of a uni-
fied algorithm, with find_next() implemented by incrementing Q,
when Q is in-range. Also, note that Qg is always returned by
find_next(range,-1).

4. Evaluation

Estimating the performance of range queries in a DHT requires
considering numerous parameters that may affect their execution:
network size, query size, data distribution, node distribution, num-
ber of dimensions used to index data and the overlay’s replication
factor. The latter, for example, controls the size of neighborhoods
and as a result, their total number given a network size. We show
that the node distribution does not play an important role in query
resolution, as neighborhood forming is a recursive process that can
tolerate large node concentrations. However, node and data distri-
butions may affect the load balancing characteristics of the net-
work, namely skew the amount of storage, processing and
networking capacities demanded for some peer groups. Naturally,
the query size controls how many neighborhoods will be visited by
a query when the number of index dimensions is relatively low.
However, when dimensionality escalates, the SFC may gradually
lose its locality-preserving properties, thus map a relatively simple
range to identifier segments that span a large percentage of the
overlay, which in turn requires visiting even more peers.

As the range-query protocol additions do not alter the DHT’s
original routing tables, simple, point lookups in the network con-
tinue to cost about log N steps (for an overlay of N nodes). We as-
sume that their range counterparts require a maximum of
ﬁElogN messages, where S is the length of identifier coverage,
Smax the identifier space’s size and E the total number of neighbor-
hoods in the network. For multi-dimensional range queries, we
consider the worst case where S corresponds to the total coverage
of all query segments, including any gaps between them. Intui-
tively, the complexity of a range lookup is proportional to the num-
ber of neighborhoods it covers. As each neighborhood access is a
standard lookup of log N cost, the term % defines the percentage
of branches that will be visited, depending on the size of the re-
quest. This percentage-based calculation implies a random distri-
bution of nodes, however, it helps in gaining an insight on the
overlay’s performance characteristics, before discussing load-bal-
ancing issues. By all means, the worst case scenario is a range-
query for all data keys, that has to go through all E neighborhoods,
regardless of the node distribution.

In the following sections, we present both a formal and an
empirical approach to determine E, before moving on to experi-
mental results that indicate how the number of index dimensions
and corresponding query sizes affect S. We then discuss on deploy-
ment and optimization tactics, as well as load-balancing
techniques.

4.1. Counting the number of neighborhoods

To infer the total number of neighborhoods in a Kademlia net-
work of size N and a replication factor of x, we consider the follow-
ing generalized problem.

Problem. Imagine a full binary tree of unlimited depth. The
depth of the root is 0 and increases 1 for each level. Each node is
a bucket that can hold a maximum of x — 1 balls. When there are
K or more balls in a node, the bucket floor breaks and the bucket
interior is connected to its successors. All balls slide randomly to

either successor, as each one follows a predetermined but uni-
formly random (infinite) path.

Pour N balls in the root, N > k. Buckets break and a tree is
formed from all buckets that have been connected to the root.
What is the average number of leaves of this tree?

Solution. Beginning with the root, the number of leaves to the
connected tree is 1. For each breaking of a bucket, the number of
leaves is increased by 1. Therefore, the average number of con-
nected leaves is the average number of bucket breakings. The aver-
age number of breakings per bucket is the bucket’s probability to
break. Therefore, the average number of connected leaves equals
the sum of to-break probabilities for all buckets in the unlimited
tree.

At level d there are 2¢ buckets, each having 279 probability to re-
ceive a ball reaching the level, as the overall distribution of balls
through a level is uniform. Also, since distribution of balls across
a level is uniform, each bucket on a level has the same breaking
probability Ppeq (N, K, d).

The average of connected leaves is:

E(N.K) = 2+ 2'Pyeac(N. 1, d) (1)
d=1

Since N > k, the root always breaks and contributes 1 leaf,
counting itself being initially connected with itself.

Now, let P, be the probability that exactly x of the N balls are
predetermined to pass through a bucket in level d. The event can
be constructed by selecting x out of N to put into the bucket and
allow the other N — x to freely go to any of the remaining 2° — 1
buckets:

Then,

N K—1
Pbreak:ZPx:]_ZPx
X=K x=0

Finally, (1) is completed:

E(N,K) =2+ iZ’d(N’” ZN: (Z) (20— 7)™

d=1 X=K

Or, computationally more convenient when K < N,

am-2: 321205 (Ve-y) e
d=1 x=0

Assuming a perfect node placement, where all neighborhoods
would have as close to kK — 1 nodes as possible, E would approxi-
mate Y. However, nodes are randomly placed in the identifier
space, meaning that the density of neighborhoods will be less than
the maximum. Knowing E(N, k), we construct the function that re-
lates the average number of neighborhoods to E;; = K—’L In Fig. 5

we demonstrate the density multiplier D = B as a function of £.

It is evident that D oscillates with increa'glinng amplitude as k
reaches N. Nevertheless, the region of the graph that is of particular
interest in a Kademlia deployment is where x < N. Our conjecture
is that the axis of the oscillation is the line D = ﬁ and thus we
generally use E = 1.44.% when calculating the number of neigh-
borhoods in a typical overlay.

Moreover, empirical results from multiple simulations of neigh-
borhood forming, suggest that this practical approximation of E
holds even if the distribution of nodes is not completely uniform.
In Fig. 6, we show the neighborhood count as a function of x, for
both a random and a skewed distribution of nodes in a two-dimen-
sional identifier space of 20 bits per dimension. The two-dimen-
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4.2. Determining the effect of data dimensions
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Fig. 5. Neighborhood density multiplier as a function of §, for different values of N.
When x < N the number of neighborhoods is about 44% larger than the optimal 2.
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Fig. 6. Two example node distributions and the corresponding number of neigh-
borhoods as a function of x. Each layout shows 1000 nodes in a two-dimensional
space of 20 bits per dimension.

sional space has been chosen for a better visualization of the
resulting node densities in corresponding areas of the network.
Node identifiers were transformed using the Z-order before being
placed in Kademlia’s binary structure. An interesting observation
is that while respective plots of D for various non-random distribu-
tions exhibit different behavior from Fig. 5 and have a tendency to
produce larger values, it still seems that:

1

When a query refers to single-dimensional data, the percentage
of visited neighborhoods is equal to the requested range of identi-
fiers divided by the total size of the identifier space, S;,.x. However,
when respective operations are applied to multi-dimensional val-
ues, the amount of visited neighborhoods is also affected by the
number of index dimensions used. The correspondence of multi-
dimensional ranges to continuous identifier segments seems to
deteriorate when the dimensionality escalates and as a result, que-
ries require visiting a larger number of smaller identifier groups,
spread out wider across the network. To determine the amount
of this effect, we simulated multiple range requests of varying
lengths in a 10,000 peer overlay, counting each time the number
of neighborhoods involved in collecting replies. Our simulation en-
gine uses the Z-curve, so all results should be interpreted accord-
ingly. While the Hilbert curve may perform comparatively better
with the same index count, the analysis is representative of what
effects should be expected at the corresponding dimensional limits
of other SFCs.

In Fig. 7, we present the relationship between two percentages
- the average visited neighborhoods for different amounts of que-
ried ID space. Each run, for each dimension count, includes the re-
sult of about 10,000 queries, randomly generated to provide
multiple samples for each point of the horizontal axis. All query
boxes, or hypercubes in dimensions 4 and 5, have equal-length
edges. Also « is set to 20, so the total number of neighborhoods
in all cases is about 750. It is evident that increasing the number
of dimensions causes the querying node to visit all available neigh-
borhoods faster. Although the two-dimensional case behaves very
well, for four dimensions all neighborhoods are involved when the
percentage of the queried ID space exceeds 70%, while for five
dimensions this occurs much sooner, at about 23%.
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This conjecture is also supported by the fact that when we gen-
eralize Eq. (2) for b-ary trees:
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Fig. 7. Neighborhoods visited as a function of query size, for datasets of different
dimensions.
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Fig. 8. Varying the neighborhood size while keeping the dimension count fixed to 4,
in a network of 10,000 nodes.

The plots are also affected by the network’s replication factor.
Raising k decreases the total number of neighborhoods - therefore,
the number of hops through the overlay, but also makes subtrees
larger, thus the querying process becomes coarse-grained and the
percentage of network coverage bigger. When the neighborhoods
are small, they may be more, but there is a higher probability that
a query will skip some of them while traversing the query range
from Qg to Q.nq. This is depicted in Fig. 8. Note that when
Kk = 10 the percentage of neighborhoods affected scales smoother,
although the actual number of messaging hops is nearly double
than when k = 20. Even so, a query that floods the network, by
requesting almost all available data, will visit only a small percent-
age of the total node population. The value of k directly affects this
percentage. Larger values may decrease the hop count and lower
query times, but have side-effects discussed in the following
section.

4.3. Discussion

Assuming a random distribution of nodes, except from the
query coverage, the number of lookups required for each range
query depends on N, k and the number of dimensions used to ref-
erence values. The latter, as well as k, have immutable values se-
lected once when deploying the DHT. Choosing appropriate
values may prove beneficial, especially if the general network
properties are known or can be estimated beforehand.

In most deployments, x is restrained from 10 to 20, in order to
avoid over-replicating data. Given a network of 1000 nodes, k = 20
and a request for all the identifier range, this may require nearly 75
lookups, which is manageable, both in terms of result latency and
bandwidth consumption. As shown, when the node count in-
creases by an order of magnitude, so does the number of peer
groups. However, both from our experience and the study of re-
lated work, we can safely assume that range queries seldom refer
to such large spaces. Usually, applications operate on a small per-
centage of the dataset, no more than 10%. Moreover, the execution
of each range query can be easily optimized, either by further sub-
division and parallelization at the DHT level, or by progressing
sideways on corresponding neighborhoods.

Concerning the number of value indices, using a low dimension
count maintains a fair analogy of query to network coverage. In
general, due to limits of commonly used SFCs, managing more than
4-5 dimensions results in widely spread identifier ranges, even for
queries that request only a small percentage of the multi-dimen-
sional space. Therefore, readily available datasets may require
some processing in order to scale the index space down. To this
end, related literature suggests two methods that, depending on
the index characteristics, can even be combined. First, some indices
may be transformed to value attributes. When using this method,
only a portion of the original indices is used in the DHT. Other attri-
butes with a smaller range of values - i.e. binary properties, are
stored along with the data. Queries are performed on the indices
chosen and results are filtered based on their attributes, either at
the DHT, or the application level. The second method suggests
combining some indices into a single numerical space, but can only
be used when queries are not expected or allowed to refer to cor-
responding ranges in respect to each other.

4.4. Balancing the load

Using an SFC for data placement, will result in the clustering of
generated identifiers in correspondence to the semantical relation-
ships of information in the multi-dimensional index space. So, un-
less the inserted dataset is randomly distributed in all dimensions,
there will be irregular densities of value concentrations throughout
the overlay. Although this does not affect the overlay’s functional-
ity in any way - as shown, both point and range lookup routing de-
pends only on network size and k, it may result in heavy loads
from the nodes’ perspective. If the data is skewed, some neighbor-
hoods will have to handle more load than others. Load in this con-
text can have two forms, namely increased requirements in storage
availability and query processing capacity. Moreover, the latter is
determined by the peer’s computational power and network
connectivity.

Load issues can arise if the dataset is large, if the expected query
distribution is accordingly skewed, or even if the devices used to
form the DHT are under-powered or connected via limited-band-
width network links. The solutions proposed so far for handling
the problem are either to enforce nodes join in a predetermined
network hotspot or provide a means for moving existing peers to
congested areas. Both tactics try to match the data irregularity
with the node distribution, thus keeping a fair proportion of peers
to values in any DHT neighborhood, and require an internal or
external mechanism to observe the key-value pair distribution
and define thresholds on the densities of items. If the full data col-
lection, or its locality characteristics, are well-known beforehand,
it should be straight-forward to derive matching node identifiers.
The neighborhood count will not be affected (Fig. 6), but as neigh-
borhood sizes will not be uniform, the average number of lookups
per query cannot be easily pre-estimated. It will definitely be lar-
ger than - E, although bound by E.

Smax



A. Chazapis et al. / Computer Communications 33 (2010) 984-996 993

90 T T

Witlllout loald balanlcing
80 i With load balancing --------- 7

70 B

50 K R

Nodes

40 H i

VPRTY!
300 400 500 600 700
Hits

[ | |

Fig. 9. Number of nodes per number of hits, while performing 10,000 range queries
in a network of 1000 peers. Visiting a random node in each neighborhood results in
a better balancing of the imposed load.

Also, moving a peer to a new position in the overlay is best
accomplished via virtual peers — by assigning multiple identifiers
to the same node, therefore allowing a peer to be present at
numerous neighborhoods. Otherwise, literally disconnecting and
then reconnecting the same node at a different part of the DHT
may require additional maintenance operations (routing table up-
dates and invalidations), which in turn introduce latencies depend-
ing on the nature of the protocol’s fault detection and stabilization
functions. Our implementation platform already allows for deploy-
ing multiple nodes per physical machine. In controlled deploy-
ments, this feature paired with an external observer that
monitors the data distribution can help in deriving an automated
load-balancing mechanism, that reassigns peers from less con-
gested areas to overloaded segments of the identifier space as vir-
tual instances.

We argue, however, that in highly dynamic setups load estima-
tion cannot solely rely on objective, unbiased metrics. All the afore-
mentioned techniques try to assign query operations to different
nodes, but do not account their particular characteristics, although
the overall population may be heterogeneous. Load measurement
and distributed propagation of respective information in the con-
text of a DHT is a challenging problem on its own, whose analysis
and applications extend beyond the scope of this paper.

In the proposed overlay, an analogous effect can be produced by
exploiting the fact that contacting any node in a neighborhood will
yield the same results. In Fig. 9, we show the number of nodes per
number of visits, in two runs of the same scenario that involved
10,000 range queries for 5% of the index space in an overlay of
1000 participants. When processing each query directionally, the
load is concentrated to the nodes closest to neighborhood borders.
These are the peers that are visited 500-600 times. When random-
izing the node selection, the two separate areas of the initial graph
are merged into one - the same number of hits are better distrib-
uted among available peers. Corresponding results are also ob-
tained when scaling the network and query sizes or the number
of range operations.

5. Motivation
5.1. Case study: the Gredia middleware for data management
To present a concrete example of how our work could facilitate

efficient query processing, let us consider the Gredia project, part of
the European Commission’s IST 6™ Framework Programme (FP6-

34363) [5]. The Gredia platform provides a Grid-based infrastruc-
ture that allows developers, professionals and simple users alike
to share annotated multimedia content. Although a research pro-
ject, many of the scenarios implemented reflect on realistic use
cases driven by the project’s business partners (Deutche Welle,
Popso, etc.). A representative expected usage pattern is as follows:
Various news agencies have created a joint data repository on the
Grid, where employees (journalists, photographers, editors) or cit-
izens can store, search and download news items, be it photos, vid-
eos or text according to their access rights. Assume that just
minutes after the riots in Athens break out, a Greek journalist on
scene captures a video of the protests and uploads it on the Grid.
At the same time, many by-standees capture photos and clips of
the events. Hundreds of journalists around the world need to be
able to quickly locate and download this content in order to in-
clude it in the news-break of their broadcast stations. The Gredia
platform provides an efficient means of storing and searching for
data, as well as of orchestrating any kind of editorial, reviewing,
or publishing process that will result in the proper announcement
of a news item.

Fig. 10 shows the Gredia middleware architecture, as described
in [36]. It consists of various components, among which three over-
lays: The metadata overlay stores the metadata associated with
each multimedia file, while the other two peer-to-peer structures
provide distributed replica management and collective file transfer
services for the actual data. In practice, a participating node can be
part of multiple overlays, depending on its capabilities and usage
intentions. Nevertheless, each is studied independently and as a
unit constitutes a platform for researching and developing appro-
priate algorithms and protocols. Other components carry out the
authentication and authorization processes, by mapping users to
different Virtual Organizations (VOs) and filtering requests accord-
ing to their corresponding credentials. For example, a data file can
be stored in a storage node, only if the user has the appropriate
permissions.

The work presented here focuses on the metadata facility. Mul-
timedia content is annotated along multiple dimensions as it
deemed important to characterize the file and make it searchable
upon. Both editors and journalists are allowed to fully customize
their searches over a potentially vast repository: Users should be
able to perform efficient point and range queries over the multiple
attributes that index each file. In all usage scenarios, it is of great
importance, from both a business and research perspective, that
queries on multiple dimensions with any combination of values
(all, point or range) be processed quickly. With our proposed
scheme, the number of visited peers is dynamically minimized
and consequently so is the bandwidth utilized to collect answers.
Moreover, fault-tolerance is automatically handled by the underly-
ing DHT’s inherent replication mechanism, without influencing the
effectiveness of the query engine.

5.2. Implementing the metadata overlay

In the data management layer, we consider two basic entities
for each unit of information - the “data file” containing the actual
content and the “metadata file” with corresponding annotations
according to a pre-defined set of attributes to be indexed. Metadata
files are created, distributed and stored in human-readable XML
format. A metadata module of the middleware, implements the nec-
essary interface with the overlay and handles all metadata inser-
tion, search and retrieval operations from the application’s
perspective. The module is responsible for encoding the values of
attributes into bit representations that will be interpreted by the
overlay as dimensional indices. Storing a metadata file, requires
parsing the XML elements and extracting attribute values, before
producing such indices and placing the file into the network.
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Fig. 10. Overview of the Gredia middleware layer.

Invoking the search operation and collecting results for a query, ex-
cept from encoding contained attributes, may also require appro-
priate transformations in order to match the ordering of indices
in the overlay.

Applications implemented in the context of the Gredia project
assume three basic types of attributes, namely string, date and cat-
egorical. The pre-defined set of attributes to be indexed is consid-
ered to form a multi-dimensional space, where each attribute
corresponds to a respective dimension. A problem to tackle when
deploying the proposed multi-dimensional indexing scheme has
been the segmentation of each dimension according to the number
of possible values for each attribute. Since the SFC-based method
for enabling range queries over multiple dimensions presumes
constant-bit indices, we have developed corresponding mapping
functions for each attribute type.

The categorical attributes are easily manageable, since their
range of possible values is known in advance and can be directly
mapped to the available index space. Although range queries are
not a common case for categorical types, we take advantage of
the imposed ordering at the dimensional level to enable the retrie-
val of metadata files characterized by more than one category. In
this case, the query is rephrased by the metadata module according
to the ordering convention followed when encoding. It is possible
that multiple distinct values are joined in one or more ranges when
the search query reaches the overlay.

For string and date types, we use a simple character-coding
scheme to produce bit representations. However, the number of
encoded characters that comprise the dimensional index depends
on the number of bits available for the attribute at the overlay le-
vel. Taking into account that the number of index bits in each
dimension is equal, the cardinality of the SFC is dominated by
the most numerous attribute. However, instead of scaling all attri-
bute representations up, we select an approximation order of the
used curve that requires a reasonable amount of bits - depending
on the application - and then “crop” encoded values accordingly.
Our goal is to avoid using a large number of bits, so searches refer
to more restricted search spaces, thus end up to less nodes and are
served more efficiently. Further filtering may follow in case the
string value contains more than the allowed characters. The encod-
ing results in alphabetical ordering of strings on the corresponding

dimensions. For date types we first order year, then month, day,
hour and minute.

In the Gredia project, two basic applications are implemented,
namely the media and the banking applications. The former re-
quires a limited number of attributes to be indexed and thus we
use a two-dimensional query space, composed of a string for cus-
tomer name and a numerical customerID. On the other hand, the
media application requires multiple dimensions, since a multime-
dia file can be described by various attributes that may be corre-
lated to the content of the file, its type, coding format, etc. To
avoid increasing the number of mapped attributes excessively,
we decided on the most critical ones, which are expected to be
commonly employed by media-related users. The selection is
shown in Table 1. Naturally, all file attributes are still included in
the metadata file for application-level selection (i.e. attributes de-
fined by the MPEG-7 standard [37]). It has been observed, that cat-
egorical types with limited values can safely be omitted, so as to
reduce the number of dimensions and increase the efficiency of
range queries. Filtering can also occur directly at the overlay nodes,
by sending the original query along with the transformed range
representation. This technique, which effectively results in using
the most representative attributes for routing and all for local re-
sult filtering, requires incorporating parts of the metadata module
at the peer level, but helps in easily achieving good dimensional
scalability while distributing the workload to network participants.

In the media example, a point query requires a specific value for
all of the attributes presented in Table 1 and should be answered
by a single metadata file. If the file exists, it is retrieved by a simple
Kademlia lookup. Range queries, such as ‘Get the metadata files of

Table 1
Indexed attributes in the media application.
Attribute Type Example
Author String Smith John
Date created Date 2008.02.01
Date modified Date 2009.05.01
Type Categorical Audio, text, video
Category Categorical Entertainment, business,

politics, weather, travel, health
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the videos filmed by Smith John, which were created from 2008.09.28
until 2008.10.25 and modified from 2008.09.29 until 2008.10.30
regarding weather’ are routed according to the described protocol.
Moreover, the user may perform a ‘*'—lookup for one or more attri-
butes. A * ’ is equivalent to a range with all possible values in the
corresponding dimension and is translated to this by the metadata
module.

We have implemented a working prototype of the discussed
range-query protocols as an extension to Kademlia in our own
peer-to-peer evaluation and deployment platform, which we call
PeerPlatform. PeerPlatform is structured as a Python module that
can run either stand-alone or as a library embedded into other
applications. Each platform instance can host multiple nodes, from
the same or different protocol family. The rest of the Gredia mid-
dleware, mostly written in Java, interfaces with the underlying
peer-to-peer overlays via an open network protocol that is directly
understandable by the PeerPlatform’s notification-driven infra-
structure. We also provide a simple web-service interface to send
point or range get and put commands to a platform’s locally run-
ning peers.

6. Conclusion and future work

Supporting range queries in structured peer-to-peer systems re-
quires both an appropriate data-placement scheme, as well as an
intelligent query engine that imposes the least possible computa-
tional and management overhead at participating peers. Our pro-
posed protocol succeeds in applying multi-dimensional range-
query techniques in a DHT context, while taking into account value
replication that is provided internally by many modern overlays.
Using a Kademlia network as an example, we show how to group
nodes into replica neighborhoods, by exploiting information al-
ready available in the peers’ routing tables. Range queries are then
resolved by following a fault-tolerant path through neighborhoods,
automatically bypassing duplicate values. The protocol, being
dependent on routing table information, dynamically adjusts query
execution as respective information changes due to node behavior
or network conditions.

Detailed analysis of the effects introduced by the various over-
lay parameters, lead to a thorough understanding of the system’s
functionality and allow us to predict its performance and scalabil-
ity characteristics, thus preemptively tune deployments according
to expected datasets and usage patterns. Most importantly, we
have theoretically calculated and verified through simulations
the number of neighborhoods E that are produced by Kademlia
peers, as a function of network size and «, the overlay’s replication
factor. We also present how the number of dimensions used to in-
dex data, influences the slope of the curve that binds query size
with the number of hops required to complete the request - up
to a maximum of E. Although in our scheme the data distribution
does not have a direct impact on query execution, skewed datasets
may require incorporating methods for load-balancing among
available nodes. We elaborate on how to exploit peer neighbor-
hoods in this direction and present corresponding simulation
results.

Finally, we show how our implementation prototype fits in with
the data management layer of the Gredia project, describe applica-
tion examples and discuss on upper-layer range query manage-
ment and processing.

References

[1] H. Balakrishnan, M.F. Kaashoek, D. Karger, R. Morris, I. Stoica, Looking up data
in P2P systems, Communications of the ACM 46 (2) (2003) 43-48.

[2] P. Maymounkov, D. Maziéres, Kademlia: a peer-to-peer information system
based on the XOR metric, in: Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS02), Cambridge, USA, March 2002, pp. 53-65.

[3] L Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: a scalable
peer-to-peer lookup service for internet applications, in: Proceedings of the
2001 ACM SIGCOMM Conference, San Diego, USA, August 2001, pp. 149-160.

[4] R. Cox, A. Muthitacharoen, R.T. Morris, Serving DNS using a peer-to-peer
lookup service, in: Proceedings of the 1st International Workshop on Peer-to-
Peer Systems (IPTPS02), Cambridge, USA, March 2002, pp. 155-165.

[5] Grid Enabled access to rich media content (GREDIA) IST project [Online],
<http://www.gredia.eu>.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker, A scalable content-
addressable network, in: Proceedings of the 2001 ACM SIGCOMM Conference,
San Diego, USA, August 2001, pp. 161-172.

[7] A.LT. Rowstron, P. Druschel, Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems, in: Middleware '01: Proceedings
of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, Springer-Verlag, London, UK, 2001, pp. 329-350.

[8] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, ]. Kubiatowicz, Tapestry: a
resilient global-scale overlay for service deployment, IEEE Journal on Selected
Areas in Communications 22 (1) (2004) 41-53.

[9] A. Gupta, D. Agrawal, A.E. Abbadi, Approximate range selection queries in peer-
to-peer systems, in: Proceedings of the First Biennial Conference on Innovative
Data Systems Research, 2003.

[10] A. Andrzejak, Z. Xu, Scalable, efficient range queries for grid information
services, in: Proceedings of the 2nd IEEE International Conference on Peer-to-
Peer Computing (P2P 2002), Linkoping, Sweden, September 2002, pp. 33-40.

[11] J. Gao, P. Steenkiste, An adaptive protocol for efficient support of range queries
in dht-based systems, in: ICNP '04: Proceedings of the 12th IEEE International
Conference on Network Protocols, IEEE Computer Society, Washington, DC,
USA, 2004, pp. 239-250.

[12] C. Zheng, G. Shen, S. Li, S. Shenker, Distributed segment tree: support of range
query and cover query over dht, February 2006.

[13] A. Crainiceanu, P. Linga, J. Gehrke, J. Shanmugasundaram, Querying peer-to-
peer networks using p-trees, in: WebDB '04: Proceedings of the 7th
International Workshop on the Web and Databases, ACM, New York, NY,
USA, 2004, pp. 25-30.

[14] S. Ramabhadran, S. Ratnasamy, J].M. Hellerstein, S. Shenker, Brief
announcement: Prefix Hash Tree, in: Proceedings of the 23rd Annual ACM
Symposium on Principles of Distributed Computing (PODC ’'04), St. John’s,
Newfoundland, Canada, New York, NY, USA, 2004, p. 368.

[15] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, ].
Hellerstein, A case study in building layered dht applications, SIGCOMM
Computer Communication Review 35 (4) (2005) 97-108.

[16] E. Caron, F. Desprez, C. Tedeschi, Enhancing computational grids with peer-to-
peer technology for large scale service discovery, Journal of Grid Computing 5
(3) (2007) 337-360.

[17] H. Zhuge, X. Sun, ]. Liu, E. Yao, X. Chen, A scalable P2P platform for the
knowledge grid, IEEE Transactions on Knowledge and Data Engineering 17 (12)
(2005) 1721-1736.

[18] A. Datta, M. Hauswirth, R. John, R. Schmidt, K. Aberer, Range queries in trie-
structured overlays, in: Proceedings of the 5th IEEE International Conference
on Peer-to-Peer Computing (P2P 2005), Konstanz, Germany, August 2005, pp.
57-66.

[19] J. Aspnes, G. Shah, Skip graphs, ACM Transactions on Algorithms 3 (4) (2007)
37.

[20] W. Pugh, Skip lists: a probabilistic alternative to balanced trees,
Communications of the ACM 33 (6) (1990) 668-676.

[21] A. Gonzalez-Beltran, P. Milligan, P. Sage, Range queries over skip tree graphs,
Computer Communications 31 (2) (2008) 358-374.

[22] A.R. Bharambe, M. Agrawal, S. Seshan, Mercury: supporting scalable multi-
attribute range queries, SIGCOMM Computer Communication Review 34 (4)
(2004) 353-366.

[23] T. Schiitt, F. Schintke, A. Reinefeld, Range queries on structured overlay
networks, Computer Communications 31 (2) (2008) 280-291.

[24] R. Bayer, The universal B-tree for multidimensional indexing: general
concepts, Lecture Notes in Computer Science 1274 (1997) 198-209.

[25] H. Tropf, H. Herzog, Multidimensional range search in dynamically balanced
trees, Applied Informatics 2 (1981) 71-77.

[26] ]. Lawder, P. King, Using space-filling curves for multi-dimensional indexing,
Lecture Notes in Computer Science 1832 (2000) 20-35.

[27] B. Moon, H. Jagadish, C. Faloutsos, ]. Saltz, Analysis of the clustering properties
of the Hilbert space-filling curve, IEEE Transactions on Knowledge and Data
Engineering 13 (1) (2001) 124-141.

[28] C. Schmidt, M. Parashar, Squid: enabling search in dht-based systems, Journal
of Parallel and Distributed Computing 68 (7) (2008) 962-975.

[29] ]. Lee, H. Lee, S. Kang, S.M. Kim, J. Song, CISS: an efficient object clustering
framework for DHT-based peer-to-peer applications, Computer Networks 51
(4) (2007) 1072-1094.

[30] P. Ganesan, B. Yang, H. Garcia-Molina, One torus to rule them all: multi-
dimensional queries in P2P systems, in: Proceedings of the 7th International
Workshop on the Web and Databases (WebDB '04), Paris, France, 2004, pp. 19-
24,

[31] E. Tanin, A. Harwood, H. Samet, Using a distributed quadtree index in peer-to-
peer networks, The VLDB Journal 16 (2) (2006) 165-178.

[32] Y. Shu, B.C. Ooi, K.-L. Tan, A. Zhou, Supporting multi-dimensional range queries
in peer-to-peer systems, in: Proceedings of the 5th IEEE International
Conference on Peer-to-Peer Computing (P2P 2005), Konstanz, Germany,
August 2005, pp. 173-180.


http://www.gredia.eu

996 A. Chazapis et al./ Computer Communications 33 (2010) 984-996

[33] D. Li, J. Cao, X. Lu, K.C. Chen, Efficient range query processing in peer-to-peer Conference on Very Large Data Bases (VLDB 2000), Cairo, Egypt, September
systems, IEEE Transactions on Knowledge and Data Engineering 21 (1) (2009) 2000, pp. 263-272.
78-91. [36] A. Asiki, K. Doka, I. Konstantinou, A. Zissimos, D. Tsoumakos, N. Koziris,
[34] D.Li, X. Ly, J. Wu, FissionE: a scalable constant degree and low congestion DHT P. Tsanakas, A grid middleware for data management exploiting peer-to-
scheme based on Kautz graphs, in: Proceedings of the 24th Annual Joint peer techniques, Future Generation Computer Systems 25 (4) (2009)
Conference of the IEEE Computer and Communications Societies (INFOCOM 426-435.
2005), vol. 3, March 2005, pp. 1677-1688. [37] MPEG-7 Overview, International Organization For Standardisation,
[35] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, R. Bayer, Integrating the UB- 2004 [Online], <http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-

Tree into a Database System Kernel, in: Proceedings of the 26th International 7.htm>.


http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm

	Replica-aware, multi-dimensional range queries in Distributed Hash Tables
	Introduction
	Related work
	Supporting single and multi-dimensional range queries in a DHT
	Looking-up ranges
	Going multi-dimensional

	Evaluation
	Counting the number of neighborhoods
	Determining the effect of data dimensions
	Discussion
	Balancing the load

	Motivation
	Case study: the Gredia middleware for data management
	Implementing the metadata overlay

	Conclusion and future work
	References


