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Abstract—Distributed storage systems are mainly justified due
to the limited amount of storage capacity and improving the
reliability through distributing data over multiple stora ge nodes.
On the other hand, it may happen the data is stored in unreliable
nodes, while it is desired the end user to have a reliable access to
the stored data. So, in an event that a node is damaged, to prevent
the system reliability to regress, it is necessary to regenerate a
new node with the same amount of stored data as the damaged
node to retain the number of storage nodes, thereby having the
previous reliability.

This requires the new node to connect to some of existing nodes
and downloads the required information, thereby occupyingsome
bandwidth, called the repair bandwidth. On the other hand, it is
more likely the cost of downloading varies across differentnodes.
This paper aims at investigating the theoretical cost-bandwidth
tradeoff, and more importantly, it is demonstrated that any point
on this curve can be achieved through the use of the so called
generalized regenerating codes which is an enhancement of the
regeneration codes introduced by Dimakis et al. in [1].

I. I NTRODUCTION

Data in distributed storage systems should be stored reliably
for a long period of time. This is due to the need for
surviving in the case that individual failures occur, thus having
a long-term durability. To this end, the system should have
the possibility of self-repairing in the case that a node is
failed or leaves the system. This requires a great deal of
data transferring due to repairing a failure node, called repair
bandwidth. In some cases, a great deal of repair bandwidth is
consumed to construct a new node.

To have a reliable data, various strategies have been pro-
posed which basically attempt to add some redundancy bits
to the original data and distributing the encoded data across
distinct nodes in an effective manner. The simplest strategy
is replication in which each node stores the original data file,
hence, the data of one node is adequate to reconstruct the
original data. However, this is not a wise method due to the
need to a high storage capacity. To address this issue, in [2], [3]
instead of exploiting naive replication code, an erasure coding
is used in which the original data file of sizeM is divided
into k pieces of sizeM/k, and encoded inton data fragments
to be stored in one of existingn nodes. The encoding process
is such that having access to the stored data ofk nodes is
adequate to reconstruct the original data. In other words, a
new node should be connected tok nodes to have an access to
all information. As a result, for a large value ofk, the storage

capacity of each node is dramatically reduced as compared
to the replication code, since instead of storing data size of
M , we need to merely store a fragment of data sizeM/k at
each node [4], [5]. Although, the erasure code requires the
same repair bandwidth as compared to the replication code
and imposes a decoding complexity into the system, it makes
a balance between the system reliability and redundancy.

To take the advantages of both replication (simple decoding
method) and erasure coding (low storage capacity), in [4] a
hybrid strategy is proposed. This strategy uses a single node
containing an exact replica of the original data file as well
as some nodes with the structure of erasure coding. Thus, for
generating a new data fragment, this replica is used and justa
data of sizeM/k is transferred across the network. Although
the repair bandwidth of the hybrid strategy is reduced, the
system complexity is greatly increased, i.e., if the replica is
failed, creating a new fragment is deferred until restoringthe
replica. This in turn, may not be feasible when there is a
stringent delay constraint.

This motivated Dimakis et al. in [1] to deduce an elegant
coding strategy, dubbed regenerating codes (RC), to reducethe
repair bandwidth without the use of replica. It is shown thatfor
creating a new data fragment, the newcomer node should be
connected tod nodes (d ≥ k) and downloadβ bits from each
surviving nodes. Accordingly, a trade-off between storageper
node and repair bandwidth (dβ) is identified.

Regenerating codes and other existing methods are mo-
tivated by the assumption that surviving nodes have equal
download cost, and creating a new node is accomplished
through downloading the same amount of information from
each surviving node. However, it may happen there is a
different cost associated with each node. Thus, in an attempt
to replace a damaged node with a new node, one may want
to make a balance between the download cost and the repair
bandwidth.

The current study aims to address the aforementioned issue
when there are two sets of nodes, each having different
download costs, while the nodes of each set have the same
cost. However, the material in this paper can be readily
extended to more general cases. Accordingly, it is assumed a
newcomer node downloadsβ1 andβ2 bits, respectively, from
each surviving node of costC1 and C2, where it is simply
assumedC1 ≤ C2. It will be later shown that under certain
conditions, ifβ1 is larger thanβ2, the total download cost is
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Fig. 1. An example ofInformation Flow Graphwhen a failure is occurred
(it is marked by cross lines), thus a new node is initiated.

reduced at the expense of increasing the repair bandwidth. In
other words, the moreβ1 is larger thanβ2, the less download
cost is produced, while having more repair bandwidth as if
β1 = β2. Moreover, for a givenβ1 andβ2, congruent to what
is done in [1], a trade-off between the storage per node and
repair-bandwidth is identified.

The rest of paper is organized as follows: In section II, dis-
tributed storage systems are briefly introduced and their equiv-
alent Information Flow Graphis introduced. Accordingly, it
is argued that network coding can approach the capacity of
such systems. Finally, regenerating codes are motivated and
briefly introduced. Section III states the problem formulation
and motivates the main idea, finally gives an overview of
the approach. Sections VI,VII, present numerical results and
conclude the paper, respectively.

II. BACKGROUND

A. Distributed Storage Systems and connection to Network
Coding

In distributed storage systems, nodes join or leave the
network continuously, hence, the network configuration varies
across time. Motivated by the pioneering work in [1], this
network can be thought as aninformation flow graph, a
directed acyclic graph consisting of three types of nodes: (i) A
single source node (S), (ii) Some intermediate nodes and (iii)
Data collectors (DC nodes). The source node is the source
of original data file, intermediate nodes are storage nodes and
each data collector corresponds to a request for reconstructing
original data file. Each storage node is represented by pairsof
incoming and outgoing nodes connected by a directional edge
whose capacity is the corresponding storage capacity of this
storage node. In this work, we simply assume all storage nodes
are of capacityα. Moreover, it is assumed edges departing the
storage nodes and arriving to a DC node have infinite capacity.
This reflects the fact that DC nodes have access to all stored
data of the surviving nodes they are connected to.

As is mentioned earlier, the correspondinginformation flow
graph evolves constantly across time to reflect any changes
happening throughout the network. This graph starts from the

source node, indicating it is the only active node at the first
step. Then, assuming the total number of storage nodes is
n, the source node divides the original data file of sizeM into
k pieces, encodes thesek pieces ton data fragments each to
be stored in one of existing storage nodes through direct edges
of infinite capacity. In the case that a storage node leaves the
system or a failure occurs, this node is replaced by a new
one, called the newcomer node. The newcomer connects to
d active nodes out ofn− 1 existing nodes and downloadsβ
bits from each. Accordingly, the correspondinginformation
flow graph is updated through establishingd directed edges
of capacityβ, starting from outgoing nodes affiliated to the
selected storage nodes and terminating to the corresponding
incoming node of the newcomer (Fig.1). In this case, the total
information received by the newcomer node,dβ, is called the
repair bandwidth(γ). Finally, the data is reconstructed at each
DC node through connecting to any arbitrary set ofk nodes
(storage nodes), including the newcommer nodes. The edges
connecting the selected storage nodes to the correspondingDC
node are assumed to be of infinite capacity.

Incorporating the graphical representation of distributed
storage systems gives the opportunity to relate the storage
capacity as well as repair bandwidth of the original problem
to some characteristics of the correspondinginformation flow
graph. Specifically, we are interested in an important quantity,
call the network throughput introduced by Ahlswede et al.
in [6], which basically identifies the maximum allowable
information flow from a source to a destination node, assuming
each link is subject to a limited capacity. Accordingly, it
is demonstrated that using a proper coding at intermediate
nodes, it is possible to get the information with a throughput
at most equal to what is promised by the so called min-cut
theorem [6]. This is achieved through using an elegant coding
strategy, called network coding, which basically can approach
the multicast capacity of such networks [7], [8]. The notionof
using network coding has beaten the previous belief of using
simple routing mechanism at intermediate nodes.

B. Regenerating Codes

As is mentioned earlier, for erasure coding, having an
access to the data ofk storage nodes out of existingn nodes
is adequate to reconstruct the original data file. Thus, the
newcomer needs to connect to exactlyd = k nodes and
downloads all of stored data (α = M/k), thusβ = α = M/k.
So the repair bandwidth becomes the same as the size of
data file, i.e.,γ = dβ = M . On the other hand, Dimakis
et al. in [1] show that if a newcomer could connect to more
than k surviving nodes and downloads a certain function of
their stored information, a lower repair bandwidth would be
achieved, while having the same storage capacity as compared
to that of erasure coding.

To this end, it is shown the task of computing the repair
bandwidth can be translated to a multicast problem over the
corresponding information flow graph for which an optimal
trade-off between the storage per node,α, and the repair
bandwidth,γ, is identified. This optimal trade-off curve in-
cludes two extremal points corresponding to the minimum
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storage capacity per node and minimum repair bandwidth,
respectively. Recall that any points on the trade-off curve,
including the extremal points can be achieved by the use
of network coding approach. The former, minimum storage
capacity, is achieved by use of the so called Minimum Storage
Regenerating (MSR) codes. The latter, is realized through
using Minimum Bandwidth Regenerating (MBR) codes. Ac-
cordingly, the corresponding storage capacity per node (α) and
repair bandwidth (γ) for MSR and MBR codes are computed
as follows [1]:

(αMSR, γMSR) = (
M

k
,

Md

k(d− k + 1)
)

(αMBR, γMBR) = (
2Md

2kd− k2 + k
,

2Md

2kd− k2 + k
) , (1)

where in (1), it is assumed the total data file is of sizeM .
Moreover,d denotes the number of storage nodes which a
newcomer is connected to (d ≥ k), andk represents the total
number of nodes which are required to reconstruct the original
data file. In other words, a DC node needs to connect to exactly
k storage nodes to reconstruct the original data file.

III. PROBLEM FORMULATION AND THE PROPOSED

METHOD

MSR and MBR codes are motivated by the assumption that
the download cost of all storage nodes are the same. However,
we rely on a more realistic situation in which storage nodes
are subject to different download costs and the download cost
is of great concern. Specifically, we concentrate on the case
that there are totally two sets of storage nodesS1 and S2

with download costs per information bit equal toC1 andC2,
respectively1. Accordingly, in regenerating codes, a newcomer
connects tod nodes, each belongs either toS1 orS2. Assuming
d1 nodes are of costC1 andd2 = d−d1 nodes are of costC2,
thus the total cost for reconstructing a damaged node becomes:

CT = (C1d1 + C2d2)β , (2)

whereβ is the total information downloaded from each node.
Equation (2) indicates that the same amount of information is
downloaded from each node, no matter which set it basically
belongs to. However, an important enquiry may arise; How
to make a balance between the repair bandwidth and the total
cost?. In this work, we aim at addressing the aforementioned
issue and more importantly, to establish a trade-off between
the repair bandwidth, the storage capacity, and the total cost.

We employ a variation of the regenerating code, dubbed
Generalized Regenerating Code (GRC), in which the new-
comer downloads different amount of information depending
on the type of storage node. In the course of downloading, we
consider there are totalyd1 nodes with download costC1 and
d2 nodes (d2 = d − d1) with download costC2 (C2 ≥ C1),
where β1 and β2 bits are downloaded from each of these
nodes, respectively. NotingC2 ≥ C1, one can get a lower cost
if β1 ≥ β2. Throughout the paper, we assumeβ1 = k′β2

2.

1This enables the problem can be mathematically tractable. However, one
can readily follow the same approach for more general cases.

2It is worth mentioning that for some practical purposes,k′ should take an
integer value.
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Fig. 2. G∗ for d1≥k

As a result, the total cost for constructing a new node in this
strategy is as follows:

CT = C1d1β1 + C2d2β2 . (3)

It should be noted that, as is shown in the next sections,
k′ is inversely proportional to the relative download cost,
meaning the largerk′ results in the less relative cost of GRC
as compared to that of the regenerating codes. Then, for
a given k′, the problem is translated to computingβ2 (or
equivalentlyβ1) for which the minimum repair bandwidth or
minimum storage capacity per node is obtained. Accordingly,
It is shown even more reduction inCT is possible at the
expense of increasing the repair bandwidth. In the next section,
we examine two different scenarios ofd1 ≥ k and d1 < k to
explore the problem.

IV. SCENARIO A: d1 ≥ k

Consider any given finite information flow graphG, with
a finite set of data collectors. In [1], it is argued that “If the
minimum of the min-cuts separating the source with each data
collector is larger or equal to the data object size M, then there
exists a linear network code defined over a sufficiently large
finite field F (whose size depends on the graph size) such
that all data collectors can recover the data object”. In Fig.2,
the graphG∗, a portion of the correspondingInformation flow
graphG, entailing the minimum of the min-cuts ford1≥k is
shown. So referring to this flow graph and noting the above
argument, the following condition is necessary to reconstruct
the original data file:

k−1
∑

i=0

min{(d1β1 + d2β2 − iβ1), α}≥M . (4)

Thus, using (4) and notingβ1 = k′β2, and after some ma-
nipulations, a tradeoff betweenαmin (the minimum required
storage) andβ2 is identified as follows,

αmin(d1, d2, k
′, β2) =







M
k

β2 ∈
[

f(0),∞
)

2M−g(i)β2

2(k−i) β2 ∈
[

f(i), f(i− 1)
)

,
(5)
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where

f(i) ,
2M

2k(d1k′ + d2 − kk′) + k′(i+ 1)(2k − i)

g(i) , i(2d1k
′ + 2d2 − 2kk′ + (i + 1)k′) . (6)

Thus, β2min
(the minimum required download from each

node) can be computed as,

β2min
= f(k − 1)

=
2M

k(2d1k′ + 2d2 − kk′ + k′)
. (7)

In other words, for anyα ≥ αmin(d1, d2, k
′, β2), the points

(n, k, d1, d2, α, β1, β2) with linear network coding are achiev-
able.

Thus, the tradeoff curve between the storage capacity (α)
and the repair bandwidth (γ = β1d1+β2d2) can be established
through using (5), whereβ1 = k′β2. This curve has two
extremal points. One corresponds to minimum storage capacity
and the other related to the minimum repair bandwidth. We call
the codes that achieve these points as Generalized Minimum
Storage Regenerating (GMSR) and Generalized Minimum
Bandwidth Regenerating (GMBR) codes, respectively. GMSR
is identified with the following storage capacity-repair band-
width pair,

(αGMSR, γGMSR) =
(M

k
,

M(d2 + k′d1)

k(d1k′ + d2 − kk′ + k′)

)

. (8)

Similarly, for GMBR, we arrive at the following,

(αGMBR, γGMBR) =

( 2M(d2+k′d1)
k(2d1k′+2d2−kk′+k′) ,

2M(d2+k′d1)
k(2d1k′+2d2−kk′+k′)

)

. (9)

It can be verified that for the special case ofk′ = 1 and
d = d1 + d2, equations (8) and (9) become similar to the
resulting storage capacity-repair bandwidth pairs of MSR and
MBR codes [1], respectively. Also, for the case ofk′ → ∞,
noting β2 = β1/k

′, one can conclude thatβ2 = 0, hence, the
nodes with lower download cost are merely exploited through-
out the course of downloading. Accordingly,(M

k
, Md1

k(d1−k+1) )

and
(

2Md1

k(2d1−k+1) ,
2Md1

k(2d1−k+1)

)

are the corresponding storage
capacity-repair bandwidth pairs of the resulting GMSR and
GMBR codes. As is expected, referring to (1), these pairs are
similar to that of MSR and MBR codes withd = d1.

A. Comparison between GMSR and MSR whend1≥k

Referring to (8) and the resulting storage capacity-repair
bandwidth of MSR as is given in (1), GMSR and MSR yield
the same storage capacity per node. However, they exhibit
different repair bandwidth. To have a basis of comparison for
the resulting repair bandwidth of GMSR and MSR, we define
the bandwidth ratioρMSR(k

′) as follows,

ρMSR(k
′) ,

γGMSR(k
′)

γMSR
=

(d2 + k′d1)(d− k + 1)

d(d1k′ + d2 − kk′ + k′)
. (10)

It can be verified that as long asd≥k andk ≥ 1, the derivation
of (10) with respect tok′ is positive. As these conditions hold
here,ρMSR(k

′) is an increasing function with respect tok′

and more importantly, notingρMSR(1) = 1, thusρMSR(k
′) is

greater than one fork′ ≥ 1. Thus, the repair bandwidth of
GMSR is greater than that of MSR. Moreover, we define the
download cost ratioηMSR(k

′) to compare the download cost
of GMSR to that of MSR, as follows,

ηMSR(k
′) ,

CTGMSR(k
′)

CTMSR

=
(C1d1k

′ + C2d2)(d − k + 1)

(d1k′ + d2 − kk′ + k′)(C1d1 + C2d2)
.

(11)

Note thatηMSR(1) = 1. In order to haveCTGMSR lower than
CTMSR, ηMSR(k

′) should be a decreasing function, meaning to
have a negative derivation with respect tok′. As a result, taking
derivation of (11), one can verify that the following condition
should be satisfied,

C2

C1
≥

d1
d1 − k + 1

. (12)

It is worth mentioning that if the above condition holds, the
minimum value ofηMSR is achieved ask′ tends to infinity, i.e.,
ηMSR(+∞) = C1d1(d−k+1)

(d1−k+1)(C1d1+C2d2)
.

B. Comparison between GMBR and MBR whend1≥k

Equations (1) and (9) indicate that the storage per node
is equal to the repair bandwidth for both MBR and GMBR
codes. As a result, any findings for the corresponding repair
bandwidths of MBR and GMBR codes, can also be considered
for storage per node as well. In this regard, we define the repair
bandwidth ratioρMBR(k

′) as follows,

ρMBR(k
′) ,

γGMBR(k
′)

γMBR
=

(d2 + k′d1)(2d− k + 1)

d(2d1k′ + 2d2 − kk′ + k′)
. (13)

Obviously, we haveρMBR(1) = 1. Again, following the same
approach as is done in IV-A, one can readily verify that if the
conditionsk≥ 1 andk′ ≥ 1 hold, ρMBR(k

′) is always greater
than one. Thus, the repair bandwidth of GMBR is greater than
that of MBR. Accordingly, we define the download cost ratio
as follows,

ηMBR(k
′) ,

CTGMBR(k
′)

CTMBR

=
(C1d1k

′ + C2d2)(2d− k + 1)

(2d1k′ + 2d2 − kk′ + k′)(C1d1 + C2d2)
.

(14)

Note thatηMBR(1) = 1. Taking derivation ofηMBR(k
′) with

respect tok′, one can verify that to haveηMBR(1) ≤ 1, the
following condition should be satisfied,

C2

C1
≥

2d1
2d1 − k + 1

. (15)

It is worth mentioning that the minimum value ofηMBR

is achieved ask′ tends to infinity, i.e., ηMBR(+∞) =
C1d1(2d−k+1)

(2d1−k+1)(C1d1+C2d2)
.
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Fig. 3. G∗ for d1 < k

V. SCENARIO B: d1<k

In this case, the information flow graphG∗ has a minimum
min-cut similar to what is shown in Fig.3. As a result,
according to min-cut theorem as is addressed in Section IV,
the following condition should be satisfied,

d1
∑

i=0

min{(d1β1 + d2β2 − iβ1), α}+

∑k−1
i=d1+1 min{(d1 + d2 − i)β2, α} ≥ M (16)

The above condition introduces a tradeoff betweenα and
β2 which is computed as follows,

αmin(d1, d2, k
′, β2) =



























M
k

β2 ∈
[

f1(0),∞
)

2M−g1(i)β2

2(k−i) β2 ∈
[

f1(i), f1(i− 1)
)

2M−(g1(k−d1−1)+g2(i))β2

2(d1−i) β2 ∈
[

f2(i), f2(i− 1)
)

,

where

f1(i) ,
2M

2k(d− k) + (i + 1)(2k − i))

f2(i) ,
2M

(2kd− k2 − d21 − d1 + k + 2d1k′) + ik′(2d1 − i− 1)

g1(i) , i(2d− 2k + i+ 1)

g2(i) , (i + 1)(2d2 + ik′) . (17)

Thus,β2min can be computed as,

β2min
= f2(d1 − 1) =

2M

2kd− k2 + k + (d21 + d1)(k′ − 1)
.

(18)
Accordingly, GMSR and GMBR, two extremal points of
trade-off curve, have the following storage capacity-repair
bandwidth,

(αGMSR, γGMSR) = (
M

k
,
M(d1k

′ + d2)

k(d− k + 1)
) . (19)

(αGMBR, γGMBR) =

( 2M(d1k
′+d2)

2kd−k2+k+(d2

1
+d1)(k′

−1)
, 2M(d1k

′+d2)
2kd−k2+k+(d2

1
+d1)(k′

−1)
) . (20)

A. Comparison between GMSR and MSR whend1 < k

Referring to (1) and (19), GMSR and MSR have an equal
storage capacity per node. To get an insight regarding the
repair bandwidth, we define the following repair bandwidth
ratio,

ρMSR(k
′) ,

γGMSR(k
′)

γMSR
=

d1k
′ + d2
d

. (21)

This ratio is always greater than one fork′ > 1, meaning
GMSR code imposes a large bandwidth to the system as
compared to MSR. Similarly, the download cost ratio is
defined as,

ηMSR(k
′) ,

CTGMSR(k
′)

CTMSR

=
C1d1k

′ + C2d2
C1d1 + C2d2

. (22)

Again η(k′) for all positive values ofk′ is greater than one.
Having larger repair bandwidth and storage capacity as well
as higher download cost, one can conclude that GMSR does
not have favorable result as compared to MSR. Thus, GMSR
does not perform well for the case ofd1 < k, meaning in this
case it is better to setβ1 = β2 (MSR approach).

B. Comparison between GMBR and MBR whend1 < k

As the storage per node is equal to the repair bandwidth
for both MBR and GMBR codes, we concentrate on the
repair bandwidth. Again, we define the repair bandwidth ratio
ρMBR(k

′) as follows:

ρMBR(k
′) ,

γGMBR(k
′)

γMBR

=
(d1k

′ + d2)(2kd− k2 + k)
(

2kd− k2 + k + (d21 + d1)(k′ − 1)
)

d
.

(23)

ρ(k′) has a positive derivative with respect tok′ and noting
ρ(1) = 1 it follows ρ(k′) ≥ 1 for k′ ≥ 1. Thus, MBR
outperforms GMBR in terms of having lower repair band-
width. Similarly, we define the download cost ratio as follows,

ηMBR(k
′) ,

CTGMBR(k
′)

CTMBR

=
(C1d1k

′ + C2d2)(2kd− k2 + k)

(C1d1 + C2d2)
(

2kd− k2 + k + (d21 + d1)(k′ − 1)
) .

(24)

Again, to have the download cost of GMBR lower than that
of MBR, the following condition should be satisfied,

C2

C1
≥

2kd− k2 + k − d21 − d1
d2(d1 + 1)

. (25)

In this case, the minimum value ofη is achieved ask′ tends
to infinity, i.e., η(+∞) = (C1d1)(2kd−k2+k)

(C1d1+C2d2)(d2

1
+d1)
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VI. N UMERICAL RESULTS

This section aims at providing some numerical results to
get an insight regarding the proposed GMSR and GMBR
codes and their advantages in terms of the corresponding
storage capacity and/or repair bandwidth as compared to the
MSR and MBR codes. In Fig.4,ρ(k′) versusη(k′) of the
GMSR code for different integer values ofk′ in the interval
[1, 20] and for different relative cost ratios ofC2

C1

is illustrated.
Moreover, it is assumed(n, k, d1, d2) = (15, 5, 8, 6), which
corresponds to scenario A, sinced1 ≥ k. Noting the condition
(12), in this example, ifC2

C1

≥ d1

d1−k+1 = 2, the download
cost of GMSR is lower than that of MSR (η(k′) ≤ 1). This
is in accordance to what is inferred from Fig.4. Moreover,
Fig.4 depicts the amount of increment in repair bandwidth
for a given download cost ratio. Similarly, Fig.5 provides
the same result for GMBR with the same parameters, i.e.,
(n, k, d1, d2) = (15, 5, 8, 6). Again, referring to equation (15),
η(k′) ≥ 1 for C2

C1

≥ 2d1

2d1−k+1 = 1.33 which is in accordance
to the result of Fig.5.

Fig.6 depicts theρ(k′) versus η(k′) for GMBR when
(n, k, d1, d2) = (15, 5, 4, 10). Noting d1 < k, this
case belongs to scenario B. Referring to (25), ifC2

C1

>
2kd−k2+k−d2

1
−d1

d2(d1+1) = 2, the downlod cost of GMBR is lower
than that of MBR (η(k′) ≤ 1). Fig.6 confirms this threshold
for C2

C1

. Moreover, it shows how download cost ratio affects
the repair bandwidth ratio

(

ρ(k′)
)

.
Also, the tradeoff curves between the storage capacity per

node and repair bandwidth for RC and GRC codes for two
different values ofk′ = 2, 4 are shown in Fig.7. This shows
the storage capacity-repair bandwidth tradeoff curve of RC
code outperforms that of GRC (the dotted curve), while as
is noted before, GRC may result in lower download cost as
compared to that of RC code.

Finally, Fig.8 is provided to show the impact of different
values ofk′ onη and for different values ofC2

C1

. Fig.8 confirms
that under certain conditions as is mentioned in the preceding
sections,η(k′) is a decreasing function with respect tok′.

VII. C ONCLUSION

This paper aims at addressing the cost bandwidth tradeoff
in distributed storage systems when the download cost of
storage nodes are not the same. Specifically, we concentrate
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to case that there are two sets of nodes, each having dif-
ferent download costs. Accordingly, using the corresponding
Information Flow Graph, a new variation of regenerating
codes, called generalized regenerating codes, is proposedand
is shown under some certain conditions outperform the current
regenerating codes in terms of having lower download cost,
while having a marginal increase in the repair bandwidth.
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VIII. A PPENDIX

To derive the optimal tradeoff betweenα andβ2, one can
fix β2 andd1, d2, k′ (to some integer values) and then find the
minimum value ofα such that (4) and (16) are satisfied. To
this end, we defineαmin as follows,

αmin (d1, d2, k
′, β2) , min α

subject to : C ≥ M , (26)

where depending to on the condition thatd1 ≥ k or d1 < k
we have,

C ,

k−1
∑

i=0

min{(d1β1 + d2β2 − iβ1), α} for d1 ≥ k

C ,

d1
∑

i=0

min{(d1k
′ + d2 − ik′)β2, α}

+

k−1
∑

i=d1+1

min{(d1 + d2 − i)β2, α} for d1 < k (27)

The result ofd1 ≥ k:
To prove (5), substitutingβ1 = k′β2 in the correspondingC
(equation (27) withd1 ≥ k), it follows,

C ,

k−1
∑

i=0

min{(d1β1 + d2β2 − iβ1), α}

=

k−1
∑

i=0

min{(d1k′ + d2 − ik′)β2, α} ≥ M . (28)

Thus,C can be computed, assumingα belongs to one of the
following intervals,

C(α) =































































kα α ∈
[

0, h(1)β2

]

(k − 1)α+ h(1)β2 α ∈
(

h(1)β2, h(2)β2

]

...
(k − j)α+

∑j

i=1 h(i)β2 α ∈
(

h(j)β2, h(j + 1)β2

]

...
α+

∑k−1
i=1 h(i)β2 α ∈

(

h(k − 1)β2, h(k)β2

]

,

where

h(i) , d1k
′ + d2 − (k − i)k′ (29)

As a result, notingC ≥ M , it follows,

αmin =



























M
k

M ∈
[

0, kh(1)β2

]

M−

(∑j

i=1
h(i)

)

β2

(k−j) M ∈
(

(k − j)h(j)β2 +
∑j

i=1 h(i)β2,

(k − j)h(j + 1)β2 +
∑j

i=1 h(i)β2

]

,
j = 0, 1, ..., k − 1

or equivalently,

αmin =































M
k

β2 ∈
[

M
kh(1) ,∞

)

M−

(∑j

i=1
h(i)

)

β2

(k−j) β2 ∈
[

M

(k−j)h(j+1)+
∑j

i=1
h(i)

,

M

(k−j)h(j)+
∑j

i=1
h(i)

)

, j = 0, 1, ..., k − 1

As a result, noting (29), it follows,

αmin =







M
k

β2 ∈
[

f(0),∞
)

2M−g(i)β2

2(k−i) β2 ∈
[

f(i), f(i− 1)
)

, i = 0, 1, ..., k − 1,

where

f(i) ,
2M

2kh(0) + (i + 1)(2k − i)k′
(30)

g(i) , i(2d1k
′ + 2d2 − 2kk′ + (i+ 1)k′) (31)

βmin = f(k − 1) (32)

The result ofd1 < k:
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In this case, substitutingβ1 = k′β2 in C (Equation (27)
when d1 < k) and following the same approach as the case
of d1 ≥ k, it follows,

C(α) =



























































































































kα α ∈ [0, h(1, 0)β2]
(k − 1)α+ h(1, 0)β2 α ∈ (h(1, 0)β2, h(2, 0)β2]
...
(k − j)α+

∑j
i=1 h(i, 0)β2 α ∈ (h(j, 0)β2, h(j + 1, 0)β2]

...
d1α+

∑k−d1

i=1 h(i, 0)β2 α ∈ (h(k − d1, 0)β2,
h(k − d1, 1)β2]

A α ∈ (h(k − d1, 1)β2,
h(k − d1, 2)β2]

...
B α ∈ (h(k − d1, t)β2,

h(k − d1, t+ 1)β2]
...
D α ∈ (h(k − d1, d1 − 1)β2,

h(k − d1, d1)β2]

where

h(x, y) , d1 + d2 − k + x+ yk′

A = (d1 − 1)α+

k−d1
∑

i=1

h(i, 0)β2 + h(k − d1, 1)β2

B = (d1 − t)α+

k−d1
∑

i=1

h(i, 0)β2 +

t
∑

i=1

h(k − d1, i)β2

D = α+

k−d1
∑

i=1

h(i, 0)β2 +

d1−1
∑

i=1

h(k − d1, i)β2

C(αmin) = M . (33)

Thus,αmin = C−1(M) can be computed as,

αmin(d1, d2, k
′, β2) =



























M
k

β2 ∈
[

f1(0),∞
)

2M−g1(i)β2

2(k−i) β2 ∈
[

f1(i), f1(i − 1)
)

2M−(g1(k−d1−1)+g2(i))β2

2(d1−i) β2 ∈
[

f2(i), f2(i − 1)
)

,

where

f1(i) ,
2M

2k(d− k) + (i + 1)(2k − i))

f2(i) ,
2M

(2kd− k2 − d21 − d1 + k + 2d1k′) + ik′(2d1 − i− 1)

g1(i) , i(2d− 2k + i+ 1)

g2(i) , (i + 1)(2d2 + ik′) . (34)

Finally, β2min can be computed as,

β2min
= f2(d1 − 1) (35)
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