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Abstract

This work focuses on: (1) understanding the impact of selective forwarding at-

tacks on tree-based routing topologies in Wireless Sensor Networks (WSNs),

and (2) investigating cryptography-based strategies to limit network degradation

caused by sinkhole attacks. The main motivation of our research stems from the

following observations. First, WSN protocols that construct a fixed routing topol-

ogy may be significantly affected by malicious attacks. Second, considering net-

works deployed in a difficult to access geographical region, building up resilience

against such attacks rather than detection is expected to be more beneficial. We

thus first provide a simulation study on the impact of malicious attacks based on a

diverse set of parameters, such as the network scale and the position and number

of malicious nodes. Based on this study, we propose a single but very represen-

tative metric for describing this impact. Second, we present the novel design and

evaluation of two simple and resilient topology-based reconfiguration protocols

that broadcast cryptographic values. The results of our simulation study together

with a detailed analysis of the cryptographic overhead (communication, memory,
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and computational costs) show that our reconfiguration protocols are practical and

effective in improving resilience against sinkhole attacks, even in the presence of

collusion.

Key words: Wireless sensor network, selective-forwarding and sinkhole attacks,

resilience, tree-based routing protocols.

1. Introduction

The deployment of a wireless sensor network (WSN), in general, is governed

by its application. In this paper, we focus on applications, such as data collec-

tion, where a large number of static nodes need to be deployed in a difficult to

access geographical region. The general communication pattern is many-to-one:

the sensors collect and send data to sink nodes, which in turn relay the data di-

rectly to a base station outside the network. Due to the difficulty in accessing the

geographic location, the network is expected to operate for a satisfactory period

of time without any intervention. A WSN provides a lightweight infrastructure to

monitor changes remotely in hostile environments. Unfortunately, and precisely

because of the nature of such environments, a sensor network is particularly prone

to failures and, it is necessary to cope with various forms of disruptions, ranging

from battery outages to malicious attacks. Furthermore, these malicious attacks

can be as simple as propagating false information and still significantly impact

network operation, especially routing. Therefore, it is essential to quantify the

risk a network is under different type of attacks. Tackling this challenging prob-

lem constitutes the first goal of this paper.

For many applications, security (i.e., confidentiality, integrity and availability

of information) is vital to the acceptance and use of sensor networks. For in-
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stance, a large set of routing protocols in WSNs are based on the construction of

a tree-based routing topology initiated by a sink [1, 2, 3, 4, 5, 6, 7]. In particular,

these protocols use advertised information (e.g. hop count from a sink) to build

a routing topology. Secure operation of these protocols is essential for the health

of the network. Consider the attack, known as the sinkhole attack [8], where ma-

licious sensors pretend to be closer to the sinks than all their neighbors. Attract-

ing more traffic, these sensors can either selectively drop the received data (i.e.,

selective-forwarding attack) or collect sensitive information. Clearly, the proto-

cols that construct a routing topology would be significantly affected by these

attacks. More specifically, in Directed Diffusion [1] and TinyOS [7], routes are

established simply based on the reception of beacon messages initiated by the

sink. Hence, sinkholes are easy to create even without any collusion among sen-

sor nodes as there is no mechanism to verify the originator and the contents of the

message. Therefore, fighting against these attacks constitutes the second goal of

this paper.

To meet aforementioned challenges, this paper first studies the impact of selective-

forwarding attacks in tree-based routing topologies. We present a simulation study

where we show the impact of these attacks based on a number of key performance

parameters (e.g., node distribution, density, positioning, and attacker capability)

that influence the impact of these attacks. Our study illustrates the effect of dif-

ferent combinations of these parameters. For instance, a low number of malicious

nodes that are one hop away from the sink can affect the network in the same way

as a high number of randomly distributed malicious nodes. Thus, based on our

simulation study, we propose a single metric named “risk factor”, that can span

these variations.
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Selective-forwarding attacks are usually combined with other attacks. There-

fore, next, we consider the case when the compromised nodes combine selective-

forwarding attacks with sinkhole attacks. In comparison with the current work

[9, 10, 11, 12], this paper focuses on resilience against compromised nodes in-

stead of detection of compromised nodes. We believe resilience is an important

property in WSNs deployed in environments where human intervention is diffi-

cult. Furthermore, detection mechanisms often introduce more complexity, and

so more weaknesses, into the system, which do not always justify their benefits

[9]. To this end, as our second contribution, we propose two RESIlient and Simple

Topology-based reconfiguration protocols: RESIST-1 and RESIST-0. RESIST-1

prevents a malicious node from modifying its advertised distance to the sink by

more than one hop, while RESIST-0 does not allow this at the cost of additional

complexity. Via simulations and using our risk factor metric, we studied the per-

formance of RESIST-1 and RESIST-0 for three tree-based routing protocols, on

a large set of topologies, and with different levels of adversarial power. We also

evaluate the time and energy consumption of security operations of RESIST algo-

rithms to illustrate their feasibility.

In summary, the contributions of this paper are three-fold:

1- We propose a simple but representative metric describing the impact of

selective-forwarding attacks in tree-based routing protocols.

2- We introduce two protocols for building up resilience in wireless sensor

networks. The simulation results show that our protocols are practical and

effective in improving resilience against sinkhole attacks with different lev-

els of adversarial power.
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3- We provide an analysis of the feasibility of the proposed protocols (e.g.,

in terms of time and power consumption). These discussions expose in

greater detail our motivation on the viability of implementing the proposed

protocols in current sensor devices, such as MICAz and TelosB.

The remainder of this paper is structured as follows. In Section 2, we present

the system model. In Section 3, we investigate the representation of the impact of

malicious nodes. In Section 4, we lay out our proposal for two simple and resilient

topology-based routing protocols. Performance results are presented in Section 5.

The Section 6 overviews the current literature. Section 7 concludes with future

work. In Appendix, we present further details on cryptographic overhead of the

protocols and discuss optimizations to reduce these costs.

2. Problem statement

We focus on sensor networs, where the main application is environmental

monitoring scenario and physical access to the monitored region is difficult. Our

main goal is to quantify and limit the impact of disruptions caused by compro-

mised/malicious nodes in such networks. (In the rest of the paper, the terms com-

promised and malicious are used interchangeably.) In the following, the network

and threat models are presented in more detail.

2.1. Network model

We consider a connected WSN consisting of S static sensor nodes and one

sink node deployed in a remote area. Each node has a unique ID. Nodes do not

know any location information. Each node ni or the sink is able to communicate

wirelessly with a subset of nodes Nni
(its neighbors) that are in its transmission
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range, rt. We assume that for any two nodes X and Y with similar transmission

ranges, if X can communicate with Y , then Y can communicate with X .

We focus on routing protocols that rely on tree-based topology construction [1,

2, 3, 4, 5, 6, 7], where the data is routed from sensor nodes to the sink through

a tree rooted at the sink. The routing tree is an aggregation of the shortest paths

from each sensor to the sink based on a cost metric, which typically represents any

application requirement (e.g., hop count, loss or delay). In this paper, we assume

the routing tree is built by using the hop distance to the sink and through periodic

routing messages the routing topology is refreshed regularly. It is worth noting

that our RESIST protocols are deployed under the routing protocol, and expects

correct execution of the tree construction and maintenance.

2.2. Trust and threat models

A straightforward implementation of a secure WSN may consider multiple

sinks, each equipped with its own public/private key pair. For simplicity of pre-

sentation, we only consider the case of a single sink. Hence, in our model, all

sensors know and trust the public key, Ksink
pub , of the sink. Additionally, each sen-

sor ni has a pair of public-private keys (Kni

pub, K
ni

pri) that it uses to prove its identity.

These key pairs can be generated and uploaded offline to the sensors before the

deployment. Using these key pairs, nodes perform authentication and sign data

messages. Finally, in our trust model, sensors never lie about their identities due

to the use of cryptographic methods [13]. In fact, we assume that public-key cryp-

tographic primitives are available on all sensors. In Section 5.4 and Appendix A,

we discuss the overhead, and hence, the feasibility of our assumptions for current

sensor node architectures.

In this paper, we consider two types of threats: selective-forwarding and sink-
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hole attacks. We first focus on selective-forwarding attacks launched by the com-

promised nodes inside the network (Section 3). Compromised nodes are modeled

as nodes that drop messages with probability p instead of forwarding them. When

probability p = 1, compromised nodes drop all the messages (this is usually the

case in sinkhole attacks). When p < 1, compromised nodes can disrupt the net-

work operation, without being easily detected.

Next, we focus on sinkhole attacks launched by the compromised nodes inside

and/or outside the network (Section 4). In this case, the objective of the compro-

mised nodes is to appear attractive to their surrounding nodes in terms of routing.

An example scenario could be that a malicious node claiming to reach the sink in

a single hop. Hence, the compromised node advertises a single high-quality route

to the sink attracting a possibly large volume of traffic. Furthermore, two or more

sensors may collude to increase the impact of their attack on the network (e.g., a

wormhole attack). Solutions to the above attacks have been generally based on

temporal and geographical stamps [14]. We will analyze the impact of collusion

on our security protocols in Section 5.3.

We define a common notation, SA(X, d1, d2), for a sinkhole attack by node

X , advertising a distance d1 instead of its real distance d2. Note that in a pure

selective-forwarding attack, the malicious node might not lie about its distance.

Hence, the attack is SA(X, d(X), d(X)), but packets are dropped with a proba-

bility p.

3. Impact of Malicious Sensors

When assessing the performance of tree-based routing protocols, it is crucial

to characterize the routing topology in terms of its vulnerability to malicious sen-

sors. Typically, “the number of compromised sensors” is used as a metric for
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this purpose [9, 15]. However, this metric is not necessarily a good indicator of

the hazard that malicious nodes might cause in a WSN: one compromised sen-

sor close to the sink can reduce the data delivery success more than dozens of

compromised sensors at the border of the network. Intuitively, when tree-based

routing protocols are in use, the impact of a malicious sensor mostly depends on

the number of uncompromised sensors in its sub-tree. We thus introduce a new

metric, called Risk Factor, which is able to represent the interplay among different

parameters such as the number of compromised sensors, their position, the den-

sity and size of the network. This new metric allows us to evaluate the impact of

selective forwarding and sinkhole attacks on tree-based routing protocols by clas-

sifying different compromised topologies into a few equivalence classes. Next,

we present our metric and show, through simulations (performed using a discrete

event-based simulator implemented in Java), how it captures various parameters

of compromised topologies.

3.1. Risk Factor computation

We compute the “Risk Factor” of a given topology by first computing a local

risk factor for each node X , denoted as LRiskX . Essentially, LRiskX intuitively

shows the probability that a message from a node X arrives at a compromised

sensor on its way to the sink. Then, the risk factor of the whole topology can be

computed as the average of the local risk factors of all nodes in the network.

To compute LRiskX for all nodes, we first consider the network topology

as a graph G(V, E), where V is the set of sensor nodes and the sink, and E is

the set of edges, (i.e. links between nodes that can communicate directly within

transmission range). Any shortest path algorithm, e.g. Dijkstra or Bellman-Ford,

can be run over G(V, E) to compute the distance to the sink for each sensor as the
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minimum hop count to the sink.

The LRiskX of a compromised node X is its probability p of dropping a

message, while, LRisksink of the sink is 0, as we assume that the sink cannot be

compromised. For all other nodes, LRiskX is computed as the average of the local

risk factors of all neighbors that are strictly closer to the sink. More formally:

LRiskX =















0 if X is the sink

p if X is malicious
P

Y ∈NX |dY <dX
LRiskY

|{Y ∈NX |dY <dX}| otherwise,

(1)

where NX is the neighbor set of X , dX is its distance to the sink, {Y ∈ NX |

dY < dX} is the subset of its neighbors with a shorter distance to the sink, and |S|

is the cardinality of S. While Equation 1 does not explicitly represent the attacker

capability, except for selective forwarding probability p, the effect of different type

of “distance” attacks is captured implicitly through the use of dX . Note that the

“distance attacks”, such as the sinkhole attacks considered in this paper, mainly

affect how a node perceives its distance to the sink and hence, dX . We present

further detail on risk factor computation under different scenarios in Section 5.

LRiskX is computed recursively in a distributed way starting from the sink

until the leaves of the routing tree. Given LRiskX , ∀X ∈ V , the risk factor of the

entire topology, TRisk, is:

TRisk =

∑

X∈V LRiskX

|V |
(2)

The strength of the proposed risk factor lies in its ability to capture the mean

impact of all the possible shortest-path trees that can be created by an arbitrary

routing protocol. Essentially, the local risk factor accounts for all neighbors that

are closer to the sink, and hence, it is able to represent all the potential parents
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(including compromised nodes pretending to be closer to the sink) on any tree-

based routing topology.

3.2. Risk Factor pertinence

In this section, we show how our Risk Factor captures the different character-

istics of a compromised topology. We assume malicious nodes perform selective-

forwarding attacks with p = 1. We evaluate Risk Factor with varying:

• Compromised node distributions, which represents the distribution of com-

promised nodes in the geographic area covered by the network.

• Network scale, which defines the number of sensor nodes and the area the

network covers.

• Number of compromised sensors

3.2.1. Distribution of compromised nodes

The distribution of compromised sensors has an important impact on the extent

of the damage. As a rule of thumb, if the compromised nodes are closer to the

sink, their effect is higher since they are expected to forward more data than nodes

that are farther away. To understand how the Risk Factor takes this into account,

we evaluate four different distributions of compromised sensors (not necessarily

realistic):

• Uniformly Random (UR)

• Linear (L), so that they form an imaginary line that runs through the area

of the network.

• Ring (R), so that they form a ring surrounding the sink.
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Figure 1: Risk Factor of different malicious node distributions.

• Gaussian (G), so that they follow a Gaussian distribution around a center

point according to a dispersion parameter.

Fig. 1 shows that our risk factor indeed captures the impact of these distribu-

tions. All topologies are of fixed size (500 sensors), density (3 ln 500) (as defined

in [16]) and number of compromised nodes (50). All nodes are uniformly dis-

tributed in a simulation area a2 = πrtN
3 lnN

(as in [17]), except the sink which is

always in the center. For each distribution, we plotted the risk factor as the dis-

tance from the sink increases. The distance is the distance of the ring for R, and

is not a factor for UR. For L, it represents the distance from the sink to the closest

(imaginary) point on the line. Finally, for G, it is the distance to the center of the

distribution. Note that the distance is normalized by the maximum distance to the

side of the network area. For G, we use the same normalization for the variance,

and restrict ourselves to 0.1 and 0.5 for Fig. 1.

As expected, the risk factor increases as the distance decreases (except for

UR, where the distance is not a parameter of the distribution). Perhaps less ex-
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pectedly, the risk factor oscillates for the R distribution, which can be explained

as follows: if we represent all the nodes with the same distance to the sink as a

disk, compromised nodes on the border of the disk have a higher chance than the

ones inside to be chosen as parents by the nodes outside the disk. Hence, the risk

factor is maximum when the ring of compromised nodes is exactly at a multiple

of the transmission range (here, the transmission range is equal to 0.21 times the

maximum distance to the sink). Nevertheless, the risk factor for R still globally

decreases as the distance increases.

3.2.2. Scale of the Sensor Network

In this section, we investigate the effect of network scale. Intuitively, networks

with higher number of nodes are expected to experience less danger compared to

sparse networks with the same number of malicious nodes. We evaluate the scale

of a sensor network as (1) the number of sensors and (2) the geographical area

the sensor network covers. Hence, in our simulations, we either kept the area of

the network constant (Area-Constant/AC deployment) and hence, increased the

density by adding more nodes, or increased the area of the network proportionally

to the number of sensors (Density-Constant/DC). Furthermore, for each case, we

first assumed that the number of malicious nodes remained the same (Malicious-

Constant/MC). Next, we also scaled up the adversary capability and kept the un-

compromised to compromised ratio constant (Malicious-Adapting/MA). In our

simulations, in the DC deployment, the network density is 3ln(100), whereas in

the AC scenarios the network spans 95× 95 meters. InMC scenarios, the number

of malicious nodes is 50. Finally, we use two MA configurations with the ratio of

malicious nodes is 10% and 50%.

Fig. 2 depicts the risk factor for these different cases. For Area-Constant and
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Figure 2: Risk Factor as the scale of the network increases

Malicious-Constant (AC/MC), as expected, the risk factor decreases considerably,

as the number of nodes increases and the number of compromised nodes stays

constant. The same argument also applies to Density-Constant and Malicious-

Constant (DC/MC). However, in the case of Malicious-Adapting (MA), the two

different deployments exhibit different behaviors. For AC, the increase in the

number of nodes is neutralized by the increase in compromised nodes. However,

this is not the case for DC. Since the transmission range is fixed, a bigger area

increases the depth of routing trees that connect nodes to the sink. So, as the

number of malicious nodes scales with the number of nodes, each malicious node

has a potentially higher impact based on the depth of the tree. The risk factor

captures this difference between AC/MA and DC/MA, as it remains constant for

the former and increases for the latter.

3.2.3. Number of compromised nodes

Finally, we present how the risk factor captures the effect of the number of

malicious nodes in the network. In Fig. 3, we evaluate the risk factor for differ-
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R curves are limited by the number of malicious nodes that can be put on the line or the ring.

ent malicious nodes distributions (discussed in Section 3.2.1). All topologies are

networks of 512 sensors with moderate density (3ln(512)) and the transmission

range rt of each sensor is 20 m and the network is 185 × 185 m.

Fig. 3 shows that the ring case (i.e., R) can cause major damage to the net-

work with a relatively small number of malicious nodes, however, only at limited

distances from the sink (d). On the other hand, for both UR and G, there is no

limit on the number of malicious nodes. Hence, as the number of malicious nodes

increases, their risk factors become higher than the risk factor of R (d=1). Most

importantly, Fig. 3 shows that risk factor increases fast until 25−40% of the nodes

are compromised and from this point on, the increase is not significant. This is

also what would be expected in a real world scenario. Hence, we believe our risk

factor metric is able to represent the impact of different parameters. Furthermore,

the correctness of our metric is also shown in Section 5, where we show that the

receive success always decreases as the risk factor increases.
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4. Security protocols

In this section, we describe two reconfiguration protocols aimed at fighting

sinkhole attacks on tree-based routing in WSNs.

4.1. Overview and notation

To achieve higher resilience in tree-based routing protocols [1, 2, 3, 4, 5, 6, 7],

we propose two schemes, which are executed during the routing tree reconfigu-

ration phase triggered by the sink. The proposed schemes are implemented un-

der the routing protocol and can be adapted to any tree–based protocol. We do

not have any constraints on the period between reconfigurations: it is chosen by

the routing protocol and, for optimization reasons, can be tuned based on cost

or topology vulnerability. We define a class of RESIST-h protocols that prevent

malicious nodes from modifying their advertised distance to the sink by more

than h hops. Based on this definition, we introduce two protocols, RESIST-1 and

RESIST-0, which are presented in the remainder of this section. We also describe

here cryptographic operations and message contents of the proposed protocols,

but refer the reader to Appendix A for an efficient way of implementing them.

We use the following notation. IDni symbolizes the unique identification

number of the node ni and Nni
represents the set of neighbors of node ni. More-

over, let Kni

pub, K
ni

pri be the key pair for node ni and {x}K be a signature algorithm

(e.g. any suitable ECC–DSA algorithm) that signs message x under key K.

4.2. Simple reconfiguration protocol (RESIST-1)

The reconfiguration starts by the sink sending a Hello(epoch, tokens) mes-

sage (Fig. 4–m1.1) to all its neighbors (Nsink), where epoch is a strictly increasing

timestamp, chosen by the sink, and tokens is a list of tokens [T1, T2, ..., TR] (note
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Simple reconfiguration protocol (RESIST-1)

1. Sink → ni ∈ Nsink: m1.1 = hello(epoch, [T1,T2, ..., TR])
2.1 ni ∈ N : ni → nj ∈ Nni

: m2.1 = hello(epoch, [Td,Td+1, ..., TR])
2.2 nj → nk ∈ Nnj

: m2.2 = hello(epoch, [Td+1, ..., TR])
where Tx = 〈x, epoch, {〈x, epoch〉}Ksink

pri
〉

Complex reconfiguration protocol (RESIST-0)

1. Sink → ni ∈ Nsink: m1 = hello(epoch, [T1,T2, ..., TR])
2.1. ni ∈ N : ni → nj ∈ Nni

: m2.1 = hello(epoch, [Td,Td+1, ..., TR])
2.2. nj → nk ∈ Nnj

: m2.2 = hello(epoch, [Td+1, ..., TR])
3. nk → nj : m3 = Challenge(d, epoch)
4. nj → nk: m4 = ChallengeReply(d, epoch, Kd

pub,

{〈d, epoch, Kd
pub〉}Ksink

pri
, {〈IDnj , IDnk〉}Kk

pri
)

where

(Kx
pub, K

x
pri) is a new key pair for token k

generated by the sink

and Tx = 〈x, epoch, Kx
pub, {〈x, epoch, Kx

pub〉}Ksink
pri

, Kx
pri〉

Figure 4: RESIST-1 and RESIST-0 schemes.

that this list is created according to the underlying tree-based routing protocol,

i.e. R represents the largest hop distance to the sink). Essentially, each token is a

(token number, epoch) pair signed by the sink:

Tx = 〈x, epoch, {〈x, epoch〉}Ksink
pri

〉 (3)

where x is the token number.

When a sensor nj receives a Hello message (Fig. 4–m2.1), and after verifying

that the tokens are correctly signed by the sink (i.e. by using the public keyKsink
pub ),

it does the following:

2.1 If the epoch is new, it remembers the identity of the node sending it (his par-

ent), and propagates the Hello message after removing the token with the

shortest hop distance from the list of tokens (Fig. 4–m2.2). In other words, it

receives Hello(epoch, [Td, Td+1, ..., TR]) but sends Hello(epoch, [Td+1, ..., TR]).
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Figure 5: RESIST-1 overview. Tokens are removed from the list while the messages are forwarded

up the tree, so that sensors far from the sink have less information than sensors closer to the sink.

2.2 If the epoch is already known, but the Hello message advertises a shorter

hop distance to the sink (i.e., contains a smaller token), a selfish approach

would only update the node itself, while a gossip approachwould also prop-

agate a new Hello message to the neighbors. In the rest of the paper, we

follow the gossip approach.

Each sensor remembers as its parent, from which it received the shortest dis-

tance token in the most recent epoch. Alternatively, sensors can also choose to

remember all the nodes that advertise the shortest distance for a given epoch. In

Section 5, we also evaluate this approach. Fig. 5 illustrates an overview of the

RESIST-1 scheme.

4.2.1. Sinkhole attack resilience

A compromised node can directly forward the Hello message without drop-

ping the first token. Assume that the node is the first compromised node on the

branch where the Hello message travels. Then, if the compromised node is at

distance d from the sink, its neighbors would believe they are at distance d too,

and so, they would believe that the compromised node is at distance d − 1. Nev-
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ertheless, the compromised node cannot pretend to be at a distance smaller than

d − 1, because it would be unable to provide smaller tokens than Td. Note that as

the Hello message travels up the tree, it might encounter other malicious nodes

that do not drop the token before forwarding the message. In this case, each cor-

rect sensor would believe that it is at a shorter distance from the sink depending

on how many malicious nodes exist before it (e.g., if the number of malicious

nodes between the sensor and the sink is 2, then it will at most believe it is 2 hops

closer to the sink than the reality). Hence, the deviation from the real distance in

RESIST-1 increases with the number of malicious nodes on the path. However,

the main impact is still received from the node closes to the sink, and other com-

promised nodes are to expected to have diminishing effects as the distance to the

sink increases.

A compromised node may also make nodes think they are farther away from

the sink that in reality, by removing more than one token from the list of tokens.

Nevertheless, our focus is on selective forwarding combined with sinkhole attacks,

and so, the increase of the distance to the sink will not help compromised nodes

attract traffic. Additionally, the gossip approach can limit the impact of this attack,

since Hellomessages advertising the shortest distance to the sink may be received

from other neighbors.

4.3. Complex reconfiguration protocol (RESIST-0)

The protocol RESIST-0 is inspired by a protocol used to measure availability

in peer-to-peer networks [18], where newly generated pairs of cryptographic keys

are diffused in the network at every round.

The sink sends a Hello(epoch, [T1, ..., TR]) message (Fig. 4–m1), where the
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generated tokens are:

Tx = 〈x, epoch,Kx
pub, {〈x, epoch,Kx

pub〉}Ksink
pri

,Kx
pri〉, (4)

where (Kx
pub, K

x
pri) is a newly generated pair of cryptographic keys for token

Tx at a given epoch. The protocol is similar to RESIST-1, except that, before

choosing a sensor Y as its parent, a sensor X first challenges Y by sending a

Challenge(d, epoch) message (Fig. 4–m3). Basically, this message asks Y to

prove its distance d from the sink (i.e. that it has a copy of the token Td). Sensor

Y replies with a message ChallengeReply (Fig. 4–m4), which contains:

〈d, epoch, Kd
pub, {〈d, epoch, Kd

pub〉}Ksink
pri

, {〈IDY , IDX〉}Kd
pri
〉

The first part is the first half of the token Td that Y received. At the reception

of the ChallengeReply message and using the public key Ksink
pub , node X can

first verify if the token Td was correctly signed by the sink. In addition, node

X recovers the public key of the token Td, Kd
pub. Then, it can verify the second

part of the ChallengeReply message, i.e. the identities of X and Y , that were

signed with the private key of token Td, K
d
pri. If verified, it accepts Y ’s advertised

distance d from the sink. For the sake of illustration, Fig. 6 depicts a sequence

chart for RESIST-0 scheme. It is worth noting that, these sets of operations prevent

a node, which is a neighbor of bothX and Y and that got the Hellomessage, from

answering the Challenge message.

4.3.1. Sinkhole attack resilience

It is impossible for a compromised sensor (without collusion) to correctly re-

ply to a Challenge, since it needs to know the privvate key for the token Td to

sign the second part of the ChallengeReply message. Furthermore, compro-

mised nodes cannot even carry out the attack that we described for RESIST-1.
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Figure 6: RESIST-0 overview. RESIST-0 improves on RESIST-1 by checking the advertised

distance of each sensor.

Essentially, not dropping the token would fail, because they would not be able to

respond to the Challenge for the shortest hop count. Hence, RESIST-0 provides

strong resilience against sinkhole attacks. We discuss the impact of collusion on

our protocols in Section 5.

5. Performance Evaluation

The main focus of our evaluation is to understand the amount of resilience ob-

tained by RESIST protocols described in Section 4. We also consider the overhead

of RESIST protocols in terms of the time and energy it takes to perform crypto-

graphic operations. Additional implementation requirements and a discussion on

the feasibility of the RESIST protocols are presented in the Appendix.

In the following, we first evaluate the effect of three different routing schemes

and multi-path routing. Next, we present performance results under different sce-

narios with both non-colluding and colluding malicious nodes. We finally con-
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clude with analytical results on energy and time overhead.

The experiments were run in a discrete event-based simulator implemented

in Java. As we are only interested in a RESIST’s algorithmic evaluation and on

its resilience to message losses due to selective-forwarding and sinkhole attacks,

our simulator uses a simplified MAC layer, where wireless message losses are

not considered. These losses may only lead to some nodes not learning the real

shortest paths to the sink, and does not affect the correctness of RESIST protocols.

5.1. Simulation Setup

This section describes three baseline protocols and our simulation setup. We

consider a data collection application, where each sensor periodically sends data

(e.g., measurements) to the sink. The routing tree is regularly reconfigured (e.g.,

according to the specification of the [7]). Malicious nodes do not generate data

and they drop every received message with probability p = 1.

We implemented three baseline routing protocols: FTree, RRobin and RWalk.

We studied the performance of these protocols in networks when resilient recon-

figuration schemes are used (RESIST-1 and RESIST-0) and not used (vulnerable

case). In our simulations, compromised nodes try to attract higher volumes of

traffic by advertising shorter paths.

In FTree, the routing tree is rebuilt at each reconfiguration phase. Every sen-

sor forwards all its data to its parent until the next reconfiguration. RRobin differs

from FTree as each sensor computes a set of alternative parents during the recon-

figuration phase. This set includes the neighbor that sent the first Hello message

and any neighbor that sent a Hello message with a hop count smaller or equal to

the first neighbor. Each time a sensor has to send a message, it selects one parent

from this set in a round robin way. In RWalk protocol, each sensor makes a ran-
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dom decision about forwarding a message either over the routing tree (computed

as in FTree) or forwarding it to a randomly selected neighbor. If the message is

not sent over the tree, it follows a n-hop random walk and after n hops, it is again

forwarded over the routing tree. The goal of both RRobin and RWalk protocols

is to avoid regions that may be severely affected by malicious nodes. In all our

experiments with RWalk, we use n = 1.

We generated many random topologies. The space of topologies was divided

in 10 buckets, where buckets 0, 1, etc. contain the topologies whose risk fac-

tor is respectively in [0,0.1), [0.1, 0.2), etc. At each step, the risk factor for the

topology was evaluated and then, the topology added to the corresponding bucket,

until every bucket had at least 100 topologies. Using these topologies, the per-

formance gain was computed as the ratio of messages that actually reach the sink

compared to the number of messages that should reach the sink if no sensor were

compromised.

5.2. Evaluation of RESIST protocols with non-colluding attacks

In this section, we evaluate each routing protocol separately. Our results show

that RESIST-0 achieves significant performance gain for all routing protocols (see

Fig. 7). RESIST-1 improves performance compared to the vulnerable case, but the

gain is much smaller than with RESIST-0. In general, as the risk factor increases,

the performance of routing protocols decreases. More importantly, for both vul-

nerable and RESIST-1 cases, this decrease is roughly exponential, whereas for

RESIST-0, it has a better, linear decrease, as it does not allow nodes to lie about

their distance to the sink.

Fig. 7 confirms that when malicious sensors are able to lie, they can attract

more network traffic and thus, incur a much higher impact in the WSN. The linear
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Figure 7: Performance gain for different routing protocols: (a) FTree, (b) RRobin (c) RWalk (n =
1)

decrease achieved by RESIST-0 is the upper bound of the performance we can

obtain by only addressing the sinkhole attacks.

5.2.1. Effects of using multi-path routing

To get better results, one must also fight selective forwarding attacks. An at-

tractive approach to decrease the impact of selective-forwarding attacks is to send

each message through multiple paths to the sink. Fig. 8 shows the improvement

gained by using two paths per message (one FTree path and another RRobin path).

In this case, an improvement of 5%-10% is observed. These results confirm the

superiority of RESIST-0 in resisting sinkhole attacks compared to RESIST-1 and
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Figure 8: Using two paths (MP) instead of one increases the overall performance of the different

strategies.

multi-path routing.

5.2.2. Effects of using different tree-based routing protocols

In this section, we compare the three routing protocols for resilient (i.e., RESIST-

0 and RESIST-1) and vulnerable cases. To make such a comparison, we also mod-

ified the computation of the risk factor to represent the attacker capability more

accurately. The main goal of this study is to understand which routing protocol is

more advantageous among the three.

Performance in RESIST-0 Case. The performance results with RESIST-0 are de-

picted in Fig. 9(a). Note that even if sinkhole attacks are avoided, malicious nodes

can still perform the selective forwarding attack. Fig. 9(a) clearly shows that

FTree and RRobin outperform RWalk. This is expected as in RWalk, the average

path length that each message travels to the sink is longer. This consequently
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Figure 9: RESIST-0 performance evaluation: (a) Comparative performance of routing protocols.

(b) Number of severely affected zones in the network (threshold =60%). (c) Received ratio of

affected zones in the network.

increases the probability of meeting a malicious node on the path. Further ex-

perimentation on RWalk also showed that the protocol performance is inversely

proportional to n. This actually means that the best case for n-hop random walk

is achieved when n = 0, in which case RWalk is equivalent to FTree routing.

Fig. 9(a) also shows that FTree and RRobin have similar performance. This

is surprising since, intuitively, the performance of RRobin should be better com-

pared to FTree. Analyzing the results, we observe that, as expected, for sensors,

which have malicious parents, RRobin improves the performance by letting these

nodes periodically send to alternative parents. However, this does not necessarily
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improve overall performance as the reverse case also holds: sensor nodes with

good parents switch to using malicious nodes as parents in a round robin fashion.

Consequently, any gain from RRobin is neutralized by putting sensor nodes with

good parents at risk.

To better understand the effect of malicious nodes on the protocol behavior,

we divide the network into 100 equal zones and define the failure threshold of a

zone as the percentage of data missing from the zone to qualify the zone as poorly

monitored. In reality, this threshold would depend on the criticality of the sensor

network application. We set the failure threshold as 60% in our experiments.

Fig. 9(b) illustrates how many zones fell above the failure threshold for each risk

factor bucket and routing protocol. Initially, the number of zones above the failure

threshold is higher for FTree than RRobin. Noticing that both protocols share the

same receive ratio (see Fig. 9(c)), this means that RRobin just diffuses the effect of

malicious nodes to more zones, so that fewer zones actually fail. However, as the

risk factor increases, the number of zones above threshold increases beyond FTree

due to the reverse case appearing more often. Increasing the failure threshold

moves the shift point to the right. Nevertheless, although the number of affected

zones is higher for RRobin, the average received data ratio per affected zone still

remains higher than FTree. On the other hand, the number of affected zones in

RWalk is always the highest due to its overall poor performance.

Performance in RESIST-1 and vulnerable cases. To better understand the perfor-

mance of RESIST-1 and vulnerable cases, we slightly modified the computation

of the risk factor presented in Section 3. The main reason for this modification is

to represent the different adversarial power of compromised nodes in RESIST-1

and vulnerable cases. Note that the only difference between these two cases is
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Figure 10: Comparative performance of routing protocols without any RESIST protocols (using

Vulnerable Risk Factor).

the advertised distance to the sink, and hence, the only change in the computa-

tion is the way initial distances are calculated for each sensor. In the RESIST-1

case, since a malicious node can lie by one hop, its distance is equal to that of its

neighbor with the smallest distance to the sink. For the vulnerable case, malicious

nodes can pretend to be the sink, and so, the distance of each malicious node is

0. Hence, the shortest path algorithm needs to be run once for each sink, real and

pretend. At the end, each node is assigned the shortest distance to one of the sinks.

Hereafter, each version of the risk factor is referred as RESIST-1 Risk Factor and

Vulnerable Risk Factor, respectively.

Figs. 10 and 11 show the performance of FTree, RRobin and RWalk (n =

1) under the vulnerable and RESIST-1 cases, respectively. For each graph, we

partitioned topologies based on their respective risk factors (i.e., RESIST-1 and

Vulnerable Risk Factor). Quite different than the RESIST-0 results (see Fig. 9(a)),

RRobin performs the best for the vulnerable case (see Fig. 10). This is because,
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Figure 11: Comparative performance of routing protocols under the RESIST-1 protocol (using

RESIST-1 Risk Factor).

in this case, the FTree algorithm outputs a forest of small routing trees, where the

real sink and each malicious node is the root of one of these trees. Obviously, only

the nodes that belong to the tree of the real sink can deliver data. In contrast, since

RRobin allows nodes to follow different routes to the sink, it is able to reduce the

effect of these sinkhole attacks. Note that the reverse case of RRobin (i.e., nodes

with good parents using malicious nodes as alternative parents) does still exist.

However, in the vulnerable case, the effect of fragmenting the network into several

trees with FTree is greater than the reverse case of RRobin. Such fragmentation

also occurs in RWalk, which explains why its performance is lower than RRobin

as well. Note that, in RWalk, the routing tree is built in the same way as in FTree.

Interestingly, RRobin cannot sustain the same performance in the RESIST-

1 case. In the vulnerable case, the performance of FTree and RWalk is highly

affected by the fragmentation of the network into disconnected trees. Hence,

RRobin is able to perform better. However, note that, in RRobin, if a node re-
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ceives the first Hello message from a malicious node, then other neighbors may

not be able to join the set of alternative parents, if they advertise longer distances.

Hence, the set of alternative parents becomes very small and most often, con-

sists of one malicious parent (or one of its descendants). This problem, although

it appears in the vulnerable case too, is more obviously seen in RESIST-1 case,

since FTree and RWalk can perform better in this case. Hence, in the RESIST-1

case, all protocols perform comparably, with FTree performing slightly better (see

Fig. 11).

5.3. Evaluation of RESIST protocols with colluding attacks

To be able to implement sinkhole attacks in the presence of RESIST protocols,

malicious sensors have to be designed to collaborate and share good tokens (i.e., a

token that can prove a short distance to the sink). More specifically, two malicious

nodes need to collude through a private communication channel in order to send

tokens to each other. Consider the example of the sensor network in Fig. 12.

Node C1, which is close to the sink, helps node C2, which is at the border of

the network. Thanks to C1, C2 can attract traffic from nodes Z and possibly Y.

However, since C1 is already very close to the sink, it would have captured these

messages anyway: so, collusion in this case does not increase the power of an

attack much.

Collusion is also limited by the communication capabilities of malicious sen-

sors: in Fig. 13, we simulated the impact of collusion when colluding sensors

have normal-range radios and are distributed randomly on the network area. In

our simulations, malicious nodes exchange tokens so that they all appear at the

same distance from the sink (i.e., the distance of the malicious node that is closest

to the sink). We only plot RESIST-0 performance with collusion as this is the
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Figure 12: A compromised sensor C1 close to the sink helps another sensor C2 to launch a sinkhole

attack. However, C1 has already enough power of disruption, and hence, C2 the increase the power

of the attack marginally.

more interesting case. In RESIST-0, the sharing of tokens enables replying chal-

lenges for shorter distances and hence, has an effect on performance (see Curves

I and II when compared to Curve VI in Fig. 13). Fig. 13–Curve V also shows the

default malicious behavior scenario (i.e., without colluders) for RESIST-1 for ref-

erence. Note that in the case of RESIST-1, a malicious node close to the sink (e.g.

at level k) will manage to attach a very large subtree by just lying by one hop (e.g.,

all the nodes within his neighborhood at level k+1). Although these neighbors do

not explicitly collude, the pure existence of them allows non-malicious nodes to

think they are closer to the sink: the more there are malicious nodes on the path,

the closer the nodes think they are to the sink, hence, significantly affecting the

way the tree is built.

The most powerful attack would be a malicious sensor, which is close to the

sink and has a long-range radio, propagating tokens to malicious sensors far from

the sink (see Fig. 13–Curves III-IV). For example, the Curve III in Fig. 13 assumes
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Figure 13: Detailed comparison of collusion implications within RESIST protocols and different

radio ranges. In the presence of short range collusion, RESIST-0 still performs much better than

vulnerable routing without collusion. For RESIST-0, Curves I and II depict short range malicious

behavior with and without collusion respectively (no collusion means that malicious nodes com-

municate on a certain range but do not lie about their position). Curves III and IV display the

effect of colluders for long ranges. Curve V shows RESIST-1 short range malicious impact. Fi-

nally, Curve VI represents simulations obtained for vulnerable routing at short range malicious

behavior without colluders.
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that malicious nodes shares tokens with all the malicious nodes in the network, but

do not lie about their positions. Again, this case might not cause a significantly

higher degradation in performance, as the dominant impact already comes from

the malicious node closest to the sink. In fact, RESIST-0 achieves far better per-

formance than the vulnerable case, even in the worst case, where malicious nodes

have long-range radios and collude (see Curve IV when compared to Curve VI in

Fig. 13 ). For the scenario shown in Fig. 13 Curve IV, a malicious node at level k

will not be able to attract uncompromised nodes at level k + 1, as it is impossible

to lie to them. However, by passing the token to a colluder farther away, a mali-

cious node enables its colluder to respond to challenges. Nevertheless, note that

the lie about hop count starts diffusing from the point the malicious node reaches

to another malicious node, while with RESIST-1 lies can diffuse much earlier,

from the point the first malicious node at k lies.

In summary, if a node C1 helps a node C2, with d(C1) < d(C2), to perform a

sinkhole attack:

• With RESIST-1, two sinkhole attacks are performed: SA(C1, d(C1)−1, d(C1))

and SA(C2, d(C1) − 1, d(C2))

• With RESIST-0, one sinkhole attack is performed SA(C2, d(C1), d(C2))

while the second attack is a pure selective-forwarding one SA(C1, d(C1), d(C1))

In both cases, the attack by C1, which is closer to the sink, would probably be

more efficient than the one by C2 and hence, the benefits from collusion would

not justify the cost of implementing it.
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Static Message Dynamic
Reconfiguration Cost

per Sensor

RESIST-1 64B 45B × R 2KB V

RESIST-0 64B 85B × R 2KB 3 × V + S

Figure 14: A summary of memory consumption, signature operations, and computational/com-

munication complexity for relaying sensors. Note that sink operations are managed by the base

station. Legend: S: Signature generation; V: Signature verification; H: Hash computation; R:

Distance hops from the sink; k: Current distance to the sink; EC: ECC point multiplication cost.

MICAz TelosB

St(Sp) 0.89 s (26.96 mWs) 0.52 s (6.26 mWs)

Vt(Vp) 1.77 s (53.42 mWs) 1.02 s (12.41 mWs)

Ht(Hp) 3636 µs (5.9 µWs/byte) 7272 µs ( 5.9 µWs/byte)

ECt(ECp) 1.24 s (26.10 mWs) 1.44 s (6.00 mWs)

Figure 15: Current benchmarks of time and energy (in brackets) estimations for ECDSA–160

signature generation S, verification V , SHA–1 computation H and EC–160 point multiplication

operations.

5.4. Analysis of Time and Power Consumption in RESIST

In this section, we briefly discuss the feasibility of implementing the RESIST

protocols in WSN platforms. We focus mainly on the time and power needed to

perform cryptographic operations. To estimate the time and power, we used the

results presented in [19, 20, 21, 22, 23, 24]. For the sake of clarity, Fig. 14–

column 4 gathers the cost of specific cryptographic operations for each RESIST

version. In our analysis, we assume ECDSA–160 signature generation S, veri-

fication V , SHA–1 computation H and EC–160 point multiplication operations.

The reasons for these choices are detailed in the Appendix, where we also present

additional optimizations to RESIST algorithms to further reduce their costs.

Using power consumption estimations on a MICAz and the more powerful

TelosB in [20, 21, 23], we lay out some interesting results regarding the crypto-

graphic operations (see Fig. 15). In particular, ECDSA–160 takes only 0.52 s
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(6.26 mWs) and 1.02 s (12.41 mWs) on a TelosB, for the signature generation

and the verification operations respectively [24]. Moreover, on MICAz, the same

operations consume 0.89 s (26.96 mWs) and 1.77 s (53.42 mWs) respectively.

For EC point multiplication time and energy consumption, we used the results

from [20]. It takes, on average, 1.24 seconds for a MicaZ sensor mote to compute

a fixed point multiplication and 1.44s on TelosB. The power consumed by the

sensor nodes to perform ECC-160 is around 26.10mWs on MICAz and around

6.00mWs on TelosB [22]. Furthermore, according to the analysis and further

comparison of data sheets for TelosB and MicaZ [20], we approximated the en-

ergy consumption of the computation of an SHA-1 hash value to be 5.9µWs/byte.

In addition, SHA-1 computation takes 3636µs/byte on a MICAz sensor mote, and

an estimated time of 7272µs/byte on TelosB mote. Given the resilience achieved

against sinkhole and selective forwarding attacks, we believe it is cost-effective to

implement RESIST protocols in WSNs.

6. Related work

Security in wireless networks is attracting the attention of many researchers

since it is vital to guarantee correct operation of sensor protocols. This paper

focuses particularly on sink-hole and selective forwarding attacks. Most other

approaches against these attacks revolves around detection of malicious nodes

[12, 11, 15, 25]. For instance, in secure AODV (SAODV) [25], the route discov-

ery mechanism of the AODV routing protocol is protected by signing messages.

More specifically, a key management scheme is used where each node is assigned

to an asymmetric signature key pair and non-mutable fields of the messages are

signed with such digital signatures of nodes. Authentication can be then per-

formed in a point-to-point manner: Any neighbor receiving a routing message
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can securely verify the association between the address of a given ad hoc node

and the public key of that node and detect if a node is behaving maliciously. In

[12], multi-hop acknowledgments are used to detect and blacklist nodes that per-

form selective forwarding attacks. However, in addition to its cost, the proposed

scheme requires geographical location information and strict synchronization. In

[10, 11], a learning technique based on neural networks is used to predict the sen-

sor measurements, and a reputation scheme is used to mark nodes as faulty if their

reports are too different from predictions. In [15], a protocol similar to RESIST-

1 is proposed, but without strong cryptography. As a consequence, it requires a

protocol to detect malicious sensors (reports are vulnerable to falsification) and to

blacklist nodes (through a complex messaging mechanism).

Most practical approaches for establishing secure channels among sensor in

the literature are based on symmetric cryptography, where pairwise keys between

every two neighbor nodes are established after network deployment [26, 27, 28].

Such approaches provide data authenticity and/or confidentiality in a hop-by-

hop manner. However, they rely on uniform wireless communication patterns

in WSNs and consequently, are vulnerable to attacks when this assumption does

not hold.

The LEDS approach [29] (i.e., Location-aware End-to-end Data Security) was

proposed to deal with such constrains on communication patterns. It uses sym-

metric secret keys for secure and reliable data delivery and integrates two build-

ing blocks: a location-aware key management framework and an end-to-end data

security mechanism. The first block considers the construction of a virtual ge-

ographic grid and the binding of each node’s location (i.e., cell in the grid) into

symmetric secret keys owned by that node. The second block guarantees that ev-
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ery report in LEDS is endorsed by multiple sensor nodes and is encrypted with a

unique secret key shared between the event sensing nodes and the sink. Although

a very interesting and robust approach, LEDS requires the deployment of a grid-

based localization scheme as well as assumes densely deployed networks, where

every event of interest can be detected by multiple sensor nodes.

Similar to LEDS, a few other approaches have been proposed to design key

management schemes based on collaborative endorsement: reports that are not

properly endorsed are filtered out by intermediate nodes en-route to the sink or

by the sink itself [30, 31]. Such schemes are complementary to our proposed RE-

SIST schemes. RESIST increases resilience during routing topology construction

(i.e., before data transmission takes place) and can be combined with endorsement

schemes to improve resilience during data communication.

An interesting analysis of DDoS attacks in sensor networks, which also takes

into account different network parameters and some counter measures, is pre-

sented in [32]. While their work covers TCP JellyFish and selective-forwarding

attacks, we focus on sinkhole attacks. Moreover, our study with the Risk Fac-

tor metric captures more network characteristics. An intuitive approach against

selective forwarding attacks is to use multipath routing [8, 33]. However, such

a protocol dramatically increases communication overhead as the redundancy of

paths increases. In addition, these paths eventually converge to a few nodes sur-

rounding the base station where malicious nodes can have a high impact. Indeed,

our simulation results show that the efficiency of this approach is limited, as con-

firmed by [32].

Trust-based systems [34, 35, 36] are interesting approaches to deal with se-

lective forwarding attacks. In these systems, interactions between sensors are
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used for trust level computation. Such systems are, however, often complex. We

believe resilience, as provided by our protocols, is a better choice. As in [37],

RESIST can also use trust levels to choose the set of alternate parents in RRobin

routing.

In this paper, we did not focus on counter-measures against wormhole attacks

as in [38, 39]. In wormhole attacks, a compromised node records control and

data traffic at one location and tunnels it to a colluding nodes, which replays it

locally in another part of the network in a timely manner. Wormhole attacks may

increase the severity of a sinkhole attack [40] as these attacks can prevent nodes

from discovering routes that are more than two hops away. A number of routing

protocols have been proposed to protect the network traffic against such attacks.

In [38], authors introduce the LITEWORP solution, particularly designed for the

detection of the wormhole and the isolation of the compromised nodes. Other

proposals make use of cryptographic techniques and applies trust-based schemes

[40], neighbor list reconstruction procedures [41], special hardware like a direc-

tional antenna and precisely synchronized clocks [42], and also distance bounding

protocols (commonly used in RFID systems) [43].

Finally, the use of Public Key Infrastructures in WSNs, and exhaustive com-

parisons between Elliptic Curves Cryptography (ECC) and RSA on 8-Bit CPUs

have been subject of extensive research [19, 21, 44, 45]. Recently, [45] showed

that ECC can be implemented at a very low cost in WSN and RFID networks

[46]. ECC keys are known to be much smaller than equivalent RSA keys [47], so

that signatures and keys shorter than 110 bits would be largely sufficient in most

contexts.
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7. Conclusion

In this paper, we analyzed two protocols that increase the resilience of the

network in the presence of sink-hole attacks: RESIST-1 prevents malicious nodes

from lying about their advertised distance to the sink more than one hop; and

RESIST-0, which although is more costly, completely stops malicious nodes from

lying about their distance. Our performance evaluation confirmed the higher re-

silience of our protocols, even in the presence of some collusion. Moreover, we

introduced a new metric, the Risk Factor, to measure the impact of selective for-

warding and sinkhole attacks on sensor networks. We showed that it successfully

captures different topology-based parameters, such as the position and number

of malicious nodes, the network scale, and attacker capability. The initial study

of the overhead of the cryptographic operations of RESIST protocols shows the

feasibility of implementing these protocols in WSN platforms. As future work,

we plan to perform an experimental evaluation of our schemes using TinyECC

Library.
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A. Implementation Requirements of RESIST Protocols

In this section, we provide an estimation of the cost of using cryptographic

primitives in sensors networks, as these primitives are the main barrier to the im-

plementation of RESIST protocols. In particular, we evaluate code size, compu-

tational cost, and communication overhead of our security protocols.

A.1. Encryption Parameters

Hardware limitations of sensors determine the feasibility of security solutions.

Hence, there has been extensive research on investigating the usability of crypto-

graphic algorithms in wireless sensor networks. These efforts provide tests per-

formed on dedicated platforms in order to establish a ranking of candidates and

benchmarking for common cryptosystems according to the energy-efficiency and

small-storage requirements of sensors [48, 22, 49, 21]. These performance evalu-

ations typically use the energy models of [22]:
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• Mote2: 16-bit microcontroller with a clock frequency of 12 MHz, a Flash

of 512 KB, and a RAM of 64 KB

• MICAz: based on the low-power 8-bit microcontroller ATMEGA128L run-

ning at 7.37 MHz with 128KB Flash + 4KB RAM

• TelosB: 16-bit MSP430 microcontroller which runs only at 4 MHz and of-

fers 1 MB + 10 KB of memory

Taking into account the resource constraints of such hardware, first, we eval-

uate the memory requirements of our protocols. Our calculations presented in the

rest of the section show that the code, parameters and variables used by crypto-

graphic algorithms should fit the small memory of sensors. Fig. 16 depicts the

main features (memory requirements for code, length of keys and outputs) for

some well-known cryptographic algorithms [49, 21]. We include most of the

common public key cryptosystems (PKC) like RSA, Elliptic Curve (EC) and Ntru

for asymmetric operations like signatures; several symmetric algorithms such as

some well–known stream ciphers (RC4, Snowv2 and Phelix) and block ciphers

(the standard AES, RC5 and Skipjack), and hash functions.

RSA (1024 bits–key) signatures occupy 1024 bits, while the same operation

using EC (ECDSA) with 160 bits–key only generates a block of 320 bits. For

this reason, we will assume that ECDSA is used in RESIST protocols. Conse-

quently, we need 20KB of static memory for the code of cryptographic primitives.

However, we do not discard the option of using other encryption schemes with dif-

ferent overheads that might provide increasing levels of protection vs. efficiency

[50, 51]. For example, the cost of symmetric encryption is negligible compared

to elliptic curve operations.
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Type (/rounds) FLASH (bytes) Key(/IV) (bits) Block (bits)

RSA-1024 PKC 15832 1024 1024 bits-signature

ECDSA-160 PKC 18800 160 320 bits-signature

NTruSign PKC 2214 1169 bits-signature

AES Block/10 4354 128 128

RC5 Block/18 1110 128 64

Skipjack Block/32 856(CTR) 80 64

RC4 Stream 6064 128/0 8

Snow-v2 Stream 11152 128/128 32

Phelix Stream 9968 256/128 32

SHA1 1–Way Hash 30000 <264 160 bit–digest

Figure 16: Code and encryption parameters for several cryptographic algorithms from the litera-

ture, especially from [49, 21]

To generate the epoch values, the RESIST protocols rely on a continuous

counter at the base station. This can be implemented using a lightweight pseudo-

random number generator (PRNG) using just logical operations. For instance,

TinyRNG approach presented in [52] only uses 10KB of static memory consump-

tion and 416 bytes of RAM on a MICAz. Moreover, this method eliminates the

need for tight network-wide synchronization, which is typically hard to achieve.

A.2. Estimation of Messages Sizes

The main cost of our RESIST protocols is the size of Hello messages, which

carry multiple tokens that contain cryptographic values. This cost can be signif-

icantly decreased by an efficient way of encoding tokens. For instance, in [15],

one-way hash functions are used so that token Tk+1 can be computed from token

Tk by applying a hash-function. The construction of the hash chain (HC) is per-

formed by the base station, who first chooses T1 and then computes the last token

at length R, as follows: HR(T1) = H(H(H(. . .H(T1) . . .))) (R times).

Using this method in RESIST-1, Hellomessages need only to contain the first

token (i.e., Hk(T1)) and the last token (i.e., H
R(T1)), signed by the sink , whereas
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the ”basic” approach would send all the tokens:

Basic RESIST-1:

Sink → ni ⊂ Nsink : Hello(epoch, [Tk, Tk+1, ..., TR])
Optimized RESIST-1:

Sink → ni ⊂ Nsink : Hello(Hk(T1), epoch, HR(T1), {epoch, HR(T1)}Ksink
pri

)

On receiving this message, a sensor can compute its hop-count distance k by

hashing R − k times the token Hk(T1) until it reaches HR(T1). Moreover, as it

does not know T1, and H(·) is a one-way function, it cannot compute Hk−1(T1)

and thus, it is not able to lie more than one hop (i.e., as in RESIST-1).

Reconfiguration in RESIST-0 implies additional concerns since the sink gen-

erates and transmits new key pairs for each token. Nevertheless, we can apply

again the idea of hash chains for reducing the cost of cryptography in RESIST-0:

Hello messages need only to propagate the first (i.e., Hk(T1)) and the last token

(i.e., HR(T1)), signed by the sink, but these tokens should now be interpreted as

public keys. Hence, the basic and optimized RESIST-0 can be formulated as:

Basic RESIST-0:

Sink → ni ⊂ Nsink : Hello(epoch, [Tk, Tk+1, ..., TR])
Optimized RESIST-0:

Sink → ni ⊂ Nsink : Hello(Kk
pub, epoch, KR

pub, {epoch, KR
pub}Ksink

pri
)

Thus, Hello messages just contain the public key generated at level k − 1.

Nodes at level k can use that public key Kk
pub to verify replies to challenges based

on Kk
pri sent by level k − 1. They also use it to generate the next hop private

key (implemented using ECC) Kk+1

pri (with the cost of a modulo operation), from

which the public key Kk+1

pub is then generated (with the cost of an exponentiation

operation). That later public key is sent to level k + 1 to be used to verify replies

sent by level k with the generated private key. Note that the private key at level k is

not computed by level k− 1, but, since nodes are supposed to verify the complete
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chain, they should compute all the key–pairs for all higher levels until R (and

then discard them). Though we do not present the cost of the above mentioned

key generation, note that ECC key generation only involves generating a random

number, which becomes the user’s private key, and executing an ECDH operation

to compute the corresponding public key. On the contrary, RSA key generation is

much more time consuming as it requires the generation of large prime numbers.

For details, we refer the reader to [20].

On the other hand and as previously mentioned, signature overhead can be al-

leviated using symmetric algorithms (e.g., as the standard AES, Skipjack or RC4).

For instance, Skipjack has been demonstrated to be a powerful candidate of block

ciphers suitable for WSNs [50]. The periodic key disclosure can be efficiently

tackled using the approach presented in [53]. The use of these schemes, however,

would require significant changes in RESIST and we do not further elaborate on

this optimization in this paper.

In summary, we have identified here two optimizations concerning the length

of Hello messages, and we will discuss their transmission and computation cost,

in terms of time and delay, further, in the following sections. We refer to the new

approaches in the following as:

1. Basic RESIST-1: Hello messages are lists of simple tokens.

2. Optimized RESIST-1: Using the idea of hash chains, all Hello messages

contain the first and the last token, signed by the sink.

3. Basic RESIST-0: Hello messages are lists of tokens containing public–

private keys.

4. Optimized RESIST-0: As Optimized RESIST-1, Hello messages are im-

plemented by hash chains, where the hash function is a two-step function
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generating both the private and the public key.

A.3. Estimation of Memory Usage

Regarding storage, RESIST protocols do not have special memory constraints.

For the four previously described versions of RESIST, we first overview the com-

mon attributes that sensors must statically keep in memory:

• Public key of the sink, Ksink
pub using ECDSA-160 algorithm: 160-bit key (20

bytes).

• Sensor public and private keys: (Kni

pub, K
ni

pri) (40 bytes). We assume that the

keys of the sink are known by the base station, so that instead of the sink,

the base station can do the most expensive computations, such as generating

new keys or signing data.

• Sensor identifier, IDni: at least 4 bytes. Sensors identifiers should be linked

with their public key, so that malicious nodes cannot easily forge new iden-

tities. For example, the identifier could be a hash of the sensor public key,

or a long subpart of it.

In this way, the total static memory needed for our protocols occupies only 176

bits (i.e. 64B in Fig. 17), along to 20KB for ECDSA algorithm code (crypto-

graphic algorithm and variables) and the 4KB OS code space.

On the other hand, the dynamic memory consumption of each version of the

RESIST protocol depends on the specification and the cryptographic operations

executed. In particular, we study the size of the list of tokens at relaying nodes

(see Fig.17 for a summary), as follows:
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Static Message Dynamic
Reconfiguration Cost

per Sensor

Basic

RESIST-1

64B 45B × R 2KB V

Optimized

RESIST-1

64B 84B 3KB V + (R − k) × H

Basic

RESIST-0

64B 85B × R 2KB 3 × V + S

Optimized

RESIST-0

64B 84B 2KB (R − k + 1) × S + 2 × V

Figure 17: A summary of memory consumption, signature operations, and computational/com-

munication complexity for relaying sensors. Note that sink operations are managed by the base

station. Legend: S: Signature generation; V: Signature verification; H: Hash computation; R:

Distance hops from the sink; k: Current distance to the sink; EC: ECC point multiplication cost.

• Basic RESIST-1, where Tk = 〈k, epoch, {〈k, epoch〉}Ksink
pri

〉. The token

numbers k are encoded with 1 byte and the strictly increasing timestamp

epoch with 32 bits, resulting in 40 bits in memory for 〈k, epoch〉. 〈k, epoch〉

is signed by the sink using a 320 bits-signature, resulting in 360 bits in

memory for each token. The system also requires 2KB of free space for

signature verification.

Note that a simple rearrangement of signatures leads to only one signature

verification per message, instead of R verifications if all tokens had to be

verified. It is obtained by signing each sub-list of tokens instead of the

tokens themselves:Xk = 〈k, epoch, Xk+1, {k, epoch, Xk+1}Ksink
pri

〉.

• Optimized RESIST-1 is up to 84B for both hash digests (i.e. Hk(T1) and

HR(T1)) and a signature, and 3KB of free space for hash operations.

• Basic RESIST-0, with Tk = 〈k, epoch, Kk
pub, {〈k, epoch, Kk

pub〉}Ksink
pri

, Kk
pri〉,

increases the weight of token lists, by including a new pair of public/pri-
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Number of Packets at Hello (at worst)

Payload(bytes)

Hop–distance 30 45 56 80 94

Basic RESIST-1
10 15 10 9 6 5

20 30 20 17 12 10

Optimized

RESIST-1

– 3 2 2 2 1

Basic RESIST-0
10 29 19 16 11 10

20 57 38 31 22 19

Optimized

RESIST-0

– 3 2 2 2 1

Figure 18: Analysis of the number of packets required for Hello message in the closest distance to

the sink.

vate keys for each token, Kk
pub, and Kk

pri. A token therefore occupies 85B.

Sensor must also keep space for signature operations (2KB). Nevertheless,

Challenge and ChallengeReply messages are shorter, and do not need

simultaneous free space.

• Optimized RESIST-0 uses the same encoding for messages as Optimized

RESIST-1. Relaying nodes require additional available memory to generate

next hop keys, i.e. 2KB for EC point multiplication. Note that the new

generated public key is forwarded to neighbors and it is not further needed.

As shown in Fig. 17, protocol optimizations reduce considerably the length of

tokens by means of hashing. Similarly, RESIST-0 estimations at relay nodes rep-

resent an upper bound due to the extra free memory required for signature genera-

tion (cf. S in Fig. 17) and verification (cf. V in Fig. 17) executed at the Challenge

stage.
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A.4. Estimation of Communication Cost

Using estimations on code size, cryptographic variables, and the performance

measurements included above, we now examine the effective data rates and the

consumption in the transmission of packets. As it has been shown in the literature,

transmission generally consumesmore energy than computation. Packets sizes are

therefore an important parameter for WSN protocol design.

Since typical packet sizes on WSNs are 30 bytes and 56 bytes, and the highest

rate is 250 kbps for current generation of sensor platforms, we can estimate the

number of packets required by each protocol, for a network of 20 hops (2000

sensors) and an average of 45 bytes per packet (see Fig. 18 for a summary):

• Basic RESIST-1: Hello messages occupy 45 × R bytes when they are

sent by the sink: I.e., 45 × 20 bytes, for R = 20 according to the example.

Since one token is removed at each hop, the size decreases a lot during the

propagation of the message.

• Basic RESIST-0: Hello messages occupy 85×R bytes when they are sent

by the sink: I.e., 85×20 bytes, for R = 20 according to the example. Every

time one token is removed, the size decreases by two messages.

• Optimized RESIST-1 and Optimized RESIST-0: Hello messages have

a constant size of 84 bytes.The low communication cost is compensated by

a higher computational cost.

1IEEE 802.15.4 maximum packet size is defined as 127 bytes: MAC header (25 bytes), NWK

header (8 bytes) and DATA payload (94 bytes).
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