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Abstract

Location discovery, especially in mobile environments, has recently become the key component of many applications.
Accurate location discovery, particularly in safety critical applications using autonomous robots or unmanned vehicles,
however, is still an open problem. Existing popular methods either heavily rely on the use of global positioning systems
(GPS) which do not readily lend themselves for use for the majority of applications where precision is of primary concern
or are not suitable for ad-hoc deployments. In this paper, we propose a novel directional localization algorithm, called
Dual Wireless Radio Localization (DWRL), which performs accurate node localizations in the plane using only distances
between nodes, without the use of a GPS or nodes with known positions (anchors). The main novelty of DWRL is the
use of an additional radio per node to support directional localization in static networks. To the best of our knowledge,
this is the first time dual radios are employed in a localization setting. Existence of the dual radios on board enables
DWRL algorithm to perform directional localization, which is not possible with existing single radio systems in static
networks. We present the practical and theoretical benefits of the use of an additional radio per node in detail, test our
algorithm under excessive synthetic and real-world noise scenarios, and show that DWRL algorithm is robust enough to

perform directional localization even in high noise environments.
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1. Introduction

Location based systems focus on finding the locations
of items, cars, data, or people, and have been gaining a
lot of interest in the research community lately. The prob-
lem is widely known as the localization problem in the
wireless network community. Accurate discovery of the
real-time locations of objects is the key element to the suc-
cess of many applications ranging from tracking, surveil-
lance, search-and-rescue missions to traffic control, colli-
sion avoidance, and smart cars. Traditionally, position in-
formation has been gathered using global positioning sys-
tems (GPS). However, these systems in general suffer from
two major drawbacks. First of all, the devices require a
clear sight of at least 4 satellites in order to work, which
is not possible indoors, in downtown city centers with tall
buildings, or in geographically obstructed outdoor areas,
such as deep valleys. The second drawback is the impre-
cision of the localization when nodes stay close to each
other. If the nodes are closely clustered in a small area,
GPS based localization schemes do not provide enough ac-
curacy. Boukerche et al. [8] states the limitations of the
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global positioning systems in safety critical applications
for vehicular ad-hoc networks, such as collision avoidance,
in which sub-meter accuracy is needed.

Many applications depend on a level of accuracy for lo-
calization that global positioning systems cannot provide,
even in places where the satellite signals are available. In
search-and-rescue missions, for example, a crew of emer-
gency personnel is deployed inside a building, and real-
time tracking of positions of the crew by mission control
personnel possibly outside the building is essential. In this
scenario, precise adhoc localization is required in both line-
of-sight (LOS) and non-line-of-sight (NLOS) conditions.
In [20] a similar scenario is presented in which localiza-
tion is performed by radios wearable by the emergency
crew. Another application area would be the localization
of unmanned vehicles to provide coordinated movement
of the vehicles among themselves, or among vehicles and
personnel in the area. In this scenario, levels of sub-meter
accuracy is required to support mobility of multiple vehi-
cles without collision, while still preserving the connection
among them.

The limitations of the global positioning systems has led
the research community to start looking into GPS-free lo-
calization methods [22]. As a result various probabilistic
[23] or infrastructure based methods [9] have been pro-
posed. The probabilistic approaches do not guarantee the
desired level of accuracy in localization for the applica-
tions mentioned above. The infrastructure based ones, on
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the other hand, require the existence of reference nodes, or
anchors, with known global positions on the field. Clearly,
for applications such as emergency response, or collision
avoidance, infrastructure based approaches are costly to
apply due to long setup times. Such kind of applica-
tions require more of an ad-hoc style localization approach,
without the need for any external infrastructure to oper-
ate and work only with local data collected within the
network.

A good alternative for localization that uses only lo-
cal resources is the ranging based localization algorithms
[11, 34]. In this method, nodes only use neighborhood
graph and the ranges to their immediate one-hop neighbors
to perform localization. However, the problem is harder
than it looks and if only ranging is used, turns into a graph
realization problem [15], which has been shown to be NP-
Hard [46, 49]. When the network has three beacons with
known positions and the underlying graph is a trilatera-
tion graph, the problem can be solved in polynomial time
using trilaterations [15]. However, beacon based methods
generally use GPS to obtain the locations, or use pre-set
locations, which makes the approach less applicable to ad-
hoc deployments. On the other hand, global positions are
not always necessary for most applications. In some ap-
plications, such as collision avoidance, relative positions of
the neighbors in terms of the local coordinate system of
each node is sufficient enough. For scenarios where there
are no beacons with known global positions, éapkun et al.
[11] and Moore et al. [30] solve the problem in polynomial
time using relative positioning. In this case each node as-
sumes itself as the origin, and assigns virtual coordinates
to one of its neighbors on the positive z-axis and another
third neighbor on the positive y-axis. This solves the prob-
lem in polynomial time, but virtual node positions do not
overlap with the real world positions, so this method is
limited to only geographical routing scenarios.

In order to support critical applications, such as colli-
sion avoidance, directional localization [1, 2] methods are
needed. For example, two vehicles in a collision course
should detect the real world positions of each other to
plan an accurate escape route to avoid collisions. The
main distinction between directional and relative localiza-
tion is that the positions provided by the former support
the above application, contrary to the virtual positions
provided by the latter. Directional localization specifies
both the relative positions of the nodes, and the relative
direction as the primary means of being able to approach
other nodes. This attribute not only enhances capabilities
of the localization towards mobility but also increases the
agility of the algorithms in reacting to sharp and sudden
changes. In this paper, we propose a novel directional lo-
calization algorithm, which only uses the ranging informa-
tion between nodes to perform localization in polynomial
time, for a certain class of network topologies, without
the use of a global positioning system or infrastructure.
Our novel contribution in this paper is that in order to
solve the problem in polynomial time we introduce a sec-

ond wireless radio on each node. We also assume that the
distance among the two radios on a single node is known
apriori. Given a set of n nodes, what this achieves is, es-
sentially, a set up of an initial configuration with 2n radios
where as many as n of the distances between radio pairs
are already known. Such an arrangement, in fact, directly
follows from the observation made in [6] that for a general
network, if certain conditions such as the underlying net-
work being realizable by a trilateration graph are satisfied,
it is sufficient that O(n) pairs of nodes, among 2(n?) pos-
sible pairs, know their distances to have a unique solution
to the localization.

Although using dual radios on each node seems to dou-
ble the cost at first, we propose to use n/2 nodes in the net-
work with known inter-radio distances, instead of n nodes
with a single radio. This in return allows us to perform ac-
curate directional localization in polynomial time, which is
not possible by using single radios in static networks. How-
ever, using dual radios on a single node has some potential
problems, such as interference, collision, energy efficiency,
and coverage. [29, 37, 48] address some of these prob-
lems for multi radio sensor networks. In this paper, on the
other hand, we restrict ourselves to analyzing the potential
benefits of using dual radios only in a localization setting,
and do not pursue communication related problems any
further.

In order to achieve accurate ranging, we use the optional
ranging ability of the ultra-wideband radios [17, 43], as
part of the IEEE 802.15.4a standard *.

Our main contributions in this paper are:

e We introduce a novel directional localization algo-
rithm for static wireless networks by using dual wire-
less radios on each node. We present the theoretical
and practical benefits of the additional radio.

e We perform directional localization using only rang-
ing information, without the requirement of a global
positioning system or infrastructure, which is not pos-
sible by existing single radio systems in static net-
works.

e By introducing dual radios on a single node with apri-
ori known distances in between, we provide a mech-
anism through which we study the effect of this dis-
tance value on the performance of our localization al-
gorithm.

o We test our localization algorithm in various syn-
thetic and real-world environmental noise scenarios,
which causes errors on distance measurements, con-
duct extensive experimental study and simulations,
and present methods to control and reduce the effects
of noise even in high-noise environments.
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o We give answers to the questions of how the node den-
sity, wireless range and inter-radio distance of wire-
less radios effect the accuracy of our localization al-
gorithm.

The rest of the paper is organized as follows. We de-
scribe our novel localization algorithm in Section 2. In Sec-
tion 3 we present the results of our experiments, while in
Section 4 we discuss the related work. Finally, we present
our concluding remarks in Section 5.

2. Dual-Radio Localization

In this section, we present our directional localiza-
tion algorithm, named Dual Wireless Radio Localization
(DWRL), for static wireless networks. First, the termi-
nology used throughout the rest of the paper and the
assumptions made about the DWRL algorithm are pre-
sented in Section 2.1. The primary computational steps of
the DWRL algorithm, namely, semi-localization and rigid-
localization are introduced and described subsequently in
Sections 2.2 and 2.3 respectively. Finally, the localization
algorithm proposed is described in Section 2.4.

2.1. Assumptions and Preliminaries

In this section, all the assumptions made about the
DWRL algorithm for static wireless nodes are highlighted
and basic terminology and definitions that are essential to
the understanding of the paper are introduced.

We have made the following assumptions for the DWRL
algorithm:

e Each node will have two ultra-wideband (UWB)
wireless radios attached to apriori known positions
aboard.

e Radios on each node are tagged as Radio; and
Radios. Both Radio; and Radios can accordingly
identify themselves as such.

e Nodes can measure the distance to other nodes within
their proximity by using the ranging feature of UWB
radios [43]. A measurement between any two nodes
that are within range involves figuring out all four
distances between radios of both nodes.

e Each node has a reasonably large size on board? to
allow for a sufficient distance between the two ra-
dios, such that the individual radios aboard can be
distinguished as required during the localization pro-
cess. The distance between the two radios on a node
is called inter-radio distance.

2In Section 3.1, we empirically show that in a typical wireless
network with range set to 50 meters, inter-radio distance of 60 cen-
timeters would be sufficient for successful localization. We argue that
it is feasible for radios of this size to be carried around by humans
or mounted on small vehicles such as unmanned vehicles.

e One of the nodes is designated as the sink to initiate
the localization process. The position of Radio; on
the sink node is chosen to coincide with the origin
of the coordinate system of the network, and Radios
is assumed to be positioned in the direction of the
positive z-axis. Thus, a line drawn from Radio; to
Radioy points in the local East direction.

e Other than the UWB radio ranging, no additional
positioning device or infrastructure is used.

e We assume the presence of environmental noise, which
causes errors in the distance measurements performed
by the radios.

Before we get into the details of the DWRL algorithm,
we briefly state some of the terminology used. Two nodes
are said to be co-linear if there exists a line passing through
all four radios of the nodes. The line which passes through
the line segment joining the points corresponding to the
two radio positions of a node is said to be the azis of the
node.

A graph with nodes corresponding to a set of point la-
bels in the plane and edges denoting the Euclidean dis-
tance between points is globally rigid [13, 15] if for any
two different mappings of nodes to actual positions in the
plane in such a way that the distances in the graph are all
preserved, then, the distances between every pair of po-
sitions under these mappings are also preserved. If every
sufficiently small perturbation of the points in a mapping
of a globally rigid graph creates also a globally rigid graph
obtained by updating the existing distances in the graph
in conformance with the perturbed mapping, then we say
that the graph is generically globally rigid [13, 15].

We present the DWRL algorithm in three parts. We
first present the semi-localization step in Section 2.2. We
discuss the rigid-localization in Section 2.3, and finally we
analyze the details of the DWRL algorithm in Section 2.4.

2.2. Semi-localization

Semi-localization is defined to be the set of computa-
tions performed to localize an unlocalized node with re-
spect to an already localized node. Figure 1 depicts a
configuration where node ny is semi-localized against n;.
It should be noted at this point that a localized node may
be characterized by either a 2-tuple of the coordinates of
its both radio positions or a 3-tuple consisting of Radio,
position, inter-radio distance, and the orientation given in
terms of the slope of the line passing through Radio; and
Radios. The two radios, Radio, and Radios, that each
node has are shown in blue and red respectively in Fig-
ure 1. The position of Radio; is, in general, assumed to
coincide with the origin of the local coordinate system as-
sociated with each node. Node n; which is assumed to
have already been localized has its Radio; and Radioy at
positions given by (xg,yo) and (x1,y1) respectively. The
coordinates of Radio, and Radios on node ns to be calcu-
lated through semi-localization are denoted by (z2, y2) and
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Figure 1: Semi-localization between nodes n; and na.

(x3,y3) respectively. The semi-localization of ny against
n1, hence, involves the computations of (z2, y2) and (x3,
y3). As the inter-radio distances d; and da, and the po-
sitions of the two radios associated with n, are already
known, all that remains is to measure the distances rq,
ro, r3, and r4 shown in Figure 1 between the correspond-
ing radios using ultra-wideband ranging. Having learned
the values (z, yo), (1, y1) and d; after a communication
with n1, node no can now initiate the process of ranging
to carry out the measurements.

Once the measurements are finished, all the data re-
quired become available at node ns. It may now locally
perform the computations involved to derive the possible
coordinates resolving the relative position and orientation
of node ns.

Figure 2: When localizing node na ([AB]) based on the position of
node n; ([CD]), there exist at most two solutions.

Using law of cosines (see Figure 1) we can write:
ro? = di% + r3? — 2dyrg cos by, (1)

ry2 =di? 4+ r% — 2dyry cos 0y (2)

from which #; and 65, both assumed to be in the range
[0, 7], can be solved for as:
(3)

d 2 22
0, — + arceos (1“3’@)

2d17“3

d 2 2 .2
0y — + arccos (1“1“)

4

2d17”1 ( )
In order to simplify the computations, node n; is, at
this stage, assumed to be translated and rotated so that

the global positions of its radios overlap with its local co-
ordinate system, namely, (0,0) and (d;,0) extending along
the positive z-axis from Radio; to Radios. We can, now,
easily calculate the radio positions of node no relative to
the new transformed position of node n; to obtain:

xh = r1 cos(fz), (5)
Yy = 7y sin(fy), (6)

xhy = r3cosf, (7)
Yy = trgsinb. (8)

It is finally possible to compare the four possible values
of (24 — x%)% + (yb — y4)? corresponding to four possible
combinations of +6#; and £, with the square of inter-
radio distance d22 to get rid of the two unwanted combi-
nations. After obtaining the two feasible solution sets for
0, and 05, we can conclude the semi-localization process by
transforming back the radio positions (x4}, y4) and (25, y})
of ny to get the actual positions (z2,y2) and (z3,ys3) re-
spectively by a suitable amount of translation and rotation
which is actually what is needed to rotate and translate
n1 back to its original position. The critical assumption
made during the computations that semi-localization of no
with respect to ny always yields at most two solutions, ap-
parently, needs to be verified. This is, thus, investigated
next below.

As to the orientations 6; and 65 of the two radios of node
ng relative to ny, there are a total of four possible combi-
nations which depends on whether 6, and 05 are both posi-
tive, both negative, or one positive and the other negative.
These four combinations are easily justified by the follow-
ing observation (see Figure 2): The possible positions for
(z2,y2) denoted by A and A’ are simply those correspond-
ing to at most two intersections between the two circles
centered around Radio; (denoted by C) and Radios (D)
of ny; with radii r; and r4 respectively. The same holds
also for (x3,y3) which might be located at either B or B’
corresponding to the intersection of circles of radius r3 and
ro each respectively this time. There are, thus, a total of at
most four possible configurations for (x2,y2) and (x3,y3)
which can be given as {(A, B), (A’, B), (A, B’), (A, B)}.
Two of these can be eliminated simply by enforcing the
distance between them to be dy. In order to see that, let’s
choose A and B arbitrarily to be the actual radio positions
corresponding to Radio; and Radios of no respectively.
|AB]| is, hence, dy. We need to show, then, that |A’B]
cannot be of length dy. Let’s assume, by contradiction,
that |A’B| = dy which in turn requires that the base an-
gles ZA’AB and ZAA’B of the isosceles triangle AABA’
to be equal. This is easily seen to be impossible unless B
is located at E which is the point formed by the intersec-
tion of the axis of node n; and the line segment [AB]. If
B and FE are not co-located, ZA’AB is strictly less than
/AA'B since ZAA'Bis /A'AB+ /FA'B. If B and F are
co-located, however, there remains a total of at most two
candidate configurations given as {(A, B),(A’, B)} with
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Figure 3: T'wo possible positions for node na: one actual, the other
located symmetrically on a flip around the axis of nj.

the position of at least one radio fixed on the axis of sym-
metry. This confirms that any radio after a flip cannot be
at an equal distance to the other radio known not to be
on the axis of symmetry. This discussion justifies the as-
sumption that semi-localization always yields at most two
solutions.

It can easily be observed also that the semi-localization

process can only produce (generically) globally rigid con-
figurations between any two given nodes. Besides, the only
solutions which can be realized, once the position of the
localized node is fixed, are those that are mirror-reflexive
around the axis of the already localized node. The process,
therefore, finds both the position and the orientation of the
semi-localized node up to a single flip around the localized
node. This is depicted in Figure 3 and the reasoning leads
to the following Lemma 2.1.
Lemma 2.1. (Semi-localization) The semi-localization of
a node ny with respect to an already localized node ny will
specify exactly two (possibly equal) positions in the plane
which are always symmetrical with respect to the axis of
node ny so long as the distances r1, 2, r3, and ry between
radios of the two nodes can be correctly measured and a
feasible solution with respect to equations (1) through (8)
is known to exist.

Proof. Equations (1) through (8) and the accompanying
reasoning above leave us with two cases to consider: In the
first case where there are no solutions at all, the lemma
is already correct. In the second case where a feasible
solution exists as to the final location of node ns being
semi-localized, let one solution be denoted by a 2-tuple
P(ng.Radioy, ne.Radiog) of its radio positions. Let now
P’(n}.Radioy, nb.Radios) be the new location obtained by
flipping P around the axis of node n;. By the similarity
of all the triangles involved, then, the distances 71, ra, r3,
and r4 measured are all preserved. P’ is, thus, qualified
as another solution. If P and P’ are different, the whole
solution set must precisely be these two distinct solutions
corresponding to P and P’. If they, however, happen to
be the same which is only possible when node ns is on the

\ ngl)
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Figure 4: Rigid-localization of node n3 using localized nodes n1 and
na, based on the distance measurements between radios of the nodes.

same line as the axis of symmetry, namely, the axis of node
n1, there exists just one solution. O

2.3. Rigid-localization

In order to perform directional localization, we ensure
that the graph obtained is globally-rigid throughout local-
ization. This is addressed by introducing an additional
localized node into what we call as the rigid-localization
process. Each rigid-localization consists of two semi-
localization steps for an unlocalized node with respect to
two already localized nodes in an effort to come up with
a unique relative position. It is assumed throughout the
process that the localized nodes are not co-linear which
guarantees that some three out of four radios are always
in general position. The rigid-localization process is illus-
trated in Figure 4. Let’s initially assume that the nodes n
and ny are somehow rigid-localized. The figure shows the
localized positions for n; and no filled with solid colors.
Let a solid color once more denote the actual position of
node ng which is to be localized. In the first step of the
rigid-localization, unlocalized node n3 gets semi-localized
against one of the localized nodes, say n;. The two pos-
sible configurations after the computations performed lo-
cally are marked by n3 and nél) in Figure 4. In the second
step, the semi-localization is carried out, this time, with
respect to the other localized node, no, the outcome of
which are characterized by the possible positions marked
n3 and n:(f) in Figure 4. A simple comparison in the fi-
nal step of possible configurations obtained through these
semi-localizations reveals a unique solution, hence, rigid-
localizing node ngs. It should be noted that the results
of the two semi-localizations can uniquely localize ng only
when n; and ng are not co-linear. The preceding discus-
sion can be summarized in the following lemma.

Lemma 2.2. (Rigid-localization) Rigid-localization of a
node i with respect to two already localized nodes j and
k # j whose radios are not co-linearly located uniquely
identifies the position of i relative to these nodes.



Proof. Node ¢ during a single rigid-localization gets semi-
localized twice, one for each of nodes j and k. Either radio
of node i is, therefore, relatively positioned with respect
to a total of four other radios on j and k. By the non
co-linearity assumption, some three out of four radios on j
and k are known to exist in general position. Each radio on
1 is, hence, positioned with respect to at least three known
locations in general position which, in turn, implies global
rigidity. This establishes the proof of the lemma. O

It can easily be observed that a directional localization
algorithm making repeated use of rigid-localizations al-
ways constructs a globally-rigid graph of interconnected
nodes. One nice property characterizing such localizations
is the fact that the presence of even a single localized node
in the network with known real-world radio coordinates
will suffice to produce a solution that will be as far to the
real-world coordinates as at most a single flip around the
axis of that specific node. In order to see this, the globally
rigid graph can be translated and rotated as necessary so
that the two radios of the sink overlap with the known
coordinates. All the other nodes now either are at their
real-world coordinates or need to be flipped once around
the line passing through the known radio positions of sink
node (see Figure 5). We discuss this issue more in the
section below.

2.4. The DWRL algorithm

In designing a directional localization algorithm that
tries to minimize the overhead of communication in terms
of the number of rigid-localizations performed, one of the
nodes is first designated as the sink node whose positions
for Radio; and Radioy are assumed to coincide with (0, 0)
and (dq,0) respectively. The sink, next, picks within its
wireless range a node to be semi-localized. One of the
two positions which is on the positive y direction is, then,
chosen for the semi-localized node and it is assumed to
be rigidly localized thereafter. The nodes, throughout the
rest of the algorithm, keeps listening until they hear from
any two rigidly localized nodes. This is exactly when they
first become ready to localize themselves through rigid-
localization. We choose, in the DWRL algorithm, to start
the localization process with the node closest to the sink.
It should, however, be noted at this point that selecting the
closest node to the sink does not always lead to a complete
localization as the edge between them is not guaranteed to
belong to the set of edges that allow for the initiation of a
sequence of rigid-localizations resulting in a complete lo-
calization. The decision to use the closest node to the sink
for the very initial semi-localization, on the other hand,
is reasonable in that it helps minimize the error propa-
gation in the network. If the distribution of nodes and
their respective wireless ranges allow a sequence of rigid-
localizations that span all the nodes, continuing iteratively,
the nodes in the network can be all directionally localized.
Based on which of the two possible positions of the semi-
localized node has initially been selected, and assuming
that the sink node is positioned correctly, the positions of
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Figure 5: Based on the initial selection of the closest node’s posi-
tion, the positions of the rest of the nodes can either be the correct
positions, or positions flipped around the axis of the sink node. Cor-
recting the position information is a constant time operation per
node.

all the other nodes may be adjusted by at most a single
flip around the sink node.

We leave the step to verify the correctness of the initial
guess to a third party outside of the network, for example
to an operator of the system. Once the inaccuracy of the
initial guess is observed, the actual positions of all the
nodes in the network can subsequently be adjusted by a
single flip easily (see Figure 5).

We can now highlight the important parts of the DWRL
algorithm shown in Figure 6 as follows:

e All the nodes are initially unlocalized. Sink node ini-
tiates localization by using the InitialLocalization al-
gorithm shown in Figure 6. After finding the clos-
est neighbor n.;, the sink sends a message so that n
semi-localizes itself with respect to the sink. Both the
sink and the semi-localized node, then, declare them-
selves rigid-localized, at that time, and start broad-
casting their positions thereafter. We use the term
broadcast in this paper to represent the local com-
munication from a node to its immediate neighbors
within the wireless range, using the broadcast medium
of the wireless radios.

e Whenever a non-localized node receives positions of
localized neighbors, it performs rigid-localization with
respect to two of its already localized neighbors using
the RigidLocalization algorithm in Figure 6.

e Each node looks for at least two rigid-localized nodes
within its range that are verified to be not co-
linear for performing a rigid-localization. Each rigid-
localization issues two calls for the corresponding
semi-localizations.

e Each node starts broadcasting its own position rela-
tive to the sink node right after it gets localized.

e Localization process continues until all the nodes are
localized.



INITIALLOCALIZATION(NODE N)

1: Localized <+ FALSE

2: Local Position < ()

3: if N is Sink then

4: Select Radioq position as origin

5 Find the closest neighbor, n.;

6: Send a message to n. to get semi-localized

7:  set Localized <— TRUFE

8:  set Local Position + {(0,0), (d1,0)}

9:  Broadcast {Localized, Local Position}
10: else if N gets initial semi-localization message then
11:  /* na computes its positions as Pos1 and Posa */
12:  {Posi, Poss} + Call SemiLocalization(N, Sink)
13:  /* Among Pos1 and Posa, select the one
14: on the positive y axis */
15:  Posy,_, = PositiveY Azis(Posy, Posz)
16:  set Localized < TRUE
17:  set LocalPosition < {Posn,, }
18:  Broadcast {Localized, Local Position}

RIGIDLOCALIZATION(NODE N)
1: if N is not Localized then

2:  /* NL < Localized neighbors list */

3: if Recevied position info from neighbor e then
4: Add npew into NL

5: for Each neighbor n # nyuey in NL do

6: if (Nnew,n) are not co-linear then

7 Call SemiLocalization(N, Nnew)

8: Call SemiLocalization(N, n)

9: Pos + resolve final position of N using dxn
10: set Localized < TRUFE
11: set Local Position < Pos
12: Broadcast {Localized, Local Position}
13: /* exit for loop */
14: break

SEMILOCALIZATION(NODE Ngemi, NODE Nyigid)

1: Compute positions of Ngem; with respect to Nyigia

2: Resolve the final feasible positions of Nsem: using dsem:
3: Return {Pos1, Posz2} associated with Ngems

Figure 6: The DWRL Algorithm.

Theorem 2.3. (Single Flip Theorem) The Localization
algorithm presented in Figure 6 localizes, if possible at all
through a sequence of rigid-localizations, all the n > 1
nodes up to a flip around the sink.

Proof. The proof is by induction on the number of nodes.
The base case when n = 2 is seen to be capable of per-
forming only a single semi-localization with respect to the
other node, namely, the sink. The theorem certainly holds
in this case by Lemma 2.1. Let’s assume by the inductive
hypothesis that the theorem holds for all instances with as
many nodes as ¢ less than some constant n > 2. When the
algorithm is run with n nodes this time, the first n—1 > 1
nodes must have been successfully localized by the induc-
tive hypothesis up to a single flip around the sink. Let
denote the node that is considered the last by the algo-
rithm. Node 3, then, gets rigid-localized with respect to
two amongst the first n — 1 that have already been local-
ized. By Lemma 2.2, the position of § is, thus, unique.

But it is known by the inductive hypothesis that those
two nodes with respect to which ( is rigid-localized are
both either at their correct positions or need to be flipped
around axis of the sink. In the former case, the unique
position found must correspond to the real-world coordi-
nates of S as all four radios of the localizing nodes are at
known positions which are non-co-linear. In the latter, 3
gets rigid-localized against two nodes whose actual posi-
tions can be obtained by a flip around the sink. If all the
nodes including g in the network are flipped once around
the sink, it is known that the first n — 1 nodes are all cor-
rectly placed regarding their actual positions. Besides, the
new position of 8 after the flip has all the distances pre-
served with the other two lying at their actual positions
now since the rigid-localization process always specifies a
globally rigid position for g relative to the others. This
new position for g after a flip around the axis of the sink
must, then, certainly be the actual position. O

The DWRL algorithm presented is distributed in nature
and the total number of messages propagated in the net-
work when the sink node has already been chosen is pro-
portional to only a low degree polynomial in the number of
nodes. More precisely, with the assumption that receiving
a single message is enough for the receiver radio to measure
the distance to the sender, the total communication cost
of the DWRL algorithm can be calculated for the broad-
casting and the receiving components as follows: During
the course of localization, each node only broadcasts the
{Localized, Local Position} tuple, where the Local Position
is composed of the positions of the two radios. By repack-
aging the tuple to fit into two exact messages, namely
{Localized, Local Position of Radio;} sent by Radio; and
{Local Position of Radios} sent by Radios, the localiza-
tion is performed by each radio sending a single message.
The total communication cost for the broadcasting compo-
nent for n nodes is then 2n messages, which asymptotically
amounts to O(n) messages. The total communication cost
incurred by the receiving component is also linear in the
number of edges. Therefore, the total communication cost
of the DWRL algorithm is linear at most in the number
of edges in the network. It should, however, be noted that
the number of edges is O(n) since multi-hop wireless adhoc
networks are in general not dense.

Optionally, by taking advantage of the fully distributed
nature of the algorithm, running time can be traded for im-
proved accuracy by performing multiple rigid-localizations
in parallel. Since the communication costs dominate the
CPU runtime costs in wireless networks, the cost of the
DWRL algorithm hereby is reported only in terms of
the communication costs. The CPU runtime cost of the
DWRL algorithm, on the other hand, is also low assum-
ing that a floating point unit is present within the CPU to
perform the trigonometric calculations. Otherwise, if there
are no floating point units available, it is safe to assume
that the computations could be efficiently performed us-
ing approximations. The following lemma states an upper



bound on the running time of DWRL for multiple parallel
rigid-localizations.

Lemma 2.4. If the nodes in the network are all in re-
alizable positions through a sequence of rigid-localizations,
then the algorithm depicted in Figure 6 localizes all nodes
in polynomial number of semi-localization steps.

Proof. The algorithm after executing an initial semi-
localization between the sink and another node (not
necessarily the closest node to it), performs two semi-
localizations for each rigid-localization step throughout the
rest of the algorithm. Each of the remaining n — 2 nodes
will, thus, go through a single rigid-localization. The to-
tal number of semi-localizations once an edge leading to
a complete localization is correctly identified will, there-
fore, be given by 1+ 2(n — 2) = 2n — 3. Since this many
semi-localizations can be carried out with each choice of a
different edge, the total number of semi-localizations can
be, at most, () * (2n — 3). O

In this section, we presented our DWRL algorithm that
performs directional localization using only ranging data
with the help of dual wireless radios. We presented the
DWRL algorithm in three parts; semi-localization, rigid-
localization, and the detailed analysis of the DWRL algo-
rithm.

3. Experimental Evaluation

In this section, we conduct experiments to analyze the
effects of various parameters, including the range measure-
ment errors caused by environmental noise, on the perfor-
mance of the DWRL algorithm. We evaluate the prop-
erties of the DWRL algorithm in four main subsections.
First, we discuss the experimental setup in Section 3.1. In
order to properly evaluate the features of the DWRL al-
gorithm, we conduct the experiments in Section 3.2 under
ideal conditions, without environmental noise. However,
range measurement errors due to environmental noise in
the real world operations are inevitable. The DWRL al-
gorithm depends only on range measurements performed
among nodes to operate, therefore the only external source
of error for the DWRL algorithm is the range measurement
errors. As a result, in Section 3.3 we introduce noise to
range measurements and conduct experiments under var-
ious real-world and simulated noise scenarios to evaluate
the robustness of the DWRL algorithm in noisy environ-
ments. Finally in Section 3.4, based on our observations
from the experiments conducted, we summarize the im-
pact of the selected parameters on reducing the negative
effects of the environmental noise on the performance of
the DWRL algorithm.

3.1. FExperimental setup

We developed an in-house simulator written in C++ to
carry out the simulations. We simulate static nodes placed
with a uniform random distribution in an 100x100 unit

square area. The location of the sink node is also selected
randomly as other regular nodes. Unless stated otherwise,
each simulation is run for 100 times, and the average val-
ues are reported. The parameters for simulated values of
the wireless range, node density, inter-radio distance, and
range measurement error are specified separately for each
experiment. We report two types of localization errors in
our experiments; (1) The precision error of the localiza-
tion, which shows the accuracy of the localization for each
node, and is reported only for nodes that are localized. (2)
The recall of the localization, which represents the per-
cent of the nodes that are localized. When reporting the
recall value, we include the nodes that are localized with
100% accuracy as well as the nodes localized with pre-
cision errors. In our experiments without environmental
noise (Section 3.2), the precision of the DWRL algorithm
is always 100% as expected. Therefore for that section
we only report the recall of the DWRL algorithm. How-
ever, for the experiments with environmental noise (Sec-
tion 3.3), we report both the precision error and the recall
of the DWRL algorithm.

In Section 3.3, we represent the magnitude of the envi-
ronmental noise in the network as P, which varies between
1 — 10. In our experiments we use two types of environ-
mental noise based on the P parameter:

e Synthetic Noise: Up to &=P% of the wireless range
R selected from a uniform random distribution, which
we call as synthetic noise. Unless stated otherwise, we
use P =1 in our simulations.

o Real-world Noise: Empirically gathered noise data
based on the real world characteristics of the UWB
radios, as reported in [3, 34], which we call as the real-
world noise. In line with [34], the real-world noise is
selected as the summation of a high probability small
noise and a low probability large noise. The small
noise is modeled as a Gaussian random process with
parameters N(f(R), P/100) where

f(R) =0.022 in(1 + R) — 0.038.
In our experiments we use R as the wireless range of
the nodes. The large noise value is selected with a

uniform random process between 0 and 10 units with
probability 0.05.

Among these two noise scenarios, the magnitude of the
synthetic noise is generally much larger than the real-world
noise, which is due to the fact that the wireless range con-
tributes linearly in the synthetic noise scenario, and log-
arithmically in the real-world noise scenario. In order to
better analyze the behaviour of the DWRL algorithm in
noisy environments, we choose to conduct the experiments
with both real-world and synthetic noise scenarios.

Before getting into the details of the experiments, we
would like to stress out a fact that some of the parameters
in the experiments might look impractical, such as inter-
radio distances as large as wireless ranges. This is due
to the fact that the experiments in this section are con-
ducted to demonstrate the effects of various parameters on
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Figure 7: The mean of the precision error in units of the DWRL
algorithm in the real-world noise scenario for various inter-radio dis-
tances.

the localization accuracy of the DWRL algorithm. There-
fore, for the sake of completeness, the DWRL algorithm
is evaluated with all theoretically possible parameter sets
(especially in Section 3.3). On the other hand, in order
to demonstrate the feasibility of the DWRL algorithm for
real-world applications, we conduct an experiment to eval-
uate the precision error of the DWRL algorithm for various
inter-radio distances, in real-world noise scenario. We se-
lect the number of nodes as 100 and the wireless range as
50 units. Figure 7 shows the change of precision error for
the inter-radio distances from 0.2 to 1 units. The points
below the dotted line represents the inter-radio distances
for which the precision error of the DWRL algorithm is
less than the inter-radio distance itself. We argue that in
order to distinguish individual radios of a node, the preci-
sion error should be smaller than the inter-radio distance.
As we see from the figure, inter-radio distance close to 0.6
units is the lowerbound of the valid operational range for
the current setting. If we select the meter as our unit
here, for a typical wireless network with 50 meter wireless
range, the inter-radio distance can be selected as low as 60
centimeters. We argue that it is feasible for radios of this
size to be easily carried around by humans or mounted on
small unmanned vehicles.

3.2. Experiments without range measurement errors
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Figure 8: The percentage of the localized nodes in the network for
various node densities.

In this experiment we assume that there are no range
measurement errors in the network due to environmen-
tal noise, thus all range measurements are 100% accurate.
We select the inter-radio distance as 0.1 unit, the wireless
range as 10 units and carry out the simulation of the nodes
for various node densities. Density here represents the av-
erage number of nodes in an 1x1 unit square area. Figure 8
shows the percentage of the recall value in the DWRL al-
gorithm. As we have stated earlier, the precision of the
DWRL algorithm is 100% in this experiment, so we do not

report it separately. We can see in Figure 8 that nodes per-
form 100% localization for node densities larger than 0.05,
for the reported inter-radio distance and wireless range
parameters. In order to perform rigid-localization, each
node needs to talk to two of its localized neighbors, which
is the reason for observing low recall values in lower node
densities.

Wireless Range

2 4 6 8101214161820

Inter-radio Distance
Figure 9: The percentage of recall in the DWRL algorithm for various
settings of wireless ranges and inter-radio distances in units. Scale
is presented on the right from 0% to 100% recall.

We have also conducted another experiment to observe
the effect of the relationship between inter-radio distance
and wireless range on the recall of the DWRL algorithm.
We have selected the node density as 0.1 (1,000 nodes)
for this experiment. Figure 9 shows that there is a linear
relation between the inter-radio distance and the wireless
range in terms of localization errors. While the blue areas
(upper left) represent the case where 100% of the nodes are
localized, the red areas (lower right) represent that none
of the nodes (0%) are localized. There is a sharp and clear
transition between these two areas. When the inter-radio
distance of nodes is increased while keeping the wireless
range at a fixed value, the nodes are unable to localize
both radios of their neighbors. This, in turn, decreases
the ability of the DWRL algorithm to fulfill successful lo-
calization, hence results in poor recall values.

3.8. Ezperiments with range measurement errors

In this section, we perform our experiments with the as-
sumption that environmental noise that causes range mea-
surement errors is present in the network. Therefore, in
each experiment that we conduct we will investigate meth-
ods to limit the effects of the environmental noise on the
DWRL algorithm. We select the wireless range as 10 units,
the inter-radio distance as 1 unit, and the magnitude of the
environmental noise P as 1. Figure 10 shows the change
of the mean and the standard deviation of the precision
errors of the DWRL algorithm for various node densities,
in both synthetic and real-world types of noise scenarios.
Figure 11 shows the mean and the standard deviation of
the recall of the DWRL algorithm for the same experi-
ment. As seen in Figure 10 (left) and Figure 11 (left), the
precision error increases with the recall of the DWRL al-
gorithm up until the node density reaches around 0.04. At
this point the recall reaches close to 100%, after which any
further increase in the density reduces the precision error,
thus increases the accuracy of the DWRL algorithm.

Based on the results of this experiment, we can argue
that once the recall value reaches close to 100%, any fur-



Precision Error (Mean)

Figure 10: The mean (left) and the standard deviation (right) of
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Figure 11: The mean (left) and the standard deviation (right) of
the recall of the DWRL algorithm in synthetic and real-world noise
scenarios for various node densities.

ther increase in the node density reduces the precision er-
ror of the DWRL algorithm. Therefore, adjusting the node
density is a way to control the localization errors caused
by environmental noise in the network. However, increas-
ing node density has a downside in terms of the cost of
hardware and the communication overhead incurred.

We carry out an additional experiment to observe the
effects of the wireless range of the nodes on the localization
performance of the DWRL algorithm. We set the density
to 0.01 (100 nodes), the inter-radio distance to 10 units,
and the magnitude of the environmental noise P to 1. Fig-
ures 12 and 13 show how the precision error and the recall
of the DWRL algorithm vary with the wireless range of
the nodes. The impact of the wireless range on the preci-
sion error is in particular more significant in the synthetic
noise scenario. For wireless ranges around 25 units, the
precision error increases with the recall value until almost
100% of the nodes are localized. Further increase in the
wireless range from 25 to 40 units increases the number of
neighbors each node has, and thus reduces the precision
error. The more neighbors the nodes have, the more accu-
rate the localization becomes. The improved accuracy in
localization here, however, does not come for free. As the
energy spent for wireless communication increases with the
square of the range of the communication, nodes have to
pay the cost of reducing precision error in extra units of
valuable energy reserves.

One other interesting observation to make in Fig-
ure 12 (left) for synthetic noise scenario is the raise of the
precision error for wireless range values of more than 40
units. Increasing the wireless range increases the magni-
tude of the environmental noise in wireless range measure-
ments due to the wireless range factor itself in the noise
scenarios. In synthetic noise scenario for wireless range
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Figure 12: The mean (left) and the standard deviation (right) of
the precision error of the DWRL algorithm in units in synthetic and
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Figure 13: The mean (left) and the standard deviation (right) of
the recall of the DWRL algorithm in synthetic and real-world noise
scenarios for various wireless ranges.

values larger than 40 units the negative effects of the en-
vironmental noise kick in and increase the precision error
of the DWRL algorithm. While the net effect of noise
is relatively easier to observe in synthetic noise scenario,
the same reasoning also holds for the real-world noise sce-
nario. Due to the logarithmic contribution of the wireless
range in the real-world noise, however, the overall effect of
the environmental noise is less dramatic for small wireless
range values. As a result of this experiment we can con-
clude that in every environmental setting, while keeping
all the other parameters fixed, there is an optimum value
for the wireless range of the nodes that help reduce the
error in our localization algorithm. Therefore, if the char-
acteristics of the environmental noise are known apriori,
the wireless range of the nodes can be adjusted to the op-
timum value for that noise level and the consequences of
the environmental noise can be reduced to a minimum.

In order to observe the effects of the magnitude of the
environmental noise and the inter-radio distances on the
accuracy of the DWRL algorithm, we set the density to
0.01 (100 nodes), the wireless range of the nodes to 40 units
and conducted another experiment for both synthetic and
real-world environmental noise scenarios. Figure 14 shows
the precision error (left) and recall (right) of the DWRL
algorithm for various magnitudes of the synthetic noise.
Similarly, Figure 15 shows the precision error and recall
for different magnitudes of the real-world noise. The blue
parts in the left sub-figures represent the areas with the
lowest precision errors, and the blue parts in the right sub-
figures represent the areas with close to 100% recall value.
Therefore, we can identify the correct operating range of
the DWRL algorithm by overlapping the blue parts in the
left and right subfigures, which brings the inter-radio dis-
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Figure 14: The precision error (left) and the recall (right) of the
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Figure 15: The precision error (left) and the recall (right) of the
DWRL algorithm in real-world noise scenario for various noise mag-
nitudes and inter-radio distance units. Scales are given on the right
of each figure: (left) 0 [low] to 6 [high] precision error, (right) from
0% to 100% recall.

tances to arrange between 1 unit up to around 30 units.
We can derive two important results by analyzing these fig-
ures. First, the precision error of the DWRL algorithm in-
creases with the magnitude of the environmental noise, for
both synthetic and real-world noise scenarios. Second and
more interestingly, the precision error of the DWRL algo-
rithm depends on the inter-radio distance, again for both
types of noise scenarios. Figures 14 and 15 show that pre-
cision errors for both types of noise scenarios are high for
relatively smaller inter-radio distances. A further increase
in the inter-radio distances, however, can only decrease the
precision errors until an optimum point is reached, which
occurs around inter-radio distances of 15 units for the syn-
thetic and 5 units for the real-world noise scenarios. We
observe high precision errors for low inter-radio distances
since accurately identifying and localizing the two sepa-
rate radios of each node in noisy environments is especially
harder if the distance among the radios is smaller than
the average range measurement errors caused by the envi-
ronmental noise. Therefore, for small inter-radio distance
values, the accuracy of the localization increases with the
inter-radio distance of the nodes. The precision errors,
on the other hand, start increasing once again for val-
ues of inter-radio distances larger than the optimum val-
ues reported above. Finally, once the inter-radio distance
reaches around 30 units, the recall reported drops sharply,
which practically renders the DWRL algorithm useless for
inter-radio distances larger than 30 units. The reason for
the sudden drop here is the same as the one explained in
Section 3.2 for Figure 9. To recap, setting the inter-radio
distances to 30 units or more for nodes that have wireless
ranges set to 40 units prevents the nodes from localizing
both radios of their neighbors at the same time, which in-
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terrupts rigid-localization and causes the sudden drop in
the recall value.

Selecting the proper inter-radio distance can minimize
the effects of the environmental noise on the localization
performance of the DWRL algorithm. As seen in Figures
14 and 15, it is not the magnitude but the characteristics of
the environmental noise that is driving the optimum value
for the inter-radio distance. Therefore, for suitable appli-
cations, proper inter-radio distances can be set prior to
deployment on the field based on the error characteristics
in the environment. By doing so, the unwanted effects of
the environmental noise can be reduced without any addi-
tional operational cost. This salient feature of the DWRL
algorithm is considered as a more efficient tool in control-
ling the effects of the environmental noise than adjusting
the density or the wireless range of the nodes.

In order to better visualize the outcomes of the precision
error and the recall value, we present three screenshots in
Figure 16. The screenshots are taken during the simula-
tions with real-world noise having the characteristics as
shown in Figure 15, and help us visualize the correlation
of the error values with the ground truth in the network.
For ease of presentation, each node is represented as a sin-
gle dot in Figure 16, where the position of the dot is the
mid-point of the radio positions of the node. The same
convention is followed to also represent the estimated po-
sitions of the nodes. The red dots in the screenshots rep-
resent the real positions of the sink nodes. The blue dots
represent the real positions of the ordinary nodes. Lines
attached to blue dots represent the difference between the
real and the estimated positions of the nodes, with line
sizes representing the precision error for each node. The
circles represent the wireless range of each node, which in
this case is presented only for the sink node for compari-
son purposes. As we have already discussed in Section 2,
for each node there are two positions calculated due to
the flip ambiguity around the axis of the sink node. How-
ever, the screenshots show only a single case of the flip to
ease the presentation. The screenshot in Figure 16 (left) is
taken from a simulation with inter-radio distance set to 1
unit, the magnitude of noise set to 1, and presents an ac-
curate localization where the real and estimated positions
of each node almost match exactly, the precision error is
0.33 units, and the recall is 99.9%. We can argue that
the accuracy level in this simulation is suitable enough for
localization applications demanding high accuracy. In Fig-
ure 16 (middle), the inter-radio distance is again set to 1
unit and the magnitude of noise is increased to 5, which
increases the precision error to 2.33 units while the recall
drops to 96.7%. Figure 16 (right) presents a simulation
with the magnitude of noise set to 10 and the inter-radio
distance set to 1 unit. The precision error for this simu-
lation is 5.32 units and the recall is 81.2%. The accuracy
levels in the last two simulations are considered medium
accurate based on the category given in [8]. We present
the screenshots here to visually demonstrate the practical
affect of the selected parameters on the ground truth local-



Figure 16: Snapshots from the real-world noise scenario simulations in Figure 15. (Left) inter-radio distance is 1 unit, magnitude of noise is
1. (Middle) inter-radio distance is 1 unit, magnitude of noise is 5. (Right) inter-radio distance is 1 unit, magnitude of noise is 10.

ization of the nodes. As we have clearly seen, the accuracy
of the DWRL algorithm varies greatly with a proper set-
ting of the parameters.

3.4. Discussion of methods to reduce the localization errors
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Figure 17: Comparison of the effects of the parameters over the
consequences of environmental noise on the DWRL algorithm.

In real world, it is not possible to avoid the noise present
in the environment that affects the range measurements by
the nodes. However, for applications that permit adjusting
the parameters prior to deployment, the DWRL algorithm
can be tuned to be more robust even in noisy environ-
ments. Therefore in this section, based on the experience
from the previous experiments, the advantages and disad-
vantages of all possible methods to reduce the unwanted
effects of the environmental noise on the performance of
the DWRL algorithm are summarized in Figure 17. There
is an engineering decision in choosing between robustness
and cost when selecting the node density and the wireless
ranges. However, changing the inter-radio distance do not
introduce any additional operational cost during localiza-
tion, if done in an optimal way. Therefore, the best option
would be to engineer an optimal solution for the selection
of these three parameters based on the characteristics of
the environmental noise, budget, and the energy require-
ments of the nodes.

4. Related Work

In localization, if only the distances between nodes are

known, the problem turns into a graph embedding prob-

12

lem. In [46] testing the embeddability of weighted graphs
in k-space is shown to be strongly NP-hard. This result is
reported for general graphs, but wireless adhoc networks,
where the neighborhood size is limited, are better mod-
eled as unit disk graphs [12]. A more precise formulation
of the localization problem using unit disk graphs is shown
in [5, 6] to be also NP-hard. In [15], the problem is stud-
ied in terms of graph rigidity and shown to be NP-hard
even when the underlying graph is known to be globally
rigid. It is also known that the localization problem has
a unique solution only if the underlying network graph is
globally rigid. On the other hand, it is shown in [15] that
a subclass of graphs known as trilateration graphs can be
localized in time linear in the size of the nodes when the
edge weights are exactly realizable without errors.

Hightower and Borriello [22] have a survey on localiza-
tion systems which covers a side by side comparison of the
existing methods and their underlying techniques.

Although global positioning systems such as GPS are
widely popular in location discovery, the inability of the
GPS system to be used indoors, and low precision for
close range applications have led the researchers to in-
vestigate alternative localization methods. Some of the
existing work [9, 14, 28, 31, 44, 45] on node localization in
static wireless sensor networks use known reference points,
called anchors or seed nodes to perform localization. The
position information of the anchors or seed nodes are usu-
ally pre-set or gathered via GPS, therefore their use is not
practical for adhoc deployments of sensors. In some appli-
cations [1, 2, 11, 24, 30, 34, 39, 41] node positions in the
local coordinate system of the network is sufficient, there-
fore localization is possible without an external positioning
infrastructure. In order to perform localization, only local
information such as neighborhood data and distances be-
tween nodes are used. The effects of environmental noise
on the ranging accuracy, and the cost of the ranging equip-
ment has led the researchers to propose range-free local-
ization methods [9, 21, 31, 33]. Probabilistic methods are
also used to find the location of the nodes [23, 42]. Com-
parison of various localization methods for different set-



tings can be found in [16, 26]. Data analysis techniques
[18, 47] are also used to analyze the neighborhood data of
the nodes to perform localization.

Recently, efficient uses of dual or multi wireless radios
on sensor nodes have already been considered for various
applications (e.g., routing) [29, 37, 48]. Contrary to our
approach, one of the radios in these work are short range
low power radios, while the other is a long range high
power one.

In addition to static networks, localization is also stud-
ied in mobile sensor networks with the assumption that
only some [27, 40] or all the nodes [1, 2, 34, 50] can be
mobile. Localization systems is also studied in vehicular
adhoc networks [7, 8, 25, 35].

Recently, [10, 19, 36, 38] have surveyed the distance
measurement methods. Ultra-wideband radios have stan-
dardized optional accurate ranging ability [17]. More infor-
mation on the uses of Ultra-wideband positioning systems
in node localization is available in [43].

Directional localization was introduced in [1, 2], where
the nodes calculate the exact positions of their neighbors
in their local coordinate system, both in terms of distance
and orientation. Our algorithm also performs directional
localization in static networks by using only ranging, while
[1] and [2] require additional hardware, and work only
on mobile networks. Localization using only ranging is
studied in [11, 24, 30], however, all these methods assume
initial virtual coordinates for the nodes, therefore do not
perform directional localization. The locations obtained
by these methods are suitable for geographical routing
purposes, and do not correspond to true positions of the
nodes.

In real world, the environmental noise is inevitable.
Therefore during the design of the localization algorithms
the consequences of the environmental noise should also be
considered, and the algorithms should be robust enough
to work even in high noise environments. Ni et al. [32]
presents a tutorial on common errors that affect sensors.
[4, 21, 28, 30, 44] manage errors during localization, where
Moore et al. [30] presents a method to calculate the error
bound theoretically. We also assume the presence of the
noise in the environment, therefore analyze and present
methods to control the effects of the noise on proposed
DWRL algorithm. The main difference of our algorithm
from the prior work is that we perform directional local-
ization using only ranging data, without the use of any
positioning device or infrastructure.

5. Conclusion

In this paper, we propose a novel directional localiza-
tion algorithm. To the best of our knowledge, this is the
first time dual radios are used to perform node localiza-
tion. The proposed DWRL algorithm performs the local-
ization in a distributed way, using only ranging informa-
tion and without the use of any global positioning sys-
tem or infrastructure. This property of DWRL algorithm
makes it a perfect candidate for adhoc deployments, such
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as collision avoidance or emergency search-and-rescue sys-
tems. We designed DWRL to be robust enough even in
noisy environments, tested in excessive real-world and syn-
thetic simulated noise scenarios, and presented empirical
evidence that DWRL is feasible to be used in most real-
world applications. Our experiments reveal that for nodes
of sizes with dimensions greater than the noise granularity,
directional localization is always possible with the DWRL
algorithm. The investigation of theoretical and empirical
effects of using variable sized or dynamically changing (if
possible) inter-radio distances on the performance of local-
ization is an open research area.
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