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Abstract. This paper presents the first fitness landscape analysis on the delay-constrained least-cost multicast 

routing problem (DCLC-MRP), a well-known NP-hard problem. Although the problem has attracted an increasing 

research attention over the past decade in telecommunications and operational research, little research has been 

conducted to analyze the features of its underlying landscape. Two of the most commonly used landscape analysis 

techniques, the fitness distance correlation analysis and the autocorrelation analysis, have been applied to analyze 

the global and local landscape features for DCLC-MRPs. A large amount of simulation experiments on a set of 

problem instances generated based on the benchmark Steiner tree problems in the OR-library reveals that the 

landscape of the DCLC-MRP is highly instance dependent with different landscape features. Different delay bounds 

also affect the distribution of solutions in the search space. The autocorrelation analysis on the benchmark instances 

of different sizes and delay bounds shows the impact of different local search heuristics and neighborhood structures 

on the fitness distance landscapes of the DCLC-MRP. The delay bound constraint in the DCLC-MRP has shown a 

great influence on the underlying landscape characteristic of the problem. Based on the fitness landscape analysis, 

an iterative local search (ILS) approach is proposed in this paper for the first time to tackle the DCLC-MRP. 

Computational results demonstrate the effectiveness of the proposed ILS algorithm for the problem in comparison 

with other algorithms in the literature.  
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1. Introduction 

Multicast routing becomes an important communication technique due to the increasing development of 

numerous multimedia applications (e.g. distance education, E-commerce and video-conferencing) where 

information needs to be sent to multiple end-users at the same time in the underlying computer networks. 

Most of these real time multimedia applications require a certain level of Quality of Service (QoS) 

including the bandwidth, cost, delay, delay variation, lost ratio and hop counts, etc. The multicast routing 

problem (MRP) can be defined as to construct a multicast tree in computer networks to simultaneously 

transfer the information from a source node to a group of destination nodes satisfying the required QoS 

constraints. 

In this work we consider the delay-constrained least-cost MRP (DCLC-MRP) in computer 

communication networks. The problem concerns two of the most common and important QoS 

requirements, namely the cost and delay of the multicast tree. The cost of a multicast tree is the total cost 

occurred from occupying all the links in the tree. The end-to-end delay is defined as the total delay of 

transferring information via the links along the path from the source to a destination. The delay of a 

multicast tree is the maximum end-to-end delay among all the end-to-end delays to each destination. The 

DCLC-MRP is to construct a multicast tree which connects the source and all the destinations with the 



minimum tree cost while satisfying the delay constraint, i.e., the maximum end-to-end delay is within the 

required delay bound. 

The MRP can be reduced to the Minimum Steiner Tree Problem in Graphs [1], a well-known NP-hard 

combinatorial optimization problem [2]. The widely studied DCLC-MRPs we concern are also a well- 

known NP-hard problem [3], and can be defined as the Delay-Constrained Steiner Tree problem. Due to 

the complexity and challenges of multicast routing with different QoS requirements in real world 

applications, a large amount of research has been carried out for solving various QoS based MRPs since 

the 1990s. Since the first algorithm for the DCLC-MRP, i.e. the Kompella-Pasquale-Polyzos (KPP) 

heuristic [4], has been developed in the early 1990‟s, various heuristic and meta-heuristic algorithms have 

been proposed for solving a wide range of MRPs with different constraints. The majority of state-of-art 

algorithms for the DCLC-MRP are based on meta-heuristics such as simulated annealing [5, 6], tabu 

search [7, 8], genetic algorithms [9, 10], greedy random adaptive search procedure (GRASP) [11, 12], 

variable neighborhood search [13], and Scatter Search [14] etc. The rich literature of optimization 

algorithms for various MRPs can be found in several surveys [15-19]. 

Although a range of search algorithms has been investigated for the DCLC-MRP over the past decade, 

to the best of our knowledge, no research effort has been made to study the underlying landscape features 

of the highly constrained and complex problem. Most of the work in the literature mainly focuses on 

proposing specific heuristics or meta-heuristic algorithms for solving the particular problem concerned. 

The performance of the heuristic or meta-heuristic algorithm is usually determined by comparing it with 

other algorithms. The quality of the solutions found by the algorithm is used to reflect the effectiveness, 

and the computational time is usually used as a measure of the efficiency of the algorithm. Instead of 

demonstrating the application of specific heuristics or meta-heuristics for the particular combinatorial 

optimization problem being concerned, some recent research in operational research focuses on analyzing 

the fitness landscape of the problem. The theoretical analysis of the fitness landscape has shown to be 

useful for observing the behavior of search algorithms and thus valuable for designing efficient 

algorithms with better performance [20]. 

As far as we know, there are only three related work [10, 21, 22] on the landscape analysis for a 

different type of MRP, namely the group MRP, where a sequence of multicast requests is scheduled. In 

[21], a logarithmic simulated annealing (LSA) is used to perform detailed landscape analysis on three 

instances. Their work focuses on the approximation of optimal parameter settings. The difference 

between two parameters: the estimation of the maximum value of the minimum escape height from the 

local optima, and the maximum increase value of the objective function between two successive 

improvements of the best objective function value found during the local search time, are observed in 

LSA by a number of experiments. The results show that the difference depends mainly on the cost 

function and the capacity constraint, while only slightly on the particular network structure. Zahrani et al. 

have further extended their work in [10], by introducing a LSA based genetic local search (GLS) 

algorithm for the landscape analysis on the group multicast routing problem. The GLS algorithm applies 

the partial mixed crossover (PMX) operation to pairs of individuals. As the pre-processing step in the 

GLS, the LSA based landscape analysis aims to estimate the depth of the deepest local minima. 

Experimental results on two benchmark instances show that the proposed LSA-based GLS together with 

the PMX operation outperforms two variants of GLS algorithms with either LSA or PMX only. The same 

GLA algorithm with a LSA as the pre-processing step is applied by Zahrani et al. in [10] on more 

instances for the group multicast routing problem with the capacity constraint. Similarly, the LSA is also 

used to estimate the value of maximum depth of local optima in the landscape. The same conclusion that 

the GLS combined with LSA and PMX outperforms the algorithms using either LSA or PMX is obtained 

as that drawn by Zahrani et al. [22]. 



Before properly choosing a specific heuristic or meta-heuristic for a hard optimisation problem, the 

theoretical landscape analysis of the problem is very useful for observing the behaviour of search 

algorithms and thus can help predicting their performance. The lack of the theoretical analysis on the 

landscapes of the DCLC-MRP motivates the first fitness landscape analysis for the problem in this paper. 

Our aim is to obtain a better understanding of landscape properties for the DCLC-MRP with the single 

multicast request and to provide the theoretical basis before designing effective search algorithms for the 

problem. Firstly, we present the fitness distance analysis and the autocorrelation analysis of the insight 

landscape features on some benchmark instances of the DCLC-MRP. Then, based on the large amount of 

theoretical landscape analyses, iterative local search (ILS) [23, 24] has been chosen in this paper as the 

appropriate meta-heuristic for the DCLC-MRP based on the observations of the existence of many local 

optimal solutions in the search space. ILS is a simple and powerful meta-heuristic which has been 

successfully applied to a wide variety of optimization problems [23-29]. ILS has two basic operators, 

namely the local search procedure and the perturbation operator for generating new solutions. Whenever 

the local search is trapped in a local optimum, a perturbation operator is applied to the local optimum to 

generate a new starting point in a neighboring area of the local optimum. ILS iteratively applies the local 

search to the new starting points generated by perturbing the current search point, leading to a randomized 

walk of local optima in the search space. This search procedure of ILS is very suitable for tackling the 

DCLC-MRP since many local optima are distributed over the search space.  

The paper is organized as follows. Section 2 introduces the concept of the fitness landscape and 

describes the methods of analyzing fitness distance correlation and autocorrelation. Section 3 presents the 

formal definition of the DCLC-MRP. In Section 4, the fitness distance correlation and autocorrelation 

analysis have been carried out on a set of DCLC-MRPs based on the extended benchmark Steiner tree 

instances (Steinb) in the OR-library[30]. Section 5 presents the proposed iterative local search algorithms 

and shows the effectiveness of the proposed algorithms by a series of experiments. Finally, Section 6 

concludes the paper and suggests future work. 

2. Fitness Landscape Analysis 

The concept of fitness landscapes [20] in biological evolutionary optimization algorithms has been 

introduced to combinatorial optimization to measure the problem landscape, and shown to be a very 

useful tool for understanding and predicting the behavior and performance of algorithms. Based on a 

defined solution representation and fitness function, the landscape of an optimization problem can be 

defined as consists of points of different height (solutions of different fitness function value) in the multi-

dimensional hyper-space. A heuristic algorithm can be seen as a search procedure to traverse through the 

landscape in order to find the highest peak (or the lowest point) for the maximization (or minimization) 

problem. 

A fitness landscape of a given combinatorial optimization problem can be defined as L(X, f, d), where 

X represents a set of points (solutions) in the landscape, f: X R is a fitness function which associates a 

real-valued fitness to each of the points in X, and d is a distance metric which defines the spatial structure 

of the landscape. Based on this, a fitness landscape can be interpreted as a graph GL = (V, E) with a set of 

vertices V = X and a set of links E = {(x, y)XX | d(x, y) = dmin}, where dmin denotes the minimum 

distance between two points in the search space by using the distance metric d for a given optimization 

problem. Another property of the landscape is the diameter diamGL, which is defined as the maximum 

distance between two points in the search space.  



2.1 The Fitness Distance Correlation Analysis 

The fitness distance correlation (fdc) coefficient proposed by Jones and Forrest [31] is the most 

commonly used measure to estimate the global feature of the fitness landscape. It has been widely used as 

a measure to predict the problem difficulty for search algorithms. Given a set of points X={x1, x2, …, xm} 

and their fitness values, the fdc coefficient ρ is defined as follows: 

ρ(f, dopt) = 
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where Cov(·, ·) denotes the covariance of two variables; σ(·) denotes the standard 

deviation; f and dopt represents the fitness of a sampled solution x and the distance 

between x and the global optimum (or the best-known solution) in the search space. 
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For problems where the global optimal solution is not known, the best-known solution is usually used in 

the literature as an estimation of the global optimum in many studies. We denote xopt in this study as the 

global optimal solution or the best-known solution in the search space. For a set of arbitrarily sampled 

points from the search space, fdc determines how closely their fitness and distance to xopt are correlated by 

examining the statistic correlation between their f and dopt using (1). If the fitness of the sampled solutions 

increases when a search moves towards xopt (the distance becomes smaller), then the search is expected to 

be easy, as it is properly guided by the correlation along a “path” of solutions with increasing fitness to 

xopt. A value of ρ = -1.0 (or ρ = 1.0) for a maximization (or minimization) problem indicates a perfect 

correlation between the fitness and the distance of a solution to xopt, and thus predicts an easy problem 

which can be easily solved using any search algorithms. On the contrary, a value of ρ = 0 means that no 

correlation exists between the fitness and the distance to xopt, and thus the underlying problem is hard to 

solve.  

The fdc analysis has been conducted for various combinatorial optimization problems, including the 

travelling salesman problem [32], the flow-shop scheduling problem [33], the graph matching problem 

[34], the graph bipartitioning problem [35] and the timetabling problem [36], etc. A summary of 

landscape metrics and related issues on evolutionary algorithms can be found in [37]. 

2.2 The Autocorrelation Analysis 

An important property of landscape is its ruggedness, which significantly influences the performance of 

search algorithms. In general, the more rugged a landscape is, the harder the problem can be solved by 

heuristic search algorithms. To measure the ruggedness of a fitness landscape, Weinberger [38] suggests a 

statistical method to analyze the correlation structure based on the autocorrelation method. The idea is to 

generate a random walk of a sufficiently large number of steps and calculate the correlation of 

neighboring points in the random walk. The fitness of each solution encountered during the random walk 



is recorded to obtain a time series of fitness values. The autocorrelation of fitness values obtained from 

the random walk of W steps in the search space can be empirically estimated by r(i) as follows: 
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where f  is the mean fitness of the W points sampled, and i is the time lag or distance 

between two points along the random walk. 

 

Based on this autocorrelation function, the correlation length l can be defined as follows [48]: 
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where r(1) ≠ 0 is defined according to Eq. (6). The correlation length l directly reflects the ruggedness of 

a landscape, a smaller value of l indicates a more rugged landscape. A landscape is said to be smooth if 

there is a high correlation between neighboring points. The correlation length l is typically related to the 

size of the problem instance [39], so the relative correlation length to the landscape diameter n is often 

reported, i.e. l / n. The closer the value of l / n to 1, the smoother the landscape is presented by a search 

method. The autocorrelation analysis has been carried out in the literature for measuring the landscapes of 

different problems [40, 41, 36, 38]. 

3. Problem Definition of the DCLC MRP 

A computer network can be modeled as a connected and directed graph G = (V, E) with |V| = n nodes and 

|E| = l links. Each link e = (i, j)E which connects two adjacent vertices i and j is associated with a cost 

c(e) and a delay d(e). The cost c(e) is a measure of the utilization of the network resources, for example 

the bandwidth, along the link. The delay d(e) is the transferring delay of sending messages via the link.  

We assume the network is asymmetric, i.e. for the two links e = (i, j) and e’ = (j, i), it is possible that c(e) 

≠ c(e’) and/or d(e) ≠ d(e’). In a MRP, the information is sent simultaneously from a source node sV to a 

given set of destination nodes riD, DV \ {s}. The set of destination nodes D is called the multicast 

group, and |D| is defined as the group size of the MRP. 

A solution for a MRP is a multicast tree T(s, D)E which roots at the source node s and connects all 

destination nodes riD. Extra nodes in V \ ({s} D) may be added to the multicast tree, called the 

Steiner nodes. A path in T(s, D) is a set of links along the path from the source node s to a destination 

node ri, denoted by P(s, ri) T(s, D). The end-to-end delay from s to each destination ri is the sum of the 

delays of all links in P(s, ri), denoted by Delay(ri), and defined as follows: 

Delay(ri) = 
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The delay of the multicast tree, denoted by Delay(T), is the maximum delay among all Delay(ri), 

defined as follows: 

Delay(T) = max{ Delay(ri) | riD } (9) 

The total cost of the multicast tree, denoted by Cost(T), is defined as the sum of the costs of all links 

in the tree as follows: 
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In MRP, the delay bound is an upper bound of the end-to-end delay for the path from the source to 

each destination, i.e. Delay(ri). In reality, different applications may have different upper bound δi for 

each destination riD. In this paper and the majority of the literature, the same delay bound is applied to 

all destinations, denoted by ∆ = δi for all riD. 

Given the above definitions, the DCLC-MRP can be formally defined as follows: 

The Delay-Constrained Least Cost Multicast Routing Problem (DCLC-MRP): Given a network 

topology G, a source node s, a set of destination nodes riD, a link cost function c(·), a link delay 

function d(·), and a delay bound ∆, the objective of the DCLC-MRP is to construct a multicast tree 

T(s, D) such that the delay bound is satisfied, and the tree cost is minimized, defined as follows: 

min{ Cost(T) | P(s, ri) T(s, D), Delay(ri) ≤ ∆, riD } (11) 

4. Landscape Analysis of the DCLC Multicast Routing Problem 

4.1 Problem Instances and Solution Representation 

There are no benchmark problem instances for DCLC-MRPs in the literature. In this study we generate 

problem instances of the DCLC-MRP by randomly setting delays of links in a set of Steiner tree 

benchmark instances in the OR-library. Table 1 presents the characteristics of the 18 Steinb instances, i.e. 

B01-B18, being concerned in this work. It is a set of Steiner tree problems of different sizes from SteinLib, 

a library of test instances for the Minimum Steiner Tree Problem in Graphs [42]. The global optimal 

solutions of these Steiner tree instances have already been obtained [30]. 

Table 1. Characteristics of the Steinb instances from the OR-library. |V|, |E| and |D| stand for the number of nodes, 

links and destinations, respectively. OPT: the cost of the optimal solution for each instance given by the OR-library. 

Instances |V| |E| |D| OPT Instances |V| |E| |D| OPT 

B01 50 63 9 82 B10 75 150 13 86 

B02 50 63 13 83 B11 75 150 19 88 

B03 50 63 25 138 B12 75 150 38 174 

B04 50 100 9 59 B13 100 125 17 165 

B05 50 100 13 61 B14 100 125 25 235 

B06 50 100 25 122 B15 100 125 50 318 

B07 75 94 13 111 B16 100 200 17 127 

B08 75 94 19 104 B17 100 200 25 131 

B09 75 94 38 220 B18 100 200 50 218 

To carry out the analysis on the properties of the underlying landscape for the DCLC-MRP, we use a 

multicast routing simulator based on Salama‟s generator [18] to run all experiments. The simulator can 

generate network topologies by using a graph generation method [43], where the distance l(u, v) between 

pairs of nodes (u, v) is determined by the Euclidean metric. In our simulations, the capacity of each link is 

set to a large enough value thus restrictions on link capacity can be neglected in DCLC-MRPs. The link 

delay d(e) in the simulator is defined as the propagation delay on the link (queuing and transmission 

delays are negligible), the link cost c(e) is assigned according to those set in SteinLib in the OR Library.  

For the DCLC-MRP, the delay bound plays an important role in obtaining feasible solutions in search 

algorithms. The smaller the delay bound, the tighter the problem is constrained. To observe the effect of 



different delay bounds on the fitness landscape of the DCLC-MRP, we have set three different delay bounds 

in the Steinb instances, namely ∆1 = ∞, ∆2 = 1.1Delay(TOPT), and ∆3 = 0.9Delay(TOPT), described as 

follows: 

 The first delay bound ∆1 = ∞ is set as a very large positive number in our experiments. The DCLC-

MRP is then actually relaxed to the unconstrained Steiner tree problem, since the delays of the links do 

not introduce any restriction in constructing the Steiner tree. The global optimal solutions of this set of 

unconstrained MRP, i.e. Steiner tree problems, have already been obtained in the OR-library, shown in 

Table 1. 

 The second delay bound ∆2 = 1.1Delay(TOPT) is set as greater than the delay in the optimal solution in 

Table 1, Delay(TOPT), where TOPT denotes the multicast tree of the optimal solution for each 

unconstrained Steiner tree instance. Therefore, we know that the optimal solution to the unconstrained 

Steiner tree problem is also the optimal solution to the DCLC-MRP. 

 The third delay bound ∆3 = 0.9Delay(TOPT) is set as lower than that of the optimal solutions for the 

unconstrained Steiner tree problem. The optimal solution is thus not known to any of the instances with 

this tighter delay bound. We therefore employ the best-known solutions obtained in the literature in our 

landscape analysis. 

The landscape of these DCLC-MRP instances with different delay bounds are investigated in our 

work. More detailed information of all the problem instances tested and some example solutions obtained 

by the algorithms are publicly available at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm.  

In this first study of landscape analysis on the DCLC-MRP, we employ the mostly used binary vector 

as the solution representation. A binary vector of ordered n bits presents the solution (the multicast tree) 

for a DCLC-MRP with |V| = n nodes, where each bit corresponds to one node in the network. All possible 

solutions are thus encoded as X = {0, 1}
n
 of a fixed length n. This generates a hyper-space of (n + 1) 

dimensions, where n is the size of the problem and the (n + 1)-th dimension represent the height (fitness) 

of the point (solution). Each bit in the vector takes a value of 1 if the corresponding node is in the 

multicast tree, 0 otherwise. As the source and all destination nodes must be included in a multicast tree, 

the value of their corresponding bits in the binary vector (of a feasible solution) should always be 1. This 

simple binary vector has been widely used in the literature and shows to be simple yet effective for 

representing a multicast tree [44, 11]. 

Based on the binary solution representation, Hamming distance has been used to calculate the distance 

between solutions. The minimum distance dmin between two DCLC-MRP solutions is 1 (one bit with a 

different value between two vectors), and the maximum distance diamGL between two solutions, also 

known as the diameter of the landscape, is n – |D| – 1, where the |D| is the number of destination nodes in 

the multicast group. The range of distances thus will be within [1, n – |D| – 1]. 

In this work, we perform our landscape analysis on three heuristic methods and two neighborhood 

operators using the mostly used two statistical methods in the literature of landscape analysis, namely the 

fitness distance correlation and the autocorrelation, to measure properties of the fitness landscape for 

DCLC-MRPs. The fdc of local optima to xopt and autocorrelation of random walks is carried out to 

measure the global and local structure of the landscape of DCLC-MRPs with different delay constraints. 

The effects of different neighborhood operators and different heuristic algorithms upon the landscape of 

DCLC-MRPs with different delay constraints are further analyzed with regard to problem difficulty. All 

simulations have been run on a Windows XP computer of PVI 3.4GHZ with 1G RAM. For each instance 

30 runs have been carried out to observe the average performance of different algorithms with different 

neighborhoods in the fitness landscape analysis. 



4.2 Landscape Analysis of the DCLC Multicast Routing Problem 

To sample a set of local optimal solutions which are evenly distributed in the search space to xopt, a fixed 

number (10 in our experiments) of feasible solutions have been randomly generated for each distance of i 

bits away from xopt, i = 1, …, n – |D| – 1. This set of random solutions is then used as the starting points of 

a local search method to generate a set of local optima. As the local search starting from some random 

solutions may lead to the same local optima, up to 10 (n – |D| – 1) number of local optima may be 

generated by the local search heuristics. 

Different local search methods may be applied to generate different sets of local optima. In our basic 

fdc analysis, based on the binary solution representation defined above, a simple greedy local search 

heuristic is used to produce the local optima in a non-deterministic manner. Details of the local search 

heuristic are shown in Figure 1. A node-based neighborhood operator is employed to flip a randomly 

selected bit (excluding the bits of the source node and the destination nodes) in the binary vector of the 

current tree. This operator thus either removes an existing node from or adds a new node to the multicast 

tree. The modified Prim‟s spanning tree algorithm is then used to create a new minimum spanning tree 

based on the newly produced set of nodes in the binary vector. The new solution with a smaller tree cost 

or a lower delay than the current best solution will be accepted as the new current best solution during the 

search. This procedure is repeated until all possible bits have been flipped and the best solution found 

during the procedure is accepted as the local optimum. For a multicast tree in the network of n bits with a 

source node and |D| destination nodes in the multicast group, the number of possible neighboring 

solutions of the current multicast tree is bounded by n – |D| – 1. This node-based neighborhood operator 

has also been applied in [44, 11]. 
 

 

Figure 1. Pseudo code of the local search heuristic for producing the local optima. 

It is known that higher values of fdc correlation ρ indicate that the fitness value and distance of solutions 

to xopt in the search space are correlated and thus the problem presents to be easier for search algorithms. As 

suggested in [31], problem difficulty has been classified based on fdc coefficients, where a value of ρ ≥ 0.15 

for minimization problems indicates a straightforward and easy problem for search algorithms. For a value 

of ρ ≤ -0.15, the distance to xopt increases with decreasing fitness, indicating that the problem being 

concerned is deceptive and misleading. For problems with -0.15 < ρ < 0.15, the landscape presents no 

correlation, thus indicating that the problem being concerned are difficult to solve. 

LS(G = (V, E), s, D, ∆, T0) 

{  // s: the source node; D: the destination nodes set, i.e. the multicast group; ∆ ≥ 0: the delay bound; 

// T0: the random initial solution, represented by a binary vector corresponding to n nodes, n =|V|; 

Tbest = T0;  

k  = 1; kmax = n - |D| - 1; 

Mark all bits in T0 as unvisited; 

while k ≤ kmax do { 

Randomly select an unvisited bit x in T0; // s and nodes in D are excluded 

Flip the value of bit x to generate a new binary vector Tx; 

Generate a minimum spanning tree T’ of the given nodes in Tx by using the Prim‟s algorithm 

if(((Cost(T’) < Cost(Tbest)) and (Delay(T’) ≤ ∆)) or 

  ((Cost(T’) = Cost(Tbest)) and (Delay(T’) < Delay(Tbest))) 

then Tbest = T’; 

mark bit x as visited; 

k++; 

end of while loop } 

return Tbest; 

} 



The average cost and the fdc coefficient ρ for each instance of different delay constraints are reported in 

Table 2. For the problem with ∆1 = ∞, four instances (B03, B09, B15 and B18) show to be difficult (where -

0.15 < ρ < 0.15). One instance (B01) presents to be a misleading problem, and others are relatively easy to 

solve, i.e. the fitness and distance to xopt are correlated. For the DCLC-MRP with a slightly tighter delay 

bound ∆2 = 1.1Delay(TOPT), two instances (B03 and B09) remain to be difficult, while all other instances 

turn to be relatively easier (where ρ ≥ 0.15). For the DCLC-MRP with the tightest delay bound ∆3 = 

0.9Delay(TOPT), two instances (B09 and B14) are difficult problems, three instances (B03, B13 and B15) 

are misleading, while the others are easy problems. 

Table 2. The fdc of the DCLC-MRP instances with different delay bounds. ∆: the delay bound for the corresponding 

problem instance; σ: the standard deviation of the costs of the multicast tree; ρ: the fdc coefficient. 

Problem 

instances 
OPT 

∆1 = ∞ ∆2 = 1.1Delay(TOPT) ∆3 = 0.9Delay(TOPT) 

cost σ ρ ∆ cost σ ρ ∆ cost σ ρ 

B01 82 82.35 0.79 -0.22 145 82.1 0.33 0.80 118 84 3 0.61 

B02 83 86.09 4.09 0.62 228 84.94 3. 04 0.52 187 90.01 3. 44 0.38 

B03 138 139.48 2.64 -0.04 248 139.5 2.58 -0.03 203 144.08 3.52 -0.19 

B04 59 64.84 6.12 0.53 173 70.15 10.89 0.59 142 72.46 10.09 0.59 

B05 61 62.70 2.31 0.31 125 64.32 5.28 0.50 102 66.25 7. 81 0.29 

B06 122 125.32 2.62 0.23 281 125.76 3.11 0.37 199 134.01 10.76 0.21 

B07 111 111.73 2.29 0.70 212 111.70 2.86 0.72 173 112.96 2.71 0.42 

B08 104 104.54 1.94 0. 46 209 105.07 5.34 0.64 171 112.64 10.04 0.23 

B09 220 220.58 1.57 0.11 280 220.38 0.45 -0.01 229 223.44 3.84 -0.11 

B10 86 89.15 5. 03 0.43 262 90.58 5.52 0.56 215 91.43 5.72 0.39 

B11 88 93.08 3.51 0.54 235 95.55 9.07 0.45 180 103.05 14.62 0.54 

B12 174 182.86 2.22 0.33 225 189.96 25.86 0.37 184 203.44 37.42 0.47 

B13 165 165.72 3.77 0.81 190 165.99 2.67 0.56 139 169.06 0.43 -0.19 

B14 235 236.86 2.14 0.20 221 235.97 3.40 0.74 180 240.72 1.91 0.09 

B15 318 318.55 1.07 -0.05 308 318.50 1. 15 0.69 194 339.51 9.89 -0.34 

B16 127 132.26 7.15 0.50 291 132.25 6.26 0. 54 238 136.87 6.89 0.33 

B17 131 136.03 4.46 0.58 219 137.69 6. 89 0.32 180 143.13 16.34 0.24 

B18 218 219.55 2.22 0.13 425 219.67 1.92 0.27 348 221.47 2.83 0.21 

Avg 140.11 142.87 3.00 0.34 / 143.89 5.70 0.47 / 149.36 8.75 0.23 

From the experimental results, we can see that the fitness landscape for the DCLC-MRP is instance 

dependant with different level of difficulties for the search algorithm. In addition, different delay bounds 

significantly affect the landscapes of the same network topology. However, for the problem with delay 

bound ∆2, although all instances except two instances (B03 and B09) show to be easy to solve (ρ ≥ 0.15), it 

does not necessarily mean those instances are easier for search algorithms compared with the same instances 

with ∆1 = ∞, as the delay bound restricts the search within disconnected areas due to the added constraint. 

This can be seen in Table 2, that for some instances with the delay bound ∆2, the cost of the best multicast 

tree is higher than the problem of the same topology with no delay bound, i.e. ∆1 = ∞. Generally, the smaller 

the delay bounds, the tighter the constraints to the problem. This is shown by the worst average tree cost 

149.36 over the 18 instances obtained for the problem with delay bound ∆3, compared to 143.89 for the 

problem with delay bound ∆2 and 142.87 for the problem with delay bound ∆1. 

In addition to the fdc coefficient, a fitness-distance scatter plot can provide more insightful information 

of the landscape. Figure 2 presents the example fitness-distance scatter plots of two instances, clearly 

demonstrating the changes of the fitness distance landscape for problem instances with different delay 

bounds. For instance B02, the correlation between the fitness and the distance decreases from 0.71 for ∆1, 

to 0.51 for ∆2 and 0.4 for ∆3, meaning the tighter the delay bound, the lower the ρ value, thus the higher 

level of difficulty for instance B02. For instance B12, all scatter plots show positive correlations with a ρ 

value larger than 0.15. However, with delay bound ∆2 and ∆3, we can see many shallow valleys (local 



optima) are crowed near xopt for B12. This makes the search to be easily stuck at local optima. The 

introduction of the delay bounds also results in a different distribution of solutions in the search space. 

 
(a) the fitness-distance scatter plots of local optima for two instances with ∆1 = ∞. 

 
(b) the fitness-distance scatter plots of local optima for two instances with ∆2 = 1.1Delay(TOPT). 

 
(c) the fitness-distance scatter plots of local optima for two instances with ∆3 = 0.9Delay(TOPT). 

Figure 2. Fitness-distance scatter plots on selected instances with different delay bounds. 

4.3 Impact of Different Local Search Methods on the Fitness Distance Correlation 

Based on the above basic fdc analysis, we further analyze the impact of different local search methods on 

the fitness landscape. In addition to the above mentioned simple greedy local search in Figure 1 

(hereinafter named LS), we re-implement three other local search heuristics, namely BSMA [45], TS-CST 

[44] and VNDMR [13] in the literature, for solving the DCLC-MRP with different delay constraints. We 

give the brief description of the three local search heuristics as follows: 



1) The BSMA heuristic 

A well known deterministic algorithm for the DCLC-MRP is BSMA (Bounded Shortest Multicast 

Algorithm) developed in mid 1990s [45]. Due to its good performance on tree cost, it has been seen as the 

best algorithm in early research on MRPs. In BSMA, a delay-bounded path switching operator is devised 

to replace a superpath in the multicast tree by a new alternative path, hopefully resulting in a new delay-

bounded tree with a lower tree cost. The superpath is defined as the longest simple path between two end 

nodes, where all the internal Steiner nodes, except the two end nodes of the path, connect exactly only 

two other nodes in the tree. At each step, a chosen superpath is removed, leading to two sub-trees. The 

Dijkstra‟s shortest path algorithm is then consecutively called to find a new delay-bounded shortest path 

that connects the two sub-trees with a reduced tree cost. The BSMA heuristic iteratively refines the tree to 

lower costs until it cannot be further reduced. 

2) The TS-CST heuristic 

The TS-CST algorithm in [44] is developed based on a tabu search, where a binary vector solution 

representation has been used (and adapted in our study here, see Section 4.2 above). A solution (a 

multicast tree) is represented by a binary set of |V \ ({s}D)| bits, each corresponding to a node in V \ 

({s}D). A value of 0 for the corresponding bit in the binary set represents that the node is included in 

the multicast tree, 1 otherwise. Neighborhood of a solution includes all the solutions which are exactly 

one bit different in the binary set from the chosen solution. In other words, the neighboring solutions are 

all those multicast trees generated by adding or removing exactly one node in V \ ({s} D) in the 

incumbent solution. The Prim‟s algorithm is applied to generate a new delay-constrained spanning tree on 

the given set of nodes. The best new neighboring solution is chosen as the current solution in the next 

iteration, i.e. a move in TS-CST. To prevent the heuristic from oscillating between neighboring solutions, 

a tabu list of length one is updated to remember the corresponding bit in the last performed move. The 

process stops after a pre-defined number of iterations without improvements, set to 2 in [44]. 

3) The VNDMR algorithm 

A variable neighborhood descent search algorithm (VNDMR) has been investigated in our previous work 

in [13] for the DCLC-MRP. Three neighborhood structures, one is node-based and the other two are link-

based neighborhoods, have been designed concerning the structure of the multicast network. The node-

based neighborhood is similar to the neighborhood designed in the TS-CST algorithm. In generates a 

neighboring tree by removing or adding a Steiner node from or to the current multicast tree, and obtaining 

a minimum spanning tree which spans the nodes using the Prim‟s algorithm. Once a better multicast tree 

is found, the current solution is updated. This procedure is repeated until no improvement can be achieved 

for more than 3 iterations. The two link-based neighborhoods are designed based on a path replacement 

operator which is similar to the path switching operator in BSMA [45]. The path replacing operator 

replaces a superpath by a new delay-bounded path of a lower cost using the k-shortest path algorithm 

[46]. Both of the two link-based neighborhoods iteratively refine the multicast tree to lower costs until no 

better tree can be found. All three neighborhoods have been designed to reduce the tree cost while 

satisfying the delay bound constraint in the problem.  

We present the fdc of local optima to xopt on the landscape of different local search methods for four 

instances (B02, B10, B12 and B18) of different sizes and delay bounds, results are shown in Table 3. The 

initial random solutions are generated by using the same method described above to sample random 

solutions of even distributions in the search space. 



Table 3. The fdc of the landscape from four local search heuristics on four instances of different sizes and delay 

bounds. σ: the standard deviation of the costs of the multicast tree; ρ: the fdc coefficient. Best solutions are in bold. 

Delay 

bounds 

Problem 

instances 

LS BSMA TS-CST VNDMR 

cost σ ρ cost σ ρ cost σ ρ cost σ ρ 

∆1 

B02 86.09 4.09 0.62 85.58 3.51 0.63 86.49 5.33 0.68 83.13 0.48 0.66 

B10 89.15 5. 03 0.43 94.15 6.23 0.66 87.51 4.21 0.47 86.54 1.34 0.65 

B12 182.86 2.22 0.33 186.66 5.63 0.12 174.11 0.67 0.18 174.01 0.1 0.09 

B18 219.55 2.22 0.16 244.21 8.13 0.21 218.31 0.62 0.51 218.42 0.67 0.48 

∆2 

B02 84.94 3. 04 0.52 85.64 4.15 0.64 85.47 4.75 0.57 83.27 1.03 0.51 

B10 90.58 5.52 0.56 94.71 6.73 0.62 87.55 4.10 0.53 86.46 1.33 0.42 

B12 189.96 25.86 0.37 188.85 5.37 0.23 175.32 0.35 0.34 175.67 2.12 0.35 

B18 219.67 1.92 0.27 243.02 7.79 0.05 218.32 0.71 0.52 218.31 0.66 0.51 

∆3 

B02 90.01 3. 44 0.38 86.89 3.94 0.45 87.05 3.56 0.54 83.76 1.83 0.61 

B10 91.43 5.72 0.39 93.07 5.24 0. 42 89.04 3.36 0.50 87.15 1.26 0.53 

B12 203.44 37.42 0.47 189.46 5.32 0.08 174.21 0. 84 0.41 177.67 0.94 -0.38 

B18 221.47 2.83 0.21 243.76 7.12 0.20 218.19 0.47 0.43 218.80 0.66 0.43 

In Table 3, VNDMR has the best overall performance, finding the best average tree costs on 8 out of 

12 instances. The TS-CST algorithm is the second best approach, obtaining the lowest tree costs for 4 out 

of 12 instances. Although not necessarily the case in all instances, the best solutions obtained by the two 

algorithms are in general associated with higher fdc values for problems with different delay bounds. In 

some cases (B12), landscapes of VNDMR and TS-CST are less correlated compared to LS or BSMA. 

This is probably due to that the landscape near the global optimum is more rugged with many local 

optima of the instance, as shown in Figure 2. For the simple LS, although it can obtain higher ρ on some 

instances, most of the solutions found are worse compared with the other algorithms mainly due to the 

greedy acceptance criterion used in the search. The fitness landscape of different local search methods is 

highly dependent on the neighborhood operators and search strategies. 

The fdc analysis indicates that the binary solution representation is a simple yet effective method to 

encode the complex structure of the multicast tree. Based on this solution representation, neighborhood 

operators (the node or link based operators) and search strategies (the tabu list) designed for DCLC-MRPs 

show to effectively guide search algorithms towards better solutions in the landscape. It can also be seen 

that VNDMR is also highly stable on obtaining good solutions for all instances, obtaining the lowest 

standard deviation of tree cost (1.04) compared with 2.56 for TS-CST, 5.76 for BSMA, and 9.75 for the 

simple LS. This indicates that, by employing multiple neighborhoods, flexible search is able to traverse in 

different regions of search space and effectively escape from local optima, and thus is superior to standard 

local search methods in solving the DCLC-MRP with a complex and disconnected search space. 

4.4 Autocorrelation Analysis for the DCLC Multicast Routing Problem 

The fdc gives a good indication of the global feature of the landscape. However, features of the local 

regions in the search space (such as those many local optima near xopt in Figure 2) are not easily observed 

with the fdc analysis. Another important measure of the landscape is its ruggedness in local regions. We 

perform the autocorrelation analysis on the benchmark DCLC-MRP instances by conducting a random 

walk of W = 1000 steps on each instance. The random walk starts from a random multicast tree which is 

constructed by starting from the source node and randomly adding the next node until all destination 

nodes are connected. 

Based on the binary solution representation, the random walk is conducted by using a pure random 

one-flip neighborhood to randomly flip a bit corresponding to a Steiner node in the binary vector of the 

current solution. A random tree is then generated by randomly connecting a given node (with a value of 1 



at the corresponding bit in the binary vector) until all destination nodes are connected. This procedure is 

repeated until a feasible tree that satisfies the delay constraint is generated. 

The correlation of two neighboring points in the search space provides a good indication of the 

ruggedness of the local regions of the fitness landscape. It is known that the higher the correlation length l 

(or the closer the relative correlation length to the diameter of the landscape l / n to 1), the smoother the 

landscape and hence the easier the search of an algorithm based on the neighborhood employed. Table 4 

presents the results of the autocorrelation analysis by using the pure random operator to generate random 

walks for the DCLC-MRP instances with the same three different delay bounds as used in the fdc analysis. 

We can see that although the correlation length is also problem instance dependent, the landscape of all 

the instances with different delay bounds are highly rugged. The delay bounds also significantly affect the 

ruggedness of the landscapes on problem instances, introducing higher as well as lower ruggedness to 

some instances. 

Table 4. The autocorrelation analysis on the DCLC-MRP instances with different delay bounds. l / n: the correlation 

length l to the diameter n of the landscape. The highest autocorrelation is in bold. 

Problem 

instance 
n 

∆1 ∆2  ∆3  

l l / n l l / n l l / n 

B01 50 0.61 0.012 0.61 0.012 3.58 0.072 

B02 50 0.35 0.007 0.19 0.004 0.63 0.013 

B03 50 0.26 0.005 0.21 0.004 0.18 0.004 

B04 50 0.54 0.011 0.57 0.011 0.57 0.011 

B05 50 0.26 0.005 0.43 0.009 0.88 0.018 

B06 50 0.4 0.008 0.46 0.009 0.4 0.008 

B07 75 0.22 0.003 0.22 0.003 0.32 0.004 

B08 75 0.34 0.005 0.36 0.005 0.56 0.007 

B09 75 0.31 0.004 0.21 0.003 0.33 0.004 

B10 75 0.44 0.006 0.41 0.005 0.42 0.006 

B11 75 0.37 0.005 0.28 0.004 0.35 0.005 

B12 75 0.34 0.005 0.33 0.004 0.28 0.004 

B13 100 0.41 0.004 1.46 0.015 0.33 0.003 

B14 100 0.36 0.004 0.41 0.004 0.46 0.005 

B15 100 0.27 0.003 0.4 0.004 0.45 0.005 

B16 100 0.46 0.005 0.27 0.003 0.37 0.004 

B17 100 0.41 0.004 0.29 0.003 0.31 0.003 

B18 100 0.26 0.003 0.29 0.003 0.27 0.003 

To visually observe the local regions of DCLC-MRP landscapes, we plot the neighbors of xopt of the 

DCLC-MRP instances by using the same one-flip operator in the random walk. Figure 3 shows the 

example plots of the cost of these neighbors in the search space. Infeasible neighbors are not shown and 

an empty space appears at the corresponding positions. The plots again illustrate that the ruggedness of 

landscapes is highly dependent on the specific instances. It is obvious that the landscape of B12 with 

different delay bounds is more rugged than that of B02, as small differences in the solution make a huge 

difference in the cost of the solutions for B12. The landscape of B02 is smoother than B12 as most of the 

one-flip neighbors have the same cost located in a plateau.  



 
(a) costs of one-flip neighbors to xopt for instances with ∆1 = ∞. 

 
(b) costs of one-flip neighbors to xopt for instances with ∆2 = 1.1Delay(TOPT). 

 
(c) costs of one-flip neighbors to xopt for instances with ∆3= 0.9Delay(TOPT). 

Figure 3. Scatter plots of costs of the one-flip neighbors to xopt. 

4.5 Autocorrelation Analysis of Different Neighborhoods 

In addition to the pure random neighborhood used above, we carry out the autocorrelation analysis to 

analyze the ruggedness of the landscape from different neighborhoods in local search algorithms for the 

DCLC-MRP. Two more neighborhoods, namely the node-based neighborhood and the link-based 

neighborhood used in our previous VNDMR algorithm, are evaluated. 

1) The Link-based Neighborhood 



The link-based neighborhood operates on links in the multicast network. It replaces a randomly selected 

superpath in the current tree with a feasible alternative path (which satisfies the delay bound) generated 

by using the k-shortest path algorithm. 

2) The Node-based Neighborhood 

The node-based neighborhood operates on nodes in the multicast network. At each step, it randomly flips 

a bit of a Steiner node in the binary vector of the current tree and uses the Prim‟s algorithm to generate a 

minimum spanning tree on the given nodes. This operator repeats until a new feasible tree is generated. 

For a fair comparison, the same maximum number of iterations (here set as 5) has been carried out in 

the local search with different neighborhoods for solving four instances of different sizes (B02, B10, B12 

and B18). Table 5 presents the results of the autocorrelation analysis on the four instances with different 

delay bounds. 

In Table 5, the link-based neighborhood and node-based neighborhood lead to a smoother landscape, 

where longer correlation lengths have been obtained compared with the pure random neighborhood. This 

means that neighborhoods which are designed with regard to network structures are more effective than 

the pure random neighborhood for the DCLC-MRP. It is also interesting to see that, for larger problem 

instances (with 75 and 100 nodes), the landscape defined by the link-based neighborhood operator is 

smoother than that of node-based neighborhood operator. This demands that effective local search 

algorithms should be defined for solving DCLC-MRPs with different characteristics. Employing more 

than one neighborhood in the search algorithm provides one such solution. This is consistent with the 

better performance we observed in our previous work on the variable neighborhood descent search 

algorithm for the DCLC-MRP [13], and the simulated annealing based evolutionary algorithm employing 

multiple neighborhoods for multi-objective MRPs [47]. Both algorithms obtained better solutions 

compared with existing heuristics and algorithms employing single neighborhood operators. 

Table 5. The autocorrelation analysis of three neighborhood operators for four instances with different delay bounds. 

pure: the pure random one-flip operator; link: the link based operator; node: the node based operator; l / n: the 

correlation length l to the diameter n of the landscape. The highest autocorrelation is in bold. 

No. n Metrics 
∆1 ∆2 ∆3 

pure link node pure link node pure link node 

B02 50 
l 0.35 1.19 2.02 0.19 1.06 1.65 0.63 1.31 3.7 

l / n 0.007 0.024 0.040 0.004 0.021 0.033 0.013 0.026 0.074 

B10 75 
l 0.44 1.66 2.53 0.41 1.54 2.16 0.42 1.71 1.57 

l / n 0.006 0.022 0.034 0.005 0.021 0.029 0.006 0.023 0.021 

B12 75 
l 0.34 1.98 0.52 0.33 2.04 0.54 0.28 1.88 0.81 

l / n 0.005 0.026 0.007 0.004 0.027 0.007 0.004 0.025 0.011 

B18 100 
l 0.26 2.91 0.62 0.29 2.73 0.6 0.27 2.74 1.1 

l / n 0.003 0.029 0.006 0.003 0.027 0.006 0.003 0.027 0.011 

 

 

5. An Iterative Local Search Approach for the DCLC-MRP 

In this section, we investigate a new Iterative Local Search (ILS) approach for solving the DCLC-MRP 

based on the above fitness landscape analysis. We choose the ILS meta-heuristic for the DCLC-MRP in 

this work due to the following reasons.  

 Firstly, the fitness-distance scatter plots of local optima on some example instances of the DCLC-

MRP in Figure 2 show that there are many local optima in the search space and the distribution of 



these local optima is instance dependent and affected by the delay constraint. The scatter plots of one-

flip neighbors to the optimal solutions in Figure 3 also show that the slight change in the solution 

presentation results into many local optima distributed in the search space.  

 Secondly, the fitness-distance correlation analysis in Section 4 reveals that VNDMR is the most 

suitable local search method for the DCLC-MRP in comparison with the other three algorithms 

including LS, BSMA and TS-CST. The experimental results of the auto-correlation analysis 

demonstrate that both the node-based neighborhood and the link-based neighborhood are more 

effective than the pure random neighborhood. These fitness landscape analysis results are consistent 

with the better performance obtained by VNDMR for the DCLC-MRP in [13].  

 Thirdly, ILS has some desirable features such as the simplicity, robustness and high effectiveness 

when applied to a wide range of optimisation problems [24-29]. The basic idea of ILS is to iteratively 

search better solutions by moving from one local optimal solution to another in the search space. 

Aiming at a better solution and escaping from the local optimum, a perturbation operator is applied to 

the current solution and a new starting point is then generated which may guide the search to a 

promising area in the search space. The basic idea of ILS lays on carrying out a series of random walk 

within the search space of the local optima with respect to the local search algorithm. The search 

procedure of ILS is thus very suitable for exploring the search space of the DCLC-MRP with many 

local optima. Our idea is thus to further extend VNDMR by applying it as the local search method in 

the new ILS algorithm. In order to intelligently guide the search to a promising area in the search 

space, the value of the maximum depth to escape from the current local optimum in the landscape is 

estimated in the perturbation procedure of the proposed ILS algorithm.  

5.1 Iterative Local Search 

A typical ILS meta-heuristic includes four components: Initial Solution Generation, Local Search 

Procedure, Perturbation, and Acceptance Criterion. As shown in Figure 4, the basic ILS works as follows:  

Step (1) constructs an initial solution s0, Step (2) applies a local search method to produce a solution s*. 

Perturbation in step (3) mutates the current local optimal solution s* and generates an intermediate 

solution s'. Then LocalSearch is applied to s' and produces a new local optimal solution s'' in step (4). If s'' 

wins s* in AcceptanceCriterion of step (5), then s'' will replace s* and become the current solution; 

otherwise, the previous optimal solution s* is maintained. Steps (3)-(5) proceed iteratively after a number 

of iterations until the termination condition is met, and finally the best solution found is output as the final 

solution. 

 
Figure 4. The pseudo code of the basic ILS. 

5.2 The Proposed ILS Algorithm for the DCLC-MRP 

As stated in [28], the success of ILS is directly associated with the choice of the local search procedure, 

the perturbation procedure, and the acceptance criterion. We describe our proposed ILS algorithm in the 

following subsections.  

5.2.1  Generate Initial Solution  

(1) Generate Initial Solution s0; 

(2) s* = LocalSearch (s0) 

Repeat 

(3) s' = Perturbation (s*) 

(4) s'' = LocalSearch (s') 

(5) s* = AcceptanceCriterion (s*, s'') 

Until (Termination condition is met) 



The initial solution is randomly generated by using the same method of generating the starting point of 

the series of random walk in the auto-correlation analysis in Section 4.4. A random initial multicast tree is 

constructed by starting from the source node and randomly adding the next node until all destination 

nodes are mounted on the tree. The solution, i.e. a multicast tree, is also represented by the binary vector 

described in Section 4.1. 

5.2.2  Perturbation Operator 

To avoid the search travelling into local optima, a perturbation operator is applied to generate new 

starting point for the local search procedure. The pure random one-flip neighborhood operation of the 

auto-correlation analysis in Section 4.4 is applied as the perturbation in the proposed ILS algorithm. 

During the pure random one-flip perturbation, a bit corresponding to a Steiner node in the binary vector of 

the current solution is flipped. Then, a random multicast tree which satisfies the delay constraint is 

generated by spanning all the nodes with a value of 1 at the corresponding bit in the binary vector.  

An estimation of the maximum depth, denoted by d, to escape from the current local optimum in the 

landscape is thus estimated as the hamming distance between the worst solution and best solution 

obtained at each iteration of the ILS algorithm. The perturbation operation repeats d times to escape from 

the current local optimum, potentially leading the search to a promising area of search space. If d > 1, the 

perturbation is called the guided-perturbation, if d = 1, the perturbation is a random process without 

guidance. 

5.2.3 Local Search Procedure 

Due to the effectiveness of VNDMR demonstrated in the landscape analysis of both the fitness distance 

analysis and auto-correlation analysis in Section 4, we apply VNDMR as the local search procedure in 

our proposed ILS algorithm. Different from the traditional single neighborhood based local search 

algorithm, VNDMR can effectively explore different areas of search space defined by variable 

neighborhood structures (the node-based or link-based neighborhood), thus is able to escape from local 

optima and find better solutions. Experimental results of the above auto-correlation analysis in Table 5 

show that different neighborhood operators within VNDMR can complement each other for solving 

different DCLC-MRP instances with different characteristics.  

In order to compare the effect of different local search procedures to the performance of ILS for the 

DCLC-MRP, we also implement TS-CST as the local search procedure in the proposed ILS algorithm. 

The detailed descriptions of these two local search algorithms are described in Section 4.3.  

5.2.4 Acceptance Criterion 

The acceptance criterion decides which of the locally optimal solutions, s*and s'' in Figure 4, obtained 

from previous steps is to be selected as the starting point for the next perturbation step. In the 

implementation of our proposed ILS algorithm, the better solution with respect to the fitness values f, i.e. 

the cost and the delay of the multicast tree, will be accepted as shown in Eq. (12). 

                        AcceptanceCriterion (s*, s'') = 

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
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*s
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5.3 Experiments on the Proposed ILS Algorithm  



In order to test the impact of the local search method and the effect the proposed new guided-perturbation 

operator as described in Section 5.2.2., four variants of the ILS algorithm have been implemented in our 

experiments as follows: 

a) ILS-VND-g  

The first variant of the ILS algorithm applies VNDMR as the local search method and uses the 

guided-perturbation operator, i.e. d > 1. 

b) ILS-VND 

The second variant of the ILS algorithm adopts VNDMR as the local search method, but the 

perturbation is not guided, i.e. d = 1. 

c) ILS-TS-g 

In the third variant of the algorithm, TS-CST is applied as the local search method and the guided-

perturbation is used. 

d) ILS-TS 

The fourth variant applies TS-CST as the local search method and the perturbation operator without 

guidance. 

5.3.1 Performance of variants of the ILS algorithm 

In the first group of experiments, the performance of the four variants of ILS algorithms is compared on 

four problem instances (B02, B10, B12 and B18) of different sizes and delay bounds (i.e., ∆1 = ∞, ∆2 = 

1.1Delay(TOPT), and ∆3 = 0.9Delay(TOPT), see Section 4.1).  

Table 6. Experiment results on four instances of minimum Steiner tree problem with different sizes and delay bounds. 

(avg./best/σ: the average, best tree cost and the standard deviation. The best solutions are in bold.) 

Delay 

bounds 

Problem 

instances 

ILS-VND-g ILS-VND ILS-TS-g ILS-TS 

avg. best σ avg. best σ avg. best σ avg. best σ 

∆1 

B02 83 83 0 83 83 0 90.9 90 0.32 94.3 90 7.6 

B10 86 86 0 87 86 2.11 95.6 91 2.37 114.2 101 7.05 

B12 174 174 0 174 174 0 220.6 215 3.86 236.5 227 6.28 

B18 218 218 0 218.3 218 0.67 264.3 261 2.63 282.8 274 11.75 

∆2 

B02 83 83 0 83 83 0 91 91 0 95.3 91 9.07 

B10 86 86 0 86.5 86 1.58 94.5 91 2.22 107 102 4.27 

B12 174 174 0 174.8 174 1.69 223 220 2.31 236 227 7.06 

B18 218.3 218 0.48 218.1 218 0.32 265.5 259 4 282.2 271 9.2 

∆3 

B02 85.2 84 1.03 86 86 0 91 91 0 91 91 0 

B10 88 88 0 88.3 88 0.95 96 91 5.64 115.2 107 5.37 

B12 177.2 177 0 177.4 177 0.84 223.2 210 6.63 238.4 233 4.81 

B18 219 219 0 219.1 219 0.32 264.7 258 3.77 281.5 261 12.46 

For a fair comparison, the same amount of time (60 seconds) is set for each variant of ILS. Table 6 

presents the average tree cost, the best tree cost and the standard deviation obtained from 30 runs on each 

instance. From the table, we can see that ILS-VND-g performs the best among the four variants of 

algorithms, finding 11 best results out of the 12 tests. On the one hand, both ILS-VND-g and ILS-VND 

perform much better than the other two variants with TS-CST as the local search method. This is due to 

the fact that VNDMR has better performance than TS-CST as shown in Table 3 of the fdc landscape 

analysis on the same four instances. It demonstrates that the local search method with better performance 

improves the search results of the proposed ILS. On the other hand, the proposed ILS algorithms with the 

guided-perturbation (ILS-VND-g and ILS-TS-g) obtain better search results than those of the other 



variants of algorithms without the guided-perturbation (ILS-VND, ILS-TS), respectively. It means that 

the new guided-perturbation can improve the performance of the proposed ILS algorithm by estimating 

the distance of escaping from the current local optimum.  

5.3.2 Comparisons on Steinb Instances with Different Delay Bounds 

In this group of experiments, we compare ILS-VND-g with three other existing algorithms with good 

performance in the literature, including SSPR-VND [14], GRASP-VND[12], and GRASP-CST[11], on 

the 18 benchmark instances (Steinb) from the OR-library with three different delay bounds (∆1 = ∞, ∆2 = 

1.1Delay(TOPT), and ∆3 = 0.9Delay(TOPT)). SSPR-VND is a hybrid scatter search with path relinking 

algorithm for the DCLC-MRP, where VNDMR is applied as the local search method in it. Two GRASP 

algorithms, GRASP-VND and GRASP-CST, have been proposed for the DCLC-MRP. The difference 

between them is that the local search phase in GRASP-VND is VNDMR, while GRASP-CST applies the 

modified tabu search heuristic [44] as the local search phase. Both GRASP algorithms have shown to be 

effective approaches for solving the DCLC-MRP. Experimental results in [14] demonstrate that SSPR-

VND obtains the best performance so far in comparison with other algorithms in the literature. In order to 

test the performance of our proposed ILS-VND-g, we compare these existing four algorithms by setting 

the same computing time (60 seconds) in each run and running each algorithm 30 times on each instance. 

Table 7. Experimental results for the Steinb instances with the delay bound ∆1 = ∞. (avg./best/σ: the average, the best 

and the standard deviation of the tree cost. The values marked with „*‟ denote the optimal solutions and the best results 

are in bold.) 

No. 
ILS-VND-g SS-VND GRASP-VND GRASP-CST 

Avg.  Best σ Avg.  Best σ Avg.  Best σ Avg.  Best σ 

B01 82* 82 0 82* 82 0 82* 82 0 82* 82 0 

B02 83* 83 0 83* 83 0 83* 83 0 83* 83 0 

B03 138* 138 0 138* 138 0 138* 138 0 138* 138 0 

B04 59* 59 0 59* 59 0 59* 59 0 59* 59 0 

B05 61* 61 0 61* 61 0 61* 61 0 61* 61 0 

B06 122* 122 0 122* 122 0 122* 122 0 122* 122 0 

B07 111* 111 0 111* 111 0 111* 111 0 111* 111 0 

B08 104* 104 0 104* 104 0 104* 104 0 104* 104 0 

B09 220* 220 0 220* 220 0 220* 220 0 220* 220 0 

B10 86* 86 0 86* 86 0 86* 86 0 86* 86 0 

B11 88* 88 0 88* 88 0 88* 88 0 88* 88 0 

B12 174* 174 0 174* 174 0 174* 174 0 174* 174 0 

B13 165* 165 0 168.1 165 1.92 167.3 165 2.39 165.4 165 1.09 

B14 235* 235 0 235.3 235 0.47 235.1 235 0.22 235* 235 0 

B15 319.6 318 1.17 318* 318 0 319.5 318 0.89 319.8 318 0 

B16 128.5 127 1.58 127* 127 0 127* 127 0 127* 127 0 

B17 131* 131 0 131* 131 0 131.2 131 0.67 131* 131 0 

B18 218* 218 0 218* 218 0 218.2 218 0.41 218* 218 0 

Firstly, we compare the average tree cost, the best tree cost and the standard deviation obtained by the 

four algorithms in Table 7. For this set of instances with the looser delay constraint, ILS-VND-g, SSPR-

VND and GRASP-CST have the similar performance, obtaining best solutions for 15, 16 and 15 out of 18 

instances in terms of the average tree cost, respectively, while GRASP-VND only finds 13 best solutions. 

ILS-VND-g performs better than SSPR-VND on two instances (B13 and B14), which shows that the 

single-population based ILS-VND-g has competitive performance compared with as that of population-

based SSPR-VND meta-heuristic. 

 

In the second set of experiments, for each instance, the delay bound is set to a slightly tighter value. 

Computational results in Table 8 show that ILS-VND-g has the similar overall performance as the other 



three algorithms, since all algorithms obtain the best solutions for 15 out of the 18 instances with respect 

to the average tree cost. The better results found by ILS-VND-g on two instances (B13 and B14) than 

those of SSPR-VND demonstrate again that the proposed ILS approach is competitive compared with the 

hybrid scatter search algorithm. In addition, the results obtained by ILS-VND-g is more stable than those 

of SSPR-VND, since ILS-VND-g has a smaller average standard deviation (0.254) over the 18 instances 

compared with that of SSPR-VND (0.469). 

Table 8. Experimental results for the Steinb instances with the delay bound ∆2 =1.1×Delay(TOPT). (avg./best/σ: the 

average, best tree cost and the standard deviation. The values marked with „*‟ denote the optimal solutions and the 

best results are in bold.) 

No. ∆ 
ILS-VND-g SS-VND GRASP-VND GRASP-CST 

Avg.  Best σ Avg. Best σ Avg.  Best σ Avg.  Best σ 

B01 145 82* 82 0 82* 82 0 82* 82 0 82* 82 0 

B02 228 83* 83 0 83* 83 0 83* 83 0 83* 83 0 

B03 248 138* 138 0 138* 138 0 138* 138 0 138* 138 0 

B04 173 59* 59 0 59* 59 0 59* 59 0 59* 59 0 

B05 125 61* 61 0 61* 61 0 61* 61 0 61* 61 0 

B06 281 122* 122 0 122* 122 0 122* 122 0 122* 122 0 

B07 212 111* 111 0 111* 111 0 111* 111 0 111* 111 0 

B08 209 104* 104 0 104* 104 0 104* 104 0 104* 104 0 

B09 280 220* 220 0 220* 220 0 220* 220 0 220* 220 0 

B10 262 86* 86 0 86* 86 0 86* 86 0 86* 86 0 

B11 235 88* 88 0 88* 88 0 88* 88 0 88* 88 0 

B12 225 174* 174 0 174* 174 0 174* 174 0 174* 174 0 

B13 190 165* 165 0 168.1 165 1.67 167.6 165 2.39 165* 165 0 

B14 221 235* 235 0 236.6 235 4.61 235* 235 0 235* 235 0 

B15 308 319 318 1.33 318.6 318 0.92 319.6 318 0.82 319.6 318 0.82 

B16 291 127.8 127 1.03 127* 127 0 127* 127 0 127* 127 0 

B17 219 131.7 131 2.21 131.7 131 1.24 131.9 131 0.88 131.5 131 0.51 

B18 425 218* 218 0 218* 218 0 218* 218 0 218.2 218 0.37 

 
In the third set of experiments, we set the delay bound to a smaller value 0.9×Delay(TOPT). The 

optimal solutions are thus not known to any of the cases. Due to the tighter delay constraint, the problem 

becomes much harder to solve. For some instances, some algorithms cannot even obtain feasible solutions, 

as presented in Table 9. The table shows that ILS-VND-g, GRASP-VND and GRASP-CST have the 

similar performance by finding 10, 10 and 9 best solutions out of the 18 instances with respect to the 

average tree costs. SSPR-VND performs the best among the four algorithms by finding 12 best results. It 

means that the population-based SSPR-VND approach is more flexible when exploring the search spaces 

of the Steinb instances with this tighter delay bound. Although ILS-VND-g is local search based, it still 

shows good performance by obtaining the same results as those of SSPR-VND on 7 instances and even 

performs better than SSPR-VND on two instances (B10 and B17) upon this set of DCLC-MRP.  

6. Conclusions 

In this paper, we analyze the fitness landscape of the delay-constrained least cost multicast routing 

problem (DCLC-MRP). The problem can be defined as the Delay-Constrained Steiner tree problem and 

has been proved to be NP-hard. Due to the lack of theoretical study on the underlying features of the 

DCLC-MRP landscape, we conduct the first fitness landscape analysis on the problem by applying two 

widely used landscape analysis measures: the fitness distance correlation and the autocorrelation analysis. 

A large amount of simulations have been carried out on a set of DCLC-MRPs which have been generated 

by adding different delay bounds to the benchmark Steiner tree instances in the OR-library. 

The landscape analysis reveals that the landscape of the DCLC-MRP is instance dependent. The delay 

constraint of the DCLC-MRP has a great influence on the underlying landscape characteristics of the 



problem. Based on these observations, we may conclude that DCLC-MRP problem is a highly complex 

problem, thus tailor designed algorithm may not work well on a different variant of the problem, or even a 

different problem instance. Adaptive and robust search methodologies are needed to obtain reliable and 

good results across problems/instances in DCLC-MRP. 

Table 9. Experiment results for the DCLC multicast routing algorithm with ∆2 = 0.9×Delay(TOPT). (avg./best/σ: the 

average, best tree cost and the standard deviation. The values marked with „*‟ denote the optimal solutions and the 

best results are in bold.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, we have investigated the impact of different local search heuristics on the fitness distance 

landscape and compared the effectiveness of different neighborhoods in the autocorrelation analysis for 

solving the problem. Both the node-based neighborhood and the link-based neighborhood have shown to 

be effective and suitable for solving the DCLC-MRP. The fitness landscape analysis techniques discussed 

in this paper have shown to be useful for analyzing the underlying properties of the DCLC-MRP and 

predicting the effectiveness of heuristic algorithms and neighborhood operators.  

Based on the analysis of the fitness landscapes of the DCLC-MRP, an Iterative Local Search (ILS) 

approach has been investigated in this paper for the first time for DCLC-MRP. Due to the existence of 

many local optima, in order to intelligently explore the search space of the DCLC-MRP, a new guided-

perturbation is proposed to guide the search to potentially better solutions. Experiments on the Steiner tree 

instances demonstrate that the guided-perturbation contributes to a better performance of the proposed 

ILS algorithm. In addition, the local search method also affects the performance of the proposed ILS 

algorithm. A large amount of experiments on the Steiner tree instances reveals that this simple yet 

effective iterative local search approach has a competitive performance in comparison with other existing 

best algorithms in the literature for solving the DCLC-MRP.  

Our work in this paper can be seen as a case study of theoretical analysis on the landscapes, aiming at 

a better understanding of features of the landscapes of the DCLC-MRP before designing an effective 

search algorithm for the problem. The work can be further extended in different ways. For example, the 

fitness landscape analysis methods can be used to analyze the DCLC-MRP of larger size or various 

multicast routing problems with additional real life constraints, e.g., the bandwidth and delay-variation, to 

motivate the development of advanced meta-heuristic algorithms for various MRPs of different features. 

No. ∆ 
ILS-VND-g SS-VND GRASP-VND GRASP-CST 

Mean  Best σ Mean  Best σ Mean  Best σ Mean  Best σ 

B01 118 83 83 0 83 83 0 83 83 0 83 83 0 

B02 187 85.2 84 1.03 84 84 0 84 84 0 84 84 0 

B03 203 141 141 0 140.8 139 0.75 / / / / / / 

B04 142 62 62 0 62 62 0 62 62 0 62 62 0 

B05 102 62.2 62 0.92 62 62 0 62 62 0 62 62 0 

B06 199 125 125 0 125 125 0 124.6 124 0.93 125 125 0 

B07 173 / / / 112 112 0 / / / / / / 

B08 171 107 107 0 107 107 0 107 107 0 107 107 0 

B09 229 221 221 0 221 221 0 221 221 0 221 221 0 

B10 215 87.6 87 0.84 87.9 87 0.11 88 88 0 88 88 0 

B11 180 89 89 0 89 89 0 89 89 0 89 89 0 

B12 184 177 177 0 177 177 0 177 177 0.89 178.5 177 4.24 

B13 139 169.7 169 3.47 169 169 0 169.3 168 0.83 172 168 2.44 

B14 180 237 237 0 / / / 237 237 0 238.3 236 2.37 

B15 194 345 337 4.47 332.1 328 5.22 323.7 322 1.55 321.3 319 1.31 

B16 238 132.8 132 1.03 131.4 129 1.08 130.7 129 1.53 129.3 129 0.92 

B17 180 133.5 133 0.71 134 134 0 134.5 134 0.61 134.3 134 0.44 

B18 348 219 219 0 219 219 0 219.1 219 0.22 219.2 219 0.37 



Other more advanced landscape analysis techniques in the literature can be applied to the DCLC-MRP as 

well as other MRPs. In addition, the performance of the proposed ILS algorithm can be further improved 

by designing different perturbation operations or being hybridized with other meta-heuristics. 

Acknowledgement  

This research has been supported by Hunan University, China, and the School of Computer Science at 

The University of Nottingham, UK. 

References 

1. Cheng X., Du D.Z. Steiner Trees in Industry. Kluwer Academic Publishers, Dordrecht, Netherlands (2001) 

2. Garey M.R., Johnson D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. 

Freeman and Company, NewYork (1979) 

3. Guo L., Matta I. QDMR: An efficient QoS dependent multicast routing algorithm. In: Proceedings of the 5th
 

IEEE RealTime Technology and Applications Symposium, pp. 213-222 (1999) 

4. Kompella V.P., Pasquale J.C., Polyzos G.C., Multicast routing for multimedia communication, IEEE/ACM 

Transactions on Networking, 1: 286-292 (1993) 

5. Wang X.L., Jiang Z. QoS multicast routing based on simulated annealing algorithm. In: Proceedings 

international and applications, pp. 511-516 (2004) 

6. Zhang K., Wang H., Liu F.Y. Distributed multicast routing for delay variation-bounded Steiner tree using 

simulated annealing. Computer Communications, 28: 1356-1370 (2005) 

7. Ghaboosi N., Haghighat A.T. A tabu search based algorithm for multicast routing with QoS constraints. In: 9th 

International Conference on Information Technology, pp. 18-21 (2006) 

8. Yang C.B., Wen U.P. Applying tabu search to backup path planning for multicast networks. Computers & 

Operations Research, 32: 2875-2889 (2005) 

9. Hamdan M., El-Hawary M.E. Multicast routing with delay and delay variation constraints using genetic 

algorithm. Canadian Conference on Electrical and Computer Engineering, pp. 2363-2366 (2004) 

10. Zahrani M.S., Loomes M.J., Malcolm J.A., Dayem Ullah A.Z.M., Steinhofel K., Albrecht A.A. Genetic local 

search for multicast routing with pre-processing by logarithmic simulated annealing. Computer and Operations 

Research, 35: 2049-2070 (2008) 

11. Skorin-Kapov N., Kos M. A GRASP heuristic for the delay-constrained MRP. Telecommunication Systems, 

32(1): 55-69 (2006) 

12. Xu Y., Qu R. A GRASP approach for the delay-constrained Multicast routing problem. In: Proceedings of the 

4th Multidisplinary International Scheduling Conference. pp. 93-104 (2009) 

13. Qu R., Xu Y., Kendall G. A variable neighborhood descent search algorithm for delay-constrained least-cost 

multicast routing. Lecture Notes in Computer Science volume 5851, pp. 15-29. (2009) 

14. Xu Y., Qu R. A hybrid scatter search meta-heuristic for delay-constrained multicast routing problems. Applied 

intelligence, doi: 10.1007/s10489-010-0256-x (2010) 

15. Diot C., Dabbous W., Crowcroft J. Multipoint communication: a survey of protocols, functions, and 

mechanisms. IEEE Journal on Selected Areas in Communications, 15: 277-290. (1997) 

16. Masip-Bruin X., Yannuzzi M., Domingo-Pascual J., Fonte A., Curado M., Monteiro E., Kuipers F., Van 

Mieghem P., Avallone S., Ventre G., Aranda-Gutierrez P., Hollick M., Steinmetz R., Iannone L., Salamatian K. 

Research challenges in QoS routing. Computer Communications, 29: 563-581. (2006) 

17. Oliveira C.A.S., Pardalos P.M. A survey of combinatorial optimization problems in multicast routing. 

Computers & Operations Research, 32(8): 1953-1981. (2005) 

18. Salama H.F., Reeves D.S., Viniotis Y. Evaluation of multicast routing algorithms for real-time communication 

on high-speed networks. IEEE Journal on Selected Areas in Communications, 15: 332-345. (1997) 

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28ghaboosi%20%20n.%3CIN%3Eau%29&valnm=Ghaboosi%2C+N.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=%28%20haghighat%20%20a.%20t.%3CIN%3Eau%29&valnm=+Haghighat%2C+A.T.&reqloc%20=others&history=yes


19. Yeo C.K., Lee B.S., Er M.H. A survey of application level multicast techniques. Computer Communications, 

27: 1547-1568. (2004) 

20. Wright S. The roles of the mutation, inbreeding, crossbreeding, and selection in evolution. In Proceedings of the 

Sixth Congress on Genetics, 1: 365. (1932) 

21. Zahrani M.S., Loomes M.J., Malcolm J.A., Albrecht A.A. Landscape analysis for multicast routing. Computer 

Communications, 30: 101-116. (2006)  

22. Zahrani M.S., Loomes M.L., Malcolm J.A. LSA-based landscape analysis for multicast routing. In: Proceedings 

of AI-2006, the 26th SGAI International Conference on Innovative Techniques and Applications of Artificial 

Intelligence. pp.187-200. Springer-Verlag New York. (2006)  

23. Katayama K., Narihisa H. Iterated local search approach using genetic transformation to the traveling salesman 

problem. In: Proceedings of GECCO‟99.1: 321-328. (1999) 

24. Stützle T. Iterated local search for the quadratic assignment problem. European Journal of Operational Research, 

174: 1519-1539. (2006) 

25. Ruiz R., Stützle T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling 

problem. European Journal of Operational Research, 177: 2033-2049. (2007) 

26. Wang C., Li X., Wang Q.  Iterative Local Search Algorithm for No-Wait Flowshop Scheduling Problems to 

Minimize Makespan. In: Proceedings of the 12th International Conference on Computer Supported Cooperative 

Work in Design. pp. 908-912. (2008) 

27. Tounsi M., Ouis S. An Iterative local-search framework for solving constraint satisfaction problem. Applied 

Soft Computing 8: 1530-1535. (2008) 

28. Brito J., Ochi L., Montenegro F., Maculan N. An iterative local search applied to the optimal stratification 

problem. International Transactions in Operational Research. 17: 753-764. (2010) 

29. Rajalakshmi K., Kumar P., Bindu H.M. Hybridizing Iterative Local Search Algorithm for Assigning Cells to 

Switch in Cellular Mobile Network. International Journal of Soft Computing. 5(1): 7-12. (2010) 

30. Beasley J.E. OR-Library: distributing test problems by electronic mail. Journal of the Operational Research 

Society, 41(11): 1069-1072. (1990) 

31. Jones T., Forrest S. Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In 

Proceedings of the 6th International Conference on Genetic Algorithms, pp. 184-192. Morgan Kaufmann. (1995) 

32. Boese K. Cost versus distance in the traveling salesman problem, Tech. Rep. TR-950018, UCLA CS 

Department. (1995)  

33. Reeves C. R., Landscapes, operators and heuristic search. Annals of Operations Research, 86(0): 473-490 (1998) 

34. Stadler P.F. Correlation in landscapes of combinatorial optimization problems. Europhysics Letter, 20: 479-482. 

(1992)  

35. Merz P., Freisleben B. Memetic algorithms and the fitness landscape of the graph bi-partitioning problem. In 

Proceedings of the 5th International Conference on Parallel Problem Solving from Nature - PPSN V, pp. 765-74, 

Springer. (1998) 

36. Ochoa G., Qu R., Burke E.K. Analyzing the landscape of a graph based hyper-heuristic for timetabling 

problems, The Genetic and Evolutionary Computation Conference (GECCO'09), pp. 341-348. (2009) 

37. Kallel L., Naudts B., Reeves C.R. Properties of fitness functions and search landscapes. In: Theoretical Aspects 

of Evolutionary Computing, pp. 175-206. (2001)  

38. Weinberger E.D. Correlated and uncorrelated fitness landscapes and how to tell the difference, Biological 

Cybernetics, 63: 325-336. (1990) 

39. Stadler P.F. Landscape and their correlation functions. Journal of Mathematical Chemistry, 20: 1-45. (1996)  

40. Hordijk W. A measure of landscapes. Evolutionary Computation, 4(4): 335-360. (1997) 

41. Manderick B., de Weger M., Spiessens P. The genetic algorithm and the structure of the fitness landscape. 

Proceedings of the 4th International Conference on Genetic Algorithms. Morgan Kaufmann, pp. 143-150. (1991) 

42. The OR Library. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html 

43. Waxman B.M. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6: 

1617-1622. (1988) 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html


44. Skorin-Kapov N., Kos M. The application of Steiner trees to delay constrained multicast routing: a tabu search 

approach. In: Proceedings of the 7th international Conference on Telecommunications, pp. 443-448. (2003) 

45. Zhu Q., Parsa M., Garcia-Luna-Aceves J. J. A source-based algorithm for delay-constrained minimum-cost 

multicasting. In: Proceedings of the 14th Annual Joint Conference of the IEEE Computer and Communication 

(INFOCOM‟95), pp. 377-385. IEEE Computer Society Press, Boston, Massachusetts. (1995) 

46. Betsekas D., Gallager R. Data networks (2nd edition). Englewood Cliffs, HJ: Prentice-Hall. (1992)  

47. Xu Y., Qu R. Solving multi-objective multicast routing problems by evolutionary multi-objective simulated 

annealing algorithms with variable neighborhoods. Journal of Operational Research Society, 62: 313-325 

(2010). 

48. Stadler P.F. Towards a theory of landscapes. In: Complex Systems and Binary Networks, Lecture Notes in 

Physics volume 461, pp, 77-163, Berlin, New York. Springer Verlag. (1995)  

 


