
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A delay-based aggregate rate control for P2P streaming systems / Robert, Birke; Csaba, Kiraly; Leonardi, Emilio; Mellia,
Marco; Meo, Michela; Traverso, Stefano. - In: COMPUTER COMMUNICATIONS. - ISSN 0140-3664. - STAMPA. -
35:18(2012), pp. 2237-2244. [10.1016/j.comcom.2012.07.005]

Original

A delay-based aggregate rate control for P2P streaming systems

Publisher:

Published
DOI:10.1016/j.comcom.2012.07.005

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2502292 since:

Elsevier BV:PO Box 211, 1000 AE Amsterdam Netherlands:011 31 20 4853757, 011 31 20 4853642, 011

Accepted Manuscript

A Delay-Based Aggregate Rate Control for P2P Streaming Systems

Robert Birke, Csaba Kiraly, Emilio Leonardi, Marco Mellia, Michela Meo,

Stefano Traverso

PII: S0140-3664(12)00233-2

DOI: http://dx.doi.org/10.1016/j.comcom.2012.07.005

Reference: COMCOM 4682

To appear in: Computer Communications

Received Date: 1 December 2011

Revised Date: 10 July 2012

Accepted Date: 11 July 2012

Please cite this article as: R. Birke, C. Kiraly, E. Leonardi, M. Mellia, M. Meo, S. Traverso, A Delay-Based Aggregate

Rate Control for P2P Streaming Systems, Computer Communications (2012), doi: http://dx.doi.org/10.1016/

j.comcom.2012.07.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.comcom.2012.07.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2012.07.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2012.07.005

A Delay-Based Aggregate Rate Control for P2P
Streaming Systems

Robert Birkea, Csaba Kiralyb, Emilio Leonardic, Marco Melliac, Michela
Meoc, Stefano Traversoc,∗

aIBM Research Zurich
Saumerstrasse 4, 8803 Ruschlikon, Zurich - CH

bDISI – Università di Trento
Via Sommarive, 14, Povo, 38123 Trento - IT

cPolitecnico di Torino
Corso Duca degli Abruzzi 24, 10129 - Torino - IT

Abstract

In this paper we consider mesh based P2P streaming systems focusing on the
problem of regulating peer transmission rate to match the system demand while
not overloading each peer upload link capacity. We propose Hose Rate Control
(HRC), a novel scheme to control the speed at which peers offer chunks to other
peers, ultimately controlling peer uplink capacity utilization. This is of critical
importance for heterogeneous scenarios like the one faced in the Internet, where
peer upload capacity is unknown and varies widely.

HRC nicely adapts to the actual peer available upload bandwidth and system
demand, so that Quality of Experience is greatly enhanced. To support our
claims we present both simulations and actual experiments involving more than
1000 peers to assess performance in real scenarios. Results show that HRC
consistently outperforms the Quality of Experience achieved by non-adaptive
schemes.

Keywords:
Peer-to-Peer, Video Streaming, Measurement, Flow control

1. Introduction

In mesh based Peer-to-Peer streaming (P2P-TV) systems, the real-time en-
coded video is sliced in small pieces called chunks, which are distributed over an
overlay topology exploiting a fully distributed epidemic approach. Chunks have

∗Corresponding Author: Stefano Traverso, Dipartimento di Elettronica, Politecnico di
Torino, Corso Duca degli Abruzzi 24, 10124 - Torino, Italy email: traverso@tlc.polito.it, tel:
+39-011-090-4243, Fax: +39-011-090-4099

Email addresses: bir@zurich.ibm.com (Robert Birke), kiraly@disi.unitn.it (Csaba
Kiraly), leonardi@tlc.polito.it (Emilio Leonardi), mellia@tlc.polito.it (Marco Mellia),
michela@tlc.polito.it (Michela Meo), traverso@tlc.polito.it (Stefano Traverso)

Preprint submitted to Elsevier 14th July 2012

2

to be received by peers within a deadline of few seconds in order to guarantee
real-time constraints.

In these systems, download rate is dictated by video rate, which is limited by
definition; the source peer emits chunks in real time at “constant” rate and peers
must trade them minimizing delays and losses to guarantee the best Quality of
Experience (QoE) to users.

Common assumptions about P2P-TV systems are that i) the upload capacity
of peers constitutes the main bottleneck to system performance, and ii) each
peer is supposed to instantaneously have a perfect view of the internal state
of other peers [1, 2, 3]. While the former assumption is often met in practice,
latency between peers makes the latter unrealistic [4]. In mesh-based P2P-
TV systems, peers are usually organized into a generic overlay topology, and
neighboring peers exchange chunks periodically. To avoid chunk duplications
at the receiver, a preliminary trading phase is thus required to agree on the
chunks to be exchanged. This trading phase requires the exchange of messages
between peer pairs: an “offer” message sent by the potential sender a to the
potential receiver b containing the list of the chunks a can offer (those within
the deadline it possesses) and a reply message (called “select”) containing the
list of chunks selected to be downloaded by b. A careful design of the trading
scheme is needed to avoid that the additional signalling delay translates into
an excessive delay and that a peer overbooks its upload capacity by offering
too many chunks. This paper focuses on the design of the trading scheme and
proposes a simple algorithm to control the rate at which chunks are offered by
peers to neighbors.

To transmit chunks, UDP is typically preferred by actual P2P-TV appli-
cations [5] to avoid both the burden of handling TCP connections and the
unnecessary delay due to retransmissions and congestion control. However, this
requires to handle the congestion control and, in particular, to limit the amount
of content a peer transmits, being download rate limited by video-rate. Con-
trolling therefore the uplink bandwidth utilization is a key problem, which has
been so far marginally considered by the research community.

Considering the trading scheme, the most critical parameter is the number of
“offers” (messages advertising the list of possessed chunks) a peer should send in
parallel, i.e., the number of active signalling threads. If this number is too small,
the delivery rate of chunks is small, thus upload bandwidth is under-utilized.
Conversely, if this number is too large, the committed workload would overflow
transmission resources, impairing perceived quality of the video stream.

In this paper, we propose a scheme, called Hose Rate Control, HRC, to
automatically adapt the number of signalling threads to the current network
scenario. By doing so, the scheme implements a peer aggregate transmission rate
control that aims at jointly exploiting the peer upload capacity and improving
QoE of users, reducing as much as possible chunk delivery delays. In other
words, the scheme controls the bandwidth allocation on the peer uplink channel.

The HRC objective is to exploit the upload bandwidth of peers while not
increasing queuing delay, therefore targeting a less-than-best-effort policy being
less aggressive than the TCP congestion control whose regulation scheme is loss-

3

based. This is an explicit design choice that aims at tightly controlling chunk
delivery delay and chunk delivery probability, i.e., minimizing packet loss and
lengthly retransmissions.

We implemented HRC in “PeerStreamer”, the P2P-TV application devel-
oped within EU-FP7 NAPA-WINE STREP project [6]. This allows us to pro-
vide experimental results on swarms of up to 1000 peers in a controlled environ-
ment. Extensive experimental results obtained considering both simulations and
the actual implementation show that, with respect to non adaptive mechanisms,
HRC optimizes resource utilization, consistently improving system performance
and QoE that we evaluate on real video sequences by computing the SSIM
(Structural Similarity Index) [7].

2. Related Work

The literature on P2P-TV streaming systems is rich of works. Common as-
sumptions are that the upload capacity of peers constitutes the main bottleneck
to system performance, and each peer instantaneously has a perfect view of the
internal state of other peers [1, 2, 3, 8]. While the former assumption is often
met in reality, latency among peers makes the latter unfeasible. The impact of
latency on system performance has been analyzed by means of a simple model
corroborated by real measurements in PlanetLab in [4]. The authors propose a
system that mitigates the effect of latency by exchanging state information via
signalling messages. Little description is however given about the implemented
signalling mechanisms details. [9] also evaluates the impact of latency on system
performance, using a non-adaptive signalling mechanism.

Few papers specifically focus on the impact of peers bandwidth heterogeneity
and how it can be exploited to improve system performance [8, 10, 11]. This
aspect is crucial since peers homogeneity is hardly met in practice.

Given the small size of chunks, UDP is typically preferred by actual P2P-TV
applications [5] to enforce serial chunk packet transmission and to avoid both
unnecessary delay due to TCP retransmission and congestion control. Control-
ling the uplink bandwidth utilization is thus a key problem. To the best of
our knowledge, the only work to explicitly deal with this issue is [12], in which
authors present a preliminary scheme based on the periodic advertisement of
peer’s buffermap, offered to a subset of the peer’s neighbors. However, the re-
sulting scheme assumes essentially homogeneous latencies and may be difficult
to implement in practice. In this paper, we propose a conceptually different
scheme which proves to be much simpler to implement.

Considering file sharing P2P systems the problem of controlling the sending
rate of peers is a timely problem. Recently, BitTorrent designers decided to
adopt UDP in their client. Indeed, a new congestion control algorithm called
LEDBAT (Low Extra Delay Background Transport) has been proposed [13].
LEDBAT targets a less aggressive congestion control mechanism than the one
implemented in TCP.

To this extent HRC is somehow similar to LEDBAT, however, they differ
in the following two key aspects: i) HRC is an aggregate hose mechanism that

4

Figure 1: Schematic representation of the peer
chunk trading mechanism.

N
a
--

Wait for

ACK or SELECT message

or Timeout expiration

�N
a
 > 0 ?

Get sample D

W
a
⬅ W

a
 - K(D - D

0
)

�N
a
 = ⌊W

a
⌋ - N

a

No

Yes Send �N
a
 offers

and set timers

Yes

No
ACK ?�N

a
 = ⌊W

a
⌋ - N

a

N
a
+= �N

a

Figure 2: Flow chart representation of HRC
control loop.

controls the overall sending rate of a peer, and not the per-flow end-to-end
sending rate; ii) HRC is chunk based rather than packet based. As previously
mentioned, this stems from the different goals of streaming versus file sharing
P2P applications: the first targets live distribution of un-elastic content, while
the latter targets the maximization of download throughput.

3. System Description

We consider a system in which a source segments the real-time generated
video stream into chunks and injects them in the overlay network. Let N be
the number of peers composing the overlay. The system must deliver every
generated chunk within a deadline called playout delay, Dmax. If the chunk age
is greater than Dmax, the chunk is useless and is not traded anymore.

Chunks are transmitted by peers to their neighbors in a swarm-like fashion;
the overlay topology is defined by the set of peers and virtual links connecting
them. Since the actual design of the overlay topology is out of the scope of
this paper, we consider the simplest case in which the overlay network forms a
random graph, i.e. peer connects to other peers on a random basis, a common
assumption in the literature [1, 2, 10].

Since video chunks are transmitted over the network, the intuition suggests
to keep them small, e.g., few kBytes, to minimize the packetization delay at
the source, the store-and-forward delay at the peers and the chunk corruption
probability due to packet loss. In what follows, we therefore choose that 1 chunk
contains exactly 1 video frame, e.g., average chunk size is 5kB for a 1Mb/s
encoding rate of a 25 fps video. This mapping scheme minimizes the chunk size
and the impact of losses, avoiding that a loss of a chunk affects several frames
due to partial delivery of information, e.g, missing headers.

5

3.1. Chunk Trading Mechanisms
The signalling mechanism used to exchange chunks is a trading scheme simi-

lar to the one used in other mesh-based P2P-TV systems [4, 14, 15]. A chunk is
sent from a peer to one of its neighbors after a trading phase. Peer a maintains
a number of trading threads, Na. Each trading thread evolves as follows:

1) Peer a chooses one of its neighbors b and sends it a signalling message, called
offer message; it contains the set of younger than Dmax chunks a possesses.

2) Upon receiving the offer message, b replies with a select message to request
a desired chunk. Once a chunk has been “selected”, the receiver sets it as
pending until it is correctly received; a pending chunk cannot be requested
and cannot be published yet.

3) When the select message is received by a
a) if a chunk was requested in the select message (positive select), a sched-

ules its transmission, inserts it in its chunk transmission queue that
is served in a FIFO order.

b) Once b has completely received the selected chunk, it sends an ACK
message to a.

c) When a receives the ACK message, it can send a new offer message
and a new cycle starts.

d) If no chunk was requested in the select message (negative select), a can
send a new offer message and a new cycle starts.

Peer a is committed to send all the chunks requested in all the received positive
select messages. Timers protect the waiting for messages so that in case no reply
is received within a timeout, the status is reset and a new thread can start. Fig.
1 represents the signalling messages and chunks exchanged by peer a with its
neighbors over time. In particular signalling messages/chunks associated to one
active thread are highlighted. Note that all Na trading threads continue these
cycles independent of each other.

Several design choices impact the performance of the trading mechanism:
1) the criterion to select destination peers for the offer message – known as
the “peer selection”; 2) the strategy according to which peers receiving an offer
message select chunks to download – known as the “chunk selection”; 3) the
number Na of threads peer a handles which is somehow equivalent of the window
size in a window protocol and represents the rate at which potential transmitting
peers offer their chunks.

For the peer selection and the chunk selection policies we make the simplest
possible choices: peer a chooses peers to contact uniformly at random within
the set of its neighbors, and the neighbors choose the chunks to select at ran-
dom among the ones they need. This policy is also known in the literature as
“Random Peer - Random Useful Chunk selection” [16].

The key parameter that requires to be set in this mechanism is Na.

3.2. The core of Hose Rate Control
HRC, the adaptive signal mechanism that we propose, stems from the basic

idea to control the rate at which chunks are sent by peer a by controlling the

6

number of parallel active threads Na, so that the queuing delay at the trans-
mission queue is at a given (small) target. The rationale is that Na controls the
amount of work that the peer a has to do: if it is too large, upload capacity
is exceeded and delay increases, deteriorating performance; if it is too small,
the peer available upload bandwidth could not be well exploited. The rule to
decide Na is based on an estimation of the queuing delay incurred by chunks
in the transmission queue: if the queuing delay is large, Na is decreased, and
vice-versa.

HRC mechanism has been studied analytically through a fluid model that
we do not report in this paper due to the lack of space. However, the model is
fully described in technical report [17].

More in detail, the algorithm according to which Na is made adaptive is
the following. Let Wa be the internal control variable, which takes real values:
Na = max(1, bWac). Wa < Wmax, where Wmax limits the maximum number of
offers in flight, e.g., it can be constrained to the number of neighbors of peer
a. For every neighbor peer b, peer a maintains an estimate of the minimum
Round Trip Time. This estimate can be computed/updated by a every time it
receives a select message as the difference between the time the select message
is received and the one the offer is sent,

RTTab = t
(a)

rx,select − t
(a)

tx,offer

where t
(p)

action,type identifies the time of the “action” triggered by the message

of “type” at peer p; action={rx, tx}, type={offer, select, chunk, ack}.
When a receives an acknowledge from b, it estimates the delay D incurred

by the chunk in the transmission queue, as D̂ = t
(a)

rx,ack − t
(a)

rx,select − RTTab,
i.e., subtracting a RTT from the difference between the time at which the ac-
knowledge was received and the time at which the chunk was enqueued. D̂ is
then compared with a prefixed target value, D0, and Wa is updated according
to the following rule:

Wa(n) ← Wa(n− 1)−K(D̂ −D0) (1)

Na is then increased/decreased by ∆Na = bWa(n)c − bWa(n− 1)c. Now, if
∆Na = 0, the number of active threads is not changed, and peer a is allowed
to send a new offer to one of its neighbors. If ∆Na > 0, the number of active
threads is increased, and peer a is allowed to send two or more offers to its
neighbors. At last, if ∆Na < 0, the number of active threads is decreased and
the current thread is stopped (no new offer is sent). A flow chart representation
of the described algorithm is given in Fig. 2.

Influence of parameter K has been studied in technical report [17]. The
stability of the controller has been analytically proven for any value of K in the
interval (0; 1), and numerically up to K = 20. However, even if parameter K
regulates the reactiveness of the controller, due to the relatively slow dynamics
of this kind of systems, it has a negligible effect on performance. For simulation
and experimental results shown in this paper, we set K to 0.98.

7

Note that targeting queuing delay, HRC results less aggressive than TCP
congestion control which reacts to congestion only after a packet has been
dropped by the queue. This is an intended behavior of HRC since having a
tight control of chunk delivery delay is fundamental to make the system to work
properly in P2P-TV streaming applications. On this regards, observe that P2P
streaming applications can effectively exploit spatial diversity (every peer can
retrieve a chunk from several neighbors) to effectively face congestion that may
arise at some of the peers.

4. Evaluation by simulation

4.1. Simulation scenario and assumptions
All simulation results shown in this paper have been obtained with P2PTV-

sim , an open source event driven simulator available from [6]. In our scenario,
peers are partitioned in four classes based on their upload capacity: 15% of
peers are in Class 1 with upload bandwidth equal to 5Mb/s ± 20%, 35% in
Class 2 with 1.6Mb/s ± 20%, 35% in Class 3 with 0.64Mb/s ± 20%, 15% in
Class 4 with negligible upload bandwidth. The video source belongs to Class 1.
The average bandwidth per peer is E[Ba] = 1.25Mb/s.

In each simulation Dmax is set to 6s if not otherwise stated. We consider
N = 2000 peers. According to the assumption that the bottleneck is at the peer
upload link, the model of the network end-to-end path is almost transparent:
it is simply modeled by a delay lab that is added to the transmission time of
all the packets flowing from a to b. End-to-end latencies are taken from the
experimental dataset of the Meridian project [18]; the overall mean latency is
E[lab] = 39ms.

The well-known Pink of the Aerosmith video sequence, encoded using the
H.264/AVC Codec, is considered as benchmark. A hierarchical type-B frames
prediction scheme has been used, obtaining 4 different kinds of frames that, in
order of importance, are: IDR, P, B and b. The GOP structure has been set
to IDR x 8 {P,B,b,b}. The video consists of 3000 frames, which correspond to
about 120s of visualization. The nominal video rate of the encoder rs is a free
parameter that we vary to enforce different values of the system load defined
as,

ρ = rs/E[Ba] (2)

The source node generates a new chunk at regular time, i.e., every new frame.
40B long signalling messages are considered.

The overlay topology is randomly generated at the beginning of a simulation
by letting each peer selects 30 other peers at random as its neighbors. Since
connections are bidirectional, the average number of neighbors for a peer is
approximately equal to 60. As we simulate a couple of minutes of the system
behavior, we neglect the effect of churning so that the topology is static for the
whole simulation run. All plots presented below (except for the time evolution)
are obtained averaging the results of four random topologies; when different
systems are compared, they use the same four topologies.

8

Real video streams carry highly structured information, part of which is more
important than other, with high variability in the generated bit-rate. Chunk loss
probability and delivery delay are the performance indexes typically adopted by
the networking community, but they provide only a partial view of the actual
performance of a P2P-TV system, the user perceived quality. In the multimedia
and signal processing communities, instead, the evaluation of the perceived qual-
ity is considered mandatory, see [19, 20] for notable examples. To this extent,
performance is expressed in terms of average Structural Similarity Index (SSIM)
[7] which has been designed to improve on traditional methods like Peak Signal-
to-Noise Ratio (PSNR) and Mean Squared Error (MSE), which have proved
to be inconsistent with human eye perception. The SSIM is a measure of the
similarity of the received image compared against the original source. In case
of chunk loss, that is equivalent to a frame loss in our case, the employed codec
replaces missing frames with the last successfully received video frame. The
similarity of the replaced frame is then computed against the expected original
one. SSIM is a highly non linear metric in decimal values between -1 and 1.
Values above 0.95 are typically considered of good quality. In our simulation
scenario, SSIM has been computed considering video frames received by 100
peers (25 for each class), and then averaging among all of them. The initial and
final 10s of video have been discarded to focus on steady state performance.

4.2. Transient analysis
In the following, we show results about the HRC algorithm obtained through

simulations; D0 is set to 100ms. The source has rate rs = 1.2Mb/s, correspond-
ing to ρ = 0.95.

• Simple scenario - Let us focus on a randomly selected peer a with avail-
able upload bandwidth of 4Mb/s that varies due to interfering traffic. Fig. 3
reports the evolution over time of queue delay D̂(t) (top), the number of active
threads Na (center) and the throughput (bottom) for peer a. During the first
20s, no interfering traffic is present; after an initial transient the value of Na

stabilizes around 25, so that the peer can exploit at best its upload bandwidth.
At time t = 20s, a Constant Bit Rate flow starts injecting 3Mb/s of interfering
traffic in the uplink. D̂(t) abruptly grows; thus, Na is reduced and stabilized
around 5 and the upload throughput decreases to 1Mb/s. At t = 80s the whole
upload bandwidth turns to be available again, inducing an increase of Na which
gets back to 25. Then, from t = 100s to t = 120s, a TCP-like flow is present,
consuming the whole peer’s upload bandwidth. In this period, the number of
active threads drops to its minimal possible value, Na = 1, because the con-
gestion due to the TCP-like flow pushes D̂(t) over the control target D0. As
a consequence, the application throughput is reduced to negligible values. In
conclusion, the control algorithm succeeds in promptly reacting to bandwidth
variations, and in achieving less-than-best-effort bandwidth utilization.

• Flash crowd scenario - We now consider the scenario in which the system
operating point is abruptly modified at t = 30s: a sudden ingress of 400 new
peers with negligible upload-bandwidth and a contemporary reduction by 50%
of the available upload bandwidth of all peers belonging to Class 3 happens.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120

Q
u

e
u

e
 D

e
la

y
 [

s
]

Time [s]

Peer a - 4Mb/s
Target

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 20 40 60 80 100 120

N
a

Time [s]

Peer a - 4Mb/s

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Time [s]

Peer a - 4Mb/s

Figure 3: Queuing delay (top), value of Na

(center) and throughput (bottom) vs. time
with variations due to interfering traffic on up-
load link. ρ = 0.95

.

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90

Q
u

e
u

e
 D

e
la

y
 [

s
]

Time [s]

ρ=0.8 ρ=1.1

Peer a - 4Mb/s
Target

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80

N
a

Time [s]

ρ=0.8 ρ=1.1

Peer a - 4Mb/s
Peer b - 2Mb/s
Peer c - 1Mb/s

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

Time [s]

ρ=0.8 ρ=1.1

Peer a - 4Mb/s
Peer b - 2Mb/s
Peer c - 1Mb/s

Figure 4: Queuing delay (top), Na (center)
and throughput (bottom) vs. time for flash
crowd.

Given video rate rs = 1Mb/s, this causes the system load ρ to shift from 0.8
to 1.1. Even if this scenario is rather artificial, it has been selected because
it maximizes the stress on the control scheme. Fig. 4 reports the evolution of
Na (center) and throughput (bottom) for three sample peers, a, b and c, with
upload bandwidth of 4, 2 and 1Mb/s, respectively. The evolution of peer a
queue delay D̂(t) is also reported (top). When ρ = 0.8, the number of parallel
active threads Na, Nb and Nc adapt to different values, reflecting each peer’s
ability to contribute to chunk diffusion. Since ρ < 1, not all system capacity is
required, and Na rapidly grows to its maximum value Na = Wmax = 53, i.e., the
number of a neighbors. At t = 30s, the HRC system reacts to the sudden system
condition variation. In particular, for the high bandwidth peer a, Na initially
increases because its capacity was not fully exploited (its queuing delay still
being smaller than D0) and the number of its neighbors is increased from 53 to
61 due to the ingress of the 400 peers. Then, the increased system load has the
effect of boosting the percentage of offers that are positively selected. Indeed,
in heavy loaded conditions the source is generating more chunks than those the
P2P system can actually deliver, thus inducing peers to accept all chunks offered
by their neighbors. This effect obviously increases queuing delays experienced
by chunks, so that after a quick transient, Na nicely decreases, upload rate
matches each peer’s upload capacity, and queuing delay reaches the target D0.

10

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 600 800 1000 1200 1400 1600

0.58 0.73 0.88 0.95 1 1.18 1.33

S
S

IM

VideoRate [Kb/s]

ρ

EVQ
HRC, D0=0.15 s
HRC, D0=0.20 s

Fixed Na=10
Fixed Na=20
Fixed Na=30
Fixed Na=40

Figure 5: Average SSIM of HRC and non-
adaptive schemes versus the system load. Sim-
ulation results, 2000 peers.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
S

IM

D0 [s]

Dmax=3s
Dmax=4s
Dmax=5s
Dmax=6s

Figure 6: Average SSIM for different values of
D0 and Dmax. ρ = 0.95. Simulation results,
2000 peers.

4.3. Steady-state analysis
In this section, we focus on the steady-state performance of HRC and we

compare it with non-adaptive schemes that use a fixed value of Na.
Fig. 5 compares the HRC system for D0 = 150ms and 200ms and the non-

adaptive schemes in which Na is fixed. The video rate rs is increased (reported
on bottom x-axis) to observe the performance of the system of increasing ρ
(reported on top x-axis). When ρ < 1, the SSIM increases for increasing rs

thanks to the higher quality of the encoded video (Encoded Video Quality,
EVQ, curve in the plot). As soon as the system is overloaded, the SSIM rapidly
drops due to missing chunks which impair the quality of the received video.
In all scenarios, HRC outperforms the non-adaptive scheme, for any values
of Na. Schemes with too small values of Na do not fully exploit the system
bandwidth, e.g., Na = 10; schemes with too large values of Na tend to overload
the peer transmission queue leading to an unnecessary increase of the chunk
delivery delay, e.g., Na = 40. The performance of the scheme with Na = 20 are
comparable with that of HRC. However, setting the value of Na is very critical,
since the optimal value depends on many other system parameters, such as the
peers upload bandwidth distribution, that, besides being difficult to know, are
variable in time due to interfering traffic, as seen in Figs. 3 and 4.

Fig. 6 reports the average SSIM obtained with HRC versus D0 for different
values of the playout delay Dmax. ρ = 0.95. On the one hand, small values of D0

lead to inefficient exploitation of peer upload capacity. Being the system load
quite large, this leads to loss of chunks that impairs the video quality. On the
other hand, D0 represents the average queue delay that a chunk suffers at every
hop it traverses; larger values of D0 lead to larger delivery delays that might
translate into chunk losses for small values of Dmax, again impairing the QoE
represented by SSIM index. Thus, smaller values of D0 should be preferred. A
good tradeoff is obtained for D0 ∈ [150, 200]ms.

We have performed a more extensive set of simulations to assess the benefits
of HRC. Due to lack of space we do not report them here, but we prefer to present
some experimental results we collected from real implementation of HRC.

11

5. Evaluation by Experiment

The HRC controller has been implemented into PeerStreamer 1 P2P-TV
application. In the following we briefly discuss the key aspects of the implemen-
tation and provide some experimental evidence of the benefits of HRC.

TimeOffer Select

b

Peer a

Enqueued SignalingD + RTT
ab

bD
a

D
a

D + RTT
ab

b

Peer a

Offer Select

b

RTTab

D RTTab

Prioritized Signaling

Time

Figure 7: Schematic representation of the peer chunk trading mechanism with prioritized
signalling -PS- (left) and enqueued signaling -ES- (right).

5.1. Implementation issues
The most critical part when undergoing the actual engineering of the HRC

scheme is the estimation process of queuing delay which is at the core of HRC
scheme. Three different cases can be considered:
i) let us first consider the scenario in which the access device of the bottleneck
node supports separate queues: a high priority queue serves signalling packets,
and a low priority queue serves data packets. The estimation of the round-trip
time between a and b, RTTab (which does not include the queuing delay), could
be easily carried out by exploiting the higher priority service offered to signalling
packets: RTTab = t

(a)

rx,select − t
(a)

tx,offer;

ii) in the second scenario a single class of service is offered by the network de-
vices, but peers are synchronized. Here, signalling messages are delayed by the
transmission queue too, as sketched in left part of Fig. 7, but synchronization
allows to measure the One-Way-Delay between a and b, OWDab, as the mini-
mum of all t

(a)

rx,select − t
(b)

tx,select estimates. Even some coarse synchronization,

as the one provided by the NTP protocol, would suffice and errors (in the order
of 1ms) would only marginally affect the HRC control, since its target queuing
delay D0 is of the order of 100ms;
iii) in the third scenario peers are not synchronized and no priority policy
is provided. D̂ cannot be estimated anymore, since any RTT measurement
includes both the queuing delay at peer a, denote it by D(a), and the queuing
delay at b, D(b); i.e., it is only possible to estimate the sum of the queuing
delays,

D̂(a+b) = D(a) + D(b) = t
(a)

rx,ack − t
(a)

rx,select −RTTab (3)

1Source code is available from http://peerstreamer.org.

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 60 120 180 240 300 360 420

Q
u
e
u
e
 D

e
la

y
 [
s
]

Time [s]

Target

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 60 120 180 240 300 360 420

N
a

Time [s]

-- 5Mb/s -- TCP -- Cong
neigh

--

Figure 8: Queue delay (left) and Na (right).

RTTab can still be estimated as the minimum over all RTT samples, while it is
impossible to decouple D(a+b) from D(a) and D(b). Thus, the HRC algorithm at
peer a controls the sum of the queuing delays, and it is coupled with the HRC
control of all its neighbors.

We consider this latter scenario in our implementation so that the queuing
delay is estimated as in (3). At last we emphasize that the implementation of
HRC requires to make the system robust to losses of signalling messages and
chunks through the use of opportune timeouts (set to 1.5s in current implemen-
tation).

5.2. Experimental results
• Simple scenario - We first consider a simple scenario in which the source s
is connected to a HRC-enabled peer a only. 36 other peers are then attached
to a, so that its upload capacity is used to feed all neighbors. We then impose
transient conditions to the upload link of a: the Linux tc tool is used to limit the
upload capacity and delay, while the iperf tool is used to inject artificial traffic.
Video rate is 0.6Mb/s, 20 ms RTT is imposed on all links and D0 = 75ms.

Fig. 8 reports the evolution of queuing delay (left) and of Na (right) for peer
a. During the first 60s, peer a uplink bandwidth (100Mb/s) is large enough to
transmit all committed chunks. Since a queuing delay cannot reach the target,
Na stabilizes at the neighborhood size (Na = Wmax = 36).

Decrease of available capacity - At time t = 60s, a uplink capacity is limited
to 5Mb/s, inducing HRC to reduce the number of parallel signalling threads
while queuing delay varies around the target value. From t = 120s to t = 180s,
Na stabilizes at the maximum allowed value, being uplink bottleneck removed.

Competing TCP traffic - At time t = 180s a competing TCP flow starts
consuming the link capacity, increasing the queuing delay so that Na reduces
to 1, the minimum possible value. At the end of the TCP flow, HRC controls
Na value increasing it to 36 again.

Congestion at neighbor - From t = 300s to t = 360s, peer b, one of a’s
neighbors, suffers congestion in its uplink: a TCP flow starts sending data from
b to a, so that D(b) grows, possibly impairing D̂(a+b). The plot shows that
the estimated queuing delay at peer a is slightly affected by the presence of
congestion on its neighbor, indeed some larger oscillations are visible. However

13

 0

 20

 40

 60

 80

 100

 120

 140

 160

 400 600 800 1000 1200 1400 1600

E
[N

a
]

Video Rate [kb/s]

Class 1 - 5.0 Mb/s
Class 2 - 1.4 Mb/s
Class 3 - 0.6 Mb/s
Class 4 - 0.2 Mb/s

Figure 9: Average Na for HRC when varying
video rate rs. Experimental results in swarm
of 1000 peers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 600 800 1000 1200 1400 1600

S
S

IM

VideoRate [Kb/s]

EVQ
HRC

Fixed Na=10
Fixed Na=20
Fixed Na=30
Fixed Na=40

Figure 10: Average SSIM for HRC and non-
adaptive schemes when varying video rate rs.
Experimental results in swarm of 1000 peers.

Na is basically unaffected. The intuition indeed suggests that if the number of
“biased” D̂ estimates at peer a is limited, the system is still able to control the
peer uplink queue by “filtering” out the few overestimated samples, thus limiting
the impairment on Na that adjusts the number of active signalling threads.
• Large swarm - We now present results collected by running the application
in a controlled test-bed composed of 200 PCs. Each PC runs 5 copies of the
application simultaneously, creating a swarm of 1000 peers. Also in this case,
the average number of neighbors for each peer was approximately equal to 60.
Each peer upload capacity has been artificially limited using a rate limiter em-
bedded in our P2P-TV application which runs at packet level: 10% of peers
have 5Mb/s, 35% have 1.6Mb/s, 35% have 0.64Mb/s and 20% have 0.20Mb/s,
corresponding to an average per peer data link capacity of 1.32Mb/s. Laten-
cies among peers randomly varies between 10ms and 20ms (so that the RTT
varies in [20, 40]ms). The Pink of the Aerosmith video (352x240p resolution,
25fps, H.264/AVC Codec) has been encoded at different rates and “streamed”
over the swarm looping the video 5 times. After discarding the initial 12min
of video, each peers saves 100s of the received frames on disk. SSIM is then
computed against the original YUV video for all video traces; then average
SSIM is computed over all peers. Simple random overlay topology and random
peer/random chunks selection are adopted. The playout delay Dmax is set to
6s, the HRC queuing target D0 is set to 200ms, and the maximum number of
offer threads Wmax is set to twice the number of current neighbors.

Fig. 9 reports the average number of active signalling threads Na for each
class of peers when HRC is enabled and video rate rs is increased. The first
evident thing is that HRC achieves the objective of adapting Na to actual peer’s
upload bandwidth: e.g., for video rate 1.0Mb/s, E[Na] is 90 for high bandwidth
peers, E[Na] is 22 for mid bandwidth peers, E[Na] is 5 for the low bandwidth
peers and E[Na] is 1 for those peers with very low bandwidth. The second thing
to notice is how Na decreases when rs increases and, therefore, the load ρ of
the system grows; for higher loads, e.g., rs = 1.6Mb/s, the chunks acceptance
probability becomes higher inducing peers’ uplink queue to grow so that Na de-
creases. Instead, when system conditions are relaxed, e.g., rs = 0.6Mb/s, queues

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

S
S

IM

Peer

HRC
Fixed Na=10
Fixed Na=20
Fixed Na=30
Fixed Na=40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

S
S

IM

Peer

HRC
Fixed Na=10
Fixed Na=20
Fixed Na=30
Fixed Na=40

Figure 11: Average SSIM per peer distribution for HRC and non-adaptive schemes for video
rates rs = 800kb/s (left) and rs = 1600kb/s (right). Experimental results in swarm of 1000
peers.

are short and peers - especially those whose upload bandwidth is large - increase
the number of active trading threads to raise their transmission workload. Note
that no fixed values would be suitable for any scenario.

Focusing on the Quality of Experience, again expressed with SSIM index 2,
Fig. 10 compares HRC behavior against non adaptive schemes in which Na =
10, 30, 20, 40 respectively. Results are similar to the one of Fig. 5: all schemes
perform similarly when the system is under-loaded, e.g, rs = 400kb/s, but as
soon as rs increases, HRC dramatically outperforms any fixed schemes. Indeed,
the correct choice of Na is critical: it must be small to prevent from overloading
low bandwidth peers, while it must be large to avoid under-utilizing high band-
width peers. Any fixed values would cause a mismatch, impairing the overall
system performance. This is the fundamental concept behind HRC algorithm
and it is even clearer when combining results in Fig. 10 with those shown in
Fig. 9: by simply adapting the transmission window represented by Na to peer’s
upload bandwidth, performances are greatly improved.

In Fig. 11 we report SSIM index for each peer for video rate of 0.8Mb/s
(left plot) and 1.6Mb/s (right plot), respectively. The former corresponds to
a case in which the system is under-loaded, the latter refers to a scenario in
which system conditions are heavily stressed. Again HRC shows much better
performance: if system load is low (rs = 0.8Mb/s) HRC guarantees each peer
to successfully play the whole video. On the contrary, any fixed value of Na

fails at successfully delivering the content, severely impairing the video quality;
finally, when rs = 1.6Mb/s the system has not enough resources to satisfy all
peers demand, but, still, HRC shows better performance respect to whatever
fixed scheme by efficiently allocating peers’ upload capacity.

2SSIM is smaller than 1 since we are considering the encoding loss too.

15

6. Conclusions

In this paper we focused on the trading phase of mesh-based P2P-TV sys-
tems. We proposed Hose Rate Control, an algorithm to tune the number of
chunks a peer offers to its neighbors. HRC aims at efficiently exploiting the
peer upload bandwidth by controlling the queuing delay suffered by transmit-
ted chunks in the peer uplink, which is today the typical bottleneck for P2P-TV
systems. We implemented the proposed mechanism in a real client, coping with
the actual implementation issues and presenting actual experimental results con-
sidering swarms up to 1000 peers. Our results show that HRC reduces chunks
delivery delay and loss probability, providing much better Quality of Experience
for users even when the system load is close to 1.

Acknowledgment

This work was supported by the EC under the FP7 STREP “Network-Aware
P2P-TV Application over Wise Networks”.

References

[1] L. Massoulié, A. Twigg, C. Gkantsidis, P. Rodriguez, Randomized decen-
tralized broadcasting algorithms, in: IEEE INFOCOM, Anchorage, AK,
2007.

[2] S. Sanghavi, B. Hajek, L. Massoulié, Gossiping with multiple messages, in:
IEEE INFOCOM, Anchorage, AK, 2007.

[3] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, A. Twigg, Epidemic live
streaming: optimal performance trade-offs., in: SIGMETRICS, Annapolis,
MD, 2008.

[4] M. Zhang, L. Zhao, Y. Tang, J. Luo, S. Yang, Large-scale live media stream-
ing over Peer-to-Peer networks through global Internet, in: P2PMMS, Sin-
gapore, 2005.

[5] D. Ciullo, M. A. Garcia, A. Horvath, E. Leonardi, M. Mellia, D. Rossi,
M. Telek, P. Veglia, Network awareness of P2P live streaming applications:
a measurement study, IEEE Transanctions on Multimedia 12 (1) (2010)
54–63.

[6] NAPA-WINE, http://www.napa-wine.eu (2008-2011).
[7] Z. Wang, A. C. Bovik2, H. R. Sheikh, E. P. Simoncelli, Image quality as-

sessment: From error visibility to structural similarity, IEEE Transactions
on Image Processing 13 (4) (2004) 600–612.

[8] A. C. da Silva, E. Leonardi, M. Mellia, M. Meo, A bandwidth-aware
scheduling strategy for P2P-TV systems, in: IEEE P2P, Aachen, DE, 2008.

[9] R. Fortuna, E. Leonardi, M. Mellia, M. Meo, S. Traverso, QoE in Pull
Based P2P-TV Systems: Overlay Topology Design Tradeoffs, in: IEEE
P2P, Delft, The Netherlands, 2010.

[10] Y. Liu, On the minimum delay peer-to-peer video streaming: how realtime
can it be?, in: ACM Multimedia, Augsburg, DE, 2007.

16

[11] T. Small, B. Liang, B. Li, Scaling laws and tradeoffs in Peer-to-Peer live
multimedia streaming, in: ACM Multimedia, Santa Barbara, CA, 2006.

[12] A. Carta, M. Mellia, M. Meo, S. Traverso, Efficient uplink bandwidth uti-
lization in p2p-tv streaming systems, in: IEEE Globecom, Miami, FL,
2010.

[13] S. Shalunov, G. Hazel, Low Extra Delay Background Transport (LED-
BAT), Internet Draft draft-ietf-ledbat-congestion-02, IETF (July 2010).

[14] X. Zhang, J. Liu, T. Yum, Coolstreaming/donet: A data-driven overlay
network for peer-to-peer live media streaming, in: IEEE INFOCOM, Mi-
ami, FL, 2005.

[15] F. Picconi, L. Massoulié, Is there a future for mesh-based live video stream-
ing?, in: IEEE P2P, Aachen, DE, 2008.

[16] A. Couto da Silva, E. Leonardi, M. Mellia, M. Meo, Exploiting Heterogene-
ity in P2P Video Streaming, IEEE Transactions on Computers.

[17] http://www.tlc-networks.polito.it/traverso/papers/tr-2010-30-08.pdf.
[18] Meridian, http://www.cs.cornell.edu/people/egs/meridian/ (2008).
[19] E. Setton, J. Noh, B. Girod, Low latency video streaming over peer-to-peer

networks, in: IEEE ICME, Toronto, CA, 2006.
[20] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, Y. Wang, Layerp2p: using lay-

ered video chunks in p2p live streaming, IEEE Transaction on Multimedia.
11 (7) (2009) 1340–1352.

