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Abstract. File Delivery over Unidirectional Transport (FLUTE) is the standard protocol used in unidirectional 

environments to provide reliability in the transmission of multimedia files. The key element of this protocol is the 

use of the File Delivery Table (FDT), which is the in-band mechanism used by FLUTE to inform clients about the 

files (and their characteristics) transmitted within a FLUTE session. Clients need to receive the FDT in order to start 

downloading files. Thus, the delivery of FDT packets and the proper configuration of their parameters have a great 

impact on the Quality of Experience perceived by the users of FLUTE content download services. This paper 

presents a complete analysis about how the FDT transmission frequency affects the download time of files. 

Moreover, results show which are the optimum values that minimize this download time. An appropriate 

configuration of the FDT transmission frequency as well as the use of AL-FEC mechanisms provides an optimum 

content delivery using the FLUTE protocol. 

Keywords: File Delivery Table, FLUTE, Content Download Services, AL-FEC, Quality of Experience 

1. Introduction 
The access to multimedia content has grown significantly in the last years and nowadays transmission networks 

carry all kind of multimedia traffic. The visualization of multimedia streaming through video portals and photo 

sharing on social networks are two good examples of the great importance that multimedia content has on existing 

networks. Although a large proportion of this traffic is sent through unicast IP networks, the use of multicast 

networks has a great importance. For instance, multicast networks are used by TV channels or radio stations to 

broadcast their contents. 

The utilization of multicast networks allows sending content to several clients using a single transmission 

operation. Thus, depending on the service, multicast networks result more efficient than unicast ones, which 

generate more traffic in the network. This way, multicast networks are very recommendable when there is sufficient 

number of users interested in receiving the same content.  

Apart from broadcasting video, multicast networks can be used to transmit files. Note that in file downloads it is 

necessary to receive correctly all the packets that compose a file, so channel losses should not occur. However, 

multicast transport does not guarantee, generally, error free communication and the application layer protocol needs 

to be able to provide protection against errors. Additionally, some multicast file transmissions lack of a feedback 

channel that can be used by the clients to report the servers about the state of their downloads. Therefore, clients are 

not able to ask for packets lost during the transmission. Thus, file transmissions over unidirectional channels require 

a protocol that provides reliability. Among the different existing protocols, one of the most used by the different 
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standardization organisms is FLUTE (File Delivery over Unidirectional Transport). FLUTE is highly used for 

delivering multimedia content in unidirectional environments in a reliable manner.  

The main characteristic of the protocol is the use of an in-band signaling mechanism, i.e. the File Delivery Table 

(FDT). The FDT describes the main properties of the files that are being transmitted, such as the file name, the 

content length or the encoding type. Once the clients receive the FDT, they know the files the server is delivering 

and can start downloading them. 

On the other hand, the Quality of Experience (QoE) perceived by the users is an important parameter in the 

evaluation of both video streaming and file transmission services. In the first, the delay, the losses and the video 

quality are key aspects for the QoE. Regarding file transmissions, a good QoE is obtained when the file is received 

correctly with the minimum download time. This is accomplished by sending files with a high transmission rate in 

channels with minimum losses. But these conditions cannot always be controlled and therefore it is essential to send 

the content in the most efficient way. 

Regarding this, file transmissions through FLUTE can be optimized to improve the efficiency of the content 

delivery. In this sense, the FDT is a key element in FLUTE sessions and how often the FDT is transmitted has an 

important impact on the QoE of FLUTE services. On the one hand, if the FDT is sent with low frequency, clients 

have to wait a long time until they can start downloading the contents. On the other hand, if the FDT is received too 

frequently, clients will have to wait less time to receive the FDT (and therefore to start the download) at the expense 

of receiving more useless packets afterwards, thus reducing the efficiency of the transmission. 

In this sense, this paper analyzes how the transmission of the FDT affects FLUTE file delivery sessions and 

evaluates which are the optimum values of the FDT transmission frequency that minimize the download time and, 

therefore, improve the Quality of Experience perceived by the users. 

2. Related work 
The FLUTE protocol, defined initially in RFC 3926 [1] and updated in RFC 6726 [2], has been established as the 

multicast file delivery protocol for different standards, such as DVB-H (Digital Video Broadcasting – Handheld) [3] 

and DVB-IPTV (DVB – Internet Protocol TV) [4]. Also FLUTE is used by the 3GPP Multimedia Broadcast 

Multicast Service (MBMS) [5] and evolved MBMS (eMBMS) [6] to download multimedia content. Fig. 1(a-b) 

show, as an example, the protocol stack of DVB-H and MBMS. As mentioned, both technologies use FLUTE to 

send different types of files, such as multimedia files, metadata or the Electronic Service Guide in DVB.  

        
 (a)  IP datacast over DVB-H  (b) MBMS IP multicast 

Fig. 1 Protocol stack of DVB-H and MBMS. 

In this regard there are research works that analyze the use of FLUTE in DVB and MBMS. For instance, [7] 

presents FLUTE as a multicast content delivery protocol to be used by DVB-H and MBMS, making a comparison 
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among different transmission protocols. On the other hand, [8] proposes a hybrid transmission network where 

FLUTE is used by DVB-H to broadcast multimedia content, whereas [9] develops a portable middleware for DVB-

H clients. Also, other papers explore the use of FLUTE in MBMS, for instance [10].  

But the use of FLUTE is not limited only for DVB and MBMS. For instance, [11] proposes the integration of 

FLUTE and TESLA (Timed Efficient Stream Loss-Tolerant Authentication) over satellite networks, whereas [12] 

presents an architecture for scalable DTN (Delay-Tolerant Networking) communication in sparsely populated areas 

based on FLUTE, similar to that proposed in [13].   

Apart from file distribution, other papers propose FLUTE to provide video on demand services, such [14]. Also, 

[15] introduces an efficient progressive downloading over multimedia broadcast multicast service using FLUTE. 

Among the research work related to FLUTE, the paper that best analyses the behaviour of the protocol is, 

probably, [16]. That paper makes a complete analysis of FLUTE, evaluating the different configuration parameters 

of the protocol and how these parameters affect the transmission. Among the several contributions to the FLUTE 

protocol from the authors of [16], one of the most important has been the publication of an open source 

implementation of FLUTE, available in [17]. In fact, that implementation has been used in different research works, 

for instance in some papers that analyze AL-FEC (Application Layered – Forward Error Correction) codes. Another 

research work of these authors worth highlighting is [18], which presents a bandwidth-efficient file delivery system 

using the server file format for FLUTE; and [19], where the use of congestion control protocols in FLUTE is 

studied. 

However, despite that the FDT is one of the most characteristic elements of FLUTE, there are no papers where 

the FDT is analyzed in detail. This paper is intended to fill this gap. 

3. FLUTE and FDT 
FLUTE works over ALC (Asynchronous Layered Coding) [20], which is built over three building blocks: LCT 

(Layered Coding Transport) [21], a control congestion block and a FEC block [22]. Both ALC and LCT building 

blocks provide basic transport to FLUTE, which inherits the requirements of these blocks.   

Moreover, one of the main error protection mechanisms of FLUTE is the use of a FEC block, which provides 

protection to the files sent. In this sense, FLUTE supports different FEC codes: Compact No-Code [23], Reed-

Solomon [24], Raptor [25], RaptorQ [26] and LDPC (Staircase and Triangle) [27] codes. The use of one coding or 

another depends on the application but, in general, Raptor and RaptorQ work more efficiently at the expense of 

more complexity. Compact No-Code is recommended only on reliable channels (with very low losses), whereas 

Reed-Solomon is convenient when the amount of data to code is not very high. Also, LDPC codes are very efficient 

and their coding/decoding complexity is low. 

FLUTE transmissions are based on sessions. Each session is sent in a certain IP address and with an identifier 

called TSI (Transport Session Identifier). Also, each session contains one or more associated channels, in which 

files are delivered. Each channel has an associated port number and sends with a certain transmission rate. On the 

other hand, each file transmitted in a file delivery session is uniquely identified by its content location. Internally, 

also it is used a file identifier called TOI (Transport Object Identifier). 

To start receiving a file delivery session, clients need to know the transport parameters of that session, mainly the 

IP address, the TSI and the channel port number. These parameters are obtained through the Session Description. 

This can be obtained by different out-band mechanisms such as SDP (Session Delivery Protocol) [28][29], XML 

(Extensible Markup Language) or HTTP (Hypertext Transfer Protocol).  
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As mentioned, in FLUTE transmissions, before downloading a file, clients need to know the files that the server is 

sending. In this sense, the FDT is used to inform clients about the files that are being transmitted and their associated 

metadata. The FDT is sent as FDT Instances, which are made of FLUTE packets with a special extension header 

(called EXT_FDT) to indicate they carry FDT data. FDT Instances are sent in the same session and channel that the 

files. Also, FDT packets have assigned a value of TOI equal to 0. Each FDT is described using XML language. 

The original FLUTE RFC [1] (published in 2004) and the current FLUTE standard [2] (published in 2012) 

establish that the number of files described in each FDT is variable, that is, each FDT Instance contains at least a 

single file description entry and at most the complete FDT of the file delivery session. So, there are two types of 

FDT Instances: partial FDT and complete FDT. An FDT Instance can be sent in any part of the file delivery session 

so packets for an FDT Instance may be interleaved with data packets. Moreover, both RFCs indicate that the way 

FDT Instances are transmitted has a large impact on the transmission. It is recommended to repeatedly transmit FDT 

Instances describing files while these are being transmitted. Also, it is highly recommended to send the FDT 

Instances reliably using FEC. [2] suggests that mechanisms used for FDT Instances transmission should achieve 

higher delivery probability than the file recovery probability. Nevertheless, neither [1] nor [2] analyze how often an 

FDT Instance should be sent and how much FEC protection should be provided for each FDT Instance. 

Regarding the transmission, in FLUTE file delivery sessions each file is fragmented into different source blocks. 

Each source block is fragmented into encoding symbols. There are two types of encoding symbols: source and parity 

symbols. Parity symbols are additional data sent to provide reliability on the transmission. The payload of a FLUTE 

packet contains, at least, one encoding symbol. 

Moreover, it is recommended the use of file transmission carousels. In carousels, files are sent cyclically on a 

seamlessly endless loop, which represents another reliability mechanism, since clients can complete their downloads 

if they have suffered losses in previous carousel cycles. 

 
Fig. 2 File delivery using FLUTE protocol. 

As a summary, Fig. 2 shows a general overview of a file transmission using the FLUTE protocol. A FLUTE 

server has a repository of multimedia contents. For example, it could send video, audio, images, documents… The 

FLUTE server broadcasts the contents in a certain session (identified by the IP address and the TSI), which contains, 

at least, one delivery channel (identified by the port number). On the other hand, clients will follow next steps: 

• Step 1. Clients will obtain by an out-band mechanism the Session Description which contains the transport 

parameters associated to the session. The way clients obtain the Session Description is independent of 

FLUTE. 

• Step 2. Once the clients have connected to a certain session they will have to wait until they receive the FDT 

that describes the files (and their corresponding metadata) that the server is sending. 
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• Step 3. Then clients will be able to identify the data packets they are receiving and they will be able to 

download the files they are interested in. 

If the server wants to stop sending data, the FLUTE protocol contains a field in its header to indicate clients that 

the session will be closed soon. 

4. Theoretical analysis 

4.1 Introduction 

The objective of the study is to calculate the total download time (tT) of a file and evaluate how it is affected by 

the FDT delivery configuration. Throughout this section several variables appear. Table 1 shows these variables and 

explains their meaning. 

      
b  Transmission rate P  

Probability of receiving a certain number of 
new encoding symbols for a block at a 
certain loop 

CR  Code rate Si  Size of file i 
CRf  Code rate applied to files SL  Size of the file to download 

CRFDT  Code rate applied to FDT Instances tC  Cycle time 

DFDT  Number of data packets sent between two 
FDT Instances tD 

 
Download time 

e  Encoding symbol length of a FLUTE data 
packet tFDT 

 
Delivery period of FDT Instances 

e’  Encoding symbol length of a FLUTE FDT 
Instance packet tM 

 Time passed since the FDT is received until 
the client receives the first packet of the file 
to download 

l  Number of lost packets per cycle tS 
 Time needed to send once the file to 

download 

m  Number of times per cycle that an FDT is 
sent tT 

 
Total download time 

mL  Number of FDT Instances of file L sent in 
each carousel cycle tW 

 
Waiting time 

N  Number of files in the carousel v 
 Number of missing packets at the beginning 

of a cycle 

nCR  Number of packets that make up a file after 
applying AL-FEC x 

 Expectation value of the number of new 
packets received at a certain carousel loop 

ncycles  Number of cycles needed to download a file α  Adjustment factor of the file size 

n’cycles  Entire number of the ncycles, defined as: ceil 
(ncycles) 

αL 
 Adjustment factor of the file size referred to 

the file L 

ncyclesFDT  Number of cycles needed to download an 
FDT β  

In the last cycle, it represents the remaining 
cycle percentage to complete an entire 
cycle, referred to the entire carousel 

ni  Number of packets that make up file i βL  
In the last cycle, it represents the remaining 
cycle percentage to complete an entire 
cycle, referred to the file to download 

nL  Number of packets that make up the file to 
download γ  Number of packets that compose an FDT 

Table 1 Key notation. 

This section analyzes five transmission configurations, each one explained in a different subsection as follows. 

Section 4.2 presents the general case: download of one file, use of a complete FDT and sequential scheduling. 

Section 4.3 analyzes partial FDTs, downloading one file and using sequential scheduling. Section 4.4 studies the 

scheduling model: download of one file, use of a complete FDT and interleaving scheduling. Section 4.5 considers 

multiple downloads, using a complete FDT and sequential scheduling. Finally, Section 4.6 analyzes the use of 
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prefetching with the parameters of the general case: download of one file, use of a complete FDT and sequential 

scheduling. 

4.2 General case 

As a first study case, among the two types of FDTs (partial and complete), this section analyzes the complete 

FDT. Each FDT Instance is transmitted in γ FLUTE packets, depending on the number of files and attributes that the 

FDT Instance describes. This study evaluates different cases: sending only one FDT Instance per cycle; sending as 

many FDT Instances as files in the carousel; and sending FDT Instances more frequently.  

In this study, it is assumed that a server sends N files sequentially in a FLUTE carousel and that a user wants to 

download a certain file L with size SL. Fig. 3 shows an example of a FLUTE delivery session based on carousels 

where three files are sent. Note that the FDT Instances are sent in-band with the files. In the example, a certain client 

wants to download the file F3. 

 

Fig. 3 Example of a carousel transmission. 

Assuming that clients connect to the channel after the server starts sending content, a client will access to the 

carousel in a certain moment and will not be able to download the file until that client receives the FDT. So, the 

client needs to wait a certain time to receive the FDT, called waiting time (tW). After receiving the FDT, the client 

needs a time to download the file (tD). This way, the total download time needed to complete a download (tT) is:  

 .DWT ttt +=   (1) 

Regarding the calculation of the download time (tD), this is composed by three different times, as Fig. 3 shows. 

Firstly, there is a time tM that indicates the time passed since the FDT is received until the client receives the first 

packet of the file to download. In that example, when the client accesses to the carousel, F1 is being transmitted. 

Therefore, the client will have to wait until the server finishes the transmission of F1 and then the server sends F2 

completely. Secondly, tS indicates the time needed to send once the file to download, that is, the time passed from 

the transmission of the first packet until the transmission of the last one. As Fig. 3 shows, it is very likely that, if 

there are losses during the transmission, the client needs more than one carousel cycle to download a certain file. In 

the example, after the first cycle, the client has downloaded a 25% of the file, whereas after the second cycle, the 

client has downloaded 90%. The download is completed during the third cycle. Thus, the download time also 

depends on the number of cycles needed to complete the download. Therefore, the download time is calculated as: 

 ).1·( −++= cyclesCSMD ntttt   (2) 
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Hence, the cycle time (tC) has a great impact on the download time. The use of AL-FEC mechanisms allows to 

reduce the number of carousel cycles. In the case of considering AL-FEC, the code rate must be taken into account 

when calculating the cycle time:
  

 ,

'··

1

b

CR
emceil

CR
Sceil

t FDT

N

i f

i

C





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


+











=
∑
=

γ

  (3) 

where N is the number of files in the carousel; Si is the size of the file i; m is the number of FDT Instances sent 

during a carousel cycle; e’ is the size of an FDT Instance packet; γ is, as mentioned, the number of packets that 

compose an FDT Instance; CRf and CRFDT represent the code rate used to send the files and the FDT Instances, 

respectively; and b is the transmission rate. Note that Si can be calculated as the product of the number of packets of 

the file i (ni) and the size of FLUTE packets (e). Also, the use of AL-FEC encoding generates more packets. The 

total number of packets after coding is calculated by ceiling the division of the number of packets by the code rate. 

Assuming that both the files and the FDT will have the same protection (and thus the same code rate) and not 

considering the effect of the ceiling round, formula (3) is simplified: 

 
.

·

'··
1

CRb

emS
t

N

i
i

C
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≅
∑
=   (4) 

Note that this formula and the following ones are valid when no FEC is used, simply assigning CR = 1.  

Returning to (1), with regard to the waiting time (tW), this is a random variable with expected value E[tW]. In this 

study, it is assumed that the instant of time when the client accesses the carousel is uniformly distributed in the 

interval [t, t+tFDT], where tFDT is the delivery period of the FDT Instances, that is:
  

 .
m
tt C

FDT =   (5) 

This way, the expected waiting time will be:  

 [ ] .
2m
ttE C

W =   (6) 

The delivery period of FDT Instances is directly related with the parameter DFDT, which indicates how many 

packets are sent between two FDT Instances:
  

 .·
·

1

b
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m

mn
D FDT

N

i
i
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+

=
∑
=

γ
  (7) 

The approximation of the latter expression is due to the fact that the encoding symbol length of the data packets 

(e) and the FDT Instances (e’) can be different. 

Moreover, if there are losses in the transmission, it must be taken into account that FDT Instances can be lost, so 

several FDT cycles (ncyclesFDT) –considering that an FDT cycle is the period between the delivery of two FDT 

Instances (tFDT)- can be necessary to obtain the FDT. Thus, formula (6) becomes:
  

 [ ] ).1·(
2

−+= cyclesFDT
CC

W n
m
t

m
ttE   (8) 

Simplifying this expression yields:
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
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m
ttE   (9) 

As (9) shows, the expected value of the waiting time will decrease as the number of FDT Instances sent in the 

carousel is higher and as the number of cycles is lower. 

In order to calculate this number of cycles, the methodology explained in [16] and [30] can be used. The first 

considers uniformly distributed losses whereas the latter models the channel losses using the Markov model. This 

paper considers bursty losses, thus the Markov model [31] is used. In this case, when FEC mechanisms are not 

employed, the expected number of new packets received in a certain cycle can be calculated using a hypergeometric 

distribution. Formula (10) calculates the probability of receiving x new encoding symbols for a block at a certain 

loop.
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where n is the number of packets that make up a file or an FDT Instance; l is the number of lost packets per cycle; 

and v is the number of missing packets at the beginning of the cycle. The expectation value of the number of new 

packets at loop i, will be: 

 .),,,(·)(
0
∑
=

Ρ=
v

lnvix
x

xx   (11) 

The number of cycles needed to download a file or an FDT Instance can be estimated using (12). This formula is 

calculated through an iterative process, using Algorithm 1 and 2, explained later. 
  

 }.)(:min{
1

nixjn
j

i
cycles == ∑

=

  (12) 

Similarly, if AL-FEC is used, the probability of receiving x new packets at any given loop is calculated using the 

next equation: 

  ,
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where nCR is the number of encoding symbols (source symbols plus parity symbols) after applying AL-FEC; r is the 

number of received symbols at the beginning of the loop; and l is the number of lost packets per loop. In this case, 

the expectation value is defined by: 

 .),,,(·)(
0
∑

−

=

Ρ=
rn

CΡ

CΡ

lrnix
x

xx   (14) 

Then, an estimation of the number of cycles is provided by the following expression:  

 }._*)(:min{
1

ratioinefnixjn
j

i
cycles ≥= ∑

=

  (15) 
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As in (10), n represents the number of packets that make up a file or an FDT Instance. The inefficiency ratio 

represents the relation between the number of packets needed to decode a file and the number of source packets that 

make up the file. The value of the inefficiency ratio depends on the coding used. The codes of type Minimum 

Distance Separable (MDS) have an inefficiency ratio equal to 1, whereas in the rest of codes this value is higher.  

On the other hand, in regard to the calculation of the expected download time (tD), as explained before this is 

composed by three terms: tM, tS and the number of cycles needed to complete the download.  
 [ ] [ ] [ ] [ ].)1·( −++= cyclesCSMD ntEtEtEtE   (16) 

Concerning tM, it is possible to obtain an analytical expression considering m possible cases, each one 

corresponding to an FDT Instance in the file carousel. It is assumed that the client accesses the carousel at any 

instant [t, t+tC] and therefore, the m possible cases have equal probabilities, yielding to the following approximation: 

 
[ ] ,

2
'

2 b
SttE LCL

M −≈   (17) 

where S’L is the size of the file to download adjusted by the number of FDT Instances sent during the delivery of 

that file per carousel cycle. That adjustment is represented by the variable α. Also, S’L is adjusted by the additional 

packets transmitted because of the use of AL-FEC. Thus, 

 ,·'
CR

SS L
L

α
=   (18) 

 .·1

1
∑
=

+= N

i
in

m γα   (19) 

Returning to (16), the calculation of tS is more intuitive: 

 [ ] .'
b

StE LL
S =   (20) 

On the other hand, in (16) the number of cycles is calculated using again formulas (10)-(15). This number of 

cycles has a great impact on the tT and, as mentioned, is directly related to the losses in the transmission channel. 

Note that the client, in order to complete the download, needs actually an entire number of cycles (n’cycles) minus a 

percentage of the last cycle (βL), where β L represents the download percentage referred to the file. In this sense, β is 

defined as the download percentage of the entire carousel. In the example of Fig. 3, the client needs 3 cycles to 

complete the download minus a little percentage of the last cycle.  

 .' β−= cyclescycles nn   (21) 

Algorithm 1 and Algorithm 2 show how to calculate both n’cycles and β, for the case of no FEC and AL-FEC, 

respectively. Both algorithms use the formulas presented in (10)-(15), with the following input parameters: the 

number of packets that make up a file (n), the percentage of channel losses and the maximum number of iterations 

used to calculate β. Also, Algorithm 2 receives as input parameters the number of packets of the file after decoding 

(nCR) and the inefficiency ratio. The algorithm calculates the number of new packets received in each cycle and 

checks if enough packets have been received to rebuild the file. In that case, it adjusts the percentage of the last 

cycle that completes the download. This is calculated through an iterative process with a precision determined by the 

maximum number of iterations. For instance, with 10 iterations there is a precision smaller than 10-3 cycles. 
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Algorithm 1. No FEC. 
INPUT: n, losses, max_iter 
OUTPUT: n’cycles, βL 
1: Initialize (n’cycles =1, βL=0, packets_received=0) 
2: Calculate number of losses per cycle (l=n*losses) and 

number of packets received at first loop 
3: while (not all packets have been received) 
4:  n’cycles = n’cycles +1; 
5:  Calculate new packets received (P) in the current 

loop using (11)  
6:  if (packets_received+P=n) 
7:   Initialize (bottom=0, top=1, thres=0, iter=1) 
8:   while (iter<max_iter) 
9:    thres =(bottom+top)/2 
10:    Calculate new packets received (P) with 

(11) and input parameters: 
     thres*(n,packets_received,l) 
11:    if (packets_received+P=n) 
12:     top= thres; 
13:    else 
14:     bottom= thres; 
15:    endif 
16:    iter=iter+1; 
17:   endwhile 
18:   βL=1-thres; 
19:   BREAK  
20:  else 
21:   packets_received = packets_received+P; 
22:  endif 
23: endwhile 

 

Algorithm 2. AL-FEC. 
INPUT: n, nCR, losses, inef_ratio, max_iter  
OUTPUT: n’cycles, βL 
1: Initialize (n’cycles =1, βL=0, packets_received=0) 
2: Calculate number of losses per cycle (l=nCR*losses) 

and number of packets received at first loop 
3: while (not enough packets have been received) 
4:  n’cycles = n’cycles +1; 
5:  Calculate new packets received (P) in the current 

loop using (14)  
6:  if (packets_received+P≥n*inef_ratio) 
7:   Initialize (bottom=0, top=1, thres=0, iter=1) 
8:   while (iter<max_iter) 
9:    thres =(bottom+top)/2 
10:    Calculate new packets received (P) with 

(14) and input parameters:  
    thres *(nCR,packets_received,l) 
11:    if (packets_received+P≥n*inef_ratio) 
12:     top= thres; 
13:    else 
14:     bottom= thres; 
15:    endif 
16:    iter=iter+1; 
17:   endwhile 
18:   βL=1-thres; 
19:   BREAK  
20:  else 
21:   packets_received = packets_received+P; 
22:  endif 
23: endwhile 

 

Both algorithms return the entire number of cycles (n’cycles) and the percentage of the last cycle that completes the 

download referred to the file to download (βL). In order to calculate the β referred to the entire carousel, formula 

(22) is used: 
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'··

·'·

1
∑
=

+

= N

i
i

L
L

emS

CRS

γ
ββ   (22) 

This way, taking into consideration expressions (17)-(22), the expected value of tD of a file L is obtained by 

replacing in (16): 
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That expression can be simplified: 
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Finally, once the expected waiting time and the expected download time are calculated, the estimated value of the 

expected total download time of a file L is calculated replacing in (1): 
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For the sake of clarity, we sum up the main formulas presented. The expected download time of a certain file is 

calculated using (25), where tC is obtained with formula (3) or (4), α is calculated with (19), and the number of 

cycles (both the file and the FDT) is obtained by means of Algorithm 1 (if No FEC is used) or by means of 

Algorithm 2 (if AL-FEC is used).  

4.3   Partial FDT 

The theoretical analysis presented in previous section assumes that the FDT sent by the server is complete, that is, 

it describes all files of the carousel. The calculation of the expected total download time of a file with partial FDT is 

very similar. The main difference regarding (25) is the value of m, which must be replaced by a partial m (mL), 

which indicates how many FDT Instances describing file L are sent in each carousel cycle.
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Supposing that each partial FDT only carries information of one certain file, the sum of all mi must be equal to m: 

 .
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Moreover, the value of αL could be different depending on the way partial FDT Instances are sent. If they are sent 

throughout the carousel, αL will be equal to expression (19), whereas if partial FDT Instances are only sent during 

the transmission of the file they describe, then αL will be calculated using the next expression: 

 .·1
L

L
L n

m γα +=   (28) 

Note that in partial FDT the number of cycles needed to rebuild an FDT (ncyclesFDT) will be lower or equal to the 

ones needed in the previous case since FDT Instances will be made up by less packets (in general, γ=1 if instances 

only describe one file). 

4.4   Interleaving 

On the other hand, server may interleave the packets belonging to different files, instead of using a sequential 

transmission. The waiting time is not affected by the transmission model (only by the transmission frequency of 

FDT Instances and the cycle time), so formula (9) remains valid. Nevertheless, when calculating the download time 

–formula (16)– both tM and tS change. The term referred to the number of cycles is equal. Specifically, since packets 

are interleaved, the time passed since the FDT is received until the first packet of the file to download is received, 

that is tM, is reduced. When calculating tM, considering that packets are interleaved according to a periodic sequence, 

it is taken into account that files with higher sizes will have a lower tM. This time is calculated by multiplying the 

time needed to transmit a packet by the size of the whole carousel and divided by the size of the file to download. 

Thus, the expected tM is: 
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On the contrary, the value of tS increases considerably. This value is different depending on whether FEC is used 

or not. Without FEC, on average, the client must wait until almost the end of the carousel to get the last packet of the 
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file to download. Thus, following a similar reasoning that in formula (28), it is possible to calculate the expected 

value of tS:
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If AL-FEC is used, the value of tS is in the range: 
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The best case is when there are no losses, so the client has to receive n*inef_ratio packets to rebuild the file. As 

the losses increase, tS increases too, with a maximum value of almost tC. Thus, the total download time is obtained as 

in the general case, that is, considering tW, tM, tS and the number of cycles necessary to complete the download. In 

any case, the download time using interleaved scheduling will always be higher than the one obtained using 

sequential transmission. Nevertheless, the use of interleaving could be very recommended in order to minimize the 

effect of burst losses.  

4.5   Multiple download 

Returning to the case of sequential scheduling, if the client decides to download all files of the carousel instead of 

only one, the total download time is calculated in a similar way. In this case, the waiting time would be the same 

that in the general case, calculated using formula (9). On the other hand, the term tM disappears. In this case, the 

download time is determined by the file that takes longer to download. In general, this file will be the largest file in 

the carousel, because its download requires more carousel cycles. The expression of the total download time of the 

entire carousel is: 

 [ ] ).'·(
2
1· β−+





 −≈ cyclesCcyclesFDT

C
T ntn

m
ttE   (32) 

4.6   Prefetching 

In this regard, it would be interesting to start storing packets before the FDT is received, in order to reduce the 

total download time. In this sense, the latest FLUTE RFC [2] indicates that, although generally a receiver needs to 

receive an FDT Instance describing a file before it is able to recover the file itself, when packets are received before 

the FDT, the system performance might be improved by caching such packets within a reasonable time window and 

storage size. Therefore, the client can save packets although the client does not know which file the packets belong 

to until the client receives the FDT. This can be useful in environments where the size of the data carousel is not 

very high and the client does not have limited resources or storage problems. In this case, the total download time 

can be reduced considerably. Regarding the waiting time, this will be the same that in the previous analysis, that is:  

 [ ] .
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If the client starts saving data before the FDT is received, the expression of the download time does not change, 

considering that, in this situation, tM represents the time passed since the client connect to the channel until the client 

receives the first packet of the file to download (although the client is storing all the packets that it receives), so the 

formula that defines the download time is: 
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As clients need to receive the FDT to assign the properties to the file, the total download time will be specified by 

the waiting time if all packets are received before the FDT does, or by the download time otherwise: 

 [ ] }.
·2
·

2
1'·,

2
1.max{

CRb
Sntn

m
ttE L

cyclesCcyclesFDT
CL

T
ab +






 −−






 −≈   (35) 

Finally, recall that all presented formulas remain valid when no FEC is used, by fixing the code rate to 1. 

5. Evaluation 

5.1 Methodology 

This section presents the evaluation of the FDT transmission frequency, first for the general case (Section 5.2) 

and then for some particular cases. Specifically, Section 5.3 analyses the interleaving scheduling and Section 5.4 

evaluates the advantages of using prefetching.  

The main evaluation parameter is the total download time (tT). This section shows various results for different 

values of the number of files in the carousel (N), different AL-FEC protection, and for different sizes and file 

distributions of packets (Si).  

The evaluation of the FDT transmission frequency has been done through different simulations, each comprised 

of as many iterations as needed to provide narrow (99%) confidence intervals. The studies consider different values 

of the number of times an FDT Instance is sent in each carousel cycle (that is, different values of m, which imply 

different values of DFDT). Specifically, the values of m considered have been: 1, N, 2*N, 5*N, 10*N, 50*N and 

100*N. These values of m provide the following approximated values of DFDT: ni*N, ni, ni/2, ni/5, ni/10, ni/50 and 

ni/100 packets respectively.  

In the evaluation, a packet size (e) of 1428 bytes has been used, according to the results presented in [16], and 

taking into account the maximum transfer unit (MTU) of Ethernet (1500 bytes). With that size, and with typical file 

parameters in an FDT (such as content location, TOI or file size), it is assumed that one packet can contain over six 

file descriptions. This way, γ=ceil(N/6). Also, it is supposed that e’=e. Moreover, a transmission rate (b) of 5 Mb/s 

has been used, although the value of this parameter does not affect the conclusions of this study. Regarding channel 

losses, the different studies consider errors from 0 to 50% packet losses, in steps of 5%. 

In relation to AL-FEC, it is considered that LDPC codes are used. These codes provide a good tradeoff between 

performance (download time) and complexity (time necessary to generate parity and time required to do the 

decoding process) [32]. Nevertheless, the studies presented here remain valid independently of the codes used. The 

only difference in the results presented is the value of the inefficiency ratio. In this case, it is considered a value of 

inefficiency ratio equal to 1.07, according to [30] and [33]. 

Finally, mention that in the studies the file L to download will always be the largest of the carousel.  
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5.2  General case 

As a first study case, it is considered that a server sends a data carousel with N=100 files of ni=1000 packets (that 

is, Si=1 428 000 bytes). These values of N and ni, according to (7), provide the following values of DFDT: 100 000, 

1000, 500, 200, 100, 20 and 10 packets.  

Fig. 4 shows that there are high differences regarding the total download time depending on the FDT transmission 

frequency when no FEC is applied. These differences are higher as the losses increase. As the figure reflects, the 

values of m that provide minimum download times are N, 2N and 5N for all percentage of losses. In this case, the 

value of m=N is better since less traffic is generated in the network. On the other hand, the download time gets 

worse if a lot of FDT Instances (m=50N, 100N) are sent. Furthermore, sending only one FDT Instance per cycle is 

not the best option either. 

 
Fig. 4 Total download time evaluation for N=100 files and constant file size of ni=1000 packets, without AL-FEC.  

The system performance can be improved by using AL-FEC. In this sense, Fig. 5(a-f) show the total download 

time for different values of the code rate (CR). It should be noted that the scale of the total download time is 

different comparing with Fig. 4, as well as Fig. 5(f). 

As expected, the use of AL-FEC reduces considerably the total download time. Fig. 5(a-f) reflect that, for any 

code rate, the total download time regarding the losses percentage has a stepped behavior. This is due to the fact that 

the AL-FEC features are homogeneous for a wide range of losses, as shown in [30]. Thus, when the amount of AL-

FEC applied is not enough (high values of code rate) the download time starts increasing (for instance, for losses 

higher than 10% when the code rate is 0.8) because more carousel cycles are needed to complete the download. 

Although using a high code rate guarantees a good protection, this does not always entails a minimum value of 

download time, since using too much parity produces that a lot of parity packets are sent, thus reducing the 

efficiency of the transmission. Furthermore, a high protection increases considerably the bandwidth. In this example, 

as the figures show, a code rate that provides a good tradeoff between total download time and bandwidth is 0.7 – 

Fig. 5(d)-, so this code rate will be used in the rest of studies. 

Regarding the FDT frequency, as in Fig. 4, values of m around N provide minimum download times for all 

percentage of losses and code rates, whereas sending only one FDT Instance or a lot of FDT Instances is not a good 

solution. It can also be noted that the effect of the FDT delivery frequency in the total download time is independent 

of the AL-FEC parity.  
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 (a) CR=0.4 (b) CR=0.5 

    
 (c) CR=0.6 (d) CR=0.7 

    
 (e) CR=0.8 (f) CR=0.9 

Fig. 5 Total download time evaluation for N=100 files, constant file size of ni=1000 packets for different values of code rate. 

5.2.1 Impact of the number of files in the carousel 

Regarding the number of files in the carousel, previous conclusions are confirmed in the studies carried out with 

low and high values of N. The differences between the different values of m are higher as the number of files in the 

carousel increases. To see this, Fig. 6(a-b) show the behavior of the FDT when N=500 files. The figures show higher 

differences between the different values of m (note that high values of m are not shown, which are considerably 

higher than the rest). Once again, values of m=N and 2N provide minimum download times for all channel losses, 

whether AL-FEC is applied or not. 
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 (a) No FEC (b) AL-FEC (CR=0.7) 

Fig. 6 Total download time evaluation for N=500 files and constant file size of ni=1000 packets. 

Table 2 and Table 3 show the difference between the total download time obtained with the optimum value 

(m=N) and the rest of values, for different values of N and percentage of losses, without using FEC and using AL-

FEC respectively. Specifically, tables show how the total download time increases (in percentage) regarding the 

optimum value. These percentages are calculated by dividing the total download time obtained using a certain value 

of m by the total download time obtained with m=N. Note that negative values indicate that a certain configuration 

provides lower download times than the configuration with m=N.  

 
N=10 N=100 N=500 

losses losses losses 

m. 5% 25% 50% 5% 25% 50% 5% 25% 50% 

1 22% 14% 14% 34% 40% 46% 51% 50% 52% 
2N 1% -3% 0% 2% 3% 2% 10% 7% 8% 
5N 2% -1% -1% 6% 7% 7% 36% 28% 32% 

10N -1% 2% -1% 16% 15% 16% 78% 68% 68% 
50N 9% 5% 7% 78% 82% 83% 404% 377% 384% 

100N 17% 15% 17% 164% 161% 172% 790% 754% 789% 

Table 2. Total download time percentage referred to the case of sending m=N FDT Instances per carousel cycle for files of 
constant size of ni=1000 packets without AL-FEC. 

 
N=10 N=100 N=500 

losses losses losses 

m. 5% 25% 50% 5% 25% 50% 5% 25% 50% 

1 78% 179% 99% 94% 94% 94% 84% 84% 82% 
2N -5% -9% -7% 1% 1% 1% 8% 8% 8% 
5N -7% -13% -9% 6% 6% 6% 31% 31% 31% 

10N -7% -13% -10% 14% 14% 14% 69% 69% 69% 
50N -1% -8% -4% 80% 80% 80% 379% 379% 379% 

100N 8% 0% 5% 163% 163% 163% 765% 765% 765% 

Table 3. Total download time percentage referred to the case of sending m=N FDT Instances per carousel cycle for files of 
constant size of ni=1000 packets with AL-FEC. 

Tables show that for all values of N and percentage of losses the total download time with m=2N is almost 

optimum or even optimum in some cases. Both tables show that the difference regarding the optimum value is 

similar for all percentage of losses. Nevertheless, as the number of files in the carousel increases, the differences 

with the optimum value increase drastically. For example, in Tables 2 and 3 for N=500 files and m=10N (that is, 
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sending an FDT Instance each 100 packets) the total download time obtained is over 70% higher than the one 

obtained with m=N (that is, sending an FDT Instance each 1000 packets). Moreover, as mentioned, sending FDT 

Instances more frequently increases the total download time considerably, as values of m=50N and m=100N show. 

Also, sending only one FDT per cycle provides values of total download time rather higher. 

5.2.2 Impact of the waiting time 

On the other hand, as mentioned in the theoretical analysis, there are two variables that make up the total 

download time (tT): the waiting time (tW) and the download time of the file (tD). According to the theoretical 

analysis, the number of FDT Instances sent affects mainly the waiting time. Fig. 7(a-b) show the waiting time for 

only two values of m (m=1 and m=N), since values higher than m=N provide values very close to 0. Results are very 

clear: it is enough to send only N FDT Instances per cycle so as to minimize the waiting time.  

    
 (a) No FEC (b) AL-FEC (CR=0.7) 

Fig. 7 Waiting time evaluation for N=100 files and constant file size of ni=1000 packets. 

In this sense, a related study is presented in Fig. 8(a-b), where it is shown how the waiting time affects the total 

download time. Specifically, the figures depict the percentage of tW regarding tT for different values of N. Also, the 

same two values of m of the previous figure are shown. As m is higher, the waiting time hardly affects the total 

download time. In contrast, when only one FDT is sent in each carousel cycle, the waiting time has a great impact 

on the total download time. 

    
 (a) No FEC (b) AL-FEC (CR=0.7) 

Fig. 8 tW/tT relation evaluation for m=1 and m=N. 

 When no FEC is used, the percentage of tW regarding tT is higher as the number of files in the carousel increases 

if only one FDT Instance is sent. For instance, when N=500, tW represents over 40% of the tT. Moreover, Fig. 8(a) 

reflects that, for a fixed value of N, the percentage remains very similar independently of the losses, except in the 
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case of no losses. In contrast, if AL-FEC is used the waiting time has more importance on the total download time 

when the FDT is not sent very frequently. Fig. 8(b) shows how the relation tW/tT varies depending on the losses. 

From a certain percentage of losses, the relation tW/tT decreases and then increases again. This percentage of losses is 

delimited by the code rate used. In Fig. 8(b), this percentage is over a 25%, a result coherent with Fig. 5(d) and Fig. 

6(b).  

For example, if 100 files are sent in a channel with 10% losses and only one FDT per cycle carousel is sent, the 

waiting time represents 25% of the total download time if no FEC is used, whereas this percentage increases up to 

50% when AL-FEC is used. On the contrary, if N FDTs are sent, the waiting time represents only the 0.5% of the 

total download time without FEC and the 1% with AL-FEC. This percentage is similar in all cases studied in this 

section.  

5.2.3 Impact of the file size distribution 

Regarding the file size distribution, normally the files of the carousel will not have the same size. Fig. 9(a-b) 

consider a carousel where the size of the files follows a lognormal distribution which mean is 1000 packets. 

Regarding the comparison between different values of m, results are very similar to those shown in Fig. 4 and Fig. 

5(d). In addition, as Fig. 9(a) shows, a carousel which file size follows a log normal distribution provides slightly 

higher download times when no FEC is used. Nevertheless, when AL-FEC is used –Fig. 9(b), the total download 

time obtained using a log normal file size distribution is almost the same as the one obtained when files have the 

same size. Again, it should be noted the different scale of Fig. 9(a) and Fig. 9(b). 

    
 (a) No FEC (b) AL-FEC (CR=0.7) 

Fig. 9 Total download time evaluation for N=100 files and log normal file size distribution with mean=1000 packets. 

5.2.4 Impact of the file size  

Next study considers a carousel which files are 3 times larger than in previous studies, that is, files of 3000 

packets (over 4 Mbytes). In this study, the values of m have been modified in order to maintain the same values of 

DFDT of the previous studies. Thus, the values of m: 1, N, 2N, 3*2N, 3*5N, 3*10N, 3*50N and 3*100N mean sending 

the FDT Instances every approximately 300 000, 3000, 1500, 500, 200, 100, 20 and 10 packets respectively. Fig. 

10(a-b) show that the values that minimize the download time for all percentages of losses are m=N (DFDT=3000 

packets), m=2N (DFDT=1500 packets) and m=3*2N (DFDT=500 packets). These are also the optimum values in a 

carousel in which the file size of the carousel follows a log normal distribution (although they are not shown in the 

paper). Therefore, the conclusions are very similar to those reached in the previous studies. 
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 (a) No FEC (b) AL-FEC (CR=0.7) 

Fig. 10 Total download time evaluation for N=100 files and constant file size of ni=3000 packets. 

5.3 Interleaving 

On the other hand, next study analyzes the effect of the scheduling model. Table 4 shows the increase (in 

percentage) of the total download time using interleaving with respect to using sequential scheduling for different 

percentage of losses, number of FDT Instances sent and using AL-FEC or not. These percentages are calculated as 

in Tables 2 and 3. The increase of the total download time using interleaving is especially important, apart from the 

case of no losses without FEC, when AL-FEC is used. In these cases, the difference between sequential and 

interleaved transmission is approximately half cycle. For instance, in the case of AL-FEC with 25% of losses, it is 

necessary only one cycle to download the file but, whereas in the sequential mode the download is completed after 

approximately half cycle, the interleaved transmission requires almost the complete cycle, thus the difference 

regarding the total download time is almost the double comparing these two models. This fact and the rest of results 

of the table are coherent with the formulas previously presented. Independently of the number of FDT Instances sent 

during the carousel, the interleaving model always increases the total download time. 

 
No FEC AL-FEC 

losses losses 

m. 0% 5% 25% 50% 0% 5% 25% 50% 

1 92% 29% 10% 4% 24% 28% 49% 17% 
N 181% 38% 14% 8% 48% 56% 97% 33% 

2N 182% 36% 15% 9% 48% 56% 97% 33% 
5N 183% 34% 18% 7% 48% 56% 98% 33% 

10N 183% 35% 15% 7% 48% 56% 98% 33% 
50N 183% 38% 16% 6% 48% 56% 98% 33% 

100N 183% 37% 18% 6% 48% 56% 98% 33% 

Table 4. Relation between the total download time obtained with interleaving regarding the total download time obtained with 

sequential scheduling. N=100 files and constant file size of ni=1000 packets. 

5.4 Prefetching 

Finally, it is considered the case of storing packets before the FDT is received. It may appear that this could 

reduce considerably the total download time but, according to Fig. 7(a-b) and formula (33), this assumption is only 

true when few FDT Instances are sent. For example, if only one FDT is sent, saving packets before the FDT is 

received can reduce the total download time almost a 50% for different percentages of losses. Nevertheless, the 



20 
 

storage space required by clients could increase by a factor equal to the number of files in the carousel, in this case 

by 100.   

6. Conclusions  
This paper has shown the great influence that the FDT transmission frequency has over the total download time of 

a file. A proper configuration of the FDT transmission frequency increases the bandwidth efficiency, thus improving 

the Quality of Experience perceived by the users. In this sense, there are certain configurations of the FDT that 

reduce the total download time. The results show that there is a range of values of the FDT frequency delivery that 

minimizes the total download time. Sending as many FDT Instances as files (N) or as the double of files (2N) in the 

carousel per cycle provide very good results, whether AL-FEC is used or not. However, if only one FDT Instance 

per cycle is sent, the time clients wait until they receive the FDT increases considerably, therefore the total 

download time increases too. Also, if several FDT Instances are sent the total download time also gets worse 

considerably. The difference among the total download time obtained using an optimum FDT configuration and 

other configurations is higher as the number of files in the carousel and its size is higher, and as the amount of losses 

in the channel increases. 

Obviously the use of AL-FEC mechanisms improves considerably the total download time. In this sense, it is 

important to consider the percentage of losses of the transmission channel, in order to use an appropriate code rate 

that provides a good value of the total download time without increasing excessively the channel bandwidth.  

Among the two parameters that make up the total download time, the waiting time has an important impact on the 

total download time only when few FDT Instances per cycle are sent. Sending more FDT Instances allows to 

minimize the waiting time. In this sense, it is not a great advantage to save packets before the FDT is received. In 

doing this, the waiting time would disappear, but as this waiting time would be very low with a proper value of FDT 

frequency, the profit would be minimal, at the expense of increasing extensively the memory and computational 

resources in reception. 

On the other hand, although interleaved scheduling can be very useful to minimize the burst losses, sequential 

transmission always reduces the total download time.  

To sum up, a proper configuration of the AL-FEC protection and the FDT transmission frequency provides an 

optimum content delivery through the FLUTE protocol. 
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