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Abstract

Wireless medium access control (MAC) and routing protocols are fundamental

building blocks of the Internet of Things (IoT). As new IoT networking standards

are being proposed and different existing solutions patched, evaluating the end-to-

end performance of the network becomes challenging. Specific solutions designed

to be beneficial, when stacked may have detrimental effects on the overall network

performance. In this paper, an analysis of MAC and routing protocols for IoT is

provided with focus on the IEEE 802.15.4 MAC and the IETF RPL standards. It

is shown that existing routing metrics do not account for the complex interactions

between MAC and routing, and thus novel metrics are proposed. This enables a

protocol selection mechanism for selecting the routing option and adapting the

MAC parameters, given specific performance constraints. Extensive analytical

and experimental results show that the behavior of the MAC protocol can hurt

the performance of the routing protocol and vice versa, unless these two are

carefully optimized together by the proposed method.
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1. Introduction

Internet of Things (IoT) has been introduced in 1999 to envision the concept

of connecting physical objects, such as sensors and smart phones, supporting

direct wireless connection to the internet. This enables an immense variety of

applications in an Internet-like framework [1]. Any terminal connected to the

Internet will be able to interact with these objects. Applications include among

others, building and industrial automation, health-care, personal wireless com-

munications, smart grids, and security. However, to support such an increasing

number of emerging applications, the wireless medium access control (MAC) and

the routing protocols must be inherently scalable, interoperable, and they must

have a solid standardization base to support future innovations.

Differently from classic wireless ad hoc and sensor network applications, IoT

applications have complex and heterogeneous requirements. The network perfor-

mance is not only measured in terms of throughput, but other indicators, such as

reliability, delay, and energy consumption, must be jointly optimized and adapted

to different application scenarios [2]. Assuming a network of several objects in-

terconnected to support an IoT application where efficient information routing is

essential, the decision over different routing paths highly depends on link perfor-

mance indicators, which are influenced by the MAC parameters. On the other

side, the routing determines the distribution of the traffic load in the network,

which significantly affects the aforementioned performance indicators. Therefore,

it is inefficient to design MAC and routing protocols separately and their joint

adaptation is essential to achieve the desired network performance. The essential

question is which are the metrics that enable such an efficient joint adaptation.

By following a classic layered design process, standardization bodies such as

IEEE and Internet Engineering Task Force (IETF) are working independently

on the design of the future MAC and routing protocols for IoT. According to
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recent surveys [3], the protocol stack for IoT applications integrates the IEEE

802.15.4 [4] standard for physical and MAC layers, and the IPv6 routing protocol

for low power and lossy networks (RPL) [5]. The IEEE 802.15.4 defines flexible

physical and MAC layers for low data rate and low power applications. The

standard has been adopted with some modification also by a number of other so-

lutions, including ZigBee, WirelessHART, ISA-100 [6], and it already represents

more than 50% of the building and industrial automation market [7]. At the net-

working layers, the IPv6 routing protocol for low power and lossy networks (RPL)

represents the reference standard proposed by the IETF for IPv6-compatible IoT

applications.

In this paper, we first emphasize the main characteristics of the IEEE 802.15.4

MAC and the IETF RPL protocols. We then present an analysis to characterize

the protocols mutual effects and their dynamics. In particular, we show that

the level of contention at the MAC layer impacts the routing decisions in an

unexpected manner. In addition, we show that in the presence of dominant

paths in the network, i.e., paths with high traffic forwarding, the performance

indicators at the MAC layer are significantly affected. Based on our analysis, we

propose metrics that guide the interactions between MAC and routing, and we

introduce a mechanism that selects the appropriate routing metric and adapts the

corresponding MAC parameters to fulfill one of the most important requirement

of several IoT applications: minimize the energy consumption in the network,

given reliability and delay constraints.

Our methodology starts from the modeling of the behavior of the current pro-

tocols, motivating in this ways the design of new efficient metrics. The proposed

metrics are numerically and experimentally validated in a realistic environment

and in comparison to existing metrics. To the best of our knowledge this is the

first paper to present in depth modeling of the protocol interactions, to propose

cross layer routing metrics supported by a protocol selection and adaptation
3



mechanism, and to give an extensive experimental study where approaches in

literature are compared. We believe that the outcome of this work could give

important insights to influence the standardization process for the IoT.

The rest of the paper is organized as follows. In Section 2, we survey the re-

lated literature. Section 3, gives an overview of the basic functionalities/parameters

of the IEEE 802.15.4 MAC and the IETF RPL protocols. In Section 4, we

motivate our analysis and emphasize the importance of cross-layer interactions,

considering the requirements of IoT applications. In Section 5, the interactions

among MAC and routing are modeled. Then, Section 6 presents novel MAC-

aware routing metrics, following the lines of our analysis. In Section 7, we present

the experimental evaluation of the proposed metrics in comparison to existing ap-

proaches. Finally, Section 8 concludes the paper.

2. Related Work

The importance of a mathematical modeling of MAC protocols related to

sensor networking has been advocated in recent literature [8] – [10]. The critical

effect of MAC parameters on the performance has been shown and discussed

in [8] for IEEE 802.15.4 networks. In [9], a Markov chain model is used to

design a distributed adaptive algorithm for minimizing the power consumption

of single hop star networks using the IEEE 802.15.4 MAC, while guaranteeing

a given successful packet reception probability and delay constraints. In [10],

an automatic MAC protocol selection mechanism is proposed. The main idea of

this approach is to provide a mathematical analysis of various MAC protocols,

including the IEEE 802.15.4 MAC, and to choose the optimal MAC protocol and

adapt its parameters for the selected modality, topology, and packet generation

rate. In particular the designed mechanism takes into account the corresponding

physical layer technology and hardware, while satisfying constraints for energy,
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reliability, and delay. The value of the aforementioned approaches is that the

algorithms do not require any modification of the IEEE 802.15.4 standard to be

applied. However, their application is limited to single-hop networks.

Continuing our literature review in the MAC design and adaptation, a frame-

work for MAC parameter adaptation based on analytical modeling has been also

presented in [11]. This approach has been developed for XMAC and LPP proto-

col, but the results are not intended for the IEEE 802.15.4 MAC. An adaptation

mechanism of the IEEE 802.15.4 MAC has been proposed in [12]. The mecha-

nism was experimentally validated in a wireless body sensor network deployed

for medical applications. However, this approach does not include any analyti-

cal modeling of the performance of the MAC and the adaptations are performed

based on observations during their experimental study.

Within the literature related to the study of the routing protocols for IoT ap-

plications, [13] presents an experimental performance evaluation of RPL using the

basic hop count routing metric and the expected transmissions count (ETX) [14]

metric. The ETX is a reliability metric that indicates the number of retransmis-

sions a node expects to execute to successfully deliver a packet to the destination

node. However, the study in [13] does not consider the performance of RPL when

a contention-based MAC protocol is active and there is no proposal about new

routing metrics. In the back-pressure collection protocol (BCP) [15], an extension

of the ETX metric lead to the introduction of a dynamic back-pressure routing

metric. In BCP, the routing and forwarding decisions are made on a per-packet

basis by computing a back-pressure weight of each outgoing link that is a function

of the queues of the nodes and the link state information. BCP is tested over

a low power contention-based MAC. However, the effects of the limited number

of backoffs and retransmissions, present in the IEEE 802.15.4 standard, are not

taken into account.

In [16], the authors propose a metric for opportunistic routing for very low-
5



duty cycled MACs that considers the expected number required to successfully

deliver a packet from source to destination. In [17], a multi-path opportunistic

routing is proposed for time-constrained operations over IEEE 802.15.4 MAC.

However, load balancing and the effects of contention-based access are not con-

sidered in both previous approaches. A study on the interaction of RPL with

the MAC layer is presented in [18], where the use of a receiver-initiated MAC

protocol in enhancing the performance of RPL is investigated. In [19], a cross-

layer framework has been proposed for IoT applications, by considering SMAC

and RPL. However, these works do not take into account the specifications of

the IEEE 802.15.4 MAC, which is widely used as the default MAC protocol for

IoT [3].

Our work differentiates from the aforementioned approaches by modeling the

IEEE 802.15.4 MAC and RPL protocol interactions, when applied in multi-hop

networks. Considering complex multi-hop topologies, in comparison to single

hop topologies of previous studies, we investigate the performance of the real-

istic network deployments for supporting IoT applications. In particular, we

propose cross layer routing metrics supported by a protocol selection and adap-

tation mechanism. Finally, we present an extensive experimental validation of

our approach in comparison to other routing metrics.

3. Protocols Overview

In this section, we give an overview of the main functionalities of the IEEE

802.15.4 MAC and RPL protocols, which allows us to characterize their perfor-

mance later on in the next sections.

3.1. IEEE 802.15.4 MAC Protocol

The IEEE 802.15.4 MAC defines two basic access modalities: contention-

based MAC, with a simple unslotted carrier sense multiple access collision avoid-
6



ance (CSMA/CA), and hybrid-based MAC with a slotted CSMA/CA and a

contention-free operation based on guaranteed time slot (GTS) allocation. In

the following, we focus on the unslotted modality, which is of major interest for

RPL.

Consider a node Vi trying to transmit a packet. First, the node waits for a

random number of time units in the window [0−2m0 ]. Then, the node performs a

clear channel assessment (CCA). If the channel is idle, the node begins the packet

transmission. In case that the CCA fails due to busy channel, the MAC layer

increases the backoff window exponentially. We indicate by αi the probability

of busy channel for node Vi. If the backoff exponent reaches a maximum value

mb, it remains at that value until it is reset. If the number of backoffs exceeds a

maximum number m, then the packet is discarded due to channel access failures.

Otherwise the CSMA/CA algorithm generates a random number of complete

backoff periods and repeats the process. The reception of an acknowledgement

(ACK) is interpreted as successful packet transmission. If the node fails to receive

the ACK, the MAC re-initializes the backoff window and follows the CSMA/CA

mechanism to re-access the channel. After a maximum number of retransmissions

n, the packet is discarded.

3.2. Routing Protocol for Low Power and Lossy Networks (RPL)

RPL constructs destination-oriented directed acyclic graphs (DODAGs) over

the network, according to optimization objectives. Every node in a DODAG is

identified by a rank, a scalar value that represents the relative position of the

node with respect to other nodes and the DODAG root. Nodes build and main-

tain DODAGs by periodically multicasting messages, called DODAG information

object (DIO), to their neighbors. To join a DODAG, a node listens to the DIO

messages sent by its neighbors, selects a subset of these nodes as its parents, and

compute its rank. Although the rank is computed by using link costs, topol-
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ogy building and maintenance mechanisms can be made independently of packet

forwarding procedures.

In Fig. 1, we visualize two randomly generated DODAG examples that we use

as reference topologies in our evaluation study. Each end-device has one or more

nodes in its parent set. The packet forwarding is based on end-to-end metrics

and application constraints. There are various metrics and constraints that can

be used. Reliability, packet delay, and node energy consumption are indicators

that can be used both as metrics and constraints. For example in Fig. 1a, we

consider node V5 that has V1, V2, and V3 in its parent set. The metric of a generic

link (i, j) is denoted as πi,j. Then, V5 chooses V1 as next hop node if π5,1 + π1,0

is better than π5,2+π2,0 and π5,3+π3,0 . We provide details of the MAC-routing

interactions in the next section.

4. MAC and Routing Interactions

In this section, we describe the interactions between MAC and routing

through the feedback loop visualized in Fig. 2 and we highlight the importance

of cross-layer interactions in IoT standards.

The supported application sets a traffic generation rate for each node in the

network, which is related to the required sampling time of the sensing operation

in case of sensor networks, or a generic data generation rate of the applica-

tion. Moreover, the application layer determines performance requirements for

the lower protocol layers (e.g., minimum data delivery rate and maximum packet

delay). The routing layer combines the topological information in a network com-

munication graph. In addition, based on specific metrics, the routing protocol

takes appropriate decisions to distribute the traffic in the network. It affects the

load that each link, regulated by the MAC layer, has to serve. As an output of

the MAC process, we get the link performance in terms of energy consumption,
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Figure 1: DODAG example for a randomly generated topology with 7 nodes (a) and 18 nodes

(b).

9



2009 -11-18                             Principles of Wireless Sensor Networks

Application

Packet 
generation 

rate

Performance
requirements

Routing Routing 
metrics

Traffic 
pattern

Link

Performance 
indicators

MAC
Link

performance

Piergiuseppe Di Marco, pidm@ee.kth.se

Figure 2: The loop of MAC and routing interactions. The closed loop can lead to instabilities

if these interactions are not considered when selecting the protocols.

reliability, or delay. Furthermore, the link performance indicators may influence

directly the routing metric, so closing the loop between MAC and routing lay-

ers. The combined analysis of the MAC and the routing layers determines the

end-to-end performance indicators.

Due to the inter-dependency, if the routing is designed without taking into

account the MAC, the end-to-end performance indicators could be far from the

desired by the application. Similar performance anomalies happen when MAC

protocol standards are designed or selected regardless of the applied routing pro-

tocol. The wireless channel is shared, thus a choice of a MAC protocol may

cause unexpected packet collisions or interference over other links. We advocate

a protocol design methodology for which the cross-layer interactions are mathe-

matically described as a function of the MAC and routing parameters, namely

the free parameters that can be regulated to influence the protocol performance.
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The mathematical description must be accurate enough to be of practical use in

adaptation mechanisms for the real world protocols. By extending the approach

introduced in [10], we propose a mathematical selection tool based on a library

of compatible MAC and routing protocols. The tool picks the best protocol so-

lution in the library, with optimal parameters for the specific application. The

selection takes as input the network topology and packet generation rate, the

application requirements for reliability, delay, and energy consumption, and the

resource constraints from the underlying physical layer. Then, the tool chooses

the protocol with optimal parameters for the specific topology and packet gen-

eration rate that gives the best performance. The idea of analytical description

and optimization of the cross layer interactions is not new, but as a matter of

fact, the standardization process seems to consider it only to some little extent.

In the next section, we give a detailed description of the proposed joint MAC

and routing model.

5. Joint MAC and Routing Model

This section describes the joint model of the IEEE 802.15.4 MAC and the

IETF RPL.

As introduced in Section 3.1, the level of contention at node Vi is described

by the busy channel probability αi, which is a function of the MAC parameters

(m0, mb, m, and n), of the traffic Qi, and of the busy channel probabilities of

the neighboring nodes αk. A model based on Markov chain analysis to derive αi

analytically is presented in [20]. To provide a simple solution, we assume that αi is

estimated at node Vi during the CCA. The busy channel probability is initialized

at the beginning of the node’s operation. The estimation of the probability uses

a sliding window. When the node senses the channel, the probability is updated

by αi(t) = rαi(t − 1) + (1 − r)α̂i(t) for some r ∈ (0, 1), respectively. Note that
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α̂i(t) is the busy channel probability of the current sliding window.

Given that the channel is idle during CCA, the probability γi,j that a packet

is not received at destination is given by

γi,j = pcoll,i + (1− pcoll,i)pi,j , (5.1)

where pcoll,i is the probability that Vi encounters a collision due to a simulta-

neous transmission as the probability that at least another node performs the

CCA and finds the channel idle in the same time unit, namely pcoll,i = αi/Ts.

The bad channel probability pi,j is the probability that the link quality is not

sufficient to yield a successful packet reception at the receiver Vj. We notice that

the probability γi,j is an upper bound of the packet loss probability since it con-

siders unsuccessful all the events in which at least another node is transmitting,

independently of the received SINR.

We evaluate the reliability as the successful packet reception rate or, equiv-

alently, the complement of the discard probability. Packets are discarded due

to the following reasons: (i) channel access failure or (ii) retransmissions limit.

Channel access failure happens when a packet fails to obtain clear channel within

the maximum number of backoffs m+1. In the assumption of independent chan-

nel conditions for consecutive channel accesses, the probability of finding the

channel busy for m+ 1 attempts is αm+1
i . This probability has to be considered

also for any of the n retransmission stages. The probability of being in the k-th

retransmission stage is (γi,j(1 − αm+1
i ))k. Therefore, the probability that the

packet is discarded due to channel access failure is

pcfi,j = αm+1
i

n∑

k=0

(γi,j(1− αm+1
i ))k (5.2)

Furthermore, a packet is discarded if the transmission fails due to repeated

collisions and losses after the maximum number of retransmissions n. The prob-
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ability of a packet being discarded due to the retransmissions limit is

pcri,j = (γi,j(1− αm+1
i ))n+1 . (5.3)

The reliability of the link (i, j) is given by

Ri,j = 1− pcfi,j − pcri,j . (5.4)

We notice that the reliability is dependent only on the busy channel probability

αi, the bad channel probability pi,j, and the MAC parameters m,n. As explained

before, the busy channel probability αi can be estimated at the transmitter dur-

ing the CCA. Therefore, a node does not require any extra communication and

sensing state to estimate this probability compared to the default IEEE 802.15.4

standard. As shown in [21], the bad channel probability pi,j can be retrieved

by the link quality indicator (LQI) which is a parameter offered by the IEEE

802.15.4 physical layer header for every received packets [4].

We consider the delay for successfully received packets as sum of the queueing

time and the service time. As the service time we consider the time interval from

the instant the packet is ready to be transmitted, until the ACK is received. If

a packet is dropped, its delay is not included into the derivation. Eventually,

we consider the power consumption of nodes in the network, as the sum of the

contributions in backoff, carrier sense, transmission, reception and idle-queue

state. We assume that relay nodes are in idle-listening state also during the

inactivity period (depending on the duty cycle policy). We provide more details

on the analytic derivation of these performance requirements in [20].

We represent the dynamical interaction of MAC and routing using a statistical

model. Let λj be the traffic generation rate of node Vj. In addition to λj , node Vj

has to forward traffic generated by its children. Let Qj be the traffic generated

plus the traffic that the node has to forward (generated and routed by other

nodes) to a node in the set of candidate receivers Γi.
13



According to the RPL specifications, RPL path selection is modeled by a real

valued matrix M, in which element Mi,j corresponds to the probability that the

metric πi,j evaluated for the link (i, j) is the best among the set of candidate

receivers Γi.

The distribution of the traffic flows along the network is modeled by the

matrix M, and by a scaling due to that only successfully received packets are

forwarded. Therefore, we define a matrix T such that Ti,j = Mi,jRi,j where Ri,j

is the reliability in the link (i, j), which clearly depends on the traffic rate of the

node. It follows that the vector of node traffic generation probabilities Q is the

solution of a system of flow balance equations Q = QT+ λ. In steady state, we

solve the equation and have

Q = λ [I −T]−1 , (5.5)

where I is the identity matrix and −1 denotes the matrix inversion, which always

exists becauseT is a probability matrix and thus has eigenvalues strictly less than

one [22]. Eq. (5.5) gives the fundamental relation between the packet generation

rate, the effect of routing (via M) and the performance of the MAC layer (via

the link reliability Ri,j). Eq. (5.5) together with the expressions for the per-link

reliability Ri,j gives the distribution of the traffic in the network. In practice,

Eq. (5.5) is the fundamental equation to model mathematically in a simple yet

effective manner the joint effects of MAC and routing. The i-th component of the

vector Q is the amount of traffic that the i-th node has to forward to its parent

per unit time. This traffic is handled by the MAC and thus determines the per-

link performance such as reliability, delay and energy consumption. We remark

that due to the acyclic structure of the communication graph, the elements Qi

can be calculated locally at node Vi by using information on the own traffic λi,

and the estimate of the total coming traffic from children nodes. When node Vi

switches its selected parent to Vj , it combines the information on the traffic Qj,
14



which can be encapsulated in the DIO messages of Vj and the forwarded traffic

Vi. The end-to-end reliability of a node is the product of each link reliability in

the path to the root. Similarly, the end-to-end delay is the sum of the delays in

the path from the transmitter to the root node. Therefore, we can define routing

metrics that exploit our model to locally estimate the reliability and the effects

of routing decisions on the traffic distribution, as we show in the next section.

6. MAC-aware Routing Metrics

In this section, we present two metrics that are based on the link performance

at MAC layer. Moreover, they are simple and easy-to-implement in practice using

mechanisms defined in standards.

First, we introduce the R-metric. For node Vi, we define the metric R(i) =

Ri,0, where Ri,0 is the end-to-end reliability between node Vi and V0. Then, nodes

forward their packets by selecting a parent Vj such that the end-to-end reliability

is maximized, i.e.,

maximize
j∈Γi

Ri,j · R(j).

The set of candidate receivers Γi is composed by the set of nodes that can guaran-

tee a progress towards the destination V0, according to RPL specifications. The

metric is calculated for all nodes starting from the root V0 and progressing from

parents to children in the DODAG. The R-metric extends the ETX metric at

the MAC layer, by considering also packet losses due to the MAC contention.

In fact, the ETX is based on the expected number of retransmissions needed to

reach a destination, by counting the number of transmissions and ACKs. ETX

is an additive metric over the path. R-metric is based on the probability that a

packet is correctly received in each link of the paths, within a maximum number

of backoffs and retransmissions at the MAC layer.

Moreover, the R-metric extends the concept of link quality, by including the

15



effects of contention at the MAC layer. In fact, even in case of same LQI indica-

tor among different links, the routing decision determines a different distribution

of the traffic over the network and a different level of contention at MAC layer

for the forwarding nodes, thus different busy channel probabilities αi, which are

included in the expression of the reliability. We recall that the estimation of the

busy channel probability can be performed at the node without extra informa-

tion needed or modification to the standard IEEE 802.15.4 MAC. Moreover, its

estimation is faster than the ETX estimation, which is performed over a certain

number of received ACKs, as we report in our experimental evaluation.

For low power applications the reliability can be just set in terms of minimum

requirement, and the objective is mainly the network lifetime. We then propose

a metric called Q-metric, which distributes the forwarded traffic to provide load

balancing in the network. In particular, the Q-metric at nodes Vi computes

the traffic Qi. Node Vi selects the forwarding parent by solving the following

optimization problem:

minimize
j∈Γi

Pt,jQj + Pr,j(Qj − λj) (6.1)

subject to Ri,j · R(j) ≥ Rmin ,

where Pt,j is the power consumption in transmission, and Pr,j is the power con-

sumption in reception, and Rmin is the constraint on the reliability required by

the application. The cost function in Eq. (6.1) is the sum of the cost for transmit-

ting the total traffic Qj and cost for receiving traffic generated by children nodes

(Qj−λj). The values of power consumptions in standard conditions Pt,j , Pr,j can

be found in [23]. The metric provides load balancing in terms of generated and

forwarded traffic. As far as the implementation of this metric is concerned, node

Vi needs only local information about its own forwarded traffic Qi, and the gen-

erated and forwarded traffic from each candidate destination, which is available

through the exchange of DIO messages. We recall that load balancing is achieved
16



typically by considering node queues, as in BCP [15]. The back-pressure algo-

rithm in [15] uses a weighted ETX cost, which includes the queue differential

between transmitter and receiver. The protocol guarantees load balancing by

avoiding at any time that node queues overloading. However, the back-pressure

metric is not able to capture the contention level when the traffic load is low

(which is the case in most WSN applications in real life). In other words, BCP

is efficient in saturated cases where the forwarded traffic is high. On the other

hand, the Q-metric is able to directly measure the contention level without mea-

suring the node queues and adapt the routing decisions accordingly. We present

the effectiveness of the proposed metrics and a comparison to the back-pressure

routing in Section 7 through experiments.

7. Experimental Evaluation

In this section, we present experimental results related to the performance of

IETF RPL, the contention-based IEEE 802.15.4 MAC and the proposed enhance-

ments. As a benchmark, we evaluate the performance of our metrics against the

back-pressure algorithm proposed in [15].

We assume that nodes are deployed and connected to form DODAGs as for

the topologies in Fig. 1. We constructed the topology in Fig. 1a to validate the

proposed metric in a simple two-hops scenario. However, we test our metrics also

on randomly generated topologies with larger number of nodes as in Fig. 1b, to

prove that the results we present in this section give general insights and can be

derived for different multi-hop topologies.

The IEEE 802.15.4 protocol is implemented on a test-bed using the TelosB

platform [24] running the Contiki OS [25]. We assume that each node generates

the same traffic with rate λ = [0.1 ÷ 10] pkt/s, except V2 that generates traffic

with rate λ2 = 20 pkt/s (dominant node). We chose the unslotted MAC modal-

17



10
−1

10
0

10
1

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Traffic rate λ (pkt/s)

E
nd

−
to

−
en

d 
re

lia
bi

lit
y

 

 

Average reliability, R−metric, model
Average reliability, R−metric, exp
Average reliability, Q−metric, model
Average reliability, Q−metric, exp
Min reliability, R−metric, model
Min reliability, R−metric, exp
Min reliability, Q−metric, model
Min reliability, Q−metric, exp

Figure 3: End-to-end reliability for the multi-hop topology in Figure 1. Average reliability is

evaluated among nodes V4 to V7. Minimum reliability is the average reliability of the worst case

path.

ity since it is one of the recommended in the IETF RPL standard. However,

the methodology that we have proposed above can be applied to any randomized

MAC, compatible with IETF RPL. We represent then a realistic network oper-

ation in which heterogeneous traffic conditions are determined in the network

both by a different traffic generation rate among nodes and distribution of the

forwarded traffic among various routing paths.

7.1. Model Validation

In the first set of experiments, we validate our analytical model against ex-

perimental results of the two proposed metrics for the topology in Fig. 1a. Fig. 3

shows the end-to-end reliability vs the traffic rate as obtained by the mathemat-

ical model and the experiments when our proposed R-metric and Q-metric are

used. We show the average reliability among nodes V4 to V7 and the minimum
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Figure 4: End-to-end delay for the multi-hop topology in Figure 1. Average delay is evaluated

among nodes V4 to V7. Maximum delay is the average delay of the worst case path.

path reliability achieved in the network. We observe that the experimental results

are very close to the analytic results. In Fig. 3, the minimum reliability for the

R-metric is achieved for the path that includes V4 and V1. The reliability with

the Q-metric does not vary significantly in the paths and the minimum reliability

is only slightly lower than the average reliability and, furthermore, it is greater

than the minimum reliability for the R-metric. In our experimental evaluation,

the gap in the minimum reliability is around 5% for λ = 10 pkt/s and it increases

as the traffic rate increases. We notice that, even though the R-metric achieves

the best average performance from a network perspective, the Q-metric is prefer-

able if a guaranteed reliability is required for all paths in the network, which is

often desired by IoT applications [3].

In Fig. 4, the end-to-end delay as obtained by the mathematical model and

the experiments with R-metric and Q-metrics is presented. We visualize the
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average delay achieved for nodes V4–V7 and the maximum path delay in the

network. By reducing the level of contention at the MAC layer, the average delay

is lower when the R-metric is used. In the range of traffic rates analyzed, which

is of interest for RPL applications [5], the queueing delay does not influence the

performance significantly. Therefore the R-metric guarantees also a minimization

of the average delay. However, the maximum delay, which is again achieved for

the path that includes V4 and V1, is lower with the Q-metric. If there are delay

deadlines for all nodes, as in the proposed network scenario, the Q-metric is

preferable. The gain with the Q-metric is 4% when compared to the R-metric

for λ = 10 pkt/s.

7.2. Performance Comparison - ETX

In this section, we show how the R-metric outperforms ETX by accounting

for MAC-routing interactions. Consider the multi-hop topology in Fig. 1a. Node

V7 has two paths to the destination, one path through V2 and the other through

V3. Assume that the path through V2 has ETX7,2 = 2.1 and ETX2,0 = 2.1, which

determines a total expected number of retransmissions ETX7,2,0 = 4.2 to the

destination. The second path has ETX7,3 = 1.1 and ETX3,0 = 2.9, which makes

a total ETX7,3,0 = 4.0. In absence of a retry limit at MAC layer, the second

path through V3 has the minimum ETX value and gives the highest end-to-end

delivery ratio. However, if we set a maximum number of retransmissions n = 4,

as specified by the IEEE 802.15.4 standard, and by assuming independent loss

probability for consecutive retransmissions, the end-to-end success rate is 92.3%

in the path through V2, while only 87.7% in the path through V3, due to higher

packet loss probability in the link (3, 0). The path through V2 has a 5% worse

ETX value but it guarantees a 5% better end-to-end reliability, and this effect

is expected to be more evident by considering correlation between consecutive

retransmissions.
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Figure 5: Reliability estimation with R-metric and ETX metric for topologies in Fig. 1a and in

Fig. 1b.

In Fig. 5, we report the estimated link reliability by using R-metric and ETX

metric for the two topologies in Fig. 1. The steady state value represent the

average reliability in stationary conditions after sending 105 packets. The ACK-

based estimation used in ETX shows larger variability and slower convergence

speed with respect to the R-metric mechanism bases on the busy channel prob-

ability.

7.3. Performance Comparison - Backpressure Routing

In Fig. 6, we show the end-to-end reliability of each node of Fig. 1a, by fixing

λi = 5 pkt/s for i 6= 2 and λ2 = 20 pkt/s. We compare R-metric, Q-metric, and

back-pressure. The R-metric guarantees high reliability for the dominant node

V2 which forwards most of the traffic in the network. However, as anticipated

from the results in Fig. 3, the reliability of V4 is compromised. The Q-metric

guarantees the reliability constraint in V4 and outperforms the back-pressure
21
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Figure 6: End-to-end node reliability for the multi-hop topology in Fig. 1a, by fixing λi = 5

pkt/s for i 6= 2 and λ2 = 20 pkt/s.

metric. A frequent parent switching in the back-pressure routing determines an

increase of the traffic due to high DIO message transmissions that affect the

reliability.

To better understand the results shown in Fig. 6, it is necessary to study

how the two routing metrics distribute the traffic among the various paths. In

Figs. 7 – 9, we plot the time evolution of the parent selection for each end-device in

the network by using R-metric, Q-metric, and back-pressure respectively. In the

experiment, we set λi = 10 pkt/s for i 6= 2 and λ2 = 20 pkt/s. The end-devices

start from a random initial condition and explore the various routing paths to

determine the next-hop node according to the selected metric. When using the

R-metric, nodes V4–V7 tend to forward their traffic through the dominant node

V2, which generates traffic λ2 = 20 pkt/s, thus reducing the level of contention at

the MAC layer. The level of contention is measured as the probability that the
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Figure 7: Parent node selection vs. time for R-metric in the multi-hop topology in Fig. 1a by

fixing λi = 10 pkt/s for i 6= 2 and λ2 = 20 pkt/s.

channel is occupied by concurrent transmissions at the same time. Therefore, by

directing the forwarded traffic to a single node, the level of contention reduces.

When using the Q-metric, nodes V4 to V7 tend to distribute the traffic uniformly

in the set of candidate receivers V1 to V3 thus increasing the level of contention

at MAC layer. The average end-to-end reliability of the network is then higher

for the R-metric. However, by reducing the level of contention at the dominant

nodes, the R-metric increases the level of contention for the communication paths

that do not include the dominant nodes. Therefore, the end-to-end reliability in

the path that includes V4 and V1 is affected significantly by the dominant node

V2. When using back-pressure routing, we notice frequent switches in the parent

node selection. Nodes choose their parent on a packet base, by looking at the

current queues. However, due to the unsaturated traffic, the value of the queues

oscillates between 0 and 1 among the nodes at each transmission, with sporadic
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Figure 8: Parent node selection vs. time for Q-metric in the multi-hop topology in Fig. 1a by

fixing λi = 10 pkt/s for i 6= 2 and λ2 = 20 pkt/s.

cases in which the queues are affected by the unbalanced traffic.

In Fig. 10, we show the average power consumption of each node, by fixing

λi = 5 pkt/s for i 6= 2 and λ2 = 20 pkt/s. The power consumption is calculated by

considering the sum of the contributions in transmission, reception, idle-listening,

and carrier sensing for each node. By choosing the dominant node V2 as forwarder,

the R-metric determines an unbalanced energy consumption. Node V2 has a

power consumption up to 6 mW, while the rest of the network operates between

0.5 mW and 1 mW. With the Q-metric, the power consumption is more balanced

among nodes and the maximum consumption, which is crucial for the network

lifetime, decreases of at least a factor 2 respect to the R-metric. The back-

pressure routing present a reduction of the maximum energy consumption with

respect to the R-metric. However, the dominant node V2 consumes 70% more

power compared to the Q-metric.
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Figure 9: Parent node selection vs. time for back-pressure routing in the multi-hop topology in

Fig. 1a by fixing λi = 10 pkt/s for i 6= 2 and λ2 = 20 pkt/s.

The simulations above were replicated also for the topology in Fig. 1b. In

Fig. 11, we show the end-to-end reliability of each node, by fixing λi = 1 pkt/s

for i = 1, ..., N . We compare R-metric, Q-metric, and back-pressure. Both R-

metric and Q-metric outperform the back-pressure metric in terms of end-to-end

reliability. A lower variance among nodes is revealed for the Q-metric, while the

R-metric maximizes the reliability of dominant paths.

In Fig. 12, we show the average power consumption of each node, by fixing

λi = 1 pkt/s for i = 1, ..., N . We compare R-metric, Q-metric, and back-pressure.

The Q-metric guarantees more balanced load distribution and the maximum

power consumption, which is observed in V1, is reduced of 15% with respect

to R-metric, and 7% with respect to back-pressure.
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Figure 10: Average node power consumption for the multi-hop topology in Fig. 1a, by fixing

λi = 5 pkt/s for i 6= 2 and λ2 = 20 pkt/s.

7.4. Protocol Parameters Selection

Now we turn our attention to show how complicated and inefficient the selec-

tion of the MAC parameters or routing metrics can be, if the mutual interactions

are not considered. We report the results of a mathematical tool for parameter

selection, by considering the multi-hop topology in Fig. 1a. In the tool, we in-

clude the analytical model of the IEEE 802.15.4 MAC, derived in [20], and the

analysis of the interaction with IETF RPL developed in this paper. The output

of the tool is defined as the protocol and the set of MAC-routing parameters

that maximize the network lifetime for certain reliability and delay constraints

imposed by the application to all nodes, as reported on the x and y axis of Fig. 13.

We consider the unslotted IEEE 802.15.4 MAC and we let the protocol selec-

tion mechanism choose the initial backoff exponent m0 = [3 ÷ 8], the maximum

backoff exponentmb = [m0÷8], and the maximum number of backoffs m = [0÷4].

26



V1 V2 V3 V4 V5 V6 V7 V8 V9 V10V11V12V13V14V15V16V17V18
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Node

E
nd

−
to

−
en

d 
re

lia
bi

lit
y

 

 

R−metric
Q−metric
Back−pressure

Figure 11: End-to-end node reliability for the multi-hop topology in Fig. 1b, by fixing λi = 1

pkt/s for i = 1, ..., N .
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Figure 12: End-to-end node reliability for the multi-hop topology in Fig. 1b, by fixing λi = 1

pkt/s for i = 1, ..., N .
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Figure 13: IEEE 802.15.4 MAC and RPL protocol parameters selection for the multi-hop topol-

ogy in Fig. 1a by fixing λi = 5 pkt/s for i 6= 2 and λ2 = 20 pkt/s.

Moreover, we apply RPL and we let the mechanism choose between R-metric and

Q-metric. The traffic rate is λi = 5 pkt/s for i 6= 2 and λ2 = 20 pkt/s. The Q-

metric is always preferred to the R-metric, whenever the solution is feasible. This

is compliant with the analysis and experiments presented in the previous sections,

since the constraints are for all nodes, and the objective is the minimization of the

energy consumption of the dominant node. In general, an increase of the MAC

parameters determines an increase in the energy consumption and in the delay.

However, the reliability increases too. For a reliability constraint smaller than

65%, and delay constraint greater than 7.5 ms, the optimal MAC parameters are

m0 = 3, mb = 3, and m = 0. However, the optimal parameters increase as the

reliability constraint become stricter, as the solutions become unfeasible. For a

reliability constraint above 90%, the optimal solution is obtained by increasing

both the number of backoffs m and the backoff windows m0 and mb. The node

energy consumption associated to m0 = 3, mb = 3, and m = 0 is about 20% lower
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than the consumption with default parameters m0 = 3, mb = 8, and m = 4. In

addition, as we showed in Fig. 10, the maximum energy consumption is halved

as we choose the Q-metric over the R-metric. Therefore, by optimally select-

ing routing metric and MAC parameters according to the reliability and delay

constraints, it is possible to obtain a significant impact on the performance.

8. Conclusions

In this paper, an analysis to characterize the complex inter-dependence among

the basic MAC and routing protocols in IoT was presented. Moreover, a math-

ematical framework for joint optimization of the MAC and the routing layers

parameters was proposed to enhance the existing standards. Specifically, novel

metrics that take into account the dynamic behavior of the MAC and routing

layers were introduced: R-metric and Q-metric. An extensive comparison of

the existing ETX metric with the R-metric, which considers both the level of

contention and the protocol parameters, was performed. It was shown that the

R-metric achieves high average link reliability. However, it is not able to provide

balanced reliability in the network. The Q-metric was proposed, having in mind

that a minimum reliability or a maximum delay is required for all the nodes.

Extended experiments, where the proposed metrics were compared to the exist-

ing back-pressure routing, supported our mathematical analysis. The inclusion

of such an analysis and an experimental study in the current standardization

process could be very beneficial in the direction of improving the performance of

IoT protocols under realistic conditions.
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