A Privacy-Preserving Smart Parking System based on
an [oT Elliptic Curve Based Security Platform

Toannis Chatzigiannakis®”*, Andrea Vitaletti®, Apostolos Pyrgelis®

@Department of Computer, Control, and Management Engineering (DIAG), Sapienza
University of Rome, Italy
®Computer Technology Institute € Press “Diophantus” (CTI), Greece
¢ University College London (UCL), UK

Abstract

Since the initial visions proposed in the SmartDust project fifteen years ago,
Wireless Sensor Networks have seen a tremendous development, leading to
the realization of the Internet of Things (IoT). Today, there is a large variety
of hardware and software to choose from that is easy to set up and use. Even
though there is an increasing number of real-world applications that employ
large deployments of IoT devices, the wireless nature of communication in
combination with the low-end capabilities of the devices raises security and
privacy issues that have not been properly addressed. Considering also that
sensor node brands are very different in their capabilities, providing a single
solution is very challenging.

In this paper we adopt Elliptic Curve Cryptography (ECC) as an at-
tractive alternative to conventional public key cryptography, such as RSA.
ECC is an ideal candidate for implementation on constrained devices where
the major computational resources, i.e., speed, memory are limited and low-
power wireless communication protocols are employed. That is because it
attains the same security levels with traditional cryptosystems using smaller
parameter sizes. We provide a generic implementation of ECC that runs on
different host operating systems, such as Contiki, TinyOS, iSenseOS, Scat-
terWeb and Arduino. Furthermore, it runs on smartphone platforms such

*Corresponding author
Email addresses: ichatz@dis.uniromal.it (Ioannis Chatzigiannakis),
vitaletti@dis.uniromal.it (Andrea Vitaletti), apostolos.pyrgelis.14@ucl.ac.uk
(Apostolos Pyrgelis)

Preprint submitted to Computer Communications February 4, 2016

as Android and iPhone and also any linux based systems (e.g., raspberryPi).
Our implementation does not contain any platform-specific specializations,
allowing a single implementation to run natively on heterogeneous networks.

We look into the Smart Parking application domain and provide a solu-
tion that protects the privacy of the users by totally avoiding the exchange
of confidential information. We also show how to protect a user’s privacy by
adapting the tool of zero knowledge proofs (ZKP) with our ECC implemen-
tation. We study the performance of our system in an real-world outdoor
[oT testbed and analyze the execution time and network overhead for each
available hardware platform. Our code is available as open source software
and can be used from developers who wish to achieve certain levels of security
and privacy in their applications.

Keywords:
Smart City, Privacy, Wireless Sensor Networks, Algorithm Engineering,
Performance Evaluation

1. Introduction

The last decade we witnessed a tremendous progress towards the inter-
connection of the digital and physical domains, giving rise to the “Internet of
Things”. ICT is increasingly being embedded into the physical world: smart-
phones, NFC, RFID, and, networked sensors are now common items in our
everyday lives. The exponential growth of connected objects that can par-
ticipate in the IoT ecosystem is expected to reach 5.8 billion by 20202 and
enables an ever-growing gamut of application domains and innovative services
that will change the way we live, work and communicate. It is foreseen that
in the near future, everything from individuals, groups, objects, products,
data and services will be connected and impacted by the IoT paradigm.

As individuals interact directly with the IoT ecosystem, huge amounts
of data are being recorded and then shared, aggregated, annotated, stored,
processed and finally consumed. It is clear that collected data may be used
to extract or infer sensitive information about users’ private lives, habits,
activities and relations, which all refer to individuals’ privacy [1, 2]. It is

!Ericsson, “More than 50 billion Connected Devices”, Report, Feb. 2011
2GSM Association, The Mobile Economy 2013 online report: http://www.
gsmamobileeconomy.com/GSMA\%20Mobile\%20Economy\%202013.pdf

therefore crucial that IoT systems must guarantee the confidentiality and
integrity of the information and the privacy and anonymity of users. IoT
enabled systems must respect the context in which personally identifiable
information is collected, and ensure that end-users are in control of sensitive
data and are able to determine for themselves when, how and to what extent,
information about them are communicated to others [3, 4].

Challenge 1: Resource-constrained devices. The basis of IoT is the ability
to integrate sensing, computation and wireless communication in small, low-
power devices that can be seamlessly embedded in complex physical environ-
ments. Such low-sized embedded devices have limited sensing, signal process-
ing, and communication capabilities and are usually battery operated. Due
to this resource-constrained environment of operation, applying standard se-
curity and privacy requirements is extremely challenging. As an example
consider that some smart devices have limited computing and storage capa-
bilities, thus cryptographic algorithms and protocols that require intensive
computation, communication, or storage are simply not applicable. It is
too costly (in terms of computation) to authenticate using a public key and
too costly (in terms of memory and computation) to store one-way chains
of keys. Also consider that some smart devices may be battery operated,
forcing security mechanisms to reduce their energy consumption. These con-
straints greatly increase the difficulty of securing IoT-enabled systems and
make them more vulnerable to security threats. Still, since building secure
[oT-enabled systems is of paramount importance, the only viable solution
is to combine different techniques for securing the system, i.e., implement
secure routing schemes, secure aggregation, provide group key establishment
methods, cryptographically encrypt messages etc.; although each single level
defense mechanism is highly vulnerable, the combination of multiple attack-
ing angles increases the overall achieved security.

Challenge 2: Heterogeneous networks. The IoT success story has led to a se-
rious practical issue that has not been sufficiently addressed in the past: IoT
node brands are very different in their capabilities. Some nodes have 8-bit
microprocessors and tiny amounts of RAM, while others burst with power,
being able to run desktop operating systems such as Linux. Consequently,
the software running on these systems is very different on the various nodes.
Even worse, the operating systems on most IoT nodes provide barely enough
functionality to implement simple cryptographic algorithms. The developer

is forced to spend great attention on low-level details, making the process
painfully complex and slow. Still, while it is easy to write code for a spe-
cific platform, the inherent heterogeneity of IoT-enabled systems requires
the integration of multiple platforms and operating systems. Inevitably the
developer is forced to either develop platform-independent code (a very chal-
lenging task) or maintain parallel branches of the application code for each
different architecture (a very time consuming task). It is therefore crucial to
provide tools that help the developer implement the algorithm once and use
the code in different platforms across the application ecosystem.

Challenge 3: Absence of common standards. The vision of the IoT has led
to substantial standardisation progress across different bodies (e.g., IETF
CoAP/RPL/6LowPAN/6TSCH, IEEE 802.15.4e, ETSI M2M, 3GPP MTC,
oneM2M), providing technical solutions tailored to the resource-constrained
embedded nodes, ranging from the lower to the upper OSI layers. Yet, until
now, no standard has managed to attract the vast majority of the stake-
holders and dominate the domain. Current IoT deployments are, more of-
ten than not, privately run to serve a specific application, enforcing a tight
association between the application, the network used by the application
and the sensors that constitute that network. Clearly developing security
and privacy requirements for application-specific and mission-oriented sys-
tems where no single protocol stack is used is extremely challenging. Most
attempts are inherently non-scalable, exhibit low cost-efficiency, are non-
adaptive and usually require tremendous efforts to integrate them with ex-
isting and well-established services. Cryptographic primitives and security
architectures need to be generic enough in order to be implementable in a
variety of systems supporting different communication primitives.

Existing approaches. Up till now the majority of the cryptosystems proposed
in the relevant bibliography were studied using theoretical tools. Novel tech-
niques have been proposed, that for example, target small sized keys, reduce
communication exchanges, operate under the assumption of insecure com-
munication channels, etc. More often than not, in these theoretical studies,
researchers tend to design an algorithm in an abstract way. This happens
because an algorithm should be able to be used in many different situations
and it is up to the developer to decide the way it should be turned into
code for a real system. As a result, almost every time the developer finds
many limitations in the ways she can operate within the given hardware and

software specifications. These problems are further augmented when imple-
menting algorithms for wireless sensor networks due to the extremely limited
resources and also due to the heterogeneous nature (both in terms of hard-
ware and software). Algorithm development for such networks is complex as
it unites the challenges of distributed applications and embedded program-
ming [5]. During the past years, a limited number of efforts have been made
to present the difficulties addressed while converting theoretical algorithms
into code by focusing on a single hardware platform and a single network
stack, e.g., [6, 7]. Moreover, these experimental efforts focus on the evalua-
tion of the operations of the protocol without focusing on specific application
requirements derived from real-world needs. Evaluating the performance of
a cryptosystem is certainly a very challenging and important step towards
creating tools and code libraries. However, we strongly believe that providing
solutions that can be integrated into real-world systems requires a combined
approach where the requirements of the application are taken into consider-
ation both during the implementation of the code library as well as during
the evaluation process.

The fact that the security is not often built directly into inexpensive
sensor devices but considered as an after-thought is emphasized in the very
recent report by Atmel on security issues for embedded systems [8]. The
report indicates that there is an urgent need to deliver cost effective solutions
that enable robust security but also to retain the flexibility to deliver real
benefits in the face of expected threats. This requires well-architected and
interoperable frameworks across vendors and technologies, integrated at an
IP and silicon level to enable the evolution of security services the whole
industry can leverage. Our work is motivated by this need for practical tools
that move away from RSA to elliptic curves based cryptosystems.

Our approach. In contrast to existing experimental approaches, we make a
step towards providing a generic implementation (written in C++) that runs
on a number of IoT platforms. Our design effort is driven by the require-
ments and specification of real-world city-scale infrastructures and smart city
applications. We implement our security scheme and the cryptographic pro-
tocols in a way such that they can be compiled in a very broad variety of
[oT systems without changing any line of code. Our goal is to provide a
privacy-preserving [oT application environment that addresses the following
issues:

Platform independence. Code can be compiled on a number of differ-
ent hardware platforms, usually without platform-dependent configu-
rations, i.e., no “#ifdef” constructions.

OS independence. Code can be compiled for different operating sys-
tems. This includes systems based on C like Contiki, C++ (the iSense
firmware), nesC (TinyOS) and also more feature-rich environments (the
Android and i0S) and also standard systems (linux based systems).

Exchangeability. Components can be exchanged with other implemen-
tations without affecting the remaining code. Moreover, both generic
components and highly optimized platform-specific components can be
used simultaneously.

Cross-layer algorithms. An algorithm can be composed out of other
algorithm, thus enabling the use of existing algorithms for the imple-
mentation of more complex ones. Moreover, we can stack protocols on
top of each other, extending their functionality.

Scalability and efficiency. Code is capable of running on a great variety
of hardware platforms, with CPUs ranging from 8-bit microcontrollers
to 32-bit RISC CPUs, and with memory ranging from a few kilobytes
to several megabytes. Algorithms need to be very resource-friendly on
the platforms from the lower end, and at the same time be able to use
more resources if available.

To our knowledge, our solution is the only successful attempt to achieve
all of these goals at once. Our system runs on [oT systems comprised of het-
erogeneous hardware platforms that incorporate different operating systems.

In order to demonstrate the generality and reusability of our solution, we
focus on the Smart City domain that has attracted a lot of attention mainly
due to rapid growth of cities making them the main driver of global envi-
ronmental changes: cities, occupy only 2% of the earth landmass, consume
about 75% of the worlds energy and produce 80% of its greenhouse gas emis-
sions [9]. According to the United Nations®, the urban populations will grow
by an estimated 2.3 billion over the next 40 years, while as much as 70% of
the worlds population will live in cities by 2050. Such a dramatic expansion

3United Nations, “World Urbanization Prospects”, 2009.

of the cities has brought to focus the need to develop cities in a sustainable
manner, while also making the quality of life in the cities better. Due to
these factors, a wide range of problems have been tackled by exploiting IoT
ecosystems and their use in the Smart City concept has matured significantly.
However we have to keep in mind that as IoT infrastructures pervade our
everyday life, it is imperative that our privacy is protected.

In this work we focus further on the particular case of Smart Parking
management systems. The optimization of parking spaces within a city has
become a necessity given the limited space available and the fact that search-
ing for a parking spot may generate up to 40% of the total traffic in a city
district*. A large number of smart parking systems have been proposed in
the literature (e.g., some of them focusing on the guidance of the citizen to a
free parking slot [10], others focusing on the automation of the operation and
management [11]) and many systems have left the research labs and are now
available as commercial systems. Interestingly, Smart Parking management
systems raise many crucial issues related to the privacy of citizens and the
confidentiality of their data. Consider that existing Smart Parking systems
heavily rely on the citizens giving away their location information. Location
information is communicated across various parts of the infrastructure and
it is eventually stored at a central database. Also consider that in many
cities and communities, zoning code parking regulations dictate that certain
parking spaces are shared among residents of specific neighborhoods or are
reserved for citizens with special needs. Clearly such confidential information
needs to be secured: it could be embarrassing to be seen at certain places,
with the natural assumptions that follow from proximity to an abortion clinic,
crack house, AIDS clinic, business competitor, or political headquarters [12].

A second interesting dimension of Smart Parking systems is their depen-
dence on IoT infrastructures that monitor the status of the parking spaces.
During the past couple of years a few cities decided to install IoT devices,
such as Santander where about 400 IoT devices where installed under the
asphalt communicating over 802.15.4°, while others use crowdsourcing tech-
nics that rely on the citizens smartphones, such an example is Amsterdam®.

4No Vacancy: Park Slope’s Parking Problem X — http://www.transalt.org/news/
releases/126

SLibelium WaspMotes and Meshlium products installed at Santander — http://www.
libelium.com/smart_santander_parking_smart_city/

6Mobipark solution — http://amsterdamsmartcity.com/projects/detail/id/64/

In these deployments the resulting system is composed of federated networks
comprised of hardware devices of a wide range of capabilities. These instal-
lations demonstrate that establishing an end-to-end security framework is
extremely challenging and in many cases requires implementing (and main-
tening) of cryptographic mechanisms for multiple hardware platforms.

Based on these observation, in this paper we present a new approach
that totally avoids the need to exchange private information. In our system
citizens do not let location information (or other confidential information)
leave their local device. We implement our solution by carefully applying a
platform-agnostic approach thus having a single implementation for all the
security mechanisms employed throughout the different network stacks and
hardware platforms. In this way our solution succeeds in both goals: (a) it
protects the citizens’ privacy and totally avoids storing confidential informa-
tion; (b) it keeps code maintenance costs at minimum levels - any improve-
ments to the cryptographic mechanisms are done once for all platforms and
networks. In order to make our solution applicable to both embedded sys-
tems and cloud servers we adopt the elliptic curve version of Diffie-Hellman
problem [13] — a generic implementation that offers the same level of security
as other public key cryptosystems, using smaller key sizes. Our implementa-
tion allows us to use much smaller keys than conventional, discrete logarithm
based cryptosystems (an 160-bit key in an elliptic curve cryptosystem pro-
vides equivalent security with a 1024-bit key in a conventional cryptosystem
as proposed by NIST). A reader can realize that using elliptic curve groups
instead of multiplicative groups, the arithmetic operations need less time
to execute, less memory space and thus less energy consumption. We be-
lieve that due to this fact, elliptic curves are the only reasonable choice for
resource-constrained IoT networks, where the resources are very limited. In
fact, it has been proven that elliptic curve cryptosystem (ECC) actually out-
performs RSA on constrained environments in terms of computation time,
memory requirements and thus energy consumption[14]. Moreover, ECC of-
fers the advantage of smaller message sizes that cost less and have better
chances of being delivered.

We look into a real-world deployment of IoT devices in a Smart Parking
environment and demonstrate how it succesfully protects the citizens’ privacy
by adapting the tool of zero knowledge proofs (ZKP) based on the Eliptic-

slug/smart-parking

Curve cryptography implementation. We conduct a thorough evaluation
of our system for different low-end microcontrollers (e.g., Jennic JN5139,
IT MSP430). We provide real-world evidence in terms of execution time,
message exchanges and memory requirements of our platform. We highlight
the advantages and point out the disadvantages of our approach and provide
some valuable technical insights related to IoT hardware and networking
technologies. Our code is available as open source software and can be used
from developers who wish to achieve certain levels of security and privacy in
their IoT systems.

2. Smart Parking Services

As cities get more and more intelligent, the concept of smart parking
is becoming reality. Around the world, thousands of businesses and public
authorities that offer car-parking facilities are constantly striving to improve
quality, convenience and choice. Smart Parking services provide new ways
to optimise parking space usage, improve the efficiency of parking operations
and help traffic in the city flow more freely. A good variety of web-based
parking management solutions are available in the market, that establish ad-
vanced parking services by utilizing smartphones technologies for end-user
interaction, and relying on ultra low power wireless mesh networks deployed
across the city. Typical examples of such services include: provisioning of
real time parking occupancy status, automatic enforcement of zoning code
parking regulations, handling of fees as per the zone charges, etc. A critical
aspect of existing systems is that while interacting with them, citizens are
required to reveal a certain number of private information (e.g., address of
residency, working address, etc.). In addition, as history of the transactions
is stored in the cloud for long periods of time, patterns of behaviour can be
extracted by simply examining the stored data. It is evident that the provi-
sion of advanced parking services raise important privacy issues as untrusted
entities could extract from the network private information about the citi-
zens (e.g., Mr. Smith has just arrived home) and potentially derive patterns
of behaviour without their consent (e.g., to better target marketing content).

A Smart Parking solution should provide all the advantages discussed
above without disclosing private information on the user and/or his/her lo-
cation. The need for privacy-preserving location and the risks if location
data leaks to an unscrupulous actor are discussed in [12].

In contrast to existing solutions, we follow a totally different approach.
We envision solutions that totally avoid storing confidentialy and history
data on the cloud and rely only on local interactions to guarantee the proper
operation. Our solution completely avoids disclosing any sensitive informa-
tion on the users (e.g., on their location) thus these information cannot be
compromised by the system. Any attempt to extract confidential will have
very limited success, and will also require malicious users to employ physical
surveillance techniques at multiple points of the infrastructure (and during
specific times) to extract such information thus significantly increasing the
cost and potential success of an attack.

In this work we abstract smart parking management applications as so-
lutions that are privacy-preserving in the sense that (i) sensors embedded in
the parking places, (ii) mobile applications running on smartphones and (iii)
city authorities/inspectors interact in a way such that:

e Users can provide proof of payment for the parking spot that they use
to inspectors without revealing critical information. Different flavors
of parking strategies are supported: time-based, vehicle-size based etc.

e The system is compatible with Zoning code parking regulations. Users
that are entitled in using/occupying a parking zone/spot (e.g. a re-
served parking for people with disabilities) can easily provide a privacy-
preserving proof of their ability to use the parking space.

e The parking system can be integrated with the transportation services.
Users can claim discounts for using the public transportation on days
that they decided to leave their car. This can be used to incentivize
the use of intermodal car parks and platform exchanges.

Note that since our system follows a platform-agnostic implementation
approach, our privacy-preserving design can be extended to cover other park-
ing management services.

3. Related Work

As IoT infrastructures are deployed and smart city services become inte-
gral parts of our lives, a number of issues related to privacy and trust need to
be addressed. Data confidentiality and authentication, access control within

10

the IoT network, privacy and trust among users and things, and the en-
forcement of security and privacy policies are among these issues. However,
the different standards and communication stacks involved in combination
with the wide variety of embedded hardware components make traditional
security countermeasures difficult to be directly applied in the IoT domain.
Moreover, the high number of interconnected devices arises scalability issues;
therefore a flexible infrastructure is needed to be able to deal with security
threats in such a dynamic environment.

For the smart parking application domain, a good variety of solutions have
been deployed in pilot studies and evaluated in experimental infrastructures.
Unfortunately (to the best of our knowledge) no existing solution properly
address the privacy issue related to such a smart city service. We here include
some examples of systems that employ different technologies (e.g., RFID,
SMS, etc) to implement smart parking services.

In [15] the authors present a reservation-based smart parking system.
In this solution, the mobile phone is used to provide information on the
driver’s identity to the reservation authority of the parking lot without any
formal grantee of privacy. A smart parking reservation system employing
short message services (SMS) is presented in [16]. Also in this case, the
driver has to send an SMS providing both information on her identity (i.e.
the mobile phone number) and on the location of the parking she wants to
occupy. In some solutions, an RFID tag is associated with the vehicle and is
automatically detected and identified by RFID readers installed at the entry
and exit points [11]. In [17] the authors present a similar system based on
image recognition. In both [11] and [17] different technologies are used to
identify a driver and then to allow/deny access to a smart parking, namely
both the identity and the location of a user are disclosed.

One could argue that given the above systems, we could improve the secu-
rity levels and protect the privacy of the users by employing popular identity
protocols and crypto-frameworks. The applicability and limitations of exist-
ing IP-based Internet security protocols and other security protocols, which
are potentially suitable in the context of IoT infrastructures are examined
in [18]. The analysis indicates that public key cryptography is more suitable
for IoT systems (over symmetric approaches), provided that the associated
asymmetric techniques are properly optimized. Furthermore, asymmetric
techniques are more suitable for the local and distributed solution we pro-
pose, because they more effectively address the issue of key distribution in
this setting. Heavyweight cryptographic operations, i.e., based on RSA and

11

Diffie-Hellman agreement protocols should be replaced by light-weight opera-
tions, i.e., using symmetric cryptography or applying more lightweight asym-
metric primitives such as ECC and NTRU. Indeed security cryptography
techniques and key management (like Elliptic curve cryptography-ECC and
Pairing-based Cryptography-PBC) are computationally feasible in resource-
constrained devices in the IoT allowing on top of them more complex se-
curity methods as Identity-based encryption (IBE) [19] and Attribute-based
encryption (ABE) [20].

In the past a number of implementations of public key cryptography based
on elliptic curves was developed for low-power wireless networks [14, 21,
22]. These implementations provide further evidence that ECC is a suitable
approach for establishing secure IoT-based systems. We note that these
implementations are platform specific (e.g., for tinyOS platform) and also
are integrated within the particular network management algorithms (e.g.,
for secure routing) thus making the particular implementations hard to apply
to another platform or another part of the network stack.

Another approach would be to use one of the privacy schemes that have
been proposed for wireless sensor networks after suitably applying it to IoT
hardware devices. However it appears that a unique and well-defined solu-
tion able to guarantee confidentiality in a IoT context is still missing, as also
asserted in [23]. It is worth to note that many efforts have been conducted in
the WSN field [24, 25, 26, 27, 24|, but several questions arise: existing pro-
posals do not address the heterogeneous nature of IoT environments and the
need to support different application contexts; mechanisms are not reusable;
they do not ensure an end-to-end integrity verification mechanism in order to
make the system more resilient to malicious attacks. Very recently, a thor-
ough examination of privacy and trust mechanisms was presented in [28].
The analysis concludes that existing solutions currently lack an unified vi-
sion, able to respond to all the IoT requirements, both in terms of security
and privacy and network performance. They point out that the need for in-
teroperable solutions that rely on independent distributed components, able
to interact and cooperate with each other and also to exchange data on the
basis of standards.

Our work is motivated by the Standard Template Library (STL), the
Computational Geometry Algorithms Library (CGAL) [29], and Boost [30]
that have a long-standing tradition on desktops and servers. They share a
great programming concept that we heavily use for our platform: using C++
templates, one can construct complex object-oriented software architectures

12

that can be parameterized for many different applications. The price of
generality is paid at compile time. The final binary contains highly efficient
and specialized code, so that there is no overhead at runtime.

The situation for IoT systems is not as promising. There have been
approaches to overcome the issues of incompatible nodes by providing generic
operating systems that run on multiple platforms. Examples are Contiki [31]
and TinyOS [32]. Neither runs on all platforms we are envisioning. Even
worse, both introduce new programming paradigms that are valid only for the
specific targets, such as protothreads in Contiki, and the whole programming
language nesC [33] of TinyOS. The C-inspired nesC attempts to allow for
the construction of component architectures with early binding (that share
common points with our approach), but achieves this through introducing a
new language that requires a custom compiler.

Another challenging issue is the heterogeneity of hardware (see discus-
sion above). It is very simple to have nodes exchange messages if they are
of the same kind, and with the same operating systems. It becomes sur-
prisingly hard to let nodes of different brands communicate with each other,
even if both of them use standardized IEEE 802.15.4 radios. A promising
approach is the Rime Stack [34, 35], a layered communication stack for sen-
sor networks. It runs only on Contiki. Sauter et al. [36] demonstrated that
is is possible to communicate between sensor nodes running Contiki and
TinyOS. Since TinyOS uses IEEE 802.15.4, the Rime Stack and Chameleon
Module had been modified on Contiki. More recently, the mkSense library
presented in [37] enables IoT application development over heterogeneous
[EEE 802.15.4 networks (including ATmega328, Jennic JN5139, IT MSP430
and ARM 9 processors).

Another attempt to produce a well-defined environment that runs on
different platforms was proposed by Boulis et al. [38]: SensorWare defines
a custom scripting language; its syntax is based on Tcl. Consequently it
focuses on richer platforms with at least 1 Mbyte of ROM and 128 KBytes of
RAM. A similar approach is Maté [39], a virtual machine running on top of
TinyOS. It targets also small devices with a very limited amount of resources,
using a custom assembler-like language.

Not surprisingly, there are are also attempts to run a Java Virtual Ma-
chine (JVM) on sensor nodes [40]. Squawk [41] is a JVM by Sun Microsys-
tems that runs on Sun Spots. Obviously such an approach is not suited for
low-end sensor nodes, and also not for time-critical applications.

13

4. Privacy Preserving Outdoor Parking Management

We proceed by presenting our smart-parking application that allows cit-
izens to park without the need to reveal sensitive personal data (e.g., the
address of residence, if they are people with disabilities etc). We completely
avoid using power-consuming encryption technics to protect the data that
are transmitted over the IoT infrastructure between the parking sensors and
the cars. We also avoid using wireless encryption techniques that provide
low levels of protection. Our application completely avoids transmitting over
wireless and /or untrusted networks services information that could reveal the
location of the citizens, the address of their residence or whether they be-
long to a specific citizens groups. We also completely avoid storing sensitive
private information at cloud-based storage spaces.

In contrast to existing solutions, we incorporate privacy at the application
design level, and thus information stored cannot be exploited to reveal the
citizens’ location or detect patterns of behaviour. We follow the ABC4Trust”
reference architecture and design an application that allows different Security
crypto-mechanisms to coexist, be interchanged and federated. We implement
our design using the WiseLib®, a generic and platform independent algorith-
mic library [42] that allows different ToT technologies to form heterogeneous
infrastructures. Our application uses a Zero-Knowledge protocol to prove
the possesion of a piece of information without revealing it. Since no per-
sonal information is communicated in the network - but just a proof that this
information is valid - the confidentiallity of the data is easier to guarantee.

We assume that the city maintains a secure database where private infor-
mation of citizens are stored (e.g., their residence, if they belong to a special
group etc). This database does not need to be connected to the Internet or
to the Smart Parking system. We assume that this database is operated and
maintained by an authority which we call the “Issuer”. We assume that the
citizens trust the Issuer for protecting the confidentiality of their data.

TFP7-ICT-257782. Project Attribute-based Credentials for Trust (ABC4Trust). http:
//abcdtrust.eu

SFP7-ICT-224460. Project Wisebed. http://wisebed.eu

9We here follow the ABC4Trust terminology. In the identity management literature,
the Issuer is also referred to as the identity provider or attribute authority.

14

Use Case 1: Citizen enrolled in the system. Initially, the citizens (i.e., the
User of the system'?) are required to contact the Issuer in order to acquire a
unique private credential (i.e., a private key) that will be used by the smart-
parking application. The Issuer authenticates the User using an external
mechanism (either online, or offline requiring the User to physically present
their identity at the Issuer’s premises) and generates the credential of the
User. The credential encodes the User’s attributes (name, vehicle registra-
tion plate and some fresh random value) and their correctness is guaranteed
by the Issuer. The human User is represented by her User Agent, a soft-
ware component running either on a local device (e.g., on the User’s smart
phone, or on a special hardware NFC/RFID token to which credentials can
be bound to improve security).

Use Case 2: Parking in a restricted-access zone. The Parking sensors (which
we call the Verifier'!) are responsible for protecting access to the parking
spaces by imposing restrictions on the credentials that the Users must own
and the information from these credentials that the Users must present in
order to be allowed to use the parking spot. When a User is approaching (the
car is detected via the ferromagnetic technology) the User generates from her
credentials a presentation token that contains the required information and
the supporting cryptographic evidence. This is transmitted to the Verifier
via the NFC/RFID wireless medium. Essentially the User needs to prove
two things: first that she is a valid citizen and second either that she is
entitled to park in this spot (e.g., lives on neighorhood, without revealing
her address) without charge or that she has payed.

Use Case 3: Integrated services. The User wants to claim a discount for using
the public transportation since she decided to leave the car in the parking
zone. Once the User has been authenticated to use the parking zone, the user
agent generates a second public key that encodes her right to claim a discount
based on the credentials available. The new public key is transmitted to the
Verifier that digitally signs it and returns it to the User. From now on
the User can user the public transportation services and present the newly

10We here follow the ABC4Trust terminology. In the identity management literature,
the User is also referred to as the requester or the subject.

1We here follow the ABC4Trust terminology. In the identity management literature,
the Verifier is also referred to as the relying party, the server, or the service provider.

15

generated certificates to the Verifier agent (possibly running on the ticket
validation machine on the bus/train/tram/metro). This verification takes
place by showing that two digitally signed by the corresponding authorities
public keys have the same discrete logarithm. If the verification process
succeeds the citizen gets a discount on her ticket. A malicious user, is not
able to extract information about citizen’s private data (e.g. her name) or
to get product discount if she does not match the necessary criteria.

5. Zero Knowledge Protocols for Smart City IoT Infrastructures

Generally, a zero-knowledge protocol allows a proof of the truth of an
assertion, while conveying no information whatsoever about the assertion
itself other than its actual truth [43]. Usually, such a protocol involves two
entities, a prover and a verifier. A zero-knowledge proof allows the prover to
demonstrate knowledge of a secret while revealing no information whatsoever
of use to the verifier in conveying this demonstration of knowledge to others.

In order to better understand which zero-knowledge protocol is more suit-
able for our smart parking application, we consider in this work instances of
interactive proof systems and non-interactive proof systems. In the first cat-
egory, a prover and a verifier exchange multiple messages (challenges and
responses), typically dependent on random numbers which they may keep
secret whereas in the second the prover sends only one message. In both sys-
tems the prover’s objective is to convince the verifier about the truth of an
assertion, e.g. the claimed knowledge of a secret. The verifier either accepts
or rejects the proof. We implement these protocols and conduct a thorough
evaluation of their performance in a real-world IoT deployment. Our goal is
to identify the most suitable for IoT-enabled smart city applications and in
particular to our Smart Parking case study.

A zero-knowledge proof must obey the properties of completeness and
soundness. A proof is complete, if given an honest prover and an honest
verifier, the protocol succeeds with overwhelming probability and sound if
the probability of a dishonest prover to complete the proof successfully is neg-
ligible [44]. Additionally, a protocol which consists a proof of knowledge must
have the zero-knowledge property: there exists an expected polynomial-
time algorithm which can produce, upon input of the assertions to be proven
- but without interacting with the real prover, transcripts indistinguishable
from those resulting from interaction with the real prover.

16

A wide variety of zero-knowledge protocols based on the Discrete Log-
arithm Problem (DLP) has been proposed so far, e.g. in [45], [46]. The
Discrete Logarithm Problem is defined over arbitrary cyclic groups. A com-
mon example of cyclic group is the multiplicative group Z* of order n, where
n is a prime number and the group operation is multiplication modulo n.
In such a group the Discrete Logarithm Problem (DLP) can be defined as
follows: Given a prime n, a generator g of Z* and an element b € Z;, find
the integer z, 0 < z < n — 2 such that ¢g* = b(modn) [43].

Another common example of cyclic groups are elliptic curve groups which
are defined over an additive group F' of order n (note that n is no longer
necessarily a prime number). The analogous problem to DLP over elliptic
curve groups is called ECDLP (Elliptic Curve Discrete Logarithm Problem)
and can be defined as follows: Given an elliptic curve E over a field F' of
order n (refered to as F,, from now on), a generator point G € E/F, and a
point B € E/F, it is computationally hard to find x such that B =z - G.

We now proceed by presenting the adaptation of five zero-knowledge
protocols based on the DLP using the Elliptic Curve Discrete Logarithm
Problem (ECDLP). This adaptation is a key step for porting such protocols
to Smart City IoT infrastructures due to the Elliptic Curve Cryptography
(ECC) advantages. It is well established that ECC can offer the same level
of security as other public key cryptosystems, using smaller key sizes. This
fact makes it suitable for implementations that concern constrained environ-
ments as it saves computational time and memory space and consequently
reduces energy requirements. Such restrictions consist the real challenges
when considering implementations on embedded devices.

5.1. Zero Knowledge Proof of Discrete Logarithm with Coin Flip

One of the first zero-knowledge protocols of discrete logarithm that was
originally presented in [47]. Its elliptic curve analogous is as follows: Given an
elliptic curve E over a field F,,, a generator point G € E/F,, and B € E/F,
Prover wants to prove that he knows x such that B = z-G, without revealing
x.

Protocol Steps:

e Prover generates random r € F,, and computes the point A =r-G
e Prover sends the point A to Verifier

e Verifier flips a coin and informs the Prover about the outcome

17

e In case of HEADS Prover sends r to Verifier who checks that -G = A

e In case of TAILS Prover sends m = xz+r(modn) to Verifier who checks
that m-G=(z+7r)-G=2-G+r-G=A+B

The above steps are repeated until Verifier is convinced that Prover knows
x with probability 1 — 27% for k iterations.

Why it works: The protocol works as expected because in each iteration
the steps to be executed depend on the outcome of the coin that the Verifier
flips and the Prover cannot affect this. It needs to be executed for many
iterations in order for the Prover’s cheating probability to become very small.
A dishonest Prover in each iteration can be prepared for only one of the coin
outcomes and thus his cheating probability is 1/2. For example, if he prepares
for TAILS he can generate a random m, compute A = m -G — B and send
this point A to Verifier. But if HEADS come up this attack will not work.
That is because he will need to compute a value r € F,, that generates A
and that is an instance of the ECDLP. Thus, after k iterations, the Verifier
is convinced with high probability (1 — 27%) that the Prover is honest.

5.2. Schnorr’s Protocol

An improvement of the previous protocol was originally presented in [45].
The elliptic curve version of Schnorr’s protocol, slightly modified, is the fol-
lowing: Prover and Verifier agree on an elliptic curve F over a field F},, a
generator G € E/F,. They both know B € E/F, and Prover claims he
knows x such that B = x - G. He wants to prove this fact to Verifier without
revealing x.

Protocol Steps:

e Prover generates random r € F,, and computes the point A =r -G

Prover sends the point A to Verifier

Verifier computes random ¢ = HASH(G, B, A) and sends ¢ to Prover

e Prover computes m = r + ¢ - x(modn) and sends m to Verifier

Verifier checks that P = m-G—c¢-B = (r+c-2)-G—c-B =
r-G+co-G—c-x-G=r-G=A

18

Why it works: This protocol is superior to the previous one as it needs
to be executed for one round. Verifier’s coin flips (in correspondence with
the Coin Flip protocol) are simulated using a hash function known only to
him. A dishonest Prover has a tiny chance of cheating as he would have to
fix the value of P = m - G — ¢ - B before receiving Verifier’s hash value c.
Under the assumption that the hash function used by the Verifier is secure,
a Prover who does not know z, the discrete logarithm of B, cannot cheat.

5.3. Transforming Schnorr’s Protocol to Digital Signature

In [48], the authors propose that with the use of a hash function and an
agreement on an initial message m one can remove the interactivity from such
protocols. The Verifier’'s random choices can be replaced with bits produced
by a secure hash function. Thus, the next protocol is proposed.

Prover and Verifier agree on an elliptic curve E over a field F),, a generator
G € E/F,, a point P € E/F, that represents the message the Prover wants
to send and a hash function HASH (e.g. SHA-1). They both know B € E/F,.
The Prover claims that he knows x such that B = = - G and he wishes to
prove this fact to Verifier without revealing x.

Protocol Steps:

e Prover generates random r € F,, and computes the point A =r -G
e Prover computes c = HASH(z - P,r- P,r - G)

e Prover computes s = r + ¢ - z(modn)

e Prover sends to Verifier the message: “s||z - P||r - Pl||r - G”

e Verifier computes c = HASH(xz - P,r - P,r - G)

e Verifier checks that s-G = (r+c-z)-G=r-G+c-2-G=r-G+c-B =
A+c-B

e Verifier checks that s- P = (r+c-x)-P=r-P+c-aP

Why it works: In this protocol we apply the non interactiveness trick
proposed in [48]. The Prover simulates both the Prover and the Verifier with
the use of a hash function and publishes the transcript of this whole dialogue.
This way the Prover sends only one message and the Verifier either accepts or
rejects. The Prover generates a random number as in previous protocols but

19

the Verifier’s random choices are simulated by hashing the input along with
a value calculated from the Prover’s choice of . Thus, the Verifier’s random
choice depends on Prover’s random choice and it is made hard to fake the
outcome. The value c is really a challenge for the Prover as it is computed
from the hash function and it is out of his control. If the Prover does not
know z, in order to cheat he would try to find s satisfying s-G =r-G+c-z-G
which is an instance of the discrete logarithm problem. He could not cheat
by enumerating random r values, as it would be too hard to find a matching
value for c.

5.4. Zero Knowledge Test of Discrete Logarithm Equality

Suppose that Prover knows two publically known quantities that have
the same discrete logarithm x to publicly known respective bases G and H
of the group F,.

Prover and Verifier agree on an elliptic curve E over a field F),, a generator
G € E/F, and H € E/F,. Prover claims he knows x such that B = z - G
and C' = x - H and wants to prove knowledge of this fact without revaling z.
The procedure was originally proposed in [49], and its ECC analogous is as
follows:

Protocol Steps:

e Prover chooses random r € F;, and computes the points K = r -G and
L=r-H

Prover sends the points K, L to Verifier

Verifier chooses random ¢ € F,, and sends ¢ to Prover

e Prover computes m = r + ¢ - x(modn) and sends m to Verifier

Verifier checks that m-G = (r+c-2)-G=r-G+c-2-G=K+c-B
e Verifier checks that m-H = (r+c-z)-H=r-H+c-v-H=L+c-C

Why it works: In this protocol the Prover claims he knows z as the
discrete logarithm of two public quantities B, C'. His actions are similar with
Schnorr’s protocol but for the two public quantities. For example in the
first step he computes 2 points on the curve K, L that will be used for the
verification. It can also be made non-interactive by the applying the Fiat-
Shamir trick: the Prover simulates the Verifier by computing ¢ with a secure

hash function as HASH(B,G,C,H,K,L).

20

5.5. Zero Knowledge Proof of Single Bit

Prover and Verifier agree on an elliptic curve E over a field F},, a generator
G € E/F, and H € E/F,. Prover knows x and h such that B=x-G+h-H
where h = 4+1. He wishes to convince Verifier that he really does know z
and that h really is £1 without revealing = nor the sign bit [46].

Protocol Steps:

e Prover generates random s,d,w € F,

e Prover computes the points A=s-G—d-(B+h-H)andC=w-G
o If h = —1 Prover swaps A < C

e Prover sends the points A, C' to Verifier

e Verifier generates random ¢ € F,, and sends ¢ to Prover

e Prover computes e = ¢ —d and t = w + x - e both (modn)

e If h = —1 Prover swaps d <> e and s < ¢

e Prover sends to Verifier d, e, s,

e Verifier checks that e +d = ¢, s -G = A+ d- (B + H) and that
t-G=C+e-(B—-H)

Why it works: It is straightforward to confirm that if B is really given
by one of the two formulas the Prover claimed then Verifier’s verification
will succeed. It is also easy to see that the Prover does not give away any
information that would allow the Verifier to deduce x nor the sign bit A.
That is because x is hidden inside ¢ after being multiplied with e and added
in w. The sign bit A is randomized with the appropriate swaps in the case
of —1.

6. Real-world Performance Evaluation

Designing an IoT system that can efficiently operate in a federated net-
work of heterogeneous devices and network stacks, while being compliant
with a plethora of privacy and trust requirements is a complex task. Simula-
tions, as an important phase during the development of systems, are useful
for developing further understanding the operating condition of a system.

21

However, they suffer from several imperfections [50] as they make artificial
assumptions on radio propagation, traffic, failure patterns, and topologies.
What makes it particularly difficult is the strong dependency of IoT systems
on real-world processes that are often a result of complex systems-of-systems
interactions and extremely difficult to model accurately [51].

We strongly believe that delivering robust applications, requires testing
and performance evaluation of individual system components as well as com-
positions of the system on real hardware in large-scale deployments. Given
the increased production of IoT hardware nodes and the introduction of new
tools for managing IoT testbeds (e.g., see [52]) a number of large scale out-
door testbed deployments have been established to help developers evaluate
their technologies in real environments and with real end users (e.g.,see [53]).

One such environment is SmartSantander'?, a city scale testbed that sup-
ports experimentation using IoT technologies along with Smart City services
provision, e.g., parking monitoring, environmental monitoring, precise irriga-
tion in parks and augmented reality using NFC tags. The Outdoor Parking
Management infrastructure deployed in the city of Santander supports the
provision of a Limited Parking Space Management services. The existing de-
ployment is based on almost 400 parking sensors (using ferromagnetic tech-
nology), buried under the asphalt in several hundred parking places in the
city centre of Santander. Information collected from the sensors is forwarded
to the main storage (maintained at the cloud) where is then accessible to end-
user applications (web/smartphone) that process the information for service
provisioning (e.g., to guide drivers to free parking places). At central inter-
sections of the main streets’ of the city, 10 notification panels are installed in
order to guide drivers towards the available free parking lots. Fig. 1 shows the
two different types of hardware deployed. Deployment for outdoor parking
area management is shown in Fig. 2. For a detailed description of the deploy-
ment and experimentation architecture of the IoT experimentation facility
being deployed at Santander city see [53].

6.1. Santander Smart City Testbed Facility

In more details, the city center is divided in 22 different zones. Each zone
is assigned with a gateway device that is collecting data from the sensors
and forwards them to the Internet through the GPRS interface. The park-

LEP7-ICT-2009-5-257992. Project SmartSantander. http://smartsantander.eu

22

Figure 1: Parking sensors buried under the road surface and Notification Displays to show
free parking spots.

Figure 2: Outdoor deployment of 400 parking sensors and 10 notification panels at the
city of Santander

23

SmartSantander
Gateway: Node with communication with Backbgne
sensor networks (Digimesh and 802.15.4)
and communication with external networks

(WiFi, GPRS, ethernet)

® Streetiight —77— Digimesh Link /
Parking sensor: Sensor node i
JAN with one transceiver (Digimesh) —2&— 802.154 Link /
O Repeater: Sensor node with two — _— WIFIGPRS,
transceivers (Digimesh and 802.15.4) ethernet Link

Figure 3: Architecture of Smart Parking infrastructure in the Santander deployment

ing sensors (IoT nodes) are provided with one 802.15.4 transceiver to send
their parking state (free or occupied) to the corresponding gateway and one
Digimesh transceiver for network management purposes (so that traffic for
network management is not creating interferance with traffic for service provi-
sioning). The zones have different network parameters, creating independent
networks that work on different frequency channels not to interfere with each
other. Information received from the sensor nodes is stored and processed
in the corresponding gateway, in order to be used by different applications
running over it, both in a local way or accessing from Internet through the
SmartSantander backbone. The network architecture is depicted in Fig. 3.

Securing the network infrastructure. By examining the physical network lay-
out of the smart parking infrastructure in the Santander deployment (see
Fig. 4) we observe a federation of mobile networks (GPRS), wireless net-
works (802.15.4, digimesh, wifi) and wireline. Some of these networks are
operated by different organization, with different goals and orientation (e.g.,
the University intranet aiming for research & educational purposes, versus
the telecom-operated mobile network aiming for commercial usages). It is
evident that establishing a common security policy is a very complex task.

24

@ o7 node
{3. Galeway
= I|EEE B02.15.4
“x_ |EEE 802.15.4 with Digimesh
= GPRS link

Figure 4: Physical Network layout of Smart Parking infrastructure in the Santander de-
ployment

Securing the IoT nodes. Communication across the IoT domain is carried
out using two 802.15.4 channels. The devices under the asphalt operate an
ATMEGA1281 32-bit 14MHz processor with 8KB SRAM/128KB FLASH
while the gateway devices are 500MHz x86-based debian systems with 256 MB
RAM/8GB storage space. Both devices support RFID/NFC/BLE commu-
nication with Smartphones (citizen’s choice). Any solution beyond base
AES/RSA encryption needs to be implemented for at least four different
platforms and cross-layer key management schemes need to provided.

Securing the Cloud storage. Once location based information (and other sen-
sitive personal information) is transmitted across the infrastructure will even-
tually reach the cloud layer leaving a data trail at different levels of the
network (e.g., within a DTN bundle, at CDN level etc.). It is clear that a
thorough examination is required to guarantee that private data is not stored
or buffered across the system.

We believe that the Santander smart city testbed facility is a typical ex-
ample of a heterogeneous deployment incorporating (a) a variety of hardware
platforms (ranging from low-end 16Mhz devices, to cloud servers) and (b)
a combination of different networking stacks and communication protocols

25

(ranging from protocols for low-power lossy networks to ultra-fast broadband
optical networks). The architecture of the Santander smart city IoT infras-
tructure is based on open standards and royalty-free software tools in order
to avoid vendor-lock in future extensions of the infrastructure. It is there-
fore reasonable to expect new types of hardware and even completely new
families of network protocols to be incorporated in the smart city facility. In
this sense, it is imperative to provide solutions that are generic enough to
guarantee cross-platform and cross-protocol operation.

6.2. Protocols Implementation and Fvaluation

We now assess the performance of our approach in terms of execution
time, code size and message size. Our privacy-preserving application is im-
plemented based on the Wiselib algorithm library [42]. It is implemented in
a platform-agnostic and OS-independent way and decomposed in a well de-
fined set of algorithms that implement the required functionalities such as the
ECDLP, the five zero-knowledge protocols discussed in Sec. 5 and the commu-
nication algorithms. Each sub-system follows the so-called “concept” design
approach that defines common interfaces so that different protocols for the
same concept are fully interchangeable. In particular our set of algorithms are
implemented based on C++ and templates, but without virtual inheritance
and exceptions. Algorithm implementations in Wiselib can be recompiled
for several platforms and firmwares, like C (Contiki), C++ (iSense), and
nesC (TinyOS), without the need to change the code. The library is also
adapted for C-based mobile phone operating systems like Android (via JNT)
and iPhone OS.

We evaluated the implemented system under different combinations of
ZKP protocols for the two platforms used in the Santander smart parking
deployment (equipped with ATMEGA1281 processor, and a 500MHz linux-
based system). In our evaluation we also included two additional low-end
devices based on different microcontrollers (Jennic JN5139, TT MSP430) that
are commonly used in WSN deployments. Since our implementations are
based on Wiselib, the same code is able to execute on all these platforms by
simply using the platform specific compiler.

The implementation of our Elliptic Curve Cryptography follows the li-
brary in [22]. This implementation defines a recommended elliptic curve [54]
over binary fields with equation y* + zy = 2% + 22 + 1 along with the irre-
ducible polynomial f(z) = 2% + 27 + 25 4+ 2® + 1. The curve’s order (the

26

number of points on it, r) and the base point is G(z,y) are listed on Table
1.

Parameter | Value

r 024000000000000000000020108a2¢0cc0d99 f8a5e f
T 022 fel3c0537bbcllacaa07d793dedeb6dbe5c94eeel
Y 02289070 fb05d38 f 58321 f2e800536d538ccdaa3d9

Table 1: Parameters for the Basic Elliptic Curve Operations.

In our first set of experiments we assess the execution time of basic Elliptic
Curve Operations on different hardware platforms (see Fig. 2. As a hash
function for the protocols that require one, we used the algorithm SHA-1
[55]. We notice that there has been no attempt to optimize the code in charge
for the elliptic curve operations on specific hardware architectures. In this
way, our solution implements a new cryptographic tool that is automatically
compatible with all the platforms supported in the real-world deployment.
One can observe that the elliptic curve scalar multiplication (Public Key
Generation) is the most demanding arithmetic operation. It is also evident
that the 500MHz linux system is much faster in calculating all the examined
operations than low-capabilities processors.

Anyway, all the considered devices can perform the basic elliptic curve
operations in less than one minute. Considering that usually the parking
time is much longer, the upper bound of one minute for such operations is
acceptable to effectively complete the verification protocols as detailed in

Table 5.

Operation Execution Time
JN5139 MSP430 | ATMegal281 | 500MHz linux

Private Key Generation 87 ms 0.3 sec 0.18 sec 1.03 ms
Public Key Generation (scalar multiplication) | 11.121 sec | 58.02 sec 35.49 sec 1.91 sec
Curve Points Addition 94 ms 0.29 sec 0.17 sec 1.12 ms
Private Key Addition (21 bytes) 5 ms 12 ms 7 ms 0.38 ms
Private Key Multiplication (21 bytes) 14 ms 2 ms 12 ms 0.72 ms
SHA-1 Hash (250 bytes) 2 ms 31 ms 18 ms 0.03 ms

Table 2: Execution Time of Basic Elliptic Curve Operations on different hardware plat-
forms.

Our next set of experiments conduct a comparative study among the five
ZKP protocols designed in Sec. 5. We have summarised the prover’s (PRV)
and verifier’s (VER) actions for each of the implemented protocols in Table
3 specifying for each action the number of times it has to be performed.

27

Random
Key Gen-
eration

Protocol / Operation

Curve
Multipli-
cation

Curve
Addi-
tion

SHA- Private
1 Keys
Hash Addition

Private
Keys Mul-
tiplication

Msgs
Sent

ZKP of DL with Coin Flip

PRV 1 !

1 (if tails)

ZKP of DL with Coin Flip
VER

1 Gf

Schnorr’s Protocol PRV 1

tails)

Schnorr’s Protocol VER

1

W [N =

Schnorr’s Signature Proto-
col PRV

-
=N N

Schnorr’s Signature Proto-
col VER

2

ZKP of DL Equality PRV

1

ZKP of DL Equality VER

2

=l =] =] 0
INIUI S PO S

ZKP of Single Bit PRV

2

2

[SIESIE NI N S] e

ZKP of Single Bit VER

4

1

Table 3: Actions Held by the Prover (PRV) and Verifier (VER) for each protocol.

Based on the above decomposition, we proceed by measuring the code size
of the protocols on the considered devices (we here exclude the linux-based
system). The compiled code actually fits fairly well (approximately 8Kb) on
the tiny memory of their processors as shown in Table 4. The difference in

the protocols code size is due to the employment of different compilers.

Protocol Total Code Size (text 4+ data + bss)
JN5139 MSP430 ATMegal281

ZKP of DL with Coin Flip PRV 7908 bytes 6517 bytes 6838 bytes
ZKP of DL with Coin Flip VER 7004 bytes 6289 bytes 6772 bytes
Schnorr’s Protocol PRV 7964 bytes 6759 bytes 7146 bytes
Schnorr’s Protocol VER, 9292 bytes 9455 bytes 9562 bytes
Schnorr’s Signature Protocol PRV 10584 bytes 10433 bytes 10562 bytes
Schnorr’s Signature Protocol VER 9540 bytes 10053 bytes 10102 bytes
ZKP of DL Equality PRV 8568 bytes 7697 bytes 8110 bytes
ZKP of DL Equality VER 8964 bytes 8519 bytes 8718 bytes
ZKP of Single Bit PRV 9604 bytes 9471 bytes 9512 bytes
ZKP of Single Bit VER 9032 bytes 7455 bytes 8274 bytes

Table 4: Code Size of the Protocols for Prover the (PRV) and the Verifier (VER) on the

Devices Used.

We now proceed by examining the total execution time of each ZKP
protocol. Table 5 lists the time elapsed between the prover’s beginning of
the protocol until the verifier’s final response of whether she accepts or rejects
the proof. We can observe that an interactive protocol like the first one, which

28

requires a large number of execution rounds for verification, is not suitable
for low-constrained devices. We thus conclude that the usage of protocols
that need one round of execution, as the rest of the protocols considered in
the table, is advised. Similar observations are reported in [56].

Protocol Required Total Execution Time
Rounds
JN5139 MSP430 ATMegal281 500MHz linux

ZKP of DL with Coin Flip Ill?gre Of | 2277 sec | 11802 sec 7219 sec 408 sec
Schnorr’s Protocol 1 33.894 sec | 172.77 sec 105.77 sec 6.18 sec
ngmo” s Signature Proto- || 78.645 sec | 396.57 sec | 239.30 sec 13.91 sec
ZKP of DL Equality 1 68.596 sec 346.2 sec 209.73 sec 10.47 sec
ZKP of Single Bit 1 80.46 sec | 462.74 sec 258.73 sec 13.05 sec

Table 5: Total Execution Time of the Protocols on the Devices Used.

Communication between the User and Verifier can be carried out using
RFID/NFC or WIFI. Table 6 describes the messages exchanged between
the prover (PRV) and verifier (VER) and their sizes, for the completion of
each protocol. Message size is an important parameter when considering low
power wireless communication protocols like 802.15.4. All of our protocols
messages except one, fit well on a single 802.15.4 packet (128 bytes). This fact
is remarkable, as bigger messages would result to more message exchanges
which in turn would imply greater energy consumption and possibly wireless
medium congestion. The only exception is the Schnorr’s Non-Interactive
Protocol PRV message that requires 149 bytes and thus need to be broken
in two pieces.

6.3. Discussion on the Applicability of our Approach

Our evaluation points out that the use of ZKP protocols under the el-
liptic curve cryptography setting is beneficial. We provide a cross-platform
cryptographic mechanism that uses small key sizes to achieve the same level
of security as other public key cryptosystems. Our implementation supports
different hardware platforms thus increasing the degrees of freedom of our
smart parking application. In this section we discuss in details the drawbacks

29

Protocol

Message Size

ZKP of DL with Coin Flip PRV

Point Message: 43 bytes
New Key Message: 22 bytes

ZKP of DL with Coin Flip VER

Coin Message: 2 bytes
Final Message: 1 byte

Schnorr’s Protocol PRV

Point Message: 43 bytes
New Key Message: 22 bytes

Schnorr’s Protocol VER

Hash Message: 22 bytes
Final Message: 1 byte

Schnorr’s Signature Protocol PRV

Point and Key Message: 149 bytes
(in two pieces)

Schnorr’s Signature Protocol VER

Final Message: 1 byte

ZKP of DL Equality PRV

Points Message: 85 bytes
New Key Message: 22 bytes

ZKP of DL Equality VER

New Key Message: 22 bytes
Final Message: 1 byte

ZKP of Single Bit PRV

Points Message: 85 bytes
New Key Message: 85 bytes

ZKP of Single Bit VER

New Key Message: 22 bytes

Final Message: 1 byte

Table 6: Size of Messages Exchanged by the Prover (PRV) and the Verifier (VER) for
each Protocol.

of using elliptic curve cryptography in resource constrained environments and
in particular to a smart city application context.

Our design allows to interchange the ECC encryption method supporting
different implementations, possibly improving the performance by exploiting
platform-specific optimizations. As we have already mentioned we did not
make any attempt to optimize the code of the ECC module. One can easily
observe that the curve point multiplication which is the basic action for each
protocol, needs the most time to execute (35 sec on ATMegal281, 11 sec
on JN5139, 58 sec on MSP430). We believe that this is the price we have
to pay to write a portable code that can run on a number of heterogeneous
platforms without modifications. Although, Wiselib offers the chance to
compile your code exploiting some platform specific features (e.g., 32-bit
processor or hardware speedups) we aimed at generality and portability. The
goal of this work was not to achieve some faster platform specific code (e.g.
by employing low-level assembly code) as in [57], [58]. Still, our design offers
an easy way to incorporate such improvements as future work.

We think that for such low-end microprocessors running at 16 MHz or
8MHz the total execution time of our protocols (except of course ZKP of
DL with Coin Flip) is reasonable given the time-frame of a typical visit
at a parking spot. For example, 33 sec on a 16MHz microcontroller for a

30

secure verification is not too much to wait. Also when considering memory
limitations, we showed that the protocols’ compiled code actually fits well
on the restricted memory of the devices used. Still, having implemented
our protocols in Wiselib, our code can be executed on C-based operating
systems for mobile phones like Android (via JNI) and iPhone OS where the
embedded hardware is much more powerful. Thus our implementation allows
the Prover’s agent to be hosted in the IoT device stored in the car or in the
citizen’s smartphone. Similarly, the Verifier’s agent can be hosted either in
the IoT device under the asphalt or at the zone gateway device.

Our solution does not need to interact with an authority for securing the
network infrastructure. The local message exchanges conducted between the
Prover and Verifier user agents do not reveal any confidential information.
Someone overhearing the medium, is unable to repeat the verification process.
Our performance evaluation on the five different ZKP protocols considered,
indicates that the first proposed protocol (ZKP of DL with Coin Flip) re-
quires a large number of execution rounds in order to successfully complete.
It performs a large number of arithmetic operations and it involves many
message exchanges. Although such protocol could be executed fairly well
in non-embedded systems, when the target are embedded devices capable of
wireless communications, it is not suitable because it is very demanding in
terms of messages exchanged that can possibly congest the wireless medium.
The rest of the protocols require only one round of execution [56], much
smaller number of messages (2-4 messages) and complete much faster and
with less energy consumption. Schnorr’s protocol required the least time to
execute - 105 sec on the ATMegal281 microcontroller, which is quite fair
considering the processing power and the memory of the device used.

An additional disadvantage of the first protocol is that it cannot be con-
sidered as secure as the rest when dealing with wireless communication. A
malicious verifier or an adversary who eavesdrops the communication be-
tween the Prover and the Verifier could replay the proof to another party
using the overheard data. That is because the verifier’s responses consist of
just a single bit (simulating a coin flip). In all the other protocols the Verifier
responses involve fresh random data (e.g. using a hash function) and such
an attack could not work.

Another issue concerns the comparison between Schnorr’s and Schnorr’s
non-interactive protocol. By transforming Schnorr’s protocol to a non-interactive
protocol, the required message exchanges are reduced (1 message required by
the Prover and Verifier). However, the transformed protocol is not as effi-

31

cient as Schnorr’s original protocol in terms of execution time, code size and
message size.

As far as the protocols’ message sizes are concerned, we observe that
they are acceptable. Most of the messages exchanged are 43 or 85 bytes
which can fit on a single 802.15.4 packet (max payload 128 bytes). Only,
the Prover’s message from Schnorr’s non-interactive protocol was too large
(149 bytes) to fit in a single packet and thus it has been broken in two
pieces. We observe that, by recompiling each device’s firmware, which is
a straightforward procedure, one could increase the maximum payload size
and such a message could thus fit in a single packet. Such a solution though,
would be non-standard. The reasonable message sizes are due to the ECC
approach. A reader can easily realize that using another cryptosystem (e.g.
with 1024-bit keys) would result in larger message sizes that would necessarily
require fragmentation and a consequent increase in energy consumption and
medium congestion.

Finally, a point for discussion is the fact that in our protocols, we pre-
loaded the elliptic curve used and its parameters on the devices memory. This
way, the elliptic curve and its parameters could be compromised by physical
and tampering attacks. However, we believe that in the future, most devices
will be equipped with Trusted Platform Module (TPM), namely secure cryp-
toprocessors suitable for storing cryptographic keys and protecting private
information from physical and tampering attacks.

7. Conclusions and Future Work

In this paper we follow a privacy-by-design approach and introduce a
privacy-preserving smart parking application system. We argue that in city-
scale IoT deployments applying a security scheme across the federated infras-
tructure is extremely challenging. Our approach totally avoids transmitting
confidential information between the system agents. Therefore our applica-
tion is suitable also in cases where untrusted networks are included in the
federated infrastructure. We describe the operation of our system under three
use case scenaria and show the benefits of utilizing zero-knowledge proofs.

Considering the Santander smart city IoT deployment, we looked into
the problem of implementing zero-knowledge protocols (ZKP) in low-end
devices. Based on the resource limitations of such devices as well as the
restrictions imposed by low power wireless communication protocols (e.g.
IEEE 802.15.4) we applied the elliptic curve cryptography (ECC) approach.

32

Specifically, we have carefully transformed well established zero-knowledge
protocols based on the discrete logarithm problem (DLP) under the elliptic
curve discrete logarithm problem (ECDLP). This transformation step was
the key for implementing such heavy protocols, in terms of computation and
communication, on constrained environments, due to the fact that ECC offers
similar levels of security with other cryptosystems (e.g. RSA) using smaller
keys. For the first time, we present an implementation of ZKP protocols in
an open source and generic programming library called Wiselib. Our code is
highly portable, freely available and ready to use as part of Wiselib. Based on
our implementations, we conducted a thorough and comparative evaluation
of the protocols on two hardware platforms used in the Santander smart city
testbed and on two popular hardware platforms equipped with widely used
low-end microcontrollers.

We are strongly confident that zero-knowledge proofs can be used as
a privacy-preserving tool and our approach can be applied to other smart
city applications consisting of different kinds of devices, e.g., for intelligent
transportation systems, smart campuses etc. We highlight the advantages
and point out the disadvantages of our approach and provide some valuable
technical insights related to IoT hardware and networking technologies. We
also need to emphasize that ECC is still public key cryptography (just with
smaller key parameters etc.) - it’s just much more efficient than the conven-
tional PKC like RSA etc. Our work shows that there is still an efficiency
issue to be considered but we should consider that at the same time the plat-
forms’ hardware is improving. Remark that our implementation is as generic
as possible and this means that we do not use any software optimizations
(which would introduce larger code size and memory overhead) or inline as-
sembly code (using #ifdefs) which could speed up things a lot - but only
for specific platforms. Such optimizations and getting the best efficiency out
of ECC were not the goal of this work. In contrast our goal was to provide
real-world evidence on the feasibility of a generic approach for constrained
settings of an [oT infrastrucute used in current smart city deployments. We
believe that our results can be used by developers that wish to provide certain
levels of security and privacy in their applications.

Future work includes the expansion of the library presented in this paper
so as to include ZKIP protocols which prove various relations for the encoded
values without revealing them (e.g. prove that my age is over 18 years with-
out revealing it). This way, our library can be the basis for implementing
attribute based credentials [59], [60] on embedded devices.

33

1]

2]

P. A. Pavlou, State of the information privacy literature: where are we
now and where should we go?, MIS quarterly 35 (4) (2011) 977-988.

B. A. Price, K. Adam, B. Nuseibeh, Keeping ubiquitous computing to
yourself: a practical model for user control of privacy, International
Journal of Human-Computer Studies 63 (1) (2005) 228-253.

F. Bélanger, R. E. Crossler, Privacy in the digital age: a review of in-
formation privacy research in information systems, MIS quarterly 35 (4)
(2011) 1017-1042.

D. Christin, A. Reinhardt, S. S. Kanhere, M. Hollick, A survey on pri-
vacy in mobile participatory sensing applications, Journal of Systems
and Software 84 (11) (2011) 1928-1946.

T. Baumgartner, I. Chatzigiannakis, S. P. Fekete, S. Fischer, C. Koninis,
A. Kroller, D. Kriiger, G. Mylonas, D. Pfisterer, Distributed algorithm
engineering for networks of tiny artifacts, Computer Science Review
5 (1) (2011) 85-102. doi:10.1016/j.cosrev.2010.09.006.

URL http://dx.doi.org/10.1016/j.cosrev.2010.09.006

D. J. Malan, M. Welsh, M. D. Smith, A public-key infrastructure for
key distribution in tinyos based on elliptic curve cryptography, in: Pro-
ceedings of the First Annual IEEE Communications Society Confer-
ence on Sensor and Ad Hoc Communications and Networks, SECON
2004, October 4-7, 2004, Santa Clara, CA, USA, 2004, pp. 71-80.
doi:10.1109/SAHCN.2004.1381904.

URL http://dx.doi.org/10.1109/SAHCN.2004.1381904

I. Chatzigiannakis, E. Konstantinou, V. Liagkou, P. G. Spirakis, Design,
analysis and performance evaluation of group key establishment in wire-
less sensor networks, Electr. Notes Theor. Comput. Sci. 171 (1) (2007)
17-31. doi:10.1016/j.entcs.2006.11.007.

URL http://dx.doi.org/10.1016/j.entcs.2006.11.007

K. Maletsky, Atmel white paper: Rsa vs ecc comparison for embedded
systems, atmel-8951A-CryptoAuth-RSA-ECC-Comparison-Embedded-
Systems-WhitePaper_07201 (2015).

J. Marceau, Introduction: Innovation in the city and innovative cities.,
Innovation: Management, Policy & Practice 10.

34

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. Wang, W. He, A reservation-based smart parking system, in: Com-
puter Communications Workshops (INFOCOM WKSHPS), 2011 IEEE
Conference on, IEEE, 2011, pp. 690-695.

Z. Pala, N. Inanc, Smart parking applications using rfid tech-
nology, in: RFID Eurasia, 2007 1st Annual, 2007, pp. 1-3.
doi:10.1109/RFIDEURASIA.2007.4368108.

J. Krumm, A survey of computational location privacy, Personal and
Ubiquitous Computing 13 (6) (2009) 391-399.

W. Diffie, M. E. Hellman, New directions in cryptography, Information
Theory, IEEE Transactions on 22 (6) (1976) 644-654.

N. Gura, A. Patel, A. Wander, H. Eberle, S. C. Shantz, Comparing
elliptic curve cryptography and rsa on 8-bit cpus, in: Cryptographic
hardware and embedded systems-CHES 2004, Springer, 2004, pp. 119-
132.

H. Wang, W. He, A reservation-based smart parking sys-
tem, in: Computer Communications Workshops (INFOCOM
WKSHPS), 2011 IEEE Conference on, 2011, pp. 690-695.
doi:10.1109/INFCOMW.2011.5928901.

N. Hanif, M. Badiozaman, H. Daud, Smart parking reservation sys-
tem using short message services (sms), in: Intelligent and Advanced
Systems (ICIAS), 2010 International Conference on, 2010, pp. 1-5.
doi:10.1109/ICIAS.2010.5716179.

S. Kim, D. Kim, Y. Ryu, G. Kim, A robust license-plate extraction
method under complex image conditions, in: Pattern Recognition, 2002.
Proceedings. 16th International Conference on, Vol. 3, 2002, pp. 216-219
vol.3. doi:10.1109/ICPR.2002.1047833.

K. T. Nguyen, M. Laurent, N. Oualha, Survey on secure communication
protocols for the internet of things, Ad Hoc Networks.

H. Ahmadi, N. Pham, R. Ganti, T. Abdelzaher, S. Nath, J. Han,
Privacy-aware regression modelling of participatory sensing data, in:
SenSys’10: The ACM Conference on Embedded Networked Sensor
Systems, Association for Computing Machinery, Inc., 2010.

35

[20]

[21]

[22]

23]

[24]

[27]

URL http://research.microsoft.com/apps/pubs/default.aspx?
1d=135507

L. B. Oliveira, R. Dahab, J. Lopez, F. Daguano, A. A. Loureiro, Identity-
based encryption for sensor networks, in: Pervasive Computing and
Communications Workshops, 2007. PerCom Workshops’ 07. Fifth An-
nual IEEE International Conference on, IEEE, 2007, pp. 290-294.

G. Gaubatz, J.-P. Kaps, B. Sunar, Public key cryptography in sen-
sor networks-revisited, in: Security in Ad-hoc and Sensor Networks,
Springer, 2005, pp. 2-18.

D. J. Malan, M. Welsh, M. D. Smith, Implementing public-key infras-
tructure for sensor networks, TOSN 4 (4).

G. Piro, G. Boggia, L. A. Grieco, A standard compliant security frame-
work for ieee 802.15. 4 networks, in: Internet of Things (WF-IoT), 2014
IEEE World Forum on, IEEE, 2014, pp. 27-30.

J. Zhang, V. Varadharajan, Wireless sensor network key management
survey and taxonomy, Journal of Network and Computer Applications
33 (2) (2010) 63 — 75. doi:http://dx.doi.org/10.1016/j.jnca.2009.10.001.
URL http://www.sciencedirect.com/science/article/pii/
51084804509001313

H. Chan, A. Perrig, Security and privacy in sensor networks, Computer
36 (10) (2003) 103-105.

J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor network

survey, Computer Networks 52 (12) (2008) 2292 - 2330.
doi:http://dx.doi.org/10.1016/j.comnet.2008.04.002.

URL http://www.sciencedirect.com/science/article/pii/
51389128608001254

N. Li, N. Zhang, S. K. Das, B. Thuraisingham, Privacy preservation in
wireless sensor networks: A state-of-the-art survey, Ad Hoc Networks
7 (8) (2009) 1501 — 1514, privacy and Security in Wireless Sensor and
Ad Hoc Networks. doi:http://dx.doi.org/10.1016/j.adhoc.2009.04.009.
URL http://www.sciencedirect.com/science/article/pii/
51570870509000407

36

28]

[29]

[30]
[31]

32]
[33]

[34]

[35]

[36]

[37]

S. Sicari, A. Rizzardi, L. Grieco, A. Coen-Porisini, Security, privacy and
trust in internet of things: The road ahead, Computer Networks 76
(2015) 146-164.

CGAL: Computational Geometry Algorithms Library.
http://www.cgal.org.

Boost. http://www.boost.org.

A. Dunkels, B. Gronvall, T. Voigt, Contiki - a lightweight and flexible
operating system for tiny networked sensors, in: LCN ’04: Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks, 2004.

TinyOS, http://www.tinyos.net.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, The
nesc language: A holistic approach to networked embedded systems,
in: Proceedings of Programming Language Design and Implementation
(PLDI) 2003, 2003.

Z. He, F. Osterlind, A. Dunkels, An adaptive communication architec-
ture for wireless sensor networks, in: Proceedings of ACM SenSys 07,
2007.

A. Dunkels, Poster abstract: Rime — a lightweight layered commu-
nication stack for sensor networks, in: Proceedings of EWSN 2007,
Poster/Demo session, 2007.

R. Sauter, P. J. Marrén, A. Dunkels, T. Voigt, N. Tsiftes, N. Finne,
F. Osterlind, J. Eriksson, Demo abstract: Towards interoperability test-
ing for wireless sensor networks with cooja/mspsim, in: Proceedings

EWSN ’09, 2009.

O. Akribopoulos, V. Georgitzikis, A. Protopapa, I. Chatzigiannakis,
Building a platform-agnostic wireless network of interconnected smart
objects, in: 15th Panhellenic Conference on Informatics, PCI 2011,
Kastoria, Greece, September 30 - October 2, 2011, 2011, pp. 277-281.
doi:10.1109/PCI1.2011.58.

URL http://dx.doi.org/10.1109/PCI.2011.58

37

[38]

[39]

[41]

[42]

[43]

[44]

A. Boulis, C.-C. Han, M. B. Srivastava, Design and implementation of
a framework for efficient and programmable sensor networks, in: Pro-
ceedings of MobiSys 03, ACM, New York, NY, USA, 2003, pp. 187-200.
doi:http://doi.acm.org/10.1145/1066116.1066121.

P. Levis, D. Culler, Mate: A tiny virtual machine for sensor networks,
in: International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, USA, 2002.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.19.8136

N. Shaylor, D. N. Simon, W. R. Bush, A java virtual machine archi-
tecture for very small devices, in: LCTES '03: Proceedings of the 2003

ACM SIGPLAN conference on Language, compiler, and tool for embed-
ded systems, 2003. doi:10.1145/780732.780738.

D. Simon, C. Cifuentes, The squawk virtual machine: Java on the bare
metal, in: OOPSLA 05, ACM, New York, NY, USA, 2005, pp. 150-151.
doi:10.1145/1094855.1094908.

T. Baumgartner, 1. Chatzigiannakis, S. P. Fekete, C. Koninis, A. Kroller,
A. Pyrgelis, Wiselib: A generic algorithm library for heterogeneous sen-
sor networks, in: EWSN, 2010, pp. 162-177.

A. J. Menezes, S. A. Vanstone, P. C. V. Oorschot, Handbook of Applied
Cryptography, CRC Press, Inc., Boca Raton, FL, USA, 1996.

S. Almuhammadi, N. T. Sui, D. McLeod, Better privacy and security in
e-commerce: Using elliptic curve-based zero-knowledge proofs, in: CEC,
2004, pp. 299-302.

C. P. Schnorr, Efficient signature generation by smart cards, Journal of
Cryptology 4 (1991) 161-174, 10.1007/BF00196725.
URL http://dx.doi.org/10.1007/BF00196725

W. Smith, Cryptography meets voting (2005).

D. Chaum, J.-H. Evertse, J. van de Graaf, An improved protocol for
demonstrating possession of discrete logarithms and some generaliza-
tions, in: EUROCRYPT, 1987, pp. 127-141.

38

[48]

[49]

[50]

[53]

[54]

[55]

A. Fiat, A. Shamir, How to prove yourself: practical solutions to
identification and signature problems, in: Proceedings on Advances
in cryptology—CRYPTO ’86, Springer-Verlag, London, UK, 1987, pp.
186-194.

URL http://portal.acm.org/citation.cfm?id=36664.36676

J. Boyar, D. Chaum, I. Damgard, T. P. Pedersen, Convertible undeni-
able signatures, in: CRYPTO, 1990, pp. 189-205.

E. Egea-Lopez, J. Vales-Alonso, A. S. Martinez-Sala, P. Pavon-Marino,
J. Garcia-Haro, Simulation tools for wireless sensor networks, in: Pro-
ceedings of the International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS05), 2005, p. 24.

A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, T. Razafind-
ralambo, A survey on facilities for experimental internet of things re-
search, Communications Magazine, IEEE 49 (11) (2011) 58-67.

G. Coulson, B. Porter, I. Chatzigiannakis, C. Koninis, S. Fischer,
D. Pfisterer, D. Bimschas, T. Braun, P. Hurni, M. Anwander, G. Wa-
genknecht, S. P. Fekete, A. Kroller, T. Baumgartner, Flexible exper-
imentation in wireless sensor networks, Commun. ACM 55 (1) (2012)
82-90. doi:10.1145/2063176.2063198.

URL http://doi.acm.org/10.1145/2063176.2063198

L. Sanchez, L. Muoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutier-
rez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, D. Pfisterer,
Smartsantander: Iot experimentation over a smart city testbed, Com-
puter Networks 61 (0) (2014) 217 — 238, special issue on Future Internet
Testbeds Part I. doi:http://dx.doi.org/10.1016/j.bjp.2013.12.020.
URL http://www.sciencedirect.com/science/article/pii/
S51389128613004337

Certicom research : Sec 2 - recommended elliptic curve domain param-
eters, http://www.secg.org/collateral/sec2_final.pdf (2010).

D. Eastlake, P. Jones, US Secure Hash Algorithm 1 (SHA1), Tech. Rep.
3174 (Sep. 2001).

S. Almuhammadi, C. Neuman, Security and privacy using one-round
zero-knowledge proofs, in: CEC, 2005, pp. 435-438.

39

[57]

[58]

[59]

[60]

N. Gura, A. Patel, A. Wander, H. Eberle, S. C. Shantz, Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs, 2004, pp. 119-
132.

URL http://www.springerlink.com/content/87aejjlhgn6fuxpy

A. Liu, P. Ning, Tinyecc: A configurable library for elliptic curve cryp-
tography in wireless sensor networks, in: IPSN, 2008, pp. 245-256.

J. Camenisch, E. V. Herreweghen, Design and implementation of the
idemix anonymous credential system, in: ACM Conference on Computer
and Communications Security, 2002, pp. 21-30.

S. A. Brands, Rethinking Public Key Infrastructures and Digital Cer-
tificates: Building in Privacy, MIT Press, Cambridge, MA, USA, 2000.

40

