
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Scalability of ONOS reactive forwarding applications in ISP networks / Bianco, Andrea; Giaccone, Paolo; Mashayekhi,
Reza; Ullio, Mario; Vercellone, Vinicio. - In: COMPUTER COMMUNICATIONS. - ISSN 0140-3664. - STAMPA. -
102:(2017), pp. 130-138. [10.1016/j.comcom.2016.09.007]

Original

Scalability of ONOS reactive forwarding applications in ISP networks

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.comcom.2016.09.007

Terms of use:

Publisher copyright

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.comcom.2016.09.007

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2649807 since: 2017-09-04T11:27:40Z

Elsevier

Scalability of ONOS reactive forwarding applications
in ISP networks

Andrea Biancoa, Paolo Giacconea, Reza Mashayekhia, Mario Ulliob,
Vinicio Vercelloneb

aDip. di Elettronica e Telecomunicazioni, Politecnico di Torino, Italy
bTelecom Italia,Torino, Italy

Abstract

Software Defined Networking (SDN) is a powerful approach that enhances
network control and management, and provides a flexible way to develop
network applications. However, scalability of SDN networks is an impor-
tant concern for many network operators. The main peculiarities of SDN
when applied to an Internet Service Provider (ISP) network are the large
geographical extension and the need of in-band transmission of control traf-
fic. Therefore, the control traffic exchanged between the SDN controller and
the network nodes must be carefully evaluated for the network design and
dimensioning.

We consider an ISP network controlled by the recently ONOS (Open
Network Operating System) controller developed by ON.Lab. We devise a
quantitative model to compute the exact number of exchanged OpenFlow
messages and the corresponding bandwidth needed to install a traffic flow
when running the default ONOS layer-2 forwarding applications. We com-
pute also the exact number of flow rules installed in each switch. We show
the general applicability of our models for a Point Of Presence (POP) net-
work and for a large set of real nation-wide and world-wide ISP networks.

Our quantitative models can be used for a safe network planning also
when the network applications are not fully reactive.

Keywords: Software Defined Networking, control traffic, reactive
forwarding applications

1. Introduction

Software Defined Networking (SDN) is the leading paradigm to enable
an efficient separation between data and control plane and allows the de-

Preprint submitted to Computer Communications September 17, 2016

velopment of advanced network applications by introducing a logically cen-
tralized controller. The controller has a complete view of the network and
is responsible to compute the routing paths and to implement the desired
forwarding and dropping rules. Therefore, the design of the switching de-
vices can be simplified because they have to support only the data plane. As
such, the SDN approach is considered an enabling technology for advanced
traffic engineering.

The adoption of SDN in legacy networks of Internet Service Providers
(ISP) is challenging both in terms of performance and reliability. The diffi-
culty is exacerbated by the fact that the wide geographical extension imposes
an in-band control plane, i.e. the control traffic is sharing the same network
resources than the data traffic. To properly design the network and assess
the scalability of the adopted SDN approach, a quantitative model is needed
to investigate the bandwidth requirements for the control plane.

Motivated by this observation, in our paper we provide the following
contributions. We propose a model to estimate the bandwidth consump-
tion due to control traffic on the southbound interface of the SDN con-
troller: we compute the number of OpenFlow control messages required to
install traffic flows for fully reactive forwarding applications, in which the
switch asks the controller for instructions anytime a new flow arrives. We
have chosen such applications because they provide a reference approach to
achieve maximum network programmability and flexibility. Furthermore,
they constitute a worst-case scenario in terms of control traffic, since reac-
tive forwarding provides an upper bound for the amount of control traffic
with respect to other fully or partly proactive applications, which trade re-
duced control traffic for limited network programmability. We also evaluate
the exact number of flow rules installed in the switches for each flow, by
which it is possible to understand the maximum scalability of the reactive
applications, given the maximum memory available to store the flow tables
internally in the switches. Notably, the memory size for flow rules depends
on the specific hardware/software architecture implementing the flow tables
(e.g., hash tables, Patricia tries, TCAMs, etc.) and thus the feasibility of a
network application depends actually on the deployed switches. In our work
we are neglecting the additional flow setup delays due to the reactive ap-
proach, which could be another limiting factor to the scalability of reactive
approaches.

In particular, we develop a model tailored to the two standard layer-2
forwarding applications available in the ONOS (Open Network Operating
System) controller [1], developed by ON.Lab [2], which is one of the most
practical relevant open-source controllers targeting ISP networks. Both for-

2

warding applications are reactive at the MAC/IP flow level, i.e., rules are
installed in the switches on-the-fly, upon the identification of new flows at
MAC/IP level. To show the general applicability of our model, we first
apply it to a realistic network topology present in the Point Of Presence
(POP) access network of a nation-wide ISP. Finally, we apply the model to
a set of 242 real ISP network topologies and highlight the role of the internal
structure of the graph describing the topology.

A similar analysis was presented in [3] for the OpenDaylight controller [4]
running the default reactive forwarding application, in the scenario of a
single POP access network. Even if the methodology is similar, the control
traffic in OpenDaylight cannot be compared with the one considered in
this paper. Indeed, the specific forwarding application considered in [3] is
based on broadcasting any forwarding rule across all the network switches,
independently on the actual switches involved in the forwarding process
along the path between the source and the destination, thus by construction
the control traffic is much higher than the one considered in our scenario.
Nevertheless, also for the reactive applications in ONOS, we will show that
the amount of OpenFlow control traffic can be relatively large, with respect
to the data transferred by each flow.

We expect a practical relevance of our models also for other applica-
tions. Indeed, reactive applications provide the network designers with the
worst-case control traffic due to OpenFlow protocol and with the maximum
number of flow rules installed in each switch. This allows a safe design and
plan of the control network, based on the specific topology of the network
supporting the control plane and on the flow arrival pattern.

The paper is organized as follows. Sec. 2 discusses the related works.
Sec. 3 briefly describes the SDN approach and the standard forwarding ap-
plications available in ONOS. In Sec. 4 we analyze the message exchange on
the control plane for the considered network applications and propose the
detailed model for its quantitative evaluation in terms of traffic and installed
rules for the two considered applications. In Sec. 5 we introduce a realistic
POP topology on which we evaluate the control traffic thanks to our model
and in Sec. 6 we apply our quantitive model for a large set of ISP networks.
Finally, in Sec. 7 we draw our conclusions.

2. Related Work

The scalability of SDN networks for large networks has been widely
investigated during the last years. One approach to improve the scalabil-
ity of SDN networks is to decrease the interaction on the control plane,

3

i.e. between the switches and the controller/s, by delegating some control
capabilities to the network devices. A relevant contribution is [5], which
proposed to add specific control functionalities on the switches in order to
balance the flexibility to program the data plane and the scalability of the
control plane. Some other works such as DevoFlow [6] and SDCs [7] also
aimed at decreasing control plane overhead by delegating some forwarding
decisions to the devices in the data plane. In all these approaches, the
forwarding devices complement the controller’s decisions and take the re-
sponsibility for some actions on specific flows. An example of such approach
was proposed by [8], according to which the switch asks the controller for
instructions selectively only on elephant flows. The approach is based on
a flow classification scheme implemented through on a two-stage adaptive
system. Another relevant work is control protocol named OpFlex [9]. Unlike
OpenFlow, OpFlex distributes some parts of network control to forwarding
devices in order to increase scalability of control plane. OpenState [10] is an-
other recent control protocol exploiting stateful programming abstractions
and introducing finite state machines implemented with each switch. This
is an extension of the OpenFlow match/action concept and it is compatible
with the standard TCAM-based implementation of OpenFlow flow tables.

Another approach to address the scalability is to improve the processing
capabilities of the controllers. This is achieved by exploiting advanced and
highly efficient computing techniques such as parallelism and pipelining.
Examples of such approach are: Beacon [11] and Maestro [12] which use
multi-threaded controllers, Kandoo [13] that utilizes a hierarchical control
platform, and HyperFlow [14] and ONOS [1] (considered in our work) which
exploit distributed controllers.

Recently, [15] has addressed SDN scalability in both data and control
planes through hardware accelerators. They utilized the generic x86 CPU as
forwarding engine and RAM to handle the chained flow tables and achieve
forwarding capabilities of Gbps. All the mentioned works aim at increasing
scalability of SDN control plane. Finally, [16] has proposed the response time
perceived at the switches as metric of scalability for SDN control planes, and
studied three typical SDN control plane structures (centralized, decentral-
ized and hierarchical architectures).

Differently from all the previous works, we are not improving the scal-
ability of SDN networks, but we are evaluating the amount of exchanged
traffic in the control plane between the switches and the controller/s and the
number of installed flow rules per flow, in order to provide some quantitive
model to understand the maximum scalability of reactive network applica-
tions, given an available network topology and a flow arrival pattern.

4

3. Packet forwarding in SDN

We consider a physically centralized implementation of an SDN net-
work, where a single controller is responsible for the control plane decisions
in all the switching nodes. Note that practical implementations are based
on distributed controllers (as better detailed in Sec. 3.1), which appear as a
logically centralized controller to enable a consistent network view. Our re-
sults in terms of generated OpenFlow traffic are general and are independent
from the distributed architecture of the controller.

We can identify two opposite operational modes, showing a different
impact on the scalability and reactivity of the SDN control [17]. In the
reactive mode, the forwarding decisions are taken whenever a new flow (i.e.
a flow with no previously installed rule) arrives at a switch. Indeed, the
switch sends a copy of the packet (or its header) to the controller and the
controller installs a forwarding rule in the switch to route all the following
packets in the flow. This mode enables the implementation of flexible online
routing/dropping policies, without any preliminary traffic knowledge. Fur-
thermore, flow entries are added only when needed, reducing the memory
requirements in the switches. On the other side, an overhead in terms of con-
trol bandwidth and delay is experienced for each new flow. In the proactive
mode the controller pre-populates flow entries on network switches. This
mode avoids the initial flow overhead needed to dynamically install rules
in the switch. However, it requires a preliminary knowledge of the routing
rules applicable in the network.

In our work we focus only on the reactive forwarding scenario, because it
represents the worst-case in terms of the amount of generated control traffic
and flow rules installed in switches, while achieving the highest flexibility
in network programmability. If we consider SDN networks with reactive
applications exploiting OpenFlow (OF) [18], the control traffic is due to dif-
ferent OF messages types, devoted to the initial device configuration, the
flow setup, and the keep-alive mechanisms. The flow setup phase has the
strongest impact on the control traffic, because it requires the higher fre-
quency of interaction between the switch and the controller when the traffic
in the network is significant. Indeed, when the first packet of an unmatched
flow reaches a switch, the switch sends a pkt in message to the controller
with a copy of the packet (or its header). The controller processes the mes-
sage and sends back to the switch a pkt out message with the action (mainly,
“drop” or “forward to a specific output port”) to handle the received packet.
Furthermore, the controller sends a flow mod message to install a new for-
warding rule on the switch. Subsequent packets belonging to the same flow

5

Mininet

Sniffer
ONOS

Controller

Figure 1: Experimental scenario to evaluate the control traffic in ONOS

match the forwarding rule and are directly processed in the switch, without
any further interaction with the controller. Note that barrier messages can
be sent after the flow mod to guarantee a correct installation and processing
of the forwarding rule for all the packets currently buffered in the switch.

3.1. Distributed Control Plane

As previously mentioned, many practical implementations are based on
distributed controllers, due to their higher scalability and reliability. In such
scenarios, two kinds of control traffic are present in the network. First, the
southbound control traffic (typically based on OpenFlow protocol) between
the controller/s and the switching devices. Second, the east-west control
traffic, which is the inter-controller traffic to keep the shared data consis-
tent among the controllers. Depending on the control platform and the
level of consistency (e.g., strong/eventual) to provide on the data, ad-hoc or
proprietary consensus algorithms and protocols are adopted [19].

In our work we focus just on the first kind of traffic, in particular Open-
Flow. Note that this traffic is completely independent from the east-west
traffic, since the distributed architecture of the controllers must operate
transparently for the switch. Thus, our model is general and independent
of the distributed architecture of the controller.

3.2. Reactive Forwarding in ONOS

Open Network Operating System (ONOS) is an open-source distributed
SDN control platform, developed by the Open Networking Lab (ON.Lab) or-
ganization [1], and supported by some of the leading industries and academic
institutions. Differently from OpenDaylight [4], the ONOS project specifi-
cally addresses ISP networks, by providing high availability and scalability,
thanks to its distributed architecture. In December 2014 the first version
of ONOS (1.0.0, named Avocet) was released and our results apply to this
specific release. ONOS provides two default reactive forwarding applica-
tions: simple reactive forwarding application (denoted as “onos-app-fwd”),
and intent-based simple reactive forwarding application (“onos-app-ifwd”),
respectively named fwd and ifwd in our paper.

6

To compute the exact number of messages exchanged in the control plane
for these applications, we adopt two complementary approaches. First, we
use the SDN network emulator mininet [20] to create a test network topology.
Following the scheme shown in Fig. 1, we run an instance of ONOS with
fwd or ifwd applications, and generate traffic on mininet nodes. Through
a network sniffer, we analyze the control traffic due to the OF messages
exchanged between each emulated switch and ONOS. Second, to validate
our understanding of the interaction on the control plane and generalize
our findings to any network, we also analyze in details the ONOS source
code. We evaluate the number of flow rules added in a switch through the
number of received flow-mod packets. In theory, flow-mod messages could
carry multiple flow rules, but we have never observed any rule bundling in
our traces.

Both reactive applications in ONOS work at layer-2 and assume a single
IP network. Each flow is identified by a source/destination address pair,
both at MAC and IP level. Thus, one flow can comprise multiple sessions
at higher protocol levels (e.g. TCP, UDP or RTP).

Within a switch, one port connected to another switch is denoted as
internal port, whereas one port connected to a host (client and/or server) is
denoted as host port. Note that a host port can be connected to many hosts
(e.g., through non-OF switches/hubs). The topology interconnecting the
switches (i.e. the internal ports and the communication links among them)
is known in advance to the controller, thanks to the preliminary phase of
topology discovery based on the LLDP [21] protocol, which is implemented
by the controller by sending specific pkt out messages to the switches. In-
stead, the host location, i.e. the port where the host is connected, is a-priori
unknown and must be discovered in real time by the controller. Sec. 4 de-
scribes in detail the behavior of both fwd and ifwd applications in ONOS
and the process followed to discover the host location.

4. ONOS control traffic

We consider the flow setup process to establish a bidirectional commu-
nication between a source host HS and a destination host HD, assuming
that the corresponding host ports are unknown to the controller. Let PSD

be the number of switches along the shortest path from HS to HD. Let N
be the total number of switches in the network, and let E be the number
of inter-switch communication links. We evaluate the exact number of OF
messages exchanged for a new flow setup between HS and HD, for the fwd

Sec. 4.1) and the ifwd applications (Sec. 4.2). For simplicity, we will refer

7

S1 S2 S3

HS HDH2

C

22

1

2 3

1 1

Figure 2: Example of network connecting 2 hosts HS and HD through a path of PSD = 3
switches. In dashed the communication links with the ONOS controller C.

to the linear topology shown in Fig. 2 as a reference case, but our results
apply in general to any given topology. We assume that the ARP tables of
both HS and HD and the forwarding tables of all the switches are initially
empty.

4.1. ONOS fwd application

In Tab. 1 we report the detailed sequence of packets exchanged in the
data and control planes for the fwd application.

During phase 1, the first generated packet from HS is an ARP request
(ARP-REQ). This message reaches the local switch (denoted as root switch)
to which the source host is connected. This ARP packet is sent to the ONOS
controller through a pkt in message, thus allowing the controller to learn the
source host port. Now, the ARP-REQ is flooded across all the switches in
the network. Note that the flooding is interrupted as soon as the destination
is reached. In more detail, the controller sends a pkt out message to the root
switch, encapsulating the same ARP-REQ packet with the action to flood it
to all the ports except the one from which the original packet was received.
After receiving this message, the root switch floods the ARP-REQ to S2.
Upon the reception of this packet, S2 sends a pkt in to the controller, which
replies with a pkt out to flood the ARP-REQ to H2 and S3. This procedure
continues until the ARP-REQ reaches the destination HD.

In phase 2, HD sends an ARP reply (ARP-REP) to the attached switch,
but this packet is not flooded any more like in phase 1, because it is for-
warded to HS through the shortest path. Indeed, HD’s switch sends the pkt
in message to the controller. Now the controller learns the host port of HD.
Then, it computes the shortest path from S3 to S1, at which HD is attached
and issues a pkt out to send the ARP-REP to S2. The procedure continues
until the ARP reaches HS . Note that, so far, no flow mod has been sent by
the controller and so all the forwarding tables inside the switches are empty.

8

Table 1: Sequence of packets exchanged during flow setup HS → HD for ONOS fwd

application, for the network of Fig. 2.

Phase Direction Packet

HS → S1 ARP-REQ:HD?
S1 → C pkt in (ARP-REQ:HD?)
C → S1 pkt out (ARP-REQ:HD?):flood
S1 → S2 ARP-REQ:HD?
S2 → C pkt in (ARP-REQ:HD?)

1 C → S2 pkt out (ARP-REQ:HD?):flood
S2 → H2 ARP-REQ:HD?
S2 → S3 ARP-REQ:HD?
S3 → C pkt in (ARP-REQ:HD?)
C → S3 pkt out (ARP-REQ:HD?):flood

S3 → HD ARP-REQ:HD?

HD → S3 ARP-REP:HD

S3 → C pkt in (ARP-REP:HD)
C → S3 pkt out (ARP-REP:HD):output port 2
S3 → S2 ARP-REP:HD

2 S2 → C pkt in (ARP-REP:HD)
C → S2 pkt out (ARP-REP:HD):output port 2
S2 → S1 ARP-REP:HD

S1 → C pkt in (ARP-REP:HD)
C → S1 pkt out (ARP-REP:HD):output port 1

S1 → HS ARP-REP:HD

C→S3, C→ S2, C→S1 flow mod(HD → HS , EthType=ARP)
3 C→S3, C→ S2, C→S1 barrier request

S3→C, S2→C, S1→C barrier reply

HS → S1 IP HS → HD

S1 → C pkt in (IP HS → HD)
C → S1 pkt out (IP HS → HD):output port 2
S1 → S2 IP HS → HD

4 S2 → C pkt in (IP HS → HD)
C → S2 pkt out (IP HS → HD):output port 3
S2 → S3 IP HS → HD

S3 → C pkt in (IP HS → HD)
C → S3 pkt out (IP HS → HD):output port 1

S3 → HD IP HS → HD

C→S1, C→ S2, C→S3 flow mod(HS → HD, EthType=IP)
5 C→S1, C→ S2, C→S3 barrier request

S1→C, S2→C, S3→C barrier reply

6 Usual IP forwarding from HS to HD

7 Same as phase 4 IP HD → HS

C→S1, C→ S2, C→S3 flow mod(HD → HS , EthType=IP)
8 C→S1, C→ S2, C→S3 barrier request

S1→C, S2→C, S3→C barrier reply

9 Usual IP forwarding from HD to HS
9

In phase 3, after the ARP reply has reached HS , the controller installs
the forwarding rule to allow any unicast ARP packet from HD to HS to reach
the source, on all the PSD switches in the shortest path from HD to HS .
Flow establishment messages include: a flow mod message and a barrier
request message sent from the controller to each switch, and a barrier reply
message sent from the switch to the controller.

During phase 4, the first IP packet is sent from HS to HD. When the
packet reaches the root switch, it triggers a pkt in, because the forwarding
table has been set only for ARP packets. The controller now instructs the
root switch to send the packet on the port corresponding to the shortest path
towards HD. This procedure keeps repeating until the IP packet reaches HD.

In phase 5, similarly to phase 3, the controller installs a layer-2 rule for all
IP packets from HS to HD in all the switches along the shortest path. From
now on, all the IP packets from HS to HD do not trigger any interaction
with the controller, thanks to the installed forwarding rules (phase 6).

When HD sends back an IP packet to HS (phase 7), this packet is trans-
ferred along the shortest path with a similar sequence of pkt in and pkt out
messages observed in phase 4. Only after reaching HS , in phase 8 a flow
mod is used to install a layer-2 rule on all the switches along the shortest
path for all the IP packets from HD to HS . From now on, also the IP
packets from HD to HS are forwarded directly without interaction with the
controller (unless the rule timer expires).

At high level, we can summarize the whole message exchange by the
following properties:

• P1: the host positions are discovered by the ARP packets sent by the
source and destination hosts, allowing the controller to compute the
shortest path among the two hosts.

• P2: the application mimics the flooding occurring at layer 2 in a sin-
gle broadcast domain for the ARP request packet, but the flooding
is interrupted as soon as the destination host is reached; each ARP
request is sent to the controller by the traversed switches.

• P3: the ARP reply is sent to the source host without flooding; each
ARP reply is sent to the controller by the traversed switches.

• P4: the first IP packet for each direction is sent hop-by-hop to the
destination; each IP packet is sent to the controller by the traversed
switches.

10

Table 2: OpenFlow messages for a new flow in fwd application

Phase mpi mpo mfm mbq mbp

1 (PSD, 2E] [PSD, N] - - -
2, 4, 6 PSD PSD - - -
3, 5, 7 - - PSD PSD PSD

Total (4PSD, 2E + 3PSD] [4PSD, N + 3PSD] 3PSD 3PSD 3PSD

• P5: the installed forwarding rules are defined at layer-2 and refer
specifically to the unicast ARP reply packets and the IP packets, in
both directions. The rules are installed along all the switches occurring
in the shortest path, after the first end-to-end packet exchange has
been successful. Thus, a total of 3 flow rules are added in each switch
along the shortest path for each new flow.

Focusing on the OF messages shown in Tab. 1, it is possible to gen-
eralize and compute the total number of exchanged OF messages in any
topology with N nodes, for a single flow traversing PSD switches. The
number is evaluated in terms of number of flow mod messages (denoted as
mfm), pkt in messages (denoted as mpi), pkt out messages (denoted as mpo),
barrier request messages (denoted as mbq), and barrier reply messages (de-
noted as mbp). The number of flow rules installed in each switch is given
by mfm/PSD. Let ds be the number of internal ports for switch s, let
also dmin = mins ds be the minimum number of internal ports, and let E
be the total number of links connecting all the switches. By construction,
E =

∑
s ds/2. Finally, let ΩSD be the set of all the switches along the

shortest path from HS to HD.
Considering the phases identified in Tab. 1, for a generic topology we

have the total number of messages shown in Tab. 2. The total number
of pkt in and pkt out generated during phase 1 depends on the number of
flooded ARP requests. We provide an upper and a lower bound for it. The
minimum value of switches involved in the flooding is PSD, whenever the
flooding is interrupted as soon as all the switches along the shortest path
have received the ARP request. In this case, as lower bound we can claim
that mpo ≥ PSD and mpi > PSD since

mpi = PSD +
∑

s∈ΩSD

ds ≥ PSD + PSDdmin = PSD(1 + dmin)

The maximum values of switches involved in the flooding is N , each of

11

them receiving one pkt out from the controller for the flooding, and sending
a copy of the ARP to all the neighboring switches, which will send the
corresponding pkt out to the controller. Thus, in the worst case, all the inter-
switches links are involved in the flooding by sending pkt in. In conclusion,
the upper bounds to the number of OF messages arempo ≤ N andmpi ≤ 2E.

We can summarize the above results as follows:

Property 1. In Simple Reactive Forwarding Application (fwd) of ONOS,
for each new flow traversing PSD switches, the following relations hold for
the number of OF messages:

mpi ∈ (4PSD, 2E + 3PSD]

mpo ∈ [4PSD, N + 3PSD]

mfm = mbq = mbp = 3PSD

The number of rules installed per flow in each switch along the routing path
is 3.

4.2. ONOS ifwd application

This application is very similar to fwd but it reduces the number of OF
messages. The main idea is to use the control plane (i.e. the controller) to
forward some packets from the source to the destination, thus “shortcutting”
the path on the data plane. In the following, we explain in detail its behavior.

Tab. 3 shows the sequence of packets exchanged for the same toy network
of Fig. 2. The first difference between ifwd and fwd occurs in phase 2, when
the ARP reply from HD is received by the controller. Instead of mimicking
the standard routing of the ARP reply packet along the shortest path, as
for fwd, the controller directly sends the ARP to the root switch S1. The
installation of the flow rules for the ARP (as in phase 3 of fwd) does not
occur anymore. Furthermore, the first IP packet (i.e. ICMP request) is
directly forwarded through the controller from S1 to S3 (phase 3) and also
the answer IP packet in the reverse direction (i.e. ICMP reply) is directly
forwarded through the controller (phase 4). Thus, in phases 2, 3, 4 the
controller is shortcutting the routing path from/to HS to/from HD, acting
as “software switch”. Now the controller installs all the forwarding rules
for the couple HS and HD of MAC addresses along the path; in phase 5
for the direction from HS to HD, and in phase 6 in the reverse direction.
Finally (phase 7), thanks to the installed forwarding rules at MAC level, all

12

Table 3: Sequence of packets exchanged during flow setup HS → HD for ONOS ifwd
application, for the network of Fig. 2.

Phase direction Packet

HS → S1 ARP-REQ:HD?
S1 → C pkt in (ARP-REQ:HD?)
C → S1 pkt out (ARP-REQ:HD?):flood
S1 → S2 ARP-REQ:HD?
S2 → C pkt in (ARP-REQ:HD?)

1 C → S2 pkt out (ARP-REQ:HD?):flood
S2 → H2 ARP-REQ:HD?
S2 → S3 ARP-REQ:HD?
S3 → C pkt in (ARP-REQ:HD?)
C → S3 pkt out (ARP-REQ:HD?):flood

S3 → HD ARP-REQ:HD?

HD → S3 ARP-REP:HD

S3 → C pkt in (ARP-REP:HD)
2 C → S1 pkt out (ARP-REP:HD):output port 1

S1 → HS ARP-REP:HD

HS → S1 IP HS → HD

3 S1 → C pkt in (IP HS → HD)
C → S3 pkt out (IP HS → HD):output port 1

S3 → HD IP HS → HD

HD → S3 IP HD → HS

S3 → C pkt in (IP HD → HS)
4 C → S1 pkt out (IP HD → HS):output port 1

S1 → HS IP HD → HS

C→S1, C→ S2, C→S3 flow mod(HS → HD)
5 C→S1, C→ S2, C→S3 barrier request

S1→C, S2→C, S3→C barrier reply

C→S3, C→ S2, C→S1 flow mod(HD → HS)
6 C→S3, C→ S2, C→S1 barrier request

S3→C, S2→C, S1→C barrier reply

7 usual MAC forwarding from/to HS to/from HD

13

Table 4: OpenFlow messages for a new flow in ifwd application

Phase mpi mpo mfm mbq mbp

1 (PSD, 2E] [PSD, N] - - -
2, 3, 6 1 1 - - -

4, 7 - - PSD PSD PSD

Total (PSD + 3, 2E + 3] [PSD + 3, N + 3] 2PSD 2PSD 2PSD

the packets between the pair HS and HD are routed without the interaction
with the controller.

If we consider the list of properties of the fwd application, P1 and P2
still hold, whereas P3, P4 and P5 should be modified as below:

• P3’: the ARP reply is sent to the source host directly by the controller.

• P4’: the first IP packet for each direction is sent from the source to
the destination directly by the controller.

• P5’: the forwarding rules are installed per source and destination pair
at MAC level, and are installed after the first end-to-end IP packet
exchange has been successful.

Using the same methodology adopted for fwd, we can compute the total
number of OF messages for �ifwd as shown in Tab. 4 and summarize our
findings as follows:

Property 2. In Intent Based Simple Reactive Forwarding Application
(ifwd) of ONOS, for each new flow traversing PSD switches, the follow-
ing relations hold for the number of OF messages:

mpi ∈ (PSD + 3, 2E + 3]

mpo ∈ [PSD + 3, N + 3]

mfm = mbq = mbp = 2PSD

The number of rules installed per flow in each switch along the routing path
is 2.

14

Table 5: Total number of OpenFlow messages and installed flow rules in the switches
along the routing path

Openflow messages Installed flow rules
Application Lower bound Upper bound per flow in each switch

fwd 17PSD 2E +N + 15PSD 3
ifwd 8PSD + 6 2E +N + 6PSD + 6 2

4.3. Summary of the results

By combining the results of Properties 1 and 2, in Table 5 we show the
number of OF messages, independently from their kind, exchanged in the
control plane for the two applications, and the corresponding number of flow
rules installed for each switch along the routing path connecting the source
to the destination. Note that this evaluation holds for any network topology.

5. OpenFlow control traffic in a POP network

To show the broad applicability of our results, we start by considering
an ISP network, composed of a backbone network interconnecting P access
networks, denoted as POPs (Points Of Presence). Our aim is to understand
the effect on OpenFlow traffic of different sizes of the POPs by which a given
population of users is divided. We do not make any assumption about the
position of the SDN controller within the POP.

We assume the reference topology in the POP depicted in Fig. 3, in
which all the switching devices present in the POP are assumed to be OF
switches managed by a single ONOS controller, responsible for the routing
internal within the POP, for the case in which both communication end-
points are internal to the POP and for the case in which only one endpoint
is internal (in this case, the routing is directed to the POP access router).
Coherently with the considered layer-2 applications, the whole network is
a single IP network. The POP is composed of B OF access routers (de-
noted as “AR”), each of them acting as a Broadband Remote Access Server
(BRAS) and connected to D DSLAMs (Digital Subscriber Line Access Mul-
tiplexers) [22]. The corresponding D ports are configured as host ports.
Each access router is connected to D DSLAMs and provides the access to K
users, distributed across the DSLAMs. Two intermediate switches (denoted
as “IS”) are connected to a CDN ingress server through a host port and
to two routers acting as border routers (denoted as “BR”). Note that the

15

Si'.

Ciao
Paolo

k users k users

Access
Router

1 B

UPOP usersPoP

1
2

1 2

Servers.

CDN
(Internal Traffic Server)

Intermediate
Switch (IS)

Border Router
(BR)

2

2

Access
Router (AR)

POP

CDN node

Figure 3: Reference topology for a POP network.

duplication of the IS and BR devices is due to load balancing and reliability
reasons.

The overall number of users UPOP managed in the POP is UPOP = KB,
whereas the total number of users supported by the ISP is UISP = PUPOP

assuming that all the POPs have the same size, for simplicity. Thus, B =
UISP /(PK). With all the above formulas, it is possible to compute the
number of internal ports for each switch involved in the topology. Note that
this scenario can be easily extended to other realistic topologies.

Coming back to Fig. 3, two OF switches are responsible to provide load
balancing and redundant paths between the access routers and two OF bor-
der routers connected to the backbone. The ports of the border router
towards the backbone network are configured as host ports to keep the con-
troller aware only of the internal POP topology and to route the data across
the POP obliviously of the backbone routing policies. In total, the number
of OF switches within the POP is: N = 4 + B = 4 + UISP /(PK) and the
number of inter-switch links is E = 6 + 2B = 6 + 2UISP /(PK).

We only focus on the control traffic generated/received to/from the SDN
controller, due to flow setup by POP users, i.e. the ISP customers. We as-
sume that each user establishes one distinct flow at IP level, during some
observation window T , and we evaluate the actual number of messages (and
the corresponding amount of bytes) observed in the control plane. The
actual bandwidth (in byte/s) can be directly computed by dividing the ex-

16

Table 6: Size of OpenFlow messages

Message Size

pkt in 98 bytes + payload
pkt out 104 bytes + payload

flow mod 146 bytes
barrier request 74 bytes
barrier reply 74 bytes

Table 7: POP scenario setting

Parameter Symbol Value

Total users UISP 16M
Users per access router K 32k
DSLAMs per access router D 32
Number of POPs P 16-256
Users per POP UPOP 65k-1M

changed bytes by T .
The traffic flows are generated according to two scenarios. In Local

traffic, all the POP users’ traffic is destined towards the internal CDN node.
Thus, PSD = 2. In External traffic, each user connects with a distinct server,
located externally to the POP, as shown in Fig. 3. Thus, PSD = 3. Since
the routing is occurring at layer-2, in this case the IP destination will be
one of the BR interfaces (i.e. the POP default gateway).

5.1. Evaluation of OpenFlow control traffic

We investigate the number of OF messages and the required bandwidth
for the POP reference topology. We evaluate the amount of OF messages
exchanged in each POP for each flow setup, based on the results of Proper-
ties 1 and 2. The considered scenario is a nation-wide ISP providing service
to UISP = 16 million active users, divided into P homogeneous POPs, with
POP configuration parameters as reported in Tab. 7. We investigate the
control traffic as a function of the number of available POPs in which the
user population is divided. Since the flow is defined at MAC/IP level, the
average number of messages per flow does not depend neither on the num-
ber of higher level flows (defined at the transport layer), nor on the order of
flows arrivals.

17

 0

 50

 100

 150

 200

 16 32 64 128 256
 0

 5

 10

 15

 20

 25

1M 262k 131k 65k

M
es

sa
ge

s
pe

r
fl

ow

kB
 p

er
 f

lo
w

Number of POPs P

Users per POP UPOP

Local traffic, lower bound
Local traffic, upper bound

External traffic, lower bound
External traffic, upper bound

Figure 4: OpenFlow control traffic for the ONOS fwd application

 0

 50

 100

 150

 200

 16 32 64 128 256
 0

 5

 10

 15

 20

 25

1M 262k 131k 65k

M
es

sa
ge

s
pe

r
fl

ow

kB
 p

er
 f

lo
w

Number of POPs P

Users per POP UPOP

Local traffic, lower bound
Local traffic, upper bound

External traffic, lower bound
External traffic, upper bound

Figure 5: OpenFlow control traffic for the ONOS ifwd application

Figs. 4 and 5 show the upper and lower bounds for the number of OF
messages as a function of the POP size for the ONOS fwd and ifwd applica-
tions respectively. We report also the actual bandwidth per flow, computed
with the size of the OF packets shown in Tab. 6, and neglecting the packet
copy carried inside the pkt in and pkt out payload (i.e. ARP or IP packet).

The two applications behave similarly, coherently with the results in
Tab. 5, because the bounds for the number of messages in both fwd and

18

ifwd differ by a constant factor equal to 9PSD − 6.
In the case of local traffic, the lower bound on the number of OF messages

is independent of the number of hosts and switches, but depends only on the
constant PSD = 2 between hosts and the CDN node. However, the upper-
bound strongly depends on the POP size, and it is proportional to the total
number of links E. This bound is mainly due to the worst-case scenario for
the flooding of ARP requests and, in relative terms, is only 4 times larger
than the lower bound for large POPs, and only 20% larger for small POPs.

In the case of external traffic, PSD = 3 and the lower bound is constant,
as expected. The upper bound has the same behavior than local traffic. Note
that the bandwidth increase in external traffic with respect to local traffic
for fwd is larger than for ifwd, due to the flooding of the ARP requests.

The overall bandwidth varies between 5 and 25 kB per flow, indepen-
dently of the application and the traffic scenario. These values permit to
properly plan the control network (for a given flow arrival rate) and to
quantitatively evaluate the conditions under which the traffic overhead due
to SDN can be considered negligible with respect to the data carried by the
flow. If we consider an average flow size of 10-20 kB for the data as reported
in [23, 24], the overall control bandwidth is surprisingly large relatively to
the amount of exchanged data and is mainly due to the reactive nature
of the two applications. These results suggest that reactive applications
in large POP networks should be avoided and provide an upper bound on
the maximum amount of control traffic that any real application (which is
supposed to act in a hybrid way between reactive and proactive behaviors)
would generate.

5.2. Evaluation of installed flow rules

Leveraging the results of Tab. 5, we can evaluate the number of installed
flows per switch in the two traffic scenarios (local and external). We assume
that a fraction α, with α ∈ [0, 1], of users are active at the same time in
the POP. Thus, the number of flows traversing each access router is αk on
average and the ones traversing each intermediate switch will be αUPOP /2
(assuming a perfect load balancing), in both traffic scenarios. For the border
routers, in the case of local traffic no flow will be present, but in the case of
external traffic the average number of flows will be αUPOP /2. Now Table 8
reports the expected number of flow rules installed for each device, for the
two reactive applications, and Fig. 6 shows them for the different network
devices. Note that the messages for BR are by construction zeros in the case
of local traffic. The results have been obtained by setting α = 0.09 since it

19

Table 8: Average number of flow rules installed per device

Device fwd ifwd Note

Access Router (AR) 3αk 2αk -
Intermediate Switch (IS) 1.5αUPOP αUPOP -
Border Router (BR) 1.5αUPOP αUPOP Only for external traffic

0

20000

40000

60000

80000

100000

120000

140000

160000

16 32 64 128 256

1M 262k 131k 65k

E
xp

ec
te

d
nu

m
be

r
of

fl
ow

ru
le

s
pe

r
sw

it
ch

Number of POPs P

Users per POP UPOP

AR-fwd
AR-ifwd

IS/(BR)-fwd
IS/(BR)-ifwd

Figure 6: Installed flow rules for each network device assuming 9% of active users in the
POP.

has been shown by [25] (and other works referred in [25]) that the fraction
of active ADSL users is usually less than 9%, even during peak-hours.

The maximum number of active flow rules that can be stored in a switch
depends on the actual implementation of OF switches. If the tables were
completely implemented in TCAMs, current switch implementations would
accept around 10,000 rules, thus limiting the applicability of reactive appli-
cations to small POPs. Instead, if the tables were completely implemented
in RAM (e.g., through Patricia tree or hash tables) much larger flow tables
could be accepted, at the cost of a performance degradation. Only focusing
on a particular implementation and knowing the exact fraction of active
users, it would be possible to provide a definitive answer to the maximum
scalability of the considered reactive applications.

20

10

100

1000

0 50 100 150 200 250
1

10

100
M

es
sa

ge
s

pe
r

fl
ow

kB
 p

er
 f

lo
w

ISP

Upper bound, Max-path
Lower bound, Max-path
Upper bound, Ave-path
Lower bound, Ave path

Figure 7: Overall OpenFlow control traffic for ONOS fwd application for the maximum
length path and for an average length path

6. OpenFlow control traffic in real ISP networks

After evaluating the OF control traffic for the specific topology of a POP
network, we extend our analysis to 242 different ISP network topologies, ob-
tained from the Internet Topology Zoo project [26]. We do not compute the
installed flow rules per switch, since it is not possible to know how the pop-
ulation, and thus the flows, are distributed across the nodes present in such
large networks, some of them covering one or more countries/continents.
Instead, we investigate the effect of the topology on the control traffic. We
report the lower and upper bound of OF traffic obtained according to Prop-
erties 1 and 2, in two distinct cases. In the first case, denoted “Max-path”,
the distance PSD between the source and the destination is maximum and
corresponds to the network diameter. In the second case, denoted “Ave-
path”, the distance PSD is the average distance in the topology. In the
following discussion, when referring to the names of specific ISPs, we will
refer to the identifiers used in [27], where the interested reader can view the
corresponding topology.

Figs. 7-8 show the control traffic for the fwd and ifwd applications, re-
spectively, for each ISP network.For the sake of readability, the ISPs have
been sorted in increasing values of network diameter and consequently, ac-
cording to Table 5, in increasing values of lower bound. As a reference to
understand the correlation between control traffic and the features of the
considered network topologies, Fig. 9 also shows the number of nodes, links,
and the diameter of each network for the same sequence of ISPs used in

21

Figs. 7-8.
We now consider the behavior of fwd application in Fig. 7. If we compare

the upper bounds, the flows with average length path (“Upper bound, Ave-
path”) show almost the same number of messages per flow with respect
to ones with the longest paths (“Upper bound, Max-path”), since both
upper bounds depend mainly on the flooding of the ARP-Request messages
across all the nodes of the topology. Indeed, the two bounds show the same
behavior as the number of edges and nodes in Fig. 9, independently of the
path length and the specific considered flow.

If we now compare the upper bound with the lower bound for the longest
path (“Upper bound, Max-path” vs. “Lower bound, Max-path”) in Fig. 7,
they coincide for linear topologies (e.g. Sago ISP in USA) since the routing
along the shortest path between the extreme nodes involves all the other
nodes in the middle. Instead, the upper bound can be much larger than the
lower bound (up to 12×) for symmetric large topologies (e.g. TATA ISP in
India), where the nodes involved in the flooding are much higher than the
ones along the path connecting the farthest nodes. Thus, the topology has
a strong impact on the lower bound when considering flows with long paths.

If we now compare the lower bounds obtained for longest paths (“Lower
bound, Max-path”) and for average paths (“Lower bound, Ave-path”) in
Fig. 7, they can be identical or very similar whenever the topology is either
fully connected (e.g. GlobalCenter ISP in USA) or a star (e.g. Itnet ISP in
Ireland) since the average distance is the same or very close to the diameter
of the topology. Instead, when the diameter is much larger than the average
distance (e.g. in ITC-Deltacom ISP in USA) then the lower bound for Max-
path can be also 3.2× the one for Ave-path. As a conclusion, the topology
and the length of the path affect strongly the lower bounds on the number
of OF messages in the control plane.

Consider now the number of messages for ifwd application in Fig. 8. We
can observe that the qualitative behavior of all the bounds is identical to the
one shown in Fig. 7 for fwd, thus the same effects of the topology discussed
above for fwd hold also in this case. Notably, both lower bounds for Max-
path in both applications follow the behavior of the diameter, because they
are both proportional to PSD, as shown in Fig. 9. The difference between
the two applications is equal to 9PSD − 6, which grows with the network
diameter. Thus, for large networks the ifwd application is expected to be
more efficient with respect to fwd in terms of control traffic.

The actual bandwidth for each flow can vary between 10 and 150 kB for
each new flow, depending on the size of the network. As already observed
in the previous section, these values are large relatively to the average flow

22

10

100

1000

0 50 100 150 200 250
1

10

100
M

es
sa

ge
s

pe
r

fl
ow

kB
 p

er
 f

lo
w

ISP

Upper bound, Max-path
Lower bound, Max-path
Upper bound, Ave-path
Lower bound, Ave path

Figure 8: Overall OpenFlow control traffic for ONOS ifwd application for the maximum
length path and for an average length path

1

10

100

0 50 100 150 200 250

ISP

Edge E
Nodes N
Diameter

Figure 9: ISP network features

size and advocate a careful adoption of reactive applications in large ISP
networks.

7. Conclusions

We investigated the amount of control traffic generated by the default
reactive forwarding applications (fwd and ifwd), available in the ONOS con-
troller. We developed a detailed quantitative model to estimate the messages
exchanged on the control plane between the switches and the controller, due

23

to the flow setup phase, through the analysis of the interaction between the
controller and a sample network implemented in mininet. We were also
able to estimate the number of flow rules installed in each switch along the
routing path from the source and the destination.

Our model was shown to have a wide applicability. Indeed, we applied
the model to a realistic network topology representing a POP network and to
a large set of ISP network topologies. We evaluated precisely the OpenFlow
traffic generated on the control plane and the average number of flow rules
installed in each switch, useful to plan the network resources to allocate
for the in-band control plane and understand the maximum scalability of
the considered reactive applications. When comparing the different ISP
topologies, we were also able to highlight the important role of the structure
of the topology in the amount of control traffic. As general result, our
quantitative analysis confirms the expected poor scalability of fully reactive
approaches at layer 2, when the number of flows becomes very large, since
the amount of control information can become comparable with the amount
of transferred data.

Notably, our models provide a worst-case scenario in terms of control
traffic and installed rules per switch, thus it can be used for the correct plan
of the transport network carrying the control plane between the switches
and the SDN controller/s. If needed, our methodology can be extended
to other network applications and SDN controllers, and the results can be
tailored to the specific scenario considered by the network designer.

References

[1] ONOS controller.
URL https://www.onosproject.org

[2] Open Networking Lab.
URL http://onlab.us/

[3] A. Bianco, P. Giaccone, A. Mahmood, M. Ullio, V. Vercellone, Eval-
uating the SDN control traffic in large ISP networks, in: IEEE ICC,
London, UK, 2015.

[4] OpenDaylight controller, Available at http://www.opendaylight.org.

[5] Z. Qingyun, C. Ming, D. Ke, X. Bo, On generality of the data plane
and scalability of the control plane in software-defined networking, in:
IEEE China Communications, 2014.

24

[6] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
S. Banerjee, Devoflow: Scaling flow management for high-performance
networks, SIGCOMM Comput. Commun. Rev. 41 (4) (2011) 254–265.

[7] J. C. Mogul, P. Congdon, Hey, you darned counters! Get off my ASIC!,
in: Hot Topics Softw. Defined Netw., 2012.

[8] C. Bi, X. Luo, T. Ye, Y. Jin, On precision and scalability of elephant
flow detection in data center with SDN, in: IEEE Globecom, 2013.

[9] M. e. a. Smith, OpFlex control protocol, in: Internet Engineering Task
Force, 2014.
URL http:tools.ietf.org/html/draft-smith-opflex-00

[10] G. Bianchi, M. Bonola, A. Capone, C. Cascone, OpenState: Program-
ming platform-independent stateful OpenFlowapplications inside the
switch, in: ACM SIGCOMM Comput. Commun. Rev., 2014.

[11] D. Erickson, The Beacon OpenFlow controller, in: SIGCOMM Softw.
Defined Netw., 2013.

[12] Z. Cai, A. L. Cox, T. S. E. Ng, Maestro: A system for scalable Open-
Flow control, in: Rice Univ., Houston, TX, USA, Tech. Rep., 2011.

[13] S. Hassas Yeganeh, Y. Ganjali, Kandoo: A framework for efficient and
scalable offloading of control applications, in: HotSDN, 2012.

[14] A. Tootoonchian, Y. Ganjali, HyperFlow: A distributed control plane
for OpenFlow, in: Internet Netw. Manage. Conf. Res. Enterprise Netw.,
2010.

[15] A. Kondel, A. Ganpati, Evaluating system performance for handling
scalability challenge in SDN, in: Green Computing and Internet of
Things (ICGCIoT), 2015.

[16] j. Hu, C. Lin, X. Li, J. Huang, Scalability of control planes for software
defined networks: Modeling and evaluation, in: IEEE IWQoS, 2014,
pp. 147–152.

[17] M. P. Fernandez, Comparing OpenFlow controller paradigms scalabil-
ity: reactive and proactive, in: IEEE International Conference on Ad-
vanced Information Networking and Applications (AINA), 2013, pp.
1009–1016.

25

[18] OpenFlow switch specification 1.4.0, Available at https://www.
opennetworking.org.

[19] A. Muqaddas, A. Bianco, P. Giaccone, G. Maier, Inter-controller traffic
in ONOS clusters for SDN networks, in: IEEE ICC, Kuala Lumpur,
Malaysia, 2016.
URL http://www.tlc-networks.polito.it/public/faculty/
paolo-giaccone/publications

[20] Mininet network emulator, Available at http://mininet.org.

[21] LLDP link layer discovery protocol, IEEE standard 802.1AB.

[22] White paper: Understanding DSLAM and BRAS access devices, Avail-
able at http://cp.literature.agilent.com/litweb/pdf/5989-4766EN.pdf.

[23] A. Bianco, V. Krishnamoorthi, N. Li, L. Giraudo, OpenFlow driven
Ethernet traffic analysis, in: IEEE ICC, 2014, pp. 1765–1775.

[24] M.-S. Kim, Y. J. Won, H.-J. Lee, J. W. Hong, R. Boutaba, Flow-based
characteristic analysis of Internet application traffic, in: E2EMON,
2004, pp. 62–67.

[25] E. Goma, M. Canini, A. Lopez Toledo, N. Laoutaris, D. Kostić, P. Ro-
driguez, R. Stanojević, P. Yagüe Valentin, Insomnia in the access: Or
how to curb access network related energy consumption, SIGCOMM
Comput. Commun. Rev. 41 (4) (2011) 338–349.

[26] S. Knight, H. Nguyen, N. Falkner, R. Bowden, M. Roughan, The In-
ternet topology zoo, IEEE JSAC 29 (9) (2011) 1765–1775.

[27] The Internet Topology Zoo.
URL http://www.topology-zoo.org/dataset.html

26

