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Abstract

Mobile social networks are new infrastructures for people to share content, com-
municate and interact anywhere, anytime. It brings together social computing
and mobile networking techniques, and thus yields a plethora of research prob-
lems in community detection, information dissemination, privacy preservation
and so forth. In this paper, we summarize the characteristics of MSNs, and
outline several requirements that should be taken into consideration during the
design of MSNs. A functional reference architecture of MSNs is designed, and
its building blocks are described. We classify the literatures falling under MSNs
according to the building blocks of the architecture, and give a detailed survey
for each. At last, a conclusion on the future development of MSNs is presented.
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1. Introduction

The explosive evolution of information and communication technologies en-
ables online social networking (OSN) systems such as Facebook, Twitter, LinkedIn,
etc, to connect active users of similar interests, conversing with one another and
forming virtual communities. Nowadays, social networks are increasingly ac-5

cessed via mobile devices thus rendering a new research field of mobile social
networks (MSNs). A few interesting research and development results about
MSNs have been reported in the literature. The majority of them, however,
focus on user applications running on mobile devices and pay little attention
to the underlying mobile communication networks. These work concerns the10

way that the specific features of mobile phones can be utilized to augment the
OSN systems from traditional stationary PCs to mobile devices. Moreover, the
data collected by mobile phones and then mined by data-mining or pattern
recognition engines are also used to benefit the further development of OSN
systems. Nevertheless, in these cases, the wireless mobile networks on which15

these mobile devices operate are not taken into consideration. Since the under-
lying wireless networks play an equally important role in the success of OSN
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Figure 1: Two Dimensions of Management of Mobile Social Networks.

systems, MSNs are regarded in this proposal as a marriage of the traditional
wired-network-based social networks, e.g., Facebook, with mobile wireless com-
munication networks.20

Taken together, the two interactive aspects, network-aware social computing
and socially-aware mobile wireless communication networks, create a so-called
cognitive loop, as illustrated in Figure 1, which means that the networks be-
come self-aware of themselves and surroundings and, accordingly, are able to
learn, decide and act based on particular high-level goals. Well-known cogni-25

tion techniques (e.g., machine learning and game theory) can be used to control
this loop. In conventional cognitive loops, such as in cognitive radio networks
(CRNs), the operating domain of the loop is in a single contextual environment,
e.g., the electromagnetic spectrum. This means that only a single set of sensing
parameters and actuators are necessary. In the CLIMBER project1, we envisage30

the creation of a dual-domain cognitive system wherein a learning system incor-
porates sensing (measuring) information from both a social user context and the
communication network state experienced by the user device. This information
is fed into the learning system that processes it, providing as output changes in
the network control parameters and indicators or cues for social interaction.35

In MSNs, users are not only able to use existing OSNs via mobile devices,
but also able to have new social services enabled by the powerful communication
and sensing capabilities of the smart devices. In fact, the convergence of social
computing and smart devices is indeed happening. There have been several
initiatives (e.g., Foursquare) focusing on enriching users social interaction by40

leveraging their physical location information on their smart devices. However,
the convergence of social networking and mobile computing can proceed much
further beyond this. First, the context information can be utilized is no limited
to locations, since the smart devices are equipped with multiple sensing capa-
bilities other than positioning. And in the short future, wearable devices (e.g.,45

Google glasses, iWatch, and Nike Fuelband) and smart devices on vehicles are
bound to gain massive popularity, which are new network infrastructures and

1www.fp7-climber.eu
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rich sources of context information as well. Second, most smart devices have
wireless interfaces (e.g., bluetooth, WiFi) for local short-range communication,
which are rarely explored in reality. However, the need for sharing information50

among people within vicinity o↵ers a unique opportunity to explore this lo-
cal communication paradigm. People can exchange information whenever their
devices are within each other’s transmission range, in this way, they form a
delay tolerant network [1], where the connectivity between users is intermittent
mainly due to their mobility and limited transmission range. Interesting but55

useful services can be designed under the local communication paradigm, such
as proximity-based matching.

As we described, MSNs have the potential to make social networking per-
vasive, anywhere and anytime. However, to realize this vision, a great deal of
research work has to be done. First of all, in the delay tolerant setting, due to60

the intermittent connectivity, it is impossible for users to maintain end-to-end
communication using current TCP/IP paradigm, they have to take opportunis-
tic encounters to transmit information. This poses a great challenge for routing
mechanism since the encounters are not fully predictable. Studies have shown
that the underlying social relationships among people are much stabler than65

temporal topology, and people’s mobility also follows certain distribution and
thus it is predictable to some extent. These findings have been utilized to design
routing protocols, but the results are far from satisfactory, they either have low
delivery ratio or have large communication overhead. Another major issue in
MSNs is users’ privacy and security concern. The lack of central infrastructure70

makes most existing schemes infeasible. Besides, other issues also call for close
attention, such as the integration of delay tolerant with the Internet, battery
power conserving for context-aware computing and name service for both device
and information.

The remainder of this paper is structured as follows. In Section 2, we pro-75

vide analysis on the system requirements of MSNs and present a case study
to illustrate. In Section 3, a detailed overall system architecture for MSNs is
introduced. In Section 4, we provide a state-of-the-art study for each of the con-
structing modules of the MSN architecture. Finally, in Section 5, we conclude
this paper with a discussion about potential evolution of MSNs.80

2. MSN: Definition, Characteristics, Design Requirements and Ar-
chitecture

Before introducing specific research issues, in this section, we provide a com-
prehensive overview of mobile social networks, which outlines the big picture
of MSNs, including its characteristics, underlying networks, design factors and85

architecture.

2.1. Definition of MSN

We consider a mobile social network to be an overlay network, that is, a social
network overlaying on top of one or several types of mobile networks. A social
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tie in the social network may correspond to several physical connections in the90

underlying mobile networks. It is a social networking platform able to connect
people’s mobile devices, and allow these users to converse, share information
and form communities. In other words, the functions of the social networking
platform are built around the functionalities of the underlying mobile networks.

2.2. MSN Characteristics95

Several characteristics of mobile social networks are summarized as follows.

2.2.1. Social Relationship
One of the main factors driving the development of mobile social networks

is the underlying social relationship among users. On one hand, MSNs are de-
signed for the purpose of facilitating social interaction between users. On the100

other hand, social relationship can also be leveraged to help design communica-
tion protocols, for instance, social-aware routing mechanism.

2.2.2. User Mobility
Mobility characterizes user’s movement, which is another major driven fac-

tor and concern in MSNs. People may move frequently during a day due to105

various reasons such as working, shopping, and travelling. Since mobile devices
in MSNs are attached to people, their mobility introduces high dynamics to the
network topology. On the other hand, user’s mobility seems free in time and
duration, but in fact, it is considerably correlated with geography and social
relationship [2]. This implies the high potential of social networking services110

based on location and proximity.

2.2.3. Opportunistic Communication
In some MSNs where wireless access networks (cellular network, etc.) are

not used or unavailable, nodes have to be networked in a self-organized manner
via short-range wireless technology like Bluetooth and WiFi, they can only115

exchange information when they are within each other’s transmission range.
Besides, the network topology tends to be sparse and dynamic, nodes are not
able to maintain their connection all the time, and routes between data source
and destination also seem unmaintainable. Thus, to deliver information from
source to destination, nodes should take the opportunity of encountering some120

node knowing the destination to forward the information.

2.2.4. Overlay Network
Mobile social networks are overlay networks on top of existing mobile net-

works. As illustrated in Fig 2, mobile nodes in the underlying mobile network
are connected by physical wireless link, while nodes in the MSN overlay network125

are connected by social relationship, which can be regarded as a virtual link con-
sisting of several physical links in the underlaying mobile network. Each node
in the MSN maintains her social relations with other nodes, and the informa-
tion exchange between them can be fulfilled through opportunistic networking
schemes when the Internet is unavailable.130
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Figure 2: Mobile social network as an overlay network.

2.2.5. Heterogeneity of Mobile Devices
Due to the diversity of user’s preference and device utilization, mobile devices

in MSNs are highly heterogenous. First, they may have di↵erent model and
hardware, and thus their computation power, memory, and storage are also
di↵erent. Second, the operating system running on them can also be di↵erent,135

for instance, both Andriod and iOS, two leading operating systems on mobile
devices, have a great bunch of supporters all around the world. Third, the
running condition of these devices varies, for example, A’s battery is going to
run out while B just has had her phone charged.

2.2.6. Di↵erences with Online Social Networks140

Online social networks (OSNs) normally adopt a client/server architecture.
Users (clients) can access the social networking services by requesting the servers
whenever they have Internet connection. In contrast, mobile social networks do
not necessarily adopt client/server model or rely on Internet connection. With
the capability of short-range wireless communication, mobile devices can com-145

pose a mobile social network in an ad hoc manner. And in MSNs for local use,
the Internet connection is not a necessity. Due to this architectural di↵erence,
some supporting mechanisms (e.g., routing, and security) are therefore di↵erent.

2.3. Underlying Mobile Networks

Mobile social networks can be built on top of various existing network in-150

frastructures, such as mobile access networks, ad hoc networks, delay tolerant
networks, and sensor networks.

? Mobile Access Networks. Currently, the most common way that mobile
users exchange information is through mobile access networks, including
cellular networks, WiFi networks, and WiMAX networks. Cellular and155

WiMAX networks can o↵er mobile users seamless Internet access on the
move, since the range covered by the infrastructures is wide. Though the
coverage of a WiFi hotspot is relatively small, it can provide a high data
rate.

? Wireless Ad hoc Networks. A wireless ad hoc network is formed by160

a set of devices that are inter-connected by wireless without the help of
any infrastructure such as routers or access points. End-to-end paths
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can be maintained via multi-hop communication. This type of network
is usually deployed on the fly for local and temporary use. For example,
in a conference environment, participants can share presentation slides or165

documents through an ad hoc network formed by their laptops.

? Delay Tolerant Networks. A delay tolerant network is a network of
several disconnected small networks. The disconnection can be a result of
frequent movement and sparsity of mobile users, or the short transmission
range and energy constraint of mobile devices. In DTNs, end-to-end paths170

are di�cult to establish due to the disconnection. Instead, store-and-
forward is used to enable communication among disconnected parts.

? Sensor Networks. Sensor networks can provide rich context information
for mobile users to share with each other and augment their experience
of social interaction. For example, a group of students want to find an175

empty and quiet room in a building to discuss their homework. They
do not have to spend too much time on finding one, if they can obtain
relevant information from or enquire a sensor network that monitors the
condition (e.g., noise level, temperature, and occupancy) of all rooms in
this building.180

Depending on the type of mobile network that the MSN is on top of, it has
three operating modes:

1. Internet-based mode. Before mobile devices can communicate with each
other, they must connect to the Internet first, either through cellular, WiFi
or other access networks. In this mode, it is essentially an online mobile185

social networks. Representatives are Whatsapp, Waze, and Forthquare.

2. Self-organized mode. In this mode, the Internet is unavailable for all
the mobile users. They are connected by short-range wireless technologies
such as WiFi and Bluetooth. The data transmission among users relays
on ad-hoc or delay-tolerant communication.190

3. Hybrid mode. This is a hybrid of the first two modes, that is, some
mobile devices have Internet connection, while the others do not. Mobile
devices without Internet connection operate on self-organized mode, while
mobile devices with Internet connection operate on Internet-based mode.

2.4. Design Requirements195

Emerging social computing and mobile networking would give birth to di-
verse interesting mobile social networks. However, to develop a successful MSN,
social computing and mobile networking, two basic functional requirements of
all MSNs, should not be the only consideration. In fact, each mobile social
network has di↵erent requirements, constraints and challenges that a↵ect its200

development. The factors presented below are among the most common and
influential.
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— Decentralization. Existing centralized application architecture, where
users are required to upload their profiles and data to some central server,
allows the social networking service provider (SNSP) to host all data of205

users and present it according to the application’s design. This centraliza-
tion give rise to two major problems. The primary one should be users’
constant concern about their privacy, since they do not hold the ownership
of their personal data which would be disseminated by the SNSP in a way
against their willingness [3]. The other problem is tra�c, which is caused210

by too many users simultaneously requesting the service from the server,
and it would grow when the MSN gets popular. One method to resolve
these problems is decentralization — users themselves decide to put their
data either locally or onto a trusted server, and manage access control
policies to allow retrieval of their data to selected users [4].215

— Context Awareness. A major advantage of mobile devices over desk-
top PCs is the capability of context-awareness of users, environment and
themselves, which contributes to the shift from web-based social networks
to mobile social networks [5]. This capability is granted by the diverse
sensors equipped on the mobile devices and the always-with-user fact of220

mobile devices. To turn capability into benefit, MSNs shall capture con-
textual information related to users without too much user intervention.
For example, when people is running, MSNs can automatically invoke the
GPS and gravity-controlled gyroscope on her mobile device to detect her
current moving status including location, speed, acceleration and route,225

and then share it with her friends.

— Inter-Operability. To provide better service for users, mobile social net-
working applications may communicate with each other. For example,
a book recommendation system may request a friending application for
users’ social profile possibly including reading preference. In addition,230

due to various preference, users in a MSN may use di↵erent software plat-
forms (Android, iOS, etc.). We need to develop some scheme to support
the inter-operability between di↵erent applications and heterogeneity of
di↵erent software platforms on users’ mobile devices.

— Internet Connectivity. Internet connectivity significantly a↵ects the235

applicability and application architecture of a MSN. On one hand, MSNs
that do not require Internet connectivity are restricted to local and tempo-
rary use. In this case, fast formation of the MSNs is required. On the other
hand, MSNs relying on Internet connectivity can adopt a client/server ar-
chitecture to allow users from di↵erent geographical areas to interact and240

access the services whenever the Internet is available.

— Resource Constraint. During the information dissemination in MSNs,
a variety of resources on user’s mobile device are closely/significantly in-
volved. First, radio is needed to send/receive data, which also consumes
a considerable amount of battery power when the data is of large size.245
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And, storage space is required to temporarily store data while its desti-
nation is unavailable. Also, resources like GPS and sensors are used to
generate abundant contextual information to share with others. These
resources are limited, and they might be entirely or partially in use for
other purpose beside the mobile social networking service. These resource250

constraints should be considered in the design of routing protocols and
information dissemination schemes for e�cient use.

— Distributed Storage. In mobile social networks with limited or without
Internet connectivity (mode 2 and 3), users have to communicate with
each other via short-range wireless technology like Bluetooth and WiFi255

Direct, they can only exchange data when they are within each others
transmission range. To increase data availability, a data piece may have
to be copied and stored in several end users’ devices. Then the data is
more likely to be delivered with good quality of service. In addition, the
absence of a central infrastructure also necessitate distributed storage on260

end users’ devices. Since wireless devices have much limited storage space
and power supplies, proper mechanisms are required to solve problems like
which devices to store data, how many data should be stored on a given
device for how long. By exchanging data during opportunistic contacts,
distributed storage also helps reduce the overall load on the infrastructure265

during peak time[6].

— Privacy. With the purpose of facilitating social interaction, mobile so-
cial networks encourage people to disclose personal and private informa-
tion such as current physical location, preference, and social relationship.
However, this information is valuable to advertisers and even frauds – the270

major reason why people always show particular concerns about their pri-
vacy while using social networking services. Thus, for MSN designers, one
challenging task is to develop useful social networking function without
compensation of user’s privacy. Moreover, designers should also consider
the diversity of di↵erent user’s privacy concern, since what is viewed pri-275

vate di↵ers among individuals and cultures.

2.5. Case Study
To illustrate the above discussed requirements, an explanative example case

study is presented in this subsection. Consider a mobile social network operating
on mode 3 (see Fig. 3), that is only few of the users in the network have direct280

Internet connection. Suppose Leo is traveling in Africa with a WiFi-direct
enabled camera. When seeing the legendary Victoria Falls with huge volume
of water falling down and a rainbow circling around, he wants to share this
spectacular moment immediately with his girlfriend Kate who is now in MIT.
Since Leo cannot access the Internet directly, he has to find another way to send285

the video. Fortunately, his Zambian travel guide, Lungu, is in proximity to him,
who happens to have 3G connection on his smart phone.

Before sending the video, Leo’s camera has to find, and connect to Lungu’s
phone. Suppose each device in the network can be addressed simply using a
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Figure 3: A case study.

unique community identity(ID) plus a unique user-name (In practice, the ad-290

dressing method can be very complex). By broadcasting a user profile, including
a user ID, physical address or other information if needed, Lungu’s phone can
be found by Leo’s camera. After finding Lungu’s phone, Leo sends out a connec-
tion request. Lungu accepts Leo’s request when Leo’s identity is authenticated
by certain authentication scheme such as public-key cryptography.295

After the two devices are connected, Leo sends the video to Lungu. To
prevent the video from being watched by some intermittent forwarder, it is
encrypted before sent. Now, it is Lungu’s turn to find next forwarder. He has
two candidates to forward the video - Kabwe, a hotel manager nearby, and Banji,
who is studying in MIT and currently online. Learning from their profiles that300

Banji is in Rome while Kabwe is in Zambia, Lungu decides to send the video
to Banji since she is much closer to Kate. The transmission between Lungu
and Banji simply follows the procedures of TCP/IP protocol. Banji now has
to choose a forwarder between Jack and Rose (In practice, depending on the
forwarding algorithm being implemented, multiple forwarders may be chosen305

to help forward). Except Jack and Rose, there is also another user, Cal, in
proximity to Banji. However, Cal does not want to be discovered and help
others forward data, because his mobile device is running out of battery. From
the history of contact with Kate, Rose supposes she will meet Kate later at
dinner, whilst Jack thinks he will not contact Kate during this week. Banji has310

learned this information during the neighbor discovery, so she sends the video to
Rose since she has higher probability to meet Kate. After receiving the video,
Rose stores it in her phone’s storage, and delivers it to Kate when they meet in
canteen.

Finally, Kate can enjoy watching the video after it is decrypted. Note that,315

all the decisions such as neighbor discovery, forwarder selection, data encryption,
and hiding form being discovered, are made by the protocols implemented on
users’ devices, completely transparent to users.

3. Overall System Architecture Design

In the literature[7, 8], MSN architectures have been discussed. However, the320

architectures in them are mainly from the applications point of view without
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outlining what functionalities a MSN must have. In addition, in those archi-
tectures, the Internet-based operating mode is implicitly assumed. MSNs are
overlay networks on top of various wireless networks (e.g., WiFi, Bluetooth,
and cellular), therefore its functionalities should also be built on top of those325

network interfaces. In this section, we present a reference system architecture
for MSNs. In this design, the characteristics and design requirements of MSNs
are taken into consideration.

Figure4 illustrates the overall MSN architecture. In brief, the architecture
consists of five components, namely the Application Component, the Social330

Mining Component, the Networking Mechanisms Component, the Local Re-
source Management Component, and the Privacy & Security Component. In
the following, the functionalities and their interactions of these components are
introduced. As part of the design, the states-of-the-art of the five components
are reviewed in the next section.335

? Application. An application is composed of several protocols that pro-
vide di↵erent visible services to MSN users, such as posting, searching,
matching and recommendation. The structure of this application over mo-
bile systems is determined by its architecture which can be client/server,
peer-to-peer or hybrid of the two formers. Di↵erent application archi-340

tectures have distinct impact on the underlying networking mechanism,
since information exchange among MSN users in client/server architecture
is controlled by central server, while in peer-to-peer architecture, it is exe-
cuted via direct communication among peers. The application resided on
user’s mobile devices should be able to leverage their sensing capabilities345

in order to obtain abundant context information that can be used to share
with other users or to improve the application’s performance. For exam-
ple, GPS and gyro can detect your location and moving state (walking,
running, etc.), if you are running and not convenient to interact with the
screen, the application should be able to push incoming message by audio350

instead of text.

? Social mining. This component collects information of user, device, and
the environment, and provides knowledge on social properties, mobility
pattern, and individual preference. There are several social properties
applicable in MSNs, including social tie, centrality, community, and edge355

expansion [8]. Mobility pattern contains user’s mobility trace and the
distribution of contact with other users, such as the distributions of inter-
contact time, and contact duration. Finally, individual preference records
user’s time-varying preference on resource contribution to the network.

As shown in Fig. 4, the social mining has two fundamental functional-360

ities - profiling and data aggregation & learning. The profiling collects
information of user, device, and make it into profiles. More specifically,
user profile includes a user’s social contacts, visited places, activities and
so on. Device profile captures the capabilities of the device, including
network interfaces, storage space, battery, and sensors. The information365
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Figure 4: Building blocks of an MSN architecture.

comes from other components such as application, networking mechanism,
local resource management and resources. Then by data aggregation and
learning, some social knowledge mentioned above will be discovered. This
knowledge can be used in decision-makings in local resource management,
networking, security strategy, and application.370

? Networking mechanism. This networking mechanism in MSNs is re-
sponsible for information dissemination among users in the MSN, which
are capable of supporting the three MSN operational modes if needed by
applications. Basically, it contains user addressing, neighbor discovery,
and routing. Each device in the network should have a unique address so375

that the data can be addressed and then delivered to the right recipient.
In a MSN, di↵erent types of addresses may be used in combination. For
example, devices with Internet connection may use IP addresses, while
devices without Internet connection have to use other type of addresses.
Neighbor discovery allows a user to find and connect to other users in380

vicinity through short-range wireless communication. The routing func-
tion determines the path, a sequence of addresses of intermediate devices,
that data needs to traverse from a sender to a receiver.

For MSNs that are highly integrated with the Internet, people can share
their information via various access networks (cellular, WiFi, etc.). How-385

ever, for decentralized MSNs where access networks are unavailable, op-
portunistic networking should be employed, thanks to the sparseness and
dynamic property of the network topology. For example, when a person
wants to send information to a friend that is not within her transmission
range, she has to store and carry the data until she meets her friend, or390

just sends to an intermittent user who might meet her friend in the future
and then forwards the data. The opportunistic networking mechanism
shall be aware of the limitedness of the resources on users’ mobile devices,
and be able to leverage social pattern such as community property and
user mobility pattern for helping information dissemination.395

? Local resource management. Resources refers to both hardwares and
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non-hardware features of each user’s mobile device, which support proper
functioning (social computing service, mobile networking, etc.) of mobile
social networks. The hardware resources are mainly for mobile networking
purpose, including radios, sensors, battery, memory, storage and so on. A400

message from its source to destination may traverse several intermediate
nodes, and thus use their radios, occupies amount of their storage spaces
and consume their batteries. Note that, some of them like storage and
sensors can also be directly shared with other users. For example, people
who wants to know her exact physical location but her GPS is under405

malfunction may turn to nearby user who has GPS signal for help. The
non-hardware resources, which are for social networking purpose, can be
any shareable function enabled on user’s mobile device. Take Internet
access for example. What can he/she does, when a person happens to run
out of mobile balance but still wants to check email? One option is to ask410

users around if they can access the Internet and forward message.

Most of the resources mentioned above are considerably limited, which
necessitates e↵ective local resource management (LRM) to make the re-
source consumption as e�cient as possible. What is more important, the
LRM should be carried out on an individual user’s basis, since the devices415

having these resources normally belong to individual users rather than
a network-wide owner. Generally, LRM provides three basic functions
– resource monitoring, allocation and scheduling. First of all, the LRM
should be able to obtain the resources’ availability and track their usage,
such as how much resource (e.g, bandwidth) is in use and by which task.420

Second, when a new task demands this resource, the LRM decides how
much resource should be allocated to the task. If there are several tasks
requesting the same resource, the LRM should determine to which order
each task should be executed.

? Privacy and security management. Privacy and security manage-425

ment addresses three main issues. First, it provides anonymity scheme
for user’s identity and location to keep user away from being identified by
others with improper purpose. Second, it specifies fine-grained access con-
trol policy for user’s personal information (e.g., who can view which part
of user’s information). Third, it provides comprehensive security mecha-430

nism to prevent from attacks such as eavesdropping, spoofing, replay, and
wormhole attack, which are major threats to decentralized mobile social
networks [9].

4. MSN State-of-the-Art

In the MSN architecture introduced in the previous section, we have dis-435

cussed its functionalities and their relation in the architecture. To provide a
better understanding of the MSN architecture, this section is devoted to pro-
viding a review of the state-of-the-art of each of the five components in the
designed architecture.
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4.1. Applications440

Smart devices have been widely accepted by people due to their features
of GPS, high resolution camera, WiFi and so on. Application developers have
realized that it is a unique opportunity to make social computing pervasive by
leveraging those features of smart devices. Traditional OSNs like Facebook and
Twitter have already made their PC-based services available on mobile devices.445

Meanwhile, services purely for mobile users have also been developed to meet
people’s variant requirements. Some of them have gained tremendous success,
such as Foursquare and Waze. We classify them into four categories: location-
based, proximity-based, participatory sensing, and vehicular social networks,
and for each category, we introduce several representatives in brief.450

4.1.1. Location-Based Social Networks
At present, mobile user’s location can be easily tracked. Enabling methods

include GPS system, wireless access (WiFi, cellular network, etc.), and user
self-report. And the extensive deployment of mobile devices has given birth to
a plethora of location-based social networking services or geo-social networking455

services, including Gowalla, Foursquare, Brightkite, Loopt, Google Latitude,
and Facebook Places.

Among those, Gowalla and Foursquare are the pioneers, which were both
launched in 2009. Before acquired by Facebook, Gowalla had attracted millions
of active users by its check-in feature. Basically, Gowalla allows user to ‘check-460

in’ while visiting a venue (e.g., cafe, cinema) through a mobile application and
share this check-in to friends on Gowalla. Using location data provided by GPS
system or WiFi connection, Gowalla verifies whether the user is actually located
at the checked-in venue or not. As a rival of Gowalla, Foursquare shares the same
feature of check-in. However, unlike Gowalla’s verification on user’s location,465

Foursquare allows a user to check-in venue even this user is not physically located
at this place. In addition, Foursquare emphasizes more on social interaction
among users by making their tips on checked-in venue visible to future visitors.

Geo-recommendation is another favorable feature of LBSs. GeoLife [10], for
example, is a GPS-data-driven recommender system. People using GeoLife can470

keep tracking their locations when they are on the move, and record the visited
locations as trajectories. For each location, multimedia content such as a photo
can be associated and shared with friends. For each user, GeoLife computes
similarity between this user and other users using the information provided
by their trajectories (i.e., time, location), and people with high similarity are475

recommended as potential friends.

4.1.2. Proximity-Based Social Networks
Proximity-based social networking applications use geo-proximity as the pri-

mary filter in determining who is discoverable on the social network[11]. Several
methods enable user with mobile device to discover one another in geo-proximity,480

such as measuring distance with GPS locations, and sensing through short-range
wireless communication technologies (WiFi, Bluetooth, Near Field Communi-
cation, etc.). WeChat, a mobile messaging application that claims to have 600
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million monthly active users [12], provides a social service called ‘Look Around’
for users to chat with other WeChat users nearby. Once a request for ‘Look485

Around’ is initiated, it returns a filtered list of candidates with visible profile
and distance to the service requestor. Others like Badoo and WhosHere have
similar feature.

E-Shadow [13] is a system that provides information publishing and owner-
ship matching for users within vicinity. Each user maintains a local user profile490

containing user name, interests and so on. The visibility of this profile to other
nearby users depends on distance, i.e., the closer they are the more detailed
profile they can obtain and vis versa. If someone is interested into another per-
son’s profile and desires more information, E-shadow provides a function called
direction-driven localization for him/her to walk toward the target.495

Reflex framework [14] enables local spontaneous interactions among people
using the same application over Bluetooth or WiFi interface. Basically, to inter-
act in a mobile application, people only needs an anonymous identity to start
and join an interactive session, registration and login are no more required.
Thus, people without internet connection are also possible to join in the inter-500

active session spontaneously. Above this framework, MusicScore is developed
for users that are connected via Bluetooth or WiFi (peer mode) to compose
music simultaneously.

4.1.3. Participatory Sensing
Micro-Blog [15] takes advantage of smartphone sensors, and encourages users505

to record multimedia contents named microblogs on-the-fly and share them with
other users. For a particular microblog, the creator can associate location, time
and other information with it. Micro-Blog also keeps update user’s location
periodically, so that when this user query about his current location, relevant
micro-blogs can be served immediately.510

CenceMe [16] is a people-centric sensing application that automatically senses
user’s presence with the sensor-enabled mobile phone. It can detect the mobile
phone carrier’s location, mobility mode (sitting, walking, running, etc.) , sur-
roundings (noise level, temperature, etc.), and whether he is in a conversation
or not. With these rich contexts, CenceMe provides a bundle of useful function-515

alities to its users, such as presence sharing, and self history tracking.

4.1.4. Vehicular social networks
Waze o↵ers community-based GPS navigation with turn-by-turn directions.

Keeping Waze open while driving, users can update tra�c information such as
tra�c jam, road hazard, or station o↵ering cheap gas, in a realtime manner.520

Other drivers in the same area will be alerted by receiving this crowdsourced
tra�c information and thus improve their commute. Waze also allows Facebook
friends who are both driving to see each other on the map, so that their arrival
time can be coordinated.

Similar to Waze, Drive and Share (DaS) [17] provides a platform for drivers525

to share realtime tra�c and personal information. Besides, it also enables
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vehicle-to-vehicle communication for drivers to exchange vehicle-detected in-
formation such as vehicle density and speeds. RoadSpeak [18] is designed for
group voice-chat among commuters on roadways. People in RoadSpeak can join
talk groups that are active between a certain period. When a group becomes530

active, group members will receive an alert from RoadSpeak, and during this
active period, they can communicate with each other freely.

4.1.5. Middleware for mobile social networks
MobiSoC [19] is a social computing middleware that explores social state

information of physical communities. A community is formed by people with535

certain relationships, be they friends, family or colleagues. And the social state
information refers to people profiles, social ties among people, place profiles,
and people-place association. It employs a client/server architecture to manage
the collected information - stores the information on central server and performs
learning algorithms to discover emergent geo-social patterns including people-540

people a�nities and people-place a�nities. To deal with the frequent change of
social state, an event manager is enabled by MobiSoC to register those changes
with applications. For the privacy concern, users are allowed to issue a privacy
statement which specifies which user can access his data. When an application
requests information regarding to this user, MobiSoC will verify the associated545

privacy statement before the information is accessible.
Authors in [20] proposed a mobile social middleware MobiClique to support

opportunistic ad hoc communication without relaying on central server. Users’
social profiles including full user profile, list of friends, groups and events that
the user is attending, are retrieved from an existing OSN service (Facebook)550

via open API, and occasionally synchronized with Facebook when Internet con-
nection is available. MobiClique leverages Bluetooth interface to enable op-
portunistic communication among users. When users coming into proximity,
they can discover each other, exchange identity and send message via bluetooth
equipped on their devices. Two types of message forwarding are enabled by555

MobiClique, i.e., unicast between a pair of users and flooding among a group
of users. Furthermore, MobiClique supports opportunistic messaging between
devices through a destination-oriented messaging abstraction. In other words, if
the destination is currently unavailable, the message will be forwarded through
friends of the destination.560

Yarta [21], developed by A. Toninelli et al., does not only support informa-
tion exchange among users, but also supports knowledge exchange among appli-
cations built above it. The component storing user’s data is called Knowledge
Base. The base data model of Yarta is represented using the Resource Descrip-
tion Framework (RDF). Based on RDF, applications can extend the data model565

according to specific requirement. Since the extensions have clear semantic re-
lation with base classes, the data interoperability is enabled. Yarta decouples
data access policy from application logic and Knowledge Base management,
and defines customizable rules for users to specify their own preferences on data
accessibility. In addition, Yarta does not relay on centralized server to collect570
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user’s data, and support and supports data transfer over heterogeneous network
interfaces.

4.2. Social Mining

Mobile social networks are overlay networks, that is, social networks over-
laying over the mobile networks, as described in Figure 2. Therefore, MSNs575

exhibit some properties as traditional social networks do. First, MSNs have
community structure, where a community is a group of tight-knit nodes having
more internal connections than external connections [22]. People may form a
community if they have common attributes, e.g., in the same club, and people in
the same community interact more frequently with each other than with people580

outside. Second, MSNs are scale-free networks [23]. The degrees of the nodes in
the network follow a power-low distribution. In other words, few nodes called
hubs have the largest degrees, while most other nodes are connected through
them.

Understanding these properties is of great advantages for mobile networking585

problems such as routings and worm containments [24]. However, it has not
been an easy task in dynamic networks like MSNs where users move about
and sometimes loss connection with each other. Nevertheless, a number of
works have been done targeting on community detection and influential user
identification in the context of MSNs.590

4.2.1. Community Detection
Community detection is a mechanism that clusters nodes in the network into

groups such that nodes in each group are more densely connected internally than
externally. The community detection can be either centralized or distributed,
depending on whether the whole network graph is required or only part of it is595

required by the entity that performs the community detection. A summary of
the various community detection mechanisms is presented in Table 1.

Centralized Community Detection. Nguyen et al. proposed Quick Com-
munity Adaptation (QCA), an adaptive modularity-based method for identify-
ing community in dynamic networks [25]. QCA samples a dynamic network into600

a sequence of snapshots over time, where each snapshot can be considered as a
static network. Initially, QCA uses another static modularity-based algorithm
to find the basic community structure from the first snapshot. And after that,
QCA only deals with the network changes and detect new community structure
by modifying the previously detected one. When a new snapshot is taken, four605

events that a↵ect the network structure may happen, namely, node addition,
node removal, edge addition and edge removal. For each type of event, QCA
updates the community structure according to maximizing the overall modu-
larity. Though QCA is fast and e↵ective, it fails to detect overlapping network
communities.610

To detect overlapping communities, the authors of QCA designed AFOCS[24].
With the similar idea of slicing the network into time-dependant snapshots,
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AFOCS detects the initial overlapping community structure from the first net-
work snapshot and then updates it when taking the next snapshot. First, local
communities are located around edges. A local community C around edge (u, v)615

is formed by u, v and their common neighbors, if the internal connections of C
is larger than its density function [26]. And then, local communities that have
a overlapping score lager than a threshold are merged as one community.

Chen et al. designed a community detection method that can identify over-
lapping communities, based on a game-theoretic approach [27]. They suppose620

that the structure of social network is given as prior knowledge, that is, each
node has fixed social connections with others. Basically, nodes are selfish play-
ers who want to maximize their own utilities when deciding whether to join a
community or not. The utility of each player is the di↵erence of gain and loss
of joining a community, where the gain of joining a community is given by a625

modified modularity called personalized modularity function, and the loss sim-
ply represents fixed cost (e.g., membership fee). Overlapping communities will
be discovered if the game has Nash equilibrium.

Distributed Community Detection. When the community detection is per-
formed by each node in the network, who only knows part of the graph, dis-630

tributed community detection should be used. Clauset proposed a greedy algo-
rithm to find local community structure [28]. For a node s who wants to find
its local community, the whole network graph consists of two complementary
subsets, i.e., known potion of the graph C and unknown portion of the graph
U . In C, there is a set of nodes that have one or more neighbors in U . This635

set of nodes B is called the boundary of C. To measure the quality of a local
community, local modularity is defined as the fraction of the number of edges
with one end point in B and the other not in U to the number of edges with
one or more end points in B. To detect its local community, initially node i put
itself in C, and its neighbors in U . Then it adds to C the neighbor that brings640

the largest increase in the local modularity. This step repeats until it either has
gathered a given number of nodes k or has discovered the entire known graph.

Rather than forming community based on social relationship among users,
authors in [29] proposed to use contact rate and duration. They define ‘temporal
community’ as a cluster of nodes that contact frequently within a long period.645

Basically, the dynamic network is snapshotted into a sequence of static networks.
For each snapshot, they first use Louvain algorithm [30], a static modularity-
based community detection method, to partition the network into dense and
disjoint clusters. And then, clusters that have Jaccard distances no exeeding a
given � [31] between each other are aggregated into a temporal community.650

Hui et al. proposed three distributed community detection algorithms,
namely, SIMPLE, K-CLIQUE and MODULARITY [32]. Basically, each node
in the network needs maintain a list of encountered nodes and their contact
durations, a familiar set, and a local community. The familiar set of a node
comprises encountered nodes that have a cumulative contact duration with this655

node longer than a threshold, while the local community of this node is the
union of its familiar set and nodes selected by the algorithms. For K-CLIQUE

17



and MODULARITY, each node also needs to know the local community of ev-
ery encountered node. These three algorithms have similar procedures to go
through to detect communities - when a node meets another node, it has to660

decide 1)whether to include this encountered node into familiar set and/or lo-
cal community, and 2) whether to merge the local communities of these two
nodes. The di↵erence between SIMPLE, K-CLIQUE and MODULARITY lies
in the admission criteria. Based on K-CLIQUE, DiBuBB [33] allows each node
to compare with every encountered node on how many unique nodes they have665

met, to get its centrality ranking within the local community.
Li and Wu proposed a LocalCom scheme which can detect the community

structure using limited local information [34]. Nodes are required to have the
history of contacts with other nodes. To depict the relationship between each
pair of nodes, a new similarity metric is defined using the statistic properties670

(i.e., average length and variance) of the separation period between a pair of
nodes. A community is formed by a clique of nodes that the similarity weight
between any two nodes is larger than a threshold w. Two nodes that are not
direct neighbors can also be in the same community, if there is path (called
virtual link) with path length no longer than k and similarity weight larger675

than the threshold w. First, each node detects its neighbors and virtual links to
them. Node selects itself as the initiator of community detection, if it has the
largest degree within its neighborhood. The initiator constructs a community
by adding members to the community one by one. A node will be added to the
community, if it has similarity weight larger than the threshold with all other680

nodes in this community.

4.2.2. Identifying K Influential Users
iWander is a distributed protocol for identifying influential users using ran-

dom walks in MSNs[35]. The influential users refer to as the users that have high
centrality in their social-contact graphs. The iWander is inspired by a previous685

finding that most people have fewer friends than their friends have [36]. This
finding suggests that users with high centrality can be encountered by random
selected users with a high probability. In iWander, for every 4T period, each
smartphone generates a probing message with a probability p. The probing
message only contains a time-to-live field (TTL). When a user having a probing690

message with positive TTL encounters another user, it sends the message to the
encountered user who then decreases the TTL by 1 after received the message.
Message with TTL = 0 will be discarded and not forwarded. Each user counts
how many probing messages has been collected within 4T . Finally, the k users
with the most messages are selected the k influential users.695

4.3. Mobility Pattern

Human mobility measures how people move over time. Surely, the mobility
of one person is distinct from that of another. Nevertheless, statistical results of
human mobility have been discovered based on large-population mobility data
[37, 38, 39, 40, 41]. And these results have extensive applicability in urban plan-700

ning, epidemiology, and mobile computing [42, 43, 44, 45, 46, 47, 48]. Recently,
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human mobility characterization has received great research e↵ort, mainly due
to the increasing popularization of mobile devices. People’s mobility informa-
tion can be obtained from either infrastructure (WiFi access spot, cellular base
station, etc.) association, or GPS on their mobile phones, or proximate device705

discovery. Generally, there are three types of dataset that has been exploited in
literature:

Call Detail Records. Call Detail Records are collected by telephone service
providers, for purposes like billing and tra�c management. Each call detail
record (CDR) contains information of a telecommunication transaction (voice,710

SMS, etc.) except the content, such as the phone numbers of the calling party
and called party, the starting and ending time of the call, and the associated
cellular antennas. CDRs datasets usually have a large volume, wherein millions
or billions of mobile users are recorded. In addition, obtaining such data does
not incur substantial cost. However, CDRs are coarse-grained since a record715

can be made only when there is a call[42].

Location Based Service Check-ins. Location-based social networking services
such as Foursquare allow people to ‘check-in’ their current location and share
tips with friends using their mobile devices. Check-in data can be collected
via public API. For example, Foursquare API2 gives access to all data used by720

the Foursquare mobile application. Compared to the CDRs, data from LBSNs
can provide specific user locations (shop, cinema, etc.) and explicit friendship
among users. Besides, semantic information such as pictures shared with each
other is also available.

Experimental Data. To study the characteristics of human mobility, several725

experimental projects have been developed by research groups. Table 2 pro-
vides a list of project datasets that have been widely used in the literature.
These projects typically asked a number of volunteers (mostly students and
researchers) to regularly report their positions or contact records with other
participants. For example, GeoLife collected GPS trajectories of 182 users over730

three years from April 2007 to August 2012. And most of the trajectories con-
sist of a frequent (say per 5 seconds) position logins. Compared to CDRs and
LBSN data, experimental data is more fine-grained in time and space, but with
a much smaller scale (tens or hundreds of users involved).

The data sources discussed above provide real-life data of human mobility in735

di↵erent scale and granularity. Apart from those, there are also studies of user
mobility in virtual world. La and Michiardi in [58] presented a measurement
study of user mobility in Second Life (SL)3, an online virtual world allows users
(called avatars or residents in SL) to build and trade property and socialize.
They found that contact-time distribution in SL is similar to that of real humans.740

2developer.foursquare.com
3secondlife.com
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Table 3: A Classification of Human Mobility Patterns

Classification Pattern Definition

Social
Inter-contact time[46, 60,
61]

The time elapsed between two
consecutive contacts of the same
pair/group of people.

contact duration[50] The time interval for which two
network devices can communi-
cate when they come into range.

Mobility similarity[40] The overlapping degree of two
trajectories.

Spatial
Flight length[62, 63] The distance of straight line trips

without directional change or
pause.

radius of gyration[42] The linear size occupied by each
user’s trajectory.

Temporal
Return probability[37, 60] The probability that a user

returns to the location where
he/she has visited before.

pause time[64, 65] The time interval a user spends
at one location.

Visit frequency[37] The frequency of a user visiting
the same location.

Hitherto, considerable conclusions on human mobility pattern have been
drawn from the rich data. D Karamshuk et al. have classified them into three
categories: spatial, temporal and social[59], as shown in Table 3. The followings
present two fundamental statistical findings of human mobility.

Inter-contact time. As defined in Table 3, the inter-contact time measures how745

frequently two users meet. Authors in [46] found that the inter-contact time
has a power-law distribution for the timescale of interest of [10minutes, 1day].
Further, it is discovered that there is a dichotomy in the CCDF (complemen-
tary cumulative distribution function) of inter-contact time, that is, the CCDF
follows power-law until a characteristic time, and beyond that, the CCDF has750

an exponential decay[60].

Flight length. People usually travel only over short distances, and occasionally
take long trips. By studying outdoor GPS traces of 44 people, I. Rhee et al. in
[39] show that human walk can be described by a truncated Levy walk[66]. They
aggregated altogether the flight length samples, and found that the CCDF of755

flight length quite fits to the truncated Pareto distribution[67]. This distribution
indicates that people have a high probability to take long trip in a single step.
The flight truncation is caused by geographical constraints such as boundaries
and physical obstructions.
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The discovered human patterns have the following two significant applica-760

tions in mobile social networks.

Mobility modeling. The performance of a MSN is significantly depends on the
mobility patterns of mobile device carriers. Before the MSN reaches the end
users, its performance must be evaluated. Deploying a real network is not rec-
ommended since it introduces high cost. By contrast, simulation or theoretical765

analysis using mobility model is widely adopted. To get meaningful results,
the mobility model must be able to reproduce essential human mobility pat-
terns. Fine solutions for mobility modeling have been proposed like SLAW[68],
SWIM[69], HCMM[63], and GeSoMo[70], just to name a few. [59] and [8] pro-
vide comprehensive reviews of recently proposed human mobility models.770

Mobility prediction. It is reasonable to suppose that human mobility is pre-
dictable, since it has spatial and temporal regularity to some extent. As de-
scribed in [71], a mobility prediction process consists of four steps: 1) position-
ing and tracking. Discover the position of the user by a positioning system. 2)
track logging. Record and sequence the positions as traces. 3) data of interest775

extraction. Learn meaningful information (e.g., point of interests) from the raw
trace data. 4) location prediction.

There have been proposed several prediction algorithms based on Markov
model[72, 73, 74]. They predict the next location of a user based on the pre-
viously locations that he/she visited. Authors in [73] first discover user’s POIs780

(points of interest) from GPS trajectories using a k-means clustering algorithm
[75]. Then, they predict user’s next location with a Markov model, where each
state denotes a POI and the transition between two states means the probabil-
ity of moving from one POI to another. S. Gambs et al. proposed a similar
Markov-model based prediction called n�MMC[72]. It uses Density-Joinable785

cluster[76] to extract POIs, and it keeps track of n previous locations instead
of one to improve the prediction accuracy. In [72] and [73], a state represents
only one location. In [71], a K � to� 1 past model is presented, where a state
can represent various size of consecutive locations from K to 1. The K � to� 1
past model tries to predict the next K consecutive locations using the previous790

K consecutive locations. If it fails (the transition probability is smaller than
a threshold), it will try to predict the next K � 1 locations using the previous
K � 1 locations until K = 1. A location prediction based on Hidden Markov
Models (HMMs) is presented in [77]. Before the prediction, the location histories
are discretizated into discrete codes associated to specific locations using hier-795

archical triangular mesh[78], in order to make the learning of HMMs e�cient.
Then a HMM is used to compute the probability of each sequence of locations,
composed of several locations already visited and a potential next location to
be visited. Finally, the potential next location in a sequence with the highest
probability is the result of prediction.800

There are also several works predict human mobility using pattern matching
[79]. Basically, user’s movement history is observed and recorded, and patterns
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are mined from it. By matching the current section of movement with the pat-
terns, future location is predicted. Al-Hattab et al. in[79] define a ‘query’ as a
time series of locations starting at the current point in time and goes back for805

certain points, and ‘Location Time Series (LTS)’ as a time series of locations for
a given period. Then, they use normalized cross correlation[80] to compute the
similarity between the current query and LTSs that have been stored. The pre-
dicted next location is given by the LTS having the largest similarity with the
current query. Based on the assumption that individuals tend to follow common810

paths, A. Monreale designed Wherenext[81] that uses movements of all objects
in a certain area to predict an individual’s next location. In Wherenext, global
frequent movement patterns, named T-patterns, are extracted from all individ-
uals’ trajectories by a Trajectory Pattern algorithm. Each T-pattern describes
a sequence of regions visited frequently by individuals and typical durations of815

movements between regions. Given a set of T-patterns, a T-pattern Tree can
be constructed using association rules learning[82], where a node represents a
location and each edge is labeled with a time interval. Afterwards, Wherenext
predicts the next location by finding the best match of a trajectory (used to
predict next location) with all admissible paths on the T-pattern Tree, and820

computes matching scores. Authors in [83] show that people’s location can be
discovered even it is kept private. They designed a location prediction method,
Flap, to guess people’s past and future location using public locations of his/her
friends (on Twitter). From check-in datasets of location-based social networks,
it is found that human movement is partly periodic (50% to 70%) and partly825

correlated with friendship (10% to 30%)[2]. Based on the empirical finding,
a Periodic & Social Mobility Model (PSMM) is developed to predict people’s
future location, which consists of three sub-models for spatial frequently vis-
ited locations, temporal movement between locations, and movement driven by
social relationship, respectively.830

4.4. Networking Mechanisms And Local Resource Management

Information Dissemination is a fundamental problem in all types of mo-
bile social networks. In online mobile social networks, though the informa-
tion is transmitted via the Internet infrastructure, how to cost-e�ciently dis-
tribute the information requested by large number of users is still challenging.835

In delay-tolerant mobile social networks, the intermittent connectivity among
users makes end-to-end communication impossible. To address those challenges,
a myriad of networking and local resource management mechanisms have been
proposed recently (e.g., [84, 33, 85]), by leveraging the social pattern and mo-
bility pattern discussed in above.840

4.4.1. Information Dissemination in Online MSNs
In online mobile social networks, information is normally disseminated to

mobile users via the Internet. But with the proliferation of smart phones, the
cellular networks are severely overloaded by mobile data tra�c. And online
social networking services like Youtube and Twitter account for a large portion845

24



T
a
b
le

4
:
S
u
m
m
a
ry

o
f
m
o
b
il
it
y
p
re
d
ic
ti
o
n
m
et
h
o
d
s

M
et
h
od

T
ec
h
n
iq
u
e
u
se
d

In
p
u
t

A
cc
u
ra
cy

n
�M

M
C

[7
2]

M
ob

il
it
y

M
ar
ko
v

M
od

el
an

d
D
en
si
ty
-J
oi
n
ab

le
cl
u
s-

te
r

n
p
re
vi
ou

s
vi
si
te
d

lo
ca
-

ti
on

s
70
%

to
95
%

as
so
on

as
n
=

2
W
ea
ra
b
le
[7
3]

M
ar
ko
v

m
od

el
an

d
k
�m

ea
n
s
cl
u
st
er
in
g

C
u
rr
en
t
lo
ca
ti
on

M
ed

iu
m

A
K
M
M
[7
1]

A
ll
-K

th
M
ar
ko
v

M
od

el
,

K
�
to

�
1�

P
as
t⇤

M
od

el
K

p
re
vi
ou

s
vi
si
te
d

lo
ca
-

ti
on

s
H
ig
h

H
M
M
[7
7]

H
id
d
en

M
ar
ko
v
ch
ai
n
an

d
h
ie
ra
rc
h
ic
al

tr
ia
n
gu

la
r

m
es
h

A
se
t
of

se
qu

en
ce
s

L
ow

L
T
S
[7
9]

N
or
m
al
iz
ed

cr
os
s
co
rr
el
a-

ti
on

A
ti
m
e
se
ri
es

of
lo
ca
ti
on

s
P
ro
p
or
ti
on

al
to

th
e
le
n
gt
h

of
th
e

p
re
-

d
ic
ti
on

se
ri
es

W
h
er
en
ex
t[
81
]

T
ra
je
ct
or
y
p
at
te
rn

ex
tr
ac
-

ti
on

an
d
as
so
ci
at
io
n
ru
le
s

le
ar
n
in
g

S
eq
u
en
ce
s
of

re
gi
on

s
fr
e-

qu
en
tl
y
vi
si
te
d
w
it
h
a
ty
p
-

ic
al

tr
av
el

ti
m
e

M
ed

iu
m

F
la
p
[8
3]

S
u
p
er
vi
se
d

an
d

u
n
su
p
er
-

vi
se
d
le
ar
n
in
g
an

d
V
it
er
b
i

d
ec
od

in
g

A
se
qu

en
ce

of
lo
ca
ti
on

s
vi
si
te
d
,

al
on

g
w
it
h

co
r-

re
sp
on

d
in
g
ti
m
e
in
fo
rm

a-
ti
on

H
ig
h

25



of the tra�c. How to alleviate the tra�c load and reduce operational cost has
become an issue. Some information dissemination methods like tra�c o✏oading
and proactive seeding seem to be premising solutions.

One way to o✏oad the tra�c is to exploit the capacity of opportunistic com-
munications among mobile devices. S. Ioannidis considered a scenario where850

mobile users subscribe to a dynamic-content service[84]. The injection of new
contents (updates) to the network is modeled as a Poisson process with average
injection rate µ. Each update is only pushed to a user with a certain probability,
other users get the update by opportunistic contact with user who has the up-
date. The problem of allocating injection rate to mobile users is formulated as855

an optimization problem where the objective is to maximize the update dissem-
ination speed. It is proved that the optimal rate allocation can be found using
gradient descent. In [6], a K-user selection problem is formulated to minimize
the cellular data tra�c. The information is initially delivered by service provider
to the targeted K users who will forward it to the rest users via opportunistic860

communications. And if a user does not receive the information before a delay
threshold, the service provider will send the information to this user directly.
An information dissemination function is built as a mapping of the target set
(K users) to the expected number of users that would receive the information by
opportunistic contact. It is proved that the information dissemination function865

is submodular and can be solved by greedy algorithm. In [86], authors proposed
Proactive Seeding to reduce the peak load in cellular networks. They classify
the data tra�c into predictable (e.g., Twitter posts) and unpredictable (e.g.,
voice call), based on the assumption that people tend to get information that
their friends are interested in or recommend. The tra�c is smoothed by pushing870

some predictable tra�c of peak hours to mobile users before they request it.

4.4.2. Information Dissemination in Delay-Tolerant MSNs
BUBBLE Rap is a social based forwarding algorithm based on community

and betweenness centrality [33]. There are two underlying assumptions: 1) users
are structured into communities, and each user belongs to at least one commu-875

nity; 2) each user has two types of centrality ranking, namely, global ranking
across the network and local ranking within its community. The knowledge
of community structure and centrality rankings is known to BUBBLE Rap on
each user’s device. When a node has message for another node, it first sends
the message to any encounter having higher global ranking than it, and the en-880

counter(s) also does this, until the information reaches the destination or node
in the same community with the destination. When the message reaches the
community that the destination belongs to, node who has this message sends it
to its encounter(s) having higher local ranking, until the message finally reaches
the destination.885

SimBet, proposed by Daly and Haahr [87], takes advantage of egocentric
betweenness centrality and similarity [88, 89] to help deliver message. Between-
ness is used to identify bridge nodes which can broker information exchange
among disconnected clusters of nodes, while similarity is used to predict future
encounter of two nodes. When two nodes encounter, each of them sends a list890
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of nodes it has encountered to the other. With the information collected from
its encountered nodes, each node can compute its betweenness and similarity
locally. Two encountering nodes also exchange a vector containing a list of des-
tination nodes they are carrying message for. For each destination, both of two
nodes compute a SimBet utility based on the betweenness and similarity, and895

then compare with each other. Node with higher SimBet utility will be the next
message carrier for this destination.

SocialCast is a socially-aware routing protocol for MSNs with publish/subscribe
messaging pattern [90]. Since in the publish/subscribe paradigm, information
publishers and subscribers are agnostic of each other, it is employed to decouple900

the communicating nodes who may become disconnected during at the message
delivery. When a message is published, ‘interest’ tags instead of node identifiers
are specified in the message, which are visible in routing layer. In SocialCast,
each node maintains a list of its interests. And for each interest, it computes
a utility based on the Kalman filter [91] to measure the suitability of this node905

to be a carrier for messages matching this interest. The utility is a function of
1) the probability of a node to be co-located with another sharing this interest,
and 2) the change degree of connectivity of this node. Each node periodically
broadcasts a message containing its interests and corresponding utility values to
its one-hop neighbors. After the interest dissemination, for each interest, nodes910

compare the utility against each other. Node with the highest utility will be the
carrier for the messages matching this interest.

In [85], authors proposed a forwarding strategy based on di↵erentiated friend-
ship. To simultaneously capture the features of friendship including frequency,
longevity and regularity, a matric called social pressure metric (SPM) is intro-915

duced. SPM between two nodes i and j is essentially the average time it takes
node i to encounter node j if i has a message for j at any time unit. The inverse
of SPM measures the closeness of the friendship between i and j. Each node
constructs a friend community out of its encounter history, which incorporates
nodes that have friendship higher than a threshold with itself. To account in-920

direct friendship between nodes, e.g., node i and k never meet but have a close
common friend j, a conditional SPM (CSPM) betweeb i and k is defined as the
average time it takes j to encounter k and send it a message received from i.
Then the indirect friendship between i and k is defined as the inverse of the
sum of SPM between i and j, and CSPM between i and k. If both the indirect925

friendship of i and k and friendship of i and j are higher than the threshold,
then k is incorporated in the friend community of i. For di↵erent period of the
day, each node computes a di↵erent friend community, since there is a tempo-
ral di↵erence in the strength of friendships. When a node i has a message for
node d encounters j, it forwards the message to j only if j’s current friendship930

community includes d and j has a closer friendship with d than i.
Habit[92] utilizes information of user co-location at the physical layer and

social relation at the application layer to help content dissemination. At the
physical layer, each node detects its familiar strangers that it meets regularly,
and maintains a regularity table containing the regularity weight for each fa-935

miliar stranger. At the application layer, each node keeps a list of source nodes
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whose content it is interested in. The list and the regularity table are exchanged
with other nodes upon contact up to a certain number of hops (maxHops). Then,
each node can construct an interest graph and a regularity graph using the col-
lected information. When a source has message to send, it first select nodes940

in the interest graph that are interested in its content as recipients. For each
recipient, the source computes all paths from the regularity graph, and select
the path with least nodes that are uninterested in its content. If multiple paths
exist, the source node computes the regularity weight (the minimum among all
edges) for each path, and selects the path with the highest regularity weight.945

For possible recipients that are not in the source’s interest graph, nodes who
have received the message check if there is any node in their interest graphs is
interested in the message. If yes, these nodes follow the steps that the source
did, and send the message to the recipients.

PrefCast is a preference-aware content dissemination protocol for MSNs [93].950

The authors consider that multiple content objects are shared among users via
opportunistic contacts. In PrefCast, time is slotted, and during each time-slot,
only an object can be transmitted by a user to all its neighbors. Users has
di↵erent utility on di↵erent content object. For each user, it may hold multiple
content objects, the problem of when to forward which object is formulated as955

an optimization problem, where the objective is to maximize the total utility
of all mobile users. For each object it holds, a user estimates a future utility
contribution which is determined by three factors: 1) the probability that this
user meets others who do not have this object, 2) the utilities of its contacts on
this object, and 3) the probability that the user drops this object due to limited960

bu↵er space. Using greedy approximation, the user can compute an approximate
optimal schedule for all object transmissions so that the total future utility
contribution is maximized.

In [94], Gao et al. propose a relay selection mechanism for multicasting in
MSNs, based on social community structure and ego-centric centrality. The965

contact process of each node pair is formulated as a Poisson process. And based
on the Poisson modeling, a centrality metric called cumulative contact proba-
bility is defined to represent the probability of a node to contact others within
a given time. Basically, data source selects some nodes it contacts as relays,
which further deliver the data to destinations. The relay selection is formulated970

as a knapsack problem, where the objective is minimizing the number of relays
subject to that the average ratio of data being delivered to destinations is higher
than a given p. Two multicast scenarios are considered, namely, single-data mul-
ticast and multiple-data multicast. For single-data multicast, the destinations
are assumed to be uniformly distributed, and the data source selects the relays975

such that all other nodes in the network can be contacted by the selected re-
lays. For multiple-data multicast, each node is assumed to belong to at least one
community, and it needs to maintain social forwarding paths with the highest
forwarding probability to all other nodes in the same community. The knapsack
problem of the relay selection is solved by a two-stage heuristic. The selected980

relays will send the data to the destinations within the same community. Desti-
nations in other communities can get data through gateway nodes which belong
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to multiple communities.
FairRoute is proposed to overcome unfair load distribution in routing - most

of the tra�c goes through a small subset of users with high centrality [95]. This985

unfairness can drain the limited resources of these users’ devices and degrade
the robustness of the network due to random failures and attacks. First, a
heuristic forwarding mechanism is a designed based on the notion of perceived
interaction strength [96], message is forwarded to nodes such that the forwarding
utility is greedily maximized. Then, the problem of unfair load distribution is990

handled by an assortative-based queue control performed by each node. The
assortativeness (or homophyly)[97] refer to the behaviour that people tend to
interact with others of similar characteristics as themselves. In the assortative-
based queue control, every node uses the size of its queue length to represent
its social status, and it only accepts forwarding request from nodes that have995

equal or higher social status. This limits the number of messages that nodes
with high social status have to carry and forward. Nodes with low social status
have to find alternative paths in the network.

DAC is a cooperative caching technique aiming to improve the data access-
ability [98]. It is assumed that the contact duration between nodes follows1000

Pareto distribution. Since the contact duration is limited, a complete data may
not be transmitted during a contact. Therefore, the data is divided into s pack-
ets using the random linear network coding, so that the receiver can recover the
data using any s linearly independent coded packets. The distributed k-clique
algorithm [32] is used to identify the communities in the network. For each1005

community, a cooperative caching problem is formulated as an optimization
problem, that is, each node decides how many packets of the data should be
cached so that the total caching benefit of the community is maximized, subject
to the caching cost and caching space limit. The caching benefit of a node is
defined as the expected amount of data that this node can send to a requester1010

before the request becomes invalid. Based on the caching benefit, a new central-
ity called marginal caching benefit is defined as the gain in the caching benefit
from caching an additional packet. It is proved that when the contact duration
is limited, node’s centrality decreases with the increase of packets it caches. The
optimization problem is solved by a greedy algorithm. When two nodes meet,1015

the node with higher centrality caches the packets until it reaches the caching
space limit.

Give2Get is a mechanism that motivates selfish individuals to truthfully
relay messages for others in epidemic forwarding and delegation forwarding [99].
This mechanism is based on public key cryptography[100]. Each user has a1020

public key signed by a trusted authority, and its corresponding private key. In
Give2Get, the destination of a message is hidden to every possible relay except
the destination. When a sender S finds a candidate B to relay message m, it
first request B if it has handled a message with hash H(m). B would not lie
on this, since it does not know the destination of the message, which might be1025

itself. If B agrees to relay the message, it will reply S with a proof of relay.
In return, S send B the key for the message m, which allows B to know the
destination of the message. If B finds it is not the destination, it will relay the

29



message rather than cheat S by discarding the message, because it is asked by
S to provide two proofs of relay during next contact. If B fails to do so, S can1030

broadcast a proof of misbehavior message to the whole network. Other nodes
who receives this message will exclude B from future forwarding path.

A summary of the above-discussed networking and resource management
algorithms for mobile social networks is presented in Table 5.

4.4.3. Local Resource Management1035

Battery, bandwidth, storage and such are limited resources on mobile de-
vices. The way those resources being utilized has significant impact on the
overall performance of the network. Since mobile devices are normally private
properties of their masters, they have full authority to manage these resources
on their own devices. A local resource management module is necessary to1040

monitor, allocate, and scedule the usage of these resources on individual user’s
behalf.

In some previous work, resource (in particular, storage) mamagement was
incorporated in the forwarding mechanism [95, 101]. For example, in the Fair-
Route [95] presented above, authors designed a queue control mechanism to1045

avoid users carry out too many data forwards and handovers which may quickly
deplete the battery and storage. In this mechanism, social status of a node is
defined as its queue length. Upon arrival of a forwarding request, nodes check
the social status of the requester, and only accept it if the requester has equal
or higher status. Thus, the volume of data forwards is significantly reduced by1050

comparing nodes social status.
Guardalben et al. considered the chances of MAC layer association as lim-

ited local resource, and proposed a social metric based model to improve MAC
layer association among users [102]. It is assumed that nodes in the network are
grouped in communities, and nodes within each community are either directly1055

associated or have multi-hop path between them. To form a community, nodes
detect and identify other nodes nearby, and then create association between
them. Di↵erent from node association based on the received signal strength in-
dication and signal to noise ratio, several social metrics, such as neighborhood
nodes friendship, associated nodes friendship and community nodes friendship,1060

are adopted to be the association criteria. Specifically, the social-based associa-
tion model is composed of two main blocks - local repositories and cooperation
mechanisms. In the local repositories, Partial View stores information about
neighbor nodes in vicinity, while Known Nodes stores information of nodes de-
tected through other nodes. The cooperation mechanisms consist of Bootstrap-1065

ping and Discovery. The Bootstrapping mechanism prepares basic information
of a node before the association process, including identifier, MAC address,
BSSID, hardware capabilities and social metric value. Then the Discovery starts
exchanging MAC packets containing above information among neighbor nodes.
After the Discovery process, each node associates with a neighbor node having1070

the highest social metric.
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4.5. Privacy & Security Management
Users in MSNs tend to expose an astonishing amount of personal informa-

tion, such as physical location and interests, either for sharing information with
friends or for making new connections. In online MSNs, those personal data1075

are stored in the servers of service providers, which empower them to share
the information with, for example, advertisers and benefit form it [103]. While
in decentralized MSNs, the lack of central infrastructure, for example, trusted
third party issuing key materials, makes security management a harder task.
Moreover, the broadcast nature of wireless communication also render the net-1080

work susceptible to attacks like eavesdropping[104]. In this section, we present
the latest work on privacy preserving and security mechanisms in MSNs.

Dong et al. developed a secure proximity computation protocol for secure
friend discovery in MSNs [105]. When two users are in physical vicinity, they
can exchange social coordinates (e.g., a user’s attributes) and compute social1085

proximity between them by doing a dot product operation on the vectors of
their coordinates. A social proximity exceeding a threshold indicates that they
are potential friends. Authors identified several potential attacks on the friend
discovery, including user fingerprinting based on its coordinate or proximity, user
tracking based on its coordinate, and proximity falsifying. To prevent the attack1090

of user tracking, each user is allowed to use a virtual ID, which is assigned by
trusted server and valid for a short term. To preserve the privacy of user’s social
coordinate and proximity, a proximity pre-filtering is used to e�ciently identify
potential friends from all users. The pre-filtering can quickly compute whether
the dot product (proximity of users) is above a threshold or not without revealing1095

the value of the dot product to them. If the computed proximity is above the
threshold, the validity of social coordinates and proximity is checked using a
homomorphic cryptography based private and verifiable proximity computation,
to see whether they are genuine or forged.

MobID is a decentralized defence mechanism against sybil attacks in net-1100

works formed by portable devices [106]. A malicious node can defraud honest
nodes of their trust, and by creating bogus identities, it can disrupt the services
(e.g., file sharing) provided by the network without trace, this is what called
sybil attack. MobID defences against sybils by excluding the bogus identities
created by malicious individuals rather than excluding malicious individuals.1105

Mobile users running MobID identify themselves using public keys, and they
exchange their keys only with friends. Suppose an honest node A has received
a friending request from node B, it has to decide whether to accept it or not.
First, A requests B’s list of friends, which includes each of its friends’ identifier
and signature on the relationship with B. Upon receiving B’s list, A updates its1110

network of friend by absorbing B’s list of friends, and computes a normalized
random-walk betweenness of B as B’s GoodRank in the network. The higher
its GoodRank, the more likely that B is honest. In case that B is malicious
and some node in A’s network of friend has accepted B as friend, which means
B can boost its GoodRank by creating several bogus identities, A also incor-1115

porates B’s list of friends into the network of foes and computes a BadRank of
B. With the GoodRank and BadRank of B, A can group B into a ‘sybil set’ or
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‘honest set’ by applying the K-means clustering [107]. If B is in the ‘sybil set’,
it will not be accepted by A.

In [108], He et al. presented an investigation on location cheating in location-1120

based MSN services. Location-based MSN services such as Foursquare rewards
user who checks in a venue frequently enough. Some dishonest users may
check-in the venue without truly being there, in order to obtain the reward.
The authors introduced several novel location cheating attacks to achieve this.
One possible attack is location cheating against GPS verification provided by1125

location-based services (e.g., cheater code of Foursquare). Attackers can pro-
vide fake GPS coordinates and fool the client application by modifying the GPS
module or GPS APIs, and using device emulator. Another more sophisticated
attack is called automated cheating. First, attackers need to crawl data of users’
profiles and venues’ profiles from Foursquare. Then, attackers create a number1130

of fake users, select a list of venues and organize them into a schedule in or-
der to let the fake users check-in the venues automatically. To address those
attacks, several possible solutions are suggested, including distance bounding
[109], address mapping[110], venue side location verification[111], access control
for crawling, and hiding information from profiles.1135

Krishna and Zhao designed an approach for preserving users’ location privacy
in location-based social networks [112]. They argue that LBSN fails to protect
location privacy because applications running on servers use users’ location data
in plain-text in order to provide services. The basic idea of their approach is
to move the application functionality (e.g., compute the distance between two1140

location) to the client devices and treat the untrusted third-party servers as
encrypted data stores. There are two building blocks in the proposed approach,
namely, friendship proofs (FProofs) and transaction proofs (TProof). Users
identify their friends by exchanging FProofs o✏ine (e.g., via Bluetooth). The
FProof that a user A gives user B consists of some content and A’s signature1145

on the harsh of the content. The content contains A’s public key, B’s public
key, time of issue, and A’s symmetric session key. Unlike FProof, the TProof
is stored on the server, it consists of a message encrypted with the session key,
and A’s signature on the harsh of the message. A stranger to user A is not able
to decrypt the TProof, since it does not have public key and session key of A,1150

which are shared only within friends.
FindU is a privacy-preserving scheme for personal profile matching in MSNs

[113]. Each user’s profile consists of a set of attributes, such as hobbies and
places. The more two users’ attribute sets intersect, the better these two profiles
match. Using profile matching, users can make new connections with other1155

users in proximity. To meet users’ di↵erent privacy requirements, three levels of
privacy are defined. In privacy level 1, matching initiator and a candidate can
learn their intersection attributes. In privacy level 2, matching initiator and
a candidate can only learn the size of intersection, i.e., how many attributes
are intersected. However, in privacy level 3, the matching initiator and each1160

candidate only know its own rank of the intersection size among all candidates.
It is assumed that communication channel used by users is secured, such as by
using public/private key pair if possible. The ideas to achieve the proposed
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privacy levels is based on private set-intersection (PSI) techniques [114]. To
improve the e�ciency, FindU also adopts Shamir secret sharing scheme [115]1165

and secure multi-party computation.
A summary of the above-reviewed privacy and security mechanisms for

MSNs is presented in Table 6. For a more comprehensive overview on the chal-
lenges and solutions for security and privacy in MSN as well as most recently
developments, see [116] and references therein and [117, 118].1170

5. Concluding Remarks

Mobile social networks are highly likely to be an indispensable part of peo-
ple’s social life. Unfortunately, there are still problems not well addressed. There
is a common assumption made by most of the reviewed papers for delay tolerant
MSNs, that is, somehow, the source of the information knows the destination(s)1175

of the information. However, this assumption has never been justified. In such a
source-destination based conversation model, we believe that a user most likely
only send information to other users whose identities have been verified during
physical encounter. Although users’ identifiers can be obtained from interme-
diate nodes, but she can not be sure whether this is her really friends. Some1180

studies [112] suggest that the identifiers can be exchanged by other means such
as email and use identifiers from existing OSNs [20], however, this is impossible
in fully delay-tolerant setting.

This source-destination based conversation model not only restricts the us-
ability of delay tolerant MSNs in large scale but also generate useless duplicate1185

messages in the network. An intermediate node tend to store messages for di↵er-
ent destinations, these messages are likely to be the copies of the same message
if a source wants to send a message to multiple friends or this message is so pop-
ular that many users would like to share it with others. But the intermediate
node is not able to distinguish the content of these messages, if the messages1190

are concealed in several envelops with specified destinations. In this case, the
store space or the intermediate nodes are severely wasted.

Perhaps we should treat MSNs as information-centric networks (ICNs)[119,
120]. In ICNs, requests and responses are decoupled in both space and time
by employing the publish/subscribe paradigm. The content is cached at each1195

level of the network (e.g., routers and hosts) to decrease the transmission tra�c
and response time. Most importantly, each piece of the content has a unique
name to describe itself. To authenticate the content, the name also includes
a cryptographic hash. Someone may have noticed that the store-and-forward
technique used in MSNs is essentially the same with the in-network caching.1200

But we also believe that the network performance can be improved if we adopt
the publish/subscribe paradigm and content naming as well. Using the pub-
lish/subscribe paradigm, the distribution of the content will not be constrained,
any user having the interest matching the attribute of the content can get it. If
the messages are named, the intermediate nodes can distinguish the messages,1205

keep only one copy of the same messages having the same content and thus
save storage space. Though it seems to be a fine solution, there are a number
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of following issues to be addressed, such as how to authenticate the message
without trusted authority, do the intermediate nodes have to store the whole
file or only part of it.1210
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