
28/04/2024 00:02

How to avoid TCP Congestion without dropping Packets: an Effective AQM called PINK / Casoni, Maurizio;
Grazia, Carlo Augusto; Klapez, Martin; Patriciello, Natale. - In: COMPUTER COMMUNICATIONS. - ISSN 0140-
3664. - 103:(2017), pp. 49-60. [10.1016/j.comcom.2017.02.010]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

How to avoid TCP Congestion without dropping
Packets: an Effective AQM called PINK

Maurizio Casonia, Carlo Augusto Graziaa, Martin Klapeza, Natale Patricielloa

aDepartment of Engineering Enzo Ferrari
University of Modena and Reggio Emilia

via Pietro Vivarelli 10, 41125 Modena, Italy.

Abstract

This paper proposes PINK (Passive INverse feedbacK), a queue management

algorithm designed to indirectly impose a certain resource allocation policy on

defined sets of client hosts. PINK adds intelligence at intermediate nodes that

connect client hosts to bottleneck links or to external networks in general, al-

lowing these nodes to dynamically modify the TCP Acknowledgements (ACKs)

segments passing through. The modification consists in replacing advertised

Receive Window fields (RCV.WNDs) with custom values, in order to enforce a

specific bandwidth utilization upper bound. To compute new RCV.WND va-

lues, PINK needs only the number of active connections, the flows RTTs and

the transmission channel bandwidth. It follows that PINK permits to impose

a centralized bandwidth management without the cooperation of clients, which

means that no modification or addition to end hosts is needed. Furthermor

e, as demonstrated in this paper, our proposal does not constrain client hosts

performance without purpose; on the contrary, PINK improves efficiency on

multiplexed channels by exploiting their capacity and by maintaining a low

queuing delay, and guarantees optimal flow fairness without forcing any packet

drop. We validate PINK performance in multiple scenarios by using the ns-3

network simulator.

Email addresses: maurizio.casoni@unimore.it (Maurizio Casoni),
carloaugusto.grazia@unimore.it (Carlo Augusto Grazia), martin.klapez@unimore.it
(Martin Klapez), natale.patriciello@unimore.it (Natale Patriciello)

Preprint submitted to Computer Communications April 7, 2022

Keywords: AQM, TCP, fairness, rate control, receiver advertised window

1. Introduction

In recent years, due to the explosion in the number of connected devices,

the interest on congestion issues over computer networks has risen as well. In

particular, researchers and developers have implemented and tested various pro-

posals, often with the common property of not being limited to a particular layer5

of the network stack, but instead collaborating over different layers to resolve a

particular problem. Moreover, logical layers in networks are not seen anymore

as static and closed black-box, but they frequently interact across-the-border.

The most sensitive transport protocol to network congestion is, without any

doubt, Transmission Control Protocol (TCP): it is a stream-based, ordered and10

reliable protocol, and it must react to congestion to preserve its properties.

The downside of recovering algorithms is a performance degradation; its degree

depends on the intensity of the congestion.

Active Queue Management (AQM) algorithms and packet schedulers are

the most representative frameworks that enforce cross-layer collaboration. For15

example, if network congestion is detected among TCP flows by a router, its

AQM algorithms could decide to selectively drop packets, in order to indirectly

signal senders to slow down the transmission rate. Direct signalling (such as

ECN, RFC 2481) has also been proposed, but this comes at the cost of updating

all nodes across the networks, together with senders and receivers.20

In this paper we present PINK (Passive INverse feedbacK), an algorithm

that has been designed to run on access gateways as an AQM technique that

prevents congestion. The novelty of PINK is encased in its ability to fairly

divide a bottleneck bandwidth between TCP flows, in order to transparently

impose a fair rate and mitigate congestion without a single packet drop. This25

allows PINK to be independent from the TCP congestion control algorithm

employed by the end users, to be independent from the RTT of each flow and

to be extremely efficient in terms of latency and jitter. PINK operates by

2

modifying the ACK packets, without adding non-standard headers or options

to them and without requiring any modification on any other nodes along the30

path, end nodes included. Moreover, to maintain the standard semantic of TCP

algorithms in terms of channel exploitation, PINK is equipped with an algorithm

that reassigns, if necessary, the resources when one or more flows are not able

to exploit their optimal rate as provided by PINK.

The discussion is organized as follows: Section 2 summarizes related work.35

Section 3 describes the PINK algorithm. Section 4 presents a mathematical

analysis of the gateway queue occupancy upper bound when employing our

proposal. Section 5 introduces our validation scenarios, while Section 6 shows

the simulations results. In Section 7 the conclusions of our work are drawn.

2. Related Work40

The AQM world is still an active topic in the literature, in this section we

carefully introduce the more recent and relevant works together with feedback-

based congestion control algorithms, which will take part to the experimental

evaluation.

The AQM problem is strongly coupled to the TCP family and also sound45

and detailed analysis have been provided such as [1], AQM algorithms in fact

basically try to exploit some smart solutions in the middle nodes between the

end-to-end communication point of a TCP connection. The initial approach to

let TCP cooperate with routers is the Explicit Congestion Notification (ECN)

presented in [2]. The authors proposed an algorithm which extracts the network50

status from successive binary congestion information and estimate a fair window

size. With such a system, the window size reduction is identical to that caused

by the fast retransmit mechanism of TCP Reno and does not require dropping

any packet. From one side, ECN is effective in reducing packet loss while, on

the other, the binary feedback alone is not enough to avoid window and network55

behaviour oscillations, and it does not allow to operate fine-grained adjustments.

One of the first attempts to explicitly control network congestion through a

3

more substantial feedback has been proposed by Gerla et al. in [3]. The authors

proposed a Generalized Window Advertising (GWA) for TCP congestion control

algorithms that aims to avoid window oscillations and the related fluctuations60

in offered load and network performance. The key idea of GWA is to operate

on the TCP advertised Receive Window (RCV.WND) set by the receiver in

the header of TCP ACK segments in order to convey both the receiver available

buffer space and the network congestion status. Unfortunately, to do this, GWA

requires a modification of the existing protocol stack of the end-nodes, carrying65

congestion information for the GWA-TCP sender at the IP level.

A similar approach is described in [4, 5]. This work also proposes the use of

the RCV.WND field in TCP headers to convey network congestion notifications.

Even if the congestion control algorithm as well as the protocol implementation

are different from GWA, the drawbacks are the same; in fact, modifications to70

the end hosts stacks are required, resulting in a not transparent solution. More-

over, both previous works are based on the router queue length, which could

be an outdated congestion information when networks with high propagation

delay (like satellite ones) are in place, causing instability. The problem of the

stability of congestion control for networks with large round-trip communication75

delays has been considered in [6] to steer the design of the IMC-PID congestion

controller.

A very promising solution proposed in [7] shares proposal goals with our

work. The paper in fact focuses on the fairness and QoS provisioning in a

mixed environment, e.g. with multiple variants of TCP congestion controls, by80

migrating the control rate from the end applications to a general protocol in

the middle. In fact the authors proposed a Rate Management Protocol (RMP)

that controls the rate of all flows (in a router) in order to accommodate QoS

provisioning. The RMP algorithm in the middle is completed with a novel TCP

congestion control algorithm on the end nodes (called TCP-RMP congestion85

control) that is able to infer the fair rate for each flow when coupled with RMP.

The clever mix of this two solutions is that RPM protocol helps to policing “ag-

gressive” flows (UDP and aggressive TCP versions) while TCP-RMP congestion

4

control enables “polite” to achieve the fairness point. This problem of multi-

variety of traffics and protocol over a networks has been investigated also in [8]90

to devise the IAPI algorithm, a stable and robust AQM tested under various

scenarios including cases involving different types of background traffic and a

case involving a multiple bottlenecks.

Another AQM algorithm called GREEN [9] is not so far from our proposal

due to its rate-based approach; GREEN operates giving each packet a drop95

probability that depends on the flow RTT, on the number of active flows, and

on the Maximum Segment Size (MSS) encountered during a sampling time.

However, GREEN exhibits some drawbacks: (i) it does not have a reference im-

plementation; (ii) it infers the MSS by considering the highest value only, which

results in a coarse-grained drop policy; (iii) the RTT measurement assumes the100

usage of TCP options (i.e. it leaves to end nodes the responsibility of providing

RTT values to the gateway). GREEN is therefore a non-transparent solution

for end nodes too. The rate-based feature has become very important in the last

years; following this approach also solutions for achieve a fine-grained conges-

tion control for multicast applications has been investigated in [10]. Moreover,105

the rate-based and the queue-based approach have been coupled together in the

RaQ algorithm [11], a dual loop feedback control algorithm that takes the input

rate and current queue length to calculate the packet dropping/marking prob-

ability. Thus, the rate feedback control enables RaQ to respond to congestion

rapidly, in this way it can decrease the packet loss due to the buffer overflow. At110

the same time the queue length feedback control stabilizes RaQ’s queue length

around given target, so it can be tuned to achieve the desired queueing delay

and mitigate delay jitter.

In an another work, more related to the packet scheduler world instead of the

AQM one, a solution to harmonize the bandwidth sharing between several TCP115

flows competing for the same bottleneck link is studied [12]. This interesting

approach proposes to delay the ACKs in order to force each TCP sender to get a

specific yet fair amount of bandwidth at the bottleneck link. The only drawback

of this solution is that it can only act on the bandwidth by artificially increasing

5

the RTT, which is something likely undesirable in many real-time applications120

that use TCP.

To address these issues on satellite-based emergency networks that employ

high delay links we present in [13] a preliminary work on PINK. We designed our

proposal on the basis of this last work, by also cross-comparing our contribution

with the aforementioned systems, in order to validate it and provide an answer to125

the drawbacks that are being exposed in this Section. We based our comparison

testbed on recent works such as [14] and [15], which are also based on AQM

techniques. In particular, the latter proposes a comparison with recent AQM

implementations like CoDel and PIE with a decade old variant of RED called

ARED. The interesting result of this work is that, in several instances, ARED130

obtains better results. In [16] it is shown instead that while AQM algorithms are

able to significantly improve performance on the long run they also exacerbate

TCP flows unfairness, especially among TCP flows with different RTTs, and

may lead to large latency spikes caused by queuing delays when flows startup.

3. The PINK algorithm135

In this section, the PINK algorithm is described through both a theoretical

explanation and implementation directives.

PINK is a per-flow AQM algorithm, designed to be deployed on a gateway

that provides network access to a set of client hosts. It exploits the flow con-

trol of TCP, and in particular the one of the receiver, through the well-known140

field “Window size” (RCV.WND) of the TCP header. This field represents the

quantity of bytes that the destination is currently willing to receive, and an

RFC-compliant sender will not exceed this value when transmitting segments,

choosing as its window size the minimum value between congestion and receiver

window.145

Basically, PINK computes (for each ACK packet) the value for the advertised

RCV.WND, which will be then written on the header. The key concept is

that this value is calculated so as to prevent bottleneck congestion, tricking the

6

sender.

Mathematically, such value equals to:150

RCV.WNDpink
i = Bi =

⌊
BW ·RTTmin

i · c
n

⌋
(1)

Considering that BW
n is the bandwidth allocation given to each active flow i,

in Equation 1 BW is the bottleneck bandwidth, n is the current number of active

flows, RTTmin
i is the minimum RTT calculated by PINK for the flow i while

RCV.WNDi is the new RCV.WND value to write in the TCP window field,

equal to Bi that represents the burst value of flow i. The constant parameter155

c, called the “exploitation parameter”, ranges from 0 to 1 and represents the

channel exploitation factor. Is has been introduced to allow the network designer

to tune the amount of bandwidth shared among nodes, in order to compensate

packet overhead for headers introduced by network layers. Indeed, when c = 1

the entire bandwidth is considered to be used by TCP for the application data,160

leaving no space for TCP, IP, and link layer headers. This exceeding amount

leads to the use of some queue space (that therefore generates a low degree of

congestion) that can be avoided by using c < 1. The bottleneck bandwidth is

assumed to be an offline and always available information; the number of active

connections, instead, is actively tracked by counting the number of SYN, FIN165

and RST packets that are received or sent. It is likewise possible to efficiently

calculate the RTT of each flow [17, 18, 19].

PINK operates per-flow since it divides the bottleneck bandwidth over the

number of active flows on the channel 1. We reported in Figure 1 the operational

scheme of PINK, where pinkwnd represents the calculated RCV.WND value.170

As a matter of fact, TCP connections are bi-directional, because data could

be exchanged both ways (upload and download). In concrete terms, there are

1Is important to note that PINK operates on the reverse path, hijacking the ACK packets,

and a possible cause of congestion like the entrance of a new flow is notified to the sender

without waiting the entire RTT flow but instead is notified through the first ACK available

resulting in a notification as fast as the Backward Congestion Notification [20].

7

TCP

Source

TCP

Receiver

Router

Information Flow

Control/ACK Flow

TCP rcvwnd is

computed

ACKs rcvwnd take

min(rcvwnd, pinkwnd)

Sender uses

min(cwnd, rcvwnd)

Figure 1: PINK algorithm on a simple network.

two information flows and two ACK flows, but for the sake of brevity in this

paper we only investigate the uplink direction, applying PINK on the ACKs sent

by remote receiver nodes. The setup could be flawlessly extended to prevent175

congestion on both directions, by applying PINK on the ACKs sent by the

sender too.

PINK is basically designed for access networks, in these environments the

bottleneck data rate allows PINK to compute the TCP Checksum after the al-

teration of the TCP advertised Receive Window, (an operation that must be180

done for each and only ACK that needs to be changed) without introducing a

performance overhead. This means that PINK can be installed on a general

access-network node through a simple software update. The situation is differ-

ent if PINK wants to be used on a more than Gigabit-level backbone network

in which to avoid performance degradation is mandatory to compute hash func-185

tions through specialized hardware [21], instead of performing these operations

in software as it is feasible in lower-bandwidth access systems.

3.1. PINK resource reallocation

We created an algorithm to prevent a waste of resource for PINK adapted

from a previous work [22]. In particular we considered what could happen in a190

multi bottleneck environment in which PINK operates on different nodes/routers.

It may happen that, for one or more particular flow, the RCV.WNDpink
i calcu-

8

Table 1: Variables of the PINK algorithm for resource reallocation

n number of active flows

nbad number of bad flows

ngood number of good flows

si state of the i-th flow (good or bad)

BW bottleneck bandwidth

BW free total wasted bandwidth

BW free
i wasted bandwidth by i-th flow

RTTmin
i minimum RTT of the i-th flow

RCV.WNDcurrent
i current RCV.WND of the i-th flow ACKs

RCV.WNDpink
i RCV.WND computed by PINK for the i-th flow ACKs

lated by PINK is higher then the current receiver windows of the ACK packet of

the i-th flow, hereafter called RCV.WNDcurrent
i . Because of it is semantically

wrong to increase the RCV.WND of an ACK packets in the middle of the path,195

the PINK algorithm operating in the node under discussion is missing a resource

equal to
RCV.WNDpink

i
−RCV.WNDcurrent

i

RTTmin
i

, that is the amount of bandwidth not

used by the i-th flow.

This situation is captured through the algorithm described here with the

help of the variables described in Table 1:200

RCV.WNDpink
i =

⌊
BW ·RTTmin

i · c
n

⌋
+

⌊
BW free ·RTTmin

i · c
ngood

⌋
(2)

which is equal to Equation 1 by default because BW free is initialized as

zero.

RCV.WNDcurrent
i < RCV.WNDpink

i and si is good. The i-th flow is un-

able to use all the assigned bandwidth; its state moves therefore from good to

bad and the unused bandwidth is reassigned to other good flows.205

RCV.WNDcurrent
i < RCV.WNDpink

i and si is bad. The i-th flow is un-

able to use all the assigned bandwidth; its state remains bad and the unused

bandwidth is reassigned to other good flows.

9

nbad ← nbad + 1

ngood ← ngood − 1

BW free ← BW free −BW free
i

BW free
i ← RCV.WNDpink

i
−RCV.WNDcurrent

i

RTTmin
i

BW free ← BW free + BW free
i

Figure 2: Flow i moves from good to bad state

BW free ← BW free −BW free
i

BW free
i ← RCV.WNDpink

i
−RCV.WNDcurrent

i

RTTmin
i

BW free ← BW free + BW free
i

Figure 3: Flow i remains bad

RCV.WNDcurrent
i > RCV.WNDpink

i and si is bad. The i-th flow is able

to use all the assigned bandwidth; its state moves from bad to good and the210

unused bandwidth is removed.

nbad ← nbad − 1

ngood ← ngood + 1

BW free ← BW free −BW free
i

Figure 4: Flow i moves from bad to good state

4. PINK guarantees

In this section we analyse the impact of PINK on the gateway queue level,

considering in particular the worst-case upper bound value of queue occupancy.

215

Theorem 1. Let Qgw(t) be the output queue length of the gateway at the generic

time t and let RTTnet be the average round trip time of the network. If the link

bandwidth is constant and equal to BW , with PINK as AQM algorithm the

following inequality holds for any time t:

Qgw(t) ≤ BW ·RTTnet. (3)

10

Proof. Consider a time interval with a constant number of n active TCP flows.

Consider now a generic i-th TCP flow; it will send in the network a burst Bi

which is at most equal to the product BWi ·RTTmin
i each RTTi, as showed in

Equation 1 with c = 1 for a worst-case analysis. Consider the case in which all

flows send their bursts simultaneously, at the same time t. The gateway queue,220

immediately before t, can be either empty or containing packets; this divides

the proof in two cases.

Case 1: Empty queue. The gateway queue is filled with the aforementioned

bursts and it follows that:

Qgw(t) =
∑
i

Bi

=
∑
i

BWi ·RTTmin
i .

(4)

Considering RTTmin
i upper bounded and equal for each flow to RTTnet, we can

write:

Qgw(t) =
∑
i

BWi ·RTTnet

= (
∑
i

BWi) ·RTTnet.
(5)

Considering Equation 1 we can easily write its fair bandwidth allocation rule in

the form BW ≥
∑

i BWi, and by substituting it to (5) we get the thesis.

Case 2: Non-empty queue. Let the gateway queue, immediately before t,

contain at least one packet p. After receiving the aforementioned bursts it

follows that:

Qgw(t) = p +
∑
i

BWi ·RTTmin
i

>
∑
i

BWi ·RTTmin
i

= BW ·RTTnet.

(6)

This contradicts our assumptions. The packet p must belong to one of the

active TCP flows (remember that PINK operates on an exclusive TCP queue).

Consider also that the packet p belongs to the i-th flow. If follows that, at time

11

t, the gateway queue would contain an amount of packets belonging to the flow

i which is:

p + BWi ·RTTmin
i > BWi ·RTTmin

i

= Bi.
(7)

The amount of packets in the queue, belonging to the flow i, would be greater225

than the product BWi ·RTTmin
i , which is RCV.WNDi; this is absurd because

it violates the TCP property.

To conclude, by analysing both case 1 and case 2 we completed the proof.

Theorem 1 is proved.

This way it is possible to have an upper bound guarantee about the queue230

length and, consequently, an upper bound on the maximum queuing delay in-

troduced by the gateway. A key point of Theorem 1 is that this deterministic

bound is equal to the standard suggested buffer size [23], which makes PINK

easy to deploy, while this upper bound in the queue occupancy level prove the

effectiveness of the PINK algorithm and its drop-free behaviour.235

Corollary 2. The space complexity of PINK is linear.

Proof. In light of Theorem 1 we know that the queue occupancy of the gateway

at a generic time t is upper bounded by the bandwidth-delay product. However,

the used queue memory is not the only space memory allocated by the PINK

queue. In fact, it also needs the list of packets waiting for RTT tracing (i.e.240

packets waiting to receive ACKs and, if it is the case, to update the RTTmin
i of a

flow i, together with the state of the flow si and the unused bandwidth BW free
i

if it is the case). By Theorem 1 we know that, each RTTnet, the amount of data

collected in the queue is deterministically bounded (Equation 3); this means

that in the following RTTnet the amount of memory waiting to be traced is245

again bounded by the same value. In fact, packets do not need to wait to be

traced if the RTTnet expires (e.g. if an ACK has been lost or a congestion has

occurred), this safely means that RTTmin
i , for all flows i, will not be updated

in this sampling period. Consequently, the amount of memory used by PINK

12

is O(b) for the queue and O(b) for the tracing, thus concluding the proof in a250

cumulative linear space complexity of O(b).

Corollary 3. PINK is computationally efficient, with O(b) space complexity

and O(1) time complexity.

Proof. By Corollary 2 we know that PINK is efficient in terms of used mem-

ory, which is O(b). Considering Algorithms 2, 3 and 4 together with Equations 1255

and 2, it is easy to infer that the number of instructions required for this exe-

cutions is constant and no cycles are computed. This way, we can claim that

PINK is also efficient in terms of time complexity, thus concluding the proof.

From an experimental point of view, Theorem 1 manifests a stable behaviour

even in highly dynamic environments. In fact, when a new flow starts to trans-260

mit, a SYN packet is sent through the network and captured by PINK; the algo-

rithm increases the number of active flows and starts to update the RCV.WND

of each ACK according to Equation 1, scaling down the bandwidth of each flow

in order to accommodate the new one. Conversely, when a flow stops to trans-

mit, a FIN packet is sent through the network and captured by PINK; this time,265

the algorithm decreases the number of active flows and increases the RCV.WND

of each ACK according to Equation 1, increasing the bandwidth of each active

flow in order to continue to efficiently exploit the bottleneck link capacity.

The only shortcoming of this description is represented by SYN packets,

that are not contemplated by Theorem 1. These packets, in fact, belong to270

flows that are not currently part of the proof. This highlights the main current

weakness of PINK: it is not resilient to drops caused by SYN flooding Denial of

Service attacks. If a group of malicious flows would start to flood the network

with SYN packets, the analytical bounds provided by Theorem 1 do not hold

anymore and some packet drops can be experienced. Anyway, the general high275

level performance of PINK can be maintained by using a sampling period (as it

is the case in other AQM algorithms, e.g. GREEN [9]) in which PINK monitors

the TCP flows that effectively transmit data; in other words, only those are

13

Table 2: Experimental network setup for DSL testbed: the underlined parameters are taken

from [15]

Model ns3-2.24

Access/Remote

Network
Ethernet 100 Mbit/s

Bottleneck

Network
Ethernet 10 Mbit/s

Base RTT 100 ms

Gateway Queue 125KB

MTU 1500 Bytes

MSS 1000 Bytes

Active Clients 2, 4, 8, 16, 32, 64

AQM
DropTail, ARED, CoDel,

GREEN, PINK

Table 3: Experimental network setup for SAT testbed: only changes from Table 2 are reported

Bottleneck

Network
Ethernet 4 Mbit/s

Base RTT 700 ms

Gateway Queue 350KB

considered in Equation 1, while the malicious flows that transmit SYN packets

only are identified by the PINK computations and subsequently banned. This280

sampling period could be activated only when a packet drop occurs, in order to

avoid introducing any overhead in general scenarios while shielding PINK from

SYN flooding attacks. Another possible solution consists in coupling PINK with

the algorithm proposed in [24], an AQM techniques that mitigates congestion

due to DoS attacks, thus preventing SYN flooding problem.285

5. Simulation Environment

In order to demonstrate the effectiveness of PINK, we developed two main

testbeds. The first one is compliant to the one used in [15], hereafter referred to

14

Figure 5: Network DSL testbed topology.

Figure 6: Network SAT testbed topology.

15

as “DSL testbed”, while the second one is an equivalent version of the former

designed for Satellite environments, hereafter referred to as “SAT testbed”. As290

simulation platform, we used the ns-3 network simulator; PINK source code,

with instructions to reproduce our results, is available at [25]. The parameters

used in our simulations for the DSL testbed are summarized in Table 2, while

Table 3 reports only the differences that pertain to the SAT testbed; basically,

each testbed represents two distinct networks connected with a bottleneck link,295

accessible to the end hosts of each network through a border gateway, as depicted

in Figure 5 for the DSL tesbed and Figure 6 for the SAT tesbed, respectively.

The topology of this two testbeds is the same, the only differences belong to the

bottleneck link, in particular we are referring to the propagation delay and the

bottleneck bandwidth. This choice let us to focus on two of the main parameters300

that influence the behaviour of an AQM algorithm, the local bandwidth of the

link on which it operates, and the global RTT of the connections. By doing this,

it is possible to clearly evaluate the impact, on the AQM performance, of this

two parameters only without introducing any other environmental condition

that could alter the analysis.305

We decided to compare PINK with four Queue Manager algorithms, listed

as follows together with a brief explanation of the rationale behind each choice.

(i) DropTail, as it can be used as a benchmark to represent the default solution

when no AQM technique is in place.

(ii) CoDel, as it can be considered the state of the art.310

(iii) ARED, due to the performance provided in [15].

(iv) GREEN, due to its rate-based approach that is shared from PINK.

We ran various experiments consisting in a set of backlogged TCP flows,

created between pairs of end hosts in which sender and receiver belong to dif-

ferent networks. Common parameters for the experiments are the bottleneck315

maximum queue size, set equal to the network Bandwidth Delay Product of the

16

bottleneck link (125 KB for the DSL case, 350 KB for SAT), and their dura-

tion, set to 300 seconds. During this amount of time, the sender applications

continuously generate data to be transmitted with TCP protocol. We describe

comparisons and outcomes, along with specific experiment parameters, in the320

next Section.

6. Performance

In this section we analyse the performance of PINK in many different en-

vironments, comparing its results with the other well known AQM algorithms

described in Section 5. As simulation platform, we used the ns-3 network sim-325

ulator.

6.1. DSL environment

The discussion starts by providing some numerical results obtained by sim-

ulating the DSL testbed, whose simulation parameters are detailed in Table 2.

We present the results on goodput, an analysis on per-packet RTT distributions,330

a flow fairness evaluation and a simple drop analysis.

6.1.1. Goodput

Figure 7 shows the achieved goodput of DropTail, ARED, CoDel, GREEN

and PINK for different levels of congestion at the bottleneck link. Higher va-

lues denote higher performance. The congestion degree is proportional to the335

number of the active nodes, which varies from 4 up to 64. All the AQMs under

test are configured with their default parameters (e.g. target delay of 5ms for

CoDel). By looking at the Figure 7, as first remark we claim that the results are

compliant to [15], recording a minor difference on the goodput exploitation of

CoDel that is slightly better with respect to ARED. The latter, in fact, suffers340

a bit, especially in congested scenarios. Considering instead well-known algo-

rithms, CoDel behaves very well, achieving a goodput level comparable to those

of DropTail which is the benchmark for this figure of merit. Furthermore, the

17

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

4 8 16 32 64

G
o
o
d
p
u
t
(M

b
/s

)

Nodes

DropTail ARED CoDel GREEN PINK

Figure 7: Application goodput at the bottleneck link (per 1-sec intervals). Different numbers

of active nodes with RTTbase = 100ms; bottom and top of whisker-box plots show the 10th

and the 90th percentiles, respectively. The PINK whisker-box is flattened on top of the figure.

Higher is better.

18

10th and the 90th percentiles of CoDel goodput tend to approach each other as

the number of nodes increases.345

On the contrary, the performance of GREEN are very poor. With the values

of bandwidth and RTTbase (see Table 2) adopted in the experiments, the drop

probability (which is also related to the amount of active nodes2) increases too

much, resulting in a goodput degradation.

Results even higher than DropTail and CoDel, and considerably better than350

GREEN, are those achieved by PINK. With the latter, in fact, the goodput

is extremely stable with the 10th and the 90th percentile almost identical and

close to the optimal value3, with the bottom of the candlestick that increases

as a function of the congestion level.

It is clearly undesirable to have a higher goodput if it comes at the cost of an355

increased application delay: in the following, we investigate the delay perceived

at the application level (through an RTT analysis) to see if PINK increases the

RTT of the flows.

6.1.2. RTT analysis

Figure 8 shows the per-packet RTT distributions of AQMs for different con-360

gestion levels, where lower values (and lower variances) indicate better perfor-

mance. As a side note, also in this test our CoDel and ARED results are com-

pliant with [15]. With regards to queuing delay, DropTail represents a negative

benchmark of what happens on a bottleneck link when no AQM techniques are

employed. The RTTbase derived from the sole propagation delay of this channel365

is 100ms, but by considering in addition the transmission time and the delay

inside LAN networks, the smallest RTT value that has been registered during

the simulations is equal to 107ms. On the Figure, the difference between the

reported value and the smallest value of the candlesticks (107ms) corresponds

2See Equation 2 of [9] for further details.
3With a MSS of 1000 bytes, the frames in this simulations have the size of 1052 bytes.

This upper-bounds the goodput at 9.5Mbit/s, which is lower than the upper bound of [15].

We have been unable to align to their goodput value since their MSS value is not disclosed.

19

 100

 120

 140

 160

 180

 200

 220

 240

 260

4 8 16 32 64

R
T

T
 (

m
s
)

Nodes

DropTail ARED CoDel GREEN PINK

Figure 8: Per-packet RTT. Different numbers of active nodes with RTTbase = 100 ms; bottom

and top of whisker-box plots shows the 10th and the 90th percentiles, respectively. The PINK

whisker-box is flattened on bottom of the figure. Lower is better.

to the queuing delay at the bottleneck.370

From this experiment, some observations can be made: CoDel’s median, as

well as the 10th and the 90th percentiles of queuing delay, increases propor-

tionally to the network congestion level, especially when the number of nodes

is above 4. If ARED was suffering the comparison with CoDel from a goodput

point of view, here ARED outperforms CoDel, obtaining an almost stable queu-375

ing delay; this is especially true for the median, with the values of the 10th and

the 90th percentile that are close to the lower bound.

Likewise, GREEN performs better with respect to the queuing delay per-

formance metric. In fact, it provides a trend which is the CoDel opposite; the

median, the 10th and the 90th percentiles decrease as a function of network380

congestion.

The main result of this Figure, however, is the performance of PINK. Firstly,

it is extremely stable, with all the candlesticks collapsed and close to the lower

bound value. Coupled with a higher goodput, this indicates that PINK is allow-

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 16 32 64

J
a
in

’s
 F

a
ir
n
e
s
s
 I
n
d
e
x

Nodes

DropTail ARED CoDel GREEN PINK

Figure 9: Worst-case Jain’s Fairness Index calculated per 1-sec intervals, varying the active

nodes number.

ing the exploitation of the bottleneck channel by TCP flows without introducing385

any unwanted delay.

The next question to investigate is the following: is PINK able to serve

equally all flows, or some of them unfairly hold more resources than others? And

if that is the case, what is the proportion of the unfair bandwidth distribution?

6.1.3. Fairness390

In order to evaluate the fairness between different TCP flows when cou-

pled with different AQM algorithms, we considered the Jain’s Fairness Index.

Assuming equal data rate requirements among flows, the instantaneous Jain’s

Fairness index JFi is defined in terms of the instantaneous data rate Ri as:

JFi(R1, R2, . . . , Rn) =
(
∑n

i=1 Ri)
2

n ·
∑n

i=1 Ri
2

where n is the number of active flows, Ri is the instantaneous data rate of flow i395

and JFi is a real number in the interval [1n , 1] with a maximum best-case value

of 1, if the achieved rate is equal for all flows, and a minimum worst-case value

21

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 8 16 32 64

T
ra

n
s
m

it
te

d
 D

a
ta

 (
M

B
)

Nodes

DropTail
ARED

CoDel
GREEN

PINK
Drop

Figure 10: Transmitted data at the end of the experiment on the bottleneck link overlapped

by the dropped data.

of 1
n if only one aggressive flow is filling the entire data rate of the system.

We reported in Figure 9 (higher values indicates better performance) the

worst-case JFi calculated during each simulation, for the different AQM tech-400

niques and for different network congestion levels. At a first look, it emerges

that ARED is particularly unfair, without exhibiting a clear variation pattern

as a function of the congestion level. On the contrary, DropTail, GREEN,

and CoDel suffer to maintain fairness with low congestion levels, while they

increase the performance when moving towards a more congested environment405

(e.g. with 32 or 64 active flows). Remarkable results are obtained by PINK: in

fact, it presents an excellent scalable behaviour, approaching the best-case fair-

ness value of 1 (which means that all flows have the same rate) as the network

congestion level increases.

6.1.4. Drop analysis410

Last but not least, we analysed the AQMs behaviour in terms of packet

drops. This test has been performed in order to analyse the waste of energy

22

and processing time for managing packets that, eventually, will be lost. Indeed,

dropped packets at the gateway have been transmitted over the LAN (consuming

resources) and processed by the gateway itself. Figure 10 shows the amount of415

successfully transmitted data at the end of experiment over the bottleneck link,

paired with the amount of dropped data by the bottleneck AQM. The upper-

bound of the successfully transmitted data at the application layer, considering

a MSS of 1000 Bytes, a gateway frame of 1052 Bytes, a bottleneck link of

10 Mbit/s and a simulation of 300 seconds is equal to 356 MB as result of420

10·106
8 · 300 · 10001052 .

The ratio between dropped and transmitted data is approximately the same

for all the AQMs, except for GREEN that has a lower transmitted data value

as a consequence of a lower goodput. The amount of drops grows as a function

of network congestion and approaches the 10% of goodput, except for the flows425

employing PINK that indirectly avoid packet drops (as explained in Section 3).

This trend poses PINK in a new position with respect to other AQMs, with an

emphasis on efficiency thanks to the fact that it exploits the channel capacity

without dropping packets and wasting energy.

6.2. Different RTTs430

In this subsection we modify the DSL testbed in order to analyse the perfor-

mance of the different AQM algorithms in presence of flows with different RTTs.

These experiments are easier to describe by starting from the DSL testbed, as

the only differences are:

• The number of active clients/flows is 4.435

• The RTTbase for each flow is not fixed to 100ms anymore but the 4 nodes

have respectively 100, 150, 200 and 250ms of RTTbase.

• Each node transmits 80MB of TCP data.

• The nodes do not start all at the same time but respectively at 0, 25, 50

and 75 seconds of simulated time.440

23

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

250ms RTT Flow
200ms RTT Flow
150ms RTT Flow

100ms RTT Flow
Aggregate

Figure 11: Throughput of 4 different RTT flows at the bottleneck link with DropTail as AQM

algorithm.

We decided to modify the DSL testbed by accommodating the aforemen-

tioned modifications because it is important to provide a clear picture of what

happens on the bottleneck link when flows with different RTTs compete for

the transmission. In particular, we aim to provide a clear overview on how the

different AQMs behave under these conditions.445

We begin the description by commenting the DropTail results in Figure 11.

The first 25 seconds of simulations with only one flow active are “safe”, while

from the 25th to the 75th seconds of simulation the DropTail algorithm is not

able to support the flows in maintaining a proper link exploitation, which results

in an overall throughput degradation. From the 75th second up to the end450

of the experiment the aggregate throughput is stable and the link potential is

almost completely exploited; the inter-flow fairness, however, is not symmetrical

among flows and it is not possible to extract a clear tendency when considering

the throughput as a function of the RTT.

Different conclusions can be drawn from Figure 12 where the same experi-455

ment is reproduced with CoDel in place. The first 25 seconds of simulation are

24

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

250ms RTT Flow
200ms RTT Flow
150ms RTT Flow

100ms RTT Flow
Aggregate

Figure 12: Throughput of 4 different RTT flows at the bottleneck link with CoDel as AQM

algorithm.

very similar to the experiment with DropTail, as is the degradation correspond-

ing to the entrance of the flow with a 200ms RTT. From the 50th second up to

the end of the simulation (in which a couple of flows successfully complete the

80MB transmission) the aggregate throughput oscillates close to the optimal460

value. In this large central part of the experiment it is easy to see the general

AQM behaviour in terms of RTT fairness; the distribution of bandwidth among

the different flows is almost stable, and it is clearly possible to notice how the

100ms-RTT flow obtains more resources if compared to the 250ms-RTT flow.

In general, the experiment confirms that CoDel is not able to provide flow fair-465

ness when different RTTs are in place, guaranteeing more bandwidth to flows

with smaller RTTs. We do not report the ARED results because of their strong

similarity to CoDel, as they do not introduce any significant difference.

Figure 13 demonstrates instead the main feature of GREEN. If with the

testbed of the previous subsection, in fact, GREEN does not provide good re-470

sults, this AQM is able to guarantee a stable bandwidth subdivision in presence

of flows with different RTTs, as testified by the second half of Figure 13, behav-

25

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

250ms RTT Flow
200ms RTT Flow
150ms RTT Flow

100ms RTT Flow
Aggregate

Figure 13: Throughput of 4 different RTT flows at the bottleneck link with GREEN as AQM

algorithm.

ing better than CoDel. Unfortunately, the same cannot be claimed for the first

part of the experiment, in which GREEN causes strong throughput oscillations

even after several seconds from the entrance of the last node.475

Finally, Figure 14 reports the performance obtained with PINK. The first

thing to note is that the aggregate throughput is almost always firmly close to

the optimal value, even when a new node joins the network, a critical moment for

all the other AQMs that have been tested. The second thing to note is that all

the active flows always equally share the bandwidth regardless from each single480

flow RTT. A third and final thing to note is that all the flows correctly conclude

the 80MB transmission before the end of the simulation, a behaviour very close

to the optimal and ideal transmission4. This experiment underlines, on one side,

that the fairness guarantees of PINK are resilient to the RTT variation and, on

4Each flow transmits 80MB, i.e. an overall of 320MB is transmitted when considering the

four flows; without considering the protocols overheads, at least 260 seconds are required to

transmit 320MB on a 10Mbit/s channel.

26

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

250ms RTT Flow
200ms RTT Flow
150ms RTT Flow

100ms RTT Flow
Aggregate

Figure 14: Throughput of 4 different RTT flows at the bottleneck link with PINK as AQM

algorithm.

the other, that PINK allows an efficient exploitation of the link resources by485

permitting to complete the transmissions before the other AQMs, with a time

close to the optimal value.

6.3. SAT environment

The following experiments are carried out on a Satellite testbed elaborated

from [26], which differs from the DSL testbed for the parameters reported in490

Table 3, i.e. the base RTT of 700ms and the bottleneck bandwidth of 4Mbit/s.

This analysis has been carried out for high bandwidth-delay products pose crit-

ical challenges to AQM algorithms, and we aim to emphasize that PINK is able

to provide fairly stable high-performance even in this challenging conditions.

For this numerical analysis, we also present the results on goodput, an analysis495

on per-packet RTT distributions, a flow fairness evaluation and a simple drop

analysis.

27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 8 16 32 64

G
o
o
d
p
u
t
(M

b
/s

)

Nodes

DropTail ARED CoDel GREEN PINK

Figure 15: Application goodput at the bottleneck link (per 1-sec intervals). Different numbers

of active nodes with RTTbase = 700ms; bottom and top of whisker-box plots show the 10th

and the 90th percentiles, respectively. The PINK whisker-box is flattened on top of the figure.

Higher is better.

28

6.3.1. Goodput

Figure 15 shows the achieved goodput of DropTail, ARED, CoDel, GREEN

and PINK for different levels of congestion at the bottleneck link. Higher values500

denote higher performance. The congestion degree is proportional to the number

of active nodes which varies, as in the DSL testbed, from 4 up to 64. By looking

at the Figure, is it possible to notice how the whisker-boxes of almost all the

AQMs under exam are wider if compared to Figure 7. This is caused by the more

challenging parameters of the SAT testbed with respect to the DSL testbed; in505

particular, the performance degradation is related to the higher RTT.

Also in this case, the DropTail algorithm could be identified as a benchmark

within the group of known algorithms. The high delay only enlarges the whisker-

box a little and slightly moves the average goodput under the optimal value of

circa 4.8 Mbit/s5 in a congested environment of 32 or 64 nodes. ARED is510

probably the algorithm which suffers more the switch from low to high RTTs,

as both the box breadth and the average goodput levels are far from the optimal

value, aggravating the poor performance achieved by ARED in the DSL testbed

in terms of goodput.

The SAT testbed enhances, in a sense, the robustness of CoDel, as it suf-515

fers with a minor impact the goodput degradation on a higher RTT network.

Although its goodput boxes are slightly wider when compared to the DSL en-

vironment, CoDel remains scalable, a property confirmed by the fact that as

the congestion level increases the variance is reduced and the average goodput

increases. Surprisingly, the GREEN algorithm obtains benefits from the higher520

RTTs, achieving performance comparable to CoDel. This is due to the drop

probability computation which is fairly more stable due to the higher RTTs,

avoiding excessive drops and improving the goodput figures.

PINK goodput is extremely stable with the 10th and the 90th percentiles

almost identical and close to the optimal value, with the bottom of the candle-525

5The MSS is again set to 1000 bytes, and consequently the frame is sized 1052 bytes,

limiting the optimal throughput to 4.8Mbit/s.

29

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

4 8 16 32 64

R
T

T
 (

m
s
)

Nodes

DropTail ARED CoDel GREEN PINK

Figure 16: Per-packet RTT. Different numbers of active nodes with RTTbase = 700 ms;

bottom and top of whisker-box plots shows the 10th and the 90th percentiles, respectively.

stick that increases as a function of the congestion level. This trend highlights

the stability of PINK, that maintains remarkable results even in this challenging

environments.

We now continue the description of the different algorithms performance

through a RTT analysis, investigating also the amount of packets that are stored530

on the gateway queue.

6.3.2. RTT analysis

Figure 16 shows the per-packet RTT distributions of AQMs for different

congestion levels on the SAT testbed, where lower values (and lower variances)

indicate better performance.535

DropTail represents again a negative benchmark of what happens on a bot-

tleneck link when no AQM techniques are employed. In particular, with respect

to the DSL testbed, here we have higher RTTs and larger queue sizes (due

to the higher bandwidth-delay product), and the queue overfilling has a huge

negative impact on the network performance. In this scenario with a RTTbase540

30

of 700ms, we obtain a minimum total RTT value of 780ms when considering

the minimum processing and transmission times for a packet. As before, the

difference between the reported value and the smallest value of the candlesticks

(780ms) of Figure 16 corresponds to the queueing delay at the bottleneck.

In this environment CoDel and ARED behave almost the same way, with545

good RTT distributions that only tend to increase in absolute value and in

variance (with wider boxes) as a function of the network congestion. Only

PINK achieves results comparable to ARED and CoDel with the remarkable

characteristic to have an almost constant trend as a function of the network

congestion and an extremely accurate RTT distribution with very narrow boxes.550

Unfortunately, if GREEN seems to behave better on the SAT testbed with

respect to DSL in terms of goodput, the same cannot be claimed in terms of

RTT variation; GREEN, in fact, provides always higher average RTTs than the

other AQMs with a growing trend for both the box size and the median value.

With the next experiment we analyse which fairness guarantees may be555

provided by PINK and the other AQMs in high RTT networks.

6.3.3. Fairness

The simulations reported in Figure 17 show that the worst-case JFi continues

to enhance, in a sense, the remarkable performance of PINK in terms of fairness,

while showing the limitations of the other AQMs. The performance of DropTail560

and GREEN are on the same wave of the figures obtained in the DSL simulations

and reported in Figure 9. Some little improvements can be registered by ARED

and CoDel, as the former manifests a fairness degradation that is function of

the congestion while the latter maintains a stable JFi (apart for the simulation

with 32 active nodes with which a poor fairness balance is exhibited). The565

performance of PINK are almost constant and close to the 0.8 value.

6.3.4. Drop analysis

A consideration about the packet drops is worth to be done also for the high

RTT SAT testbed, in which the impact of a drop might be higher. Figure 18

31

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64

J
a
in

’s
 F

a
ir
n
e
s
s
 I
n
d
e
x

Nodes

DropTail ARED CoDel GREEN PINK

Figure 17: Worst-case Jain’s Fairness Index calculated per 1-sec intervals, varying the active

nodes number.

 0

 20

 40

 60

 80

 100

 120

 140

 160

2 4 8 16 32 64

T
ra

n
s
m

it
te

d
 D

a
ta

 (
M

B
)

Nodes

DropTail
ARED

CoDel
GREEN

PINK
Drop

Figure 18: Transmitted data at the end of the experiment on the bottleneck link overlapped

by the dropped data.

32

Figure 19: Network DSL testbed topology with multiple bottleneck.

shows the amount of successfully transmitted data over the bottleneck link at the570

end of the experiment, paired with the amount of dropped data by the bottleneck

AQM. The upper-bound of the successfully transmitted data at transport layer,

considering a MSS of 1000 Byte, a gateway frame of 1052 Byte, a bottleneck

link of 4 Mbit/s and a simulation of 300 seconds is equal to 146 MB as result

of 4·106
8 · 300 · 10001052 .575

The amount of drops grows as a function of network congestion and ap-

proaches the 10% of goodput, except for the flows that employ PINK that

indirectly avoid packet drops (as explained in Section 3). The situation is even

more positive for PINK because it not only is the sole AQM with the fewer

drops, but it is also the more stable in terms of goodput and the sole able to580

transmit an amount of data close to the theoretical maximum value of 146MB.

6.4. Multiple bottlenecks analysis

In this Subsection we analyse a scenario that has been built starting from the

DSL-environment by adding a multiple bottleneck, this new scenario is depicted

in Figure 19. In this testbed, PINK operates on all the interfaces, and one of the585

33

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

Good 1
Bad 2

Good 3

Good 4
Good 5
Good 6

Good 7
Good 8

Aggregate

Figure 20: Throughput at the DSL bottleneck link with 8 flows: PINK operates without the

resource reassignment algorithm

remote nodes is highlighted as bad because of its local bottleneck of 2 Mbit/s.

This bottleneck could be physical, e.g. a limited bandwidth service provided

by the ISP, or logical due to the PINK assignments on the remote part of the

network.

This testbed, coupled with the simulation that follow, is introduced in order590

to show the resource reassignment algorithm computed by PINK. The simula-

tion is performed with 8 TCP flows, continuously backlogged, between the local

and the remote networks. Each flow start each 25 seconds of simulated time.

The second flow, that starts at the 25th second, is the only one directed to the

bad remote link.595

In Figure 20 is depicted how PINK behaves if a the resource reassignment

algorithm is disabled. When the 2nd flow join the network, the PINK algorithm

operating on the remote network assign to its ACK packets a RCV.WND, ac-

cording to Equation 1, that is calculated in order to let it fill the 2 Mbit/s

bottleneck. When the ACK packets arrive on the local Gateway, the blue one600

on the left of Figure 19, the PINK algorithm that runs on this node has to

34

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Time (s)

Good 1
Bad 2

Good 3

Good 4
Good 5
Good 6

Good 7
Good 8

Aggregate

Figure 21: Throughput at the DSL bottleneck link with 8 flows: PINK operates with the

resource reassignment algorithm

divide equally the bandwidth with the two active flows, 5Mbit/s each. The

first flow is able to deal with it, while the RCV.WND computed for the bad

flow is bigger than the RCV.WND previously computed by the former PINK

operating on the remote bottleneck. That leads to an underutilization of the605

DSL bottleneck. The situation gets better when at least five flows are active on

the local bottleneck link and the bad flow REV.WND can be updated with a

smaller value, that restore the fairness.

The same simulation is performed also with the resource reassignment algo-

rithm presented in Section 6.4, the result is depicted in Figure 21. In this case,610

the behaviour of the bad flow is the same, due to the presence of the remote bot-

tleneck, while the behaviour of the local PINK changes, giving more bandwidth

to the good flows in order to maintain a channel exploitation without wasting

resources. This mechanism ends when at least five flows join the network and

the bad flows start to accommodate (update) the RCV.WND according to the615

local PINK computation.

35

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

Pink c parameter

PINK

Figure 22: Throughput at the DSL bottleneck link (per 1-sec intervals) with 4 nodes and

PINK as a function of c; bottom and top of whisker-box plots show the 10th and the 90th

percentiles, respectively.

6.5. PINK constant c analisys

We finally conducted an analysis on the PINK robustness by considering its

only tunable parameter, i.e. the exploitation constant c that can have an impact

on the performance of the algorithm if rwongly dimensioned. We considered two620

main figures of merit, one for the DSL testbed and one for the SAT testbed.

One is reported in Figure 22 as the throughput on the bottleneck link of the

DSL testbed with 4 active nodes. We chose the throughput figure because the

others were almost stable regardless the value of c. Figure 22 shows that the

final throughput variance is always well bounded, with narrow candlesticks that625

confirm the high stability of PINK. At the same time, it is possible to notice

how by setting c values that start from 0.92, the throughput already reaches

values of 9.5 Mbit/s, almost completely exploiting the channel capacity.

As a second analysis, in Figure 23 we investigated the RTT variation caused

by PINK as a function of c in the SAT testbed with 4 active nodes. In a high630

RTT environment with large buffers is important to contain the RTT variation,

36

 700

 720

 740

 760

 780

 800

 820

 840

 860

 880

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

R
T

T
 (

m
s
)

Pink c parameter

PINK

Figure 23: RTT variation at the Satellite bottleneck link (per 1-sec intervals) with 4 nodes

and PINK as a function of c; bottom and top of whisker-box plots show the 10th and the 90th

percentiles, respectively.

as it can dramatically grow. Figure 23 shows again the narrow candlesticks

exhibited by PINK, that reports bounded values with low variance, at the same

time showing RTT figures that grow as a function of c; this trend starts only

at the end of the range of c with values close to the maximum one, reaching an635

average throughput of 810ms in the latter.

By considering these last results of PINK performance stability in terms of

the exploitation constant c, we can claim that PINK is a very robust algorithm

in which the configuration (i.e. the c instantiation) would hardly pose significant

issues. Values of c between 0.92 and 0.97 guarantee a good trade-off between640

throughput exploitation and introduced RTT variation (queue utilization) while

is always possible to perform a fine-grained tuning in environments where one

figure of merit is considered more important than the other.

37

7. Conclusions

In this paper we proposed PINK, a queue management algorithm designed645

for access networks that transparently prevents congestion by imposing a max-

imum upper bound on the data rates of each client. This is done through the

update of the related RCV.WND values in the acknowledgement segments, al-

lowing PINK to supervise bandwidth utilization in order to efficiently exploit a

bottleneck channel capacity, enforcing fairness among different flows regardless650

their RTTs, and at the same time maintaining a low queue occupancy on the

gateway. Furthermore, these results are achieved without discarding a single

packet. Another important aspect to remark is the algorithm scalability, as all

the figures of merit that have been analysed reveal that PINK manifests a pos-

itive, or at least a constant, trend as a function of the network congestion level.655

PINK has been introduced and analysed by both a mathematical formulation

and a numerical simulation, and it has been compared with the most valuable

and promising AQMs available in literature through the simulation of a wide

set of possible scenarios.

References660

References

[1] Q. Xu, F. Li, J. Sun, M. Zukerman, A new tcp/aqm system analysis,

Journal of Network and Computer Applications 57 (2015) 43–60.

[2] H.-J. Byun, J.-T. Lim, Fair tcp congestion control in heterogeneous

networks with explicit congestion notification, Communications, IEE665

Proceedings- 152 (2005) 13–21.

[3] M. Gerla, R. L. Cigno, S. Mascolo, W. Weng, Generalized window adver-

tising for tcp congestion control, European Transactions on Telecommuni-

cations 13 (2002) 549–562.

38

[4] L. Kalampoukas, A. Varma, K. Ramakrishnan, Explicit window adap-670

tation: a method to enhance tcp performance, Networking, IEEE/ACM

Transactions on 10 (2002) 338–350.

[5] H. Byun, An explicit window adaptation algorithm over tcp networks using

supervisory control, J. High Speed Netw. 17 (2010) 207–218.

[6] J. Wang, L. Rong, Y. Liu, Design of a stabilizing aqm controller for large-675

delay networks based on internal model control, Computer Communica-

tions 31 (2008) 1911–1918.

[7] Z. Rosberg, J. Matthews, M. Zukerman, A network rate management pro-

tocol with tcp congestion control and fairness for all, Computer Networks

54 (2010) 1358–1374.680

[8] J. Sun, S. Chan, M. Zukerman, Iapi: An intelligent adaptive pi active queue

management scheme, Computer Communications 35 (2012) 2281–2293.

[9] W. chun Feng, A. Kapadia, S. Thulasidasan, Green: proactive queue man-

agement over a best-effort network, in: Global Telecommunications Confer-

ence, 2002. GLOBECOM ’02. IEEE, volume 2, 2002, pp. 1774–1778 vol.2.685

doi:10.1109/GLOCOM.2002.1188503.

[10] J. Li, M. Yuksel, S. Kalyanaraman, Explicit rate multicast congestion

control, Computer Networks 50 (2006) 2614 – 2640.

[11] J. Sun, M. Zukerman, Raq: A robust active queue management scheme

based on rate and queue length, Computer Communications 30 (2007)690

1731–1741.

[12] H.-Y. Wei, S.-C. Tsao, Y.-D. Lin, Assessing and improving tcp rate shaping

over edge gateways, IEEE Transactions on Computers 53 (2004) 259–275.

[13] C. Grazia, M. Casoni, M. Klapez, N. Patriciello, Pink: Proactive injection

into ack, a queue manager to impose fair resource allocation among tcp695

39

http://dx.doi.org/10.1109/GLOCOM.2002.1188503

flows, in: Wireless and Mobile Computing, Networking and Communica-

tions (WiMob), 2014 IEEE 10th International Conference on, 2015, pp.

132–137.

[14] Y. Gong, D. Rossi, C. Testa, S. Valenti, M. Taht, Fighting the bufferbloat:

On the coexistence of aqm and low priority congestion control, in: Com-700

puter Communications Workshops (INFOCOM WKSHPS), 2013 IEEE

Conference on, 2013, pp. 411–416. doi:10.1109/INFCOMW.2013.6562885.

[15] N. Khademi, D. Ros, M. Welzl, The new aqm kids on the block: An

experimental evaluation of codel and pie, in: Computer Communications

Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on, 2014, pp.705

85–90. doi:10.1109/INFCOMW.2014.6849173.

[16] T. Høiland-Jørgensen, P. Hurtig, A. Brunstrom, The good, the bad and

the wifi: Modern AQMs in a residential setting, Computer Networks 89

(2015) 90 – 106.

[17] S. D. Strowes, Passively Measuring TCP Round-trip Times, Queue 11710

(2013) 50:50–50:61.

[18] P. Marchetta, A. Botta, E. Katz-Bassett, A. Pescapé, Dissecting Round

Trip Time on the Slow Path with a Single Packet, in: Proceedings of

the 15th International Conference on Passive and Active Measurement -

Volume 8362, PAM 2014, Springer-Verlag New York, Inc., New York, NY,715

USA, 2014, pp. 88–97. doi:10.1007/978-3-319-04918-2_9.

[19] B. Veal, K. Li, D. Lowenthal, New Methods for Passive Estimation of TCP

Round-trip Times, in: Proceedings of the 6th International Conference

on Passive and Active Network Measurement, PAM’05, Springer-Verlag,

Berlin, Heidelberg, 2005, pp. 121–134. doi:10.1007/978-3-540-31966-5_720

10.

[20] W. Jiang, F. Ren, Y. Wu, C. Lin, I. Stojmenovic, Analysis of backward

40

http://dx.doi.org/10.1109/INFCOMW.2013.6562885
http://dx.doi.org/10.1109/INFCOMW.2014.6849173
http://dx.doi.org/10.1007/978-3-319-04918-2_9
http://dx.doi.org/10.1007/978-3-540-31966-5_10
http://dx.doi.org/10.1007/978-3-540-31966-5_10
http://dx.doi.org/10.1007/978-3-540-31966-5_10

congestion notification with delay for enhanced ethernet networks, IEEE

Transactions on Computers 63 (2014) 2674–2684.

[21] F. Yamaguchi, H. Nishi, Hardware-based hash functions for network appli-725

cations, in: Networks (ICON), 2013 19th IEEE International Conference

on, 2013, pp. 1–6. doi:10.1109/ICON.2013.6781990.

[22] M. Casoni, C. A. Grazia, M. Klapez, N. Patriciello, A congestion con-

trol middleware layer with dynamic bandwidth management for satellite

communications, 2015. URL: http://dx.doi.org/10.1002/sat.1129.730

doi:10.1002/sat.1129.

[23] J. Gettys, K. Nichols, Bufferbloat: Dark buffers in the internet, Queue 9

(2011) 40.

[24] H. Bedi, S. Roy, S. Shiva, Mitigating congestion based dos attacks with an

enhanced aqm technique, Computer Communications 56 (2015) 60–73.735

[25] Pink ns-3 source code, http://netlab.ing.unimo.it/sw/PINK.zip, 2015.

[26] C. Grazia, M. Klapez, N. Patriciello, M. Casoni, A. Amditis, E. Sdongos,

H. Gierszal, D. Kanakidis, C. Katsigiannis, K. Romanowski, P. Simpĺıcio,

A. Oliveira, S. Sonander, J. Jackson, Integration between terrestrial and

satellite networks: The ppdr-tc vision, 2014, pp. 77–84. doi:10.1109/740

WiMOB.2014.6962153.

41

http://dx.doi.org/10.1109/ICON.2013.6781990
http://dx.doi.org/10.1002/sat.1129
http://dx.doi.org/10.1002/sat.1129
http://dx.doi.org/10.1109/WiMOB.2014.6962153
http://dx.doi.org/10.1109/WiMOB.2014.6962153
http://dx.doi.org/10.1109/WiMOB.2014.6962153

	Introduction
	Related Work
	The PINK algorithm
	PINK resource reallocation

	PINK guarantees
	Simulation Environment
	Performance
	DSL environment
	Goodput
	RTT analysis
	Fairness
	Drop analysis

	Different RTTs
	SAT environment
	Goodput
	RTT analysis
	Fairness
	Drop analysis

	Multiple bottlenecks analysis
	PINK constant c analisys

	Conclusions

