
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The Role of the Inter-Controller Consensus in the Placement of Distributed SDN Controllers / Zhang, Tianzhu; Giaccone,
Paolo; Bianco, Andrea; De Domenico, Samuele. - In: COMPUTER COMMUNICATIONS. - ISSN 0140-3664. - STAMPA.
- 113:(2017), pp. 1-13. [10.1016/j.comcom.2017.09.007]

Original

The Role of the Inter-Controller Consensus in the Placement of Distributed SDN Controllers

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.comcom.2017.09.007

Terms of use:

Publisher copyright

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.comcom.2017.09.007

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2679802 since: 2018-02-27T14:34:03Z

Elsevier



The Role of the Inter-Controller Consensus

in the Placement of Distributed SDN Controllers

Tianzhu Zhang, Paolo Giaccone, Andrea Bianco, Samuele De Domenico

Dept. Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract

We consider a distributed Software Defined Networking (SDN) architecture adopting a cluster of controllers to im-

prove network scalability and reliability. Different from previous works that focused solely on the control traffic

exchanged between controllers and switches, we additionally consider the control traffic exchanged among the con-

trollers (e.g., the control traffic to keep the shared data structures synchronized). We advocate a careful placement

of the controllers, which should take into account both the two kinds of control traffic. We evaluate, for some real

ISP network topologies, the delay tradeoffs for the controller placement problem and we propose a novel evolutionary

algorithm to find the corresponding Pareto frontier. Furthermore, we develop a simple model to estimate the reaction

time perceived by the switches, which is accurately validated in an operational Software Defined WAN (SDWAN). We

also formalize the optimization problem to minimize the reaction time and devise a novel approximation algorithm,

whose performance is assessed against the optimal solver in real ISP network topologies.

Our work provides novel quantitative tools to optimize the planning and the design of the network supporting the

control plane of SDN networks, especially when the network is very large and in-band control plane is adopted. We

also show that for operationally distributed controllers (e.g., OpenDaylight and ONOS), the location of the controller

that acts as leader in the consensus algorithm has a strong impact on the reactivity perceived by the switches.

Keywords: Software Defined Networking; distributed controllers; controller placement problem; consistency data

models.

1. Introduction

The centralized network control of the Software De-

fined Networking (SDN) paradigm, which enables the

development of advanced network applications, poses

two main issues. First, limited reliability due to the sin-

gle point-of-failure. Second, the control traffic between

the switches and the controller concentrates on a sin-

gle server whose processing capability is limited, rais-

ing scalability issues. Distributed SDN controllers are

designed to address the above issues, while preserving

a logically centralized view of the network state neces-

sary to ease the development of network applications.

In a distributed architecture, multiple controllers are re-

sponsible for the interaction with the switches. Thus,

the processing load at each controller decreases, be-

cause the control traffic between the switches and the

controllers is distributed, with a beneficial load balanc-

ing effect. Furthermore, resilience mechanisms can be

implemented to improve network reliability in case of

controller failures.

Distributed controllers adopt coordination protocols

and algorithms to synchronize their shared data struc-

tures and to enable a centralized view of the network

state for the applications. These schemes follow a

consensus-based approach in which coordination infor-

mation is exchanged among controllers to reach a com-

mon network state. This induces some delay that, as dis-

cussed in Sec. 2.2 and shown experimentally in Sec. 4.3,

can heavily affect the controller reactivity perceived at

the switches. Indeed, any read/write of a shared data

structure at a controller is directed to a possibly dif-

ferent controller acting as “owner” of the data. Thus,

the controller-to-controller delays must be added to the

switch-to-controller delays when evaluating the con-

troller’s reactivity perceived at the switches. As a conse-

quence, the optimal placement of the controllers on the

network topology must consider not only the delays be-

tween the switches and the controllers, but also the de-

lays between controllers. Most of the past literature con-

centrated on the Openflow-based interaction, thus con-

Preprint submitted to Elsevier September 12, 2017



2 DISTRIBUTED SDN CONTROLLERS 2

sidering the switch-to-controller delays only, and ne-

glecting the controller-to-controller delays, which are

instead the focus of our work.

The adoption of distributed SDN controllers in Wide

Area Networks (SDWANs) is more challenging than in

data centers. In the latter scenario, the limited physi-

cal distances between network devices permits the in-

stallation of a separate network among the controllers

(e.g., using dedicated Ethernet or InfiniBand connec-

tions), providing an out-of-band control plane. Con-

versely, SDWANs adopt an in-band control plane: the

control packets and data packets share the same network

infrastructure. Furthermore, the problem of supporting

a responsive controller-to-controller interaction is exac-

erbated by the SDWAN’s geographical extent.

Our contributions

In this paper, we address two complementary views

of the controller placement problem. First, we study

optimal placements in terms of both controller-to-

controller delays and switch-to-controller delays, refer-

ring to the concept of Pareto optimality. This permits to

understand the possible tradeoffs independently of the

applications running on the network. Second, we con-

sider specifically a reactive forwarding application and

optimize the controller placement to minimize the reac-

tion time perceived by the switches.

In more detail, we provide the following novel con-

tributions:

1. we discuss Pareto-optimal controller placements

considering controller-to-switch and controller-to-

controller delays for WAN topologies adopted in

some real ISP networks, based on the adopted data-

ownership models (as defined later);

2. we propose a low-complexity algorithm to find the

approximated Pareto frontier in large networks;

3. we propose some formulas to compute the reac-

tion time perceived by the switches when interact-

ing with the controllers, due to the inter-controller

control traffic, for a reactive network application;

4. we validate the previous formulas with traffic mea-

surements on an operational SDWAN;

5. we define an Integer Linear Programming (ILP)

problem to find the optimal placement that mini-

mizes the reaction time perceived at the switches;

6. we propose an approximation algorithm to solve

the above ILP problem and assess its performance

in real ISP networks.

The experimental validation of point 4 highlights the

practical validity of the adopted methodology, to find

either all the Pareto optimal placements or the single

optimal placement for a network application.

The paper is organized as follows. In Sec. 2 we pro-

vide an overview of distributed SDN architectures, pro-

viding the main background to understand the role of

the controller-to-controller communications and the dif-

ferent data-ownership models. In Sec. 3 we discuss the

related work. Sec. 4 is devoted to presenting all the main

contributions of our work. Finally, we draw our conclu-

sions in Sec. 5 .

2. Distributed SDN controllers

Many architectures have been proposed to support

distributed SDN controllers, with the goal of improv-

ing scalability and/or ensuring reliability. In this pa-

per, we only concentrate on some specific architectural

aspects. For more details, the reader can refer to the

extensive survey in [1]. In distributed controllers, two

control planes can be identified. First, the switch-to-

controller plane, denoted as Sw-Ctr plane, supports the

interaction between any switch and its controller (de-

noted as master controller for a given switch) through

the controller’s “south-bound” interface. This interac-

tion is usually devoted to data plane commands (e.g.,

through the OpenFlow (OF) [2] protocol) as well as

to configuration and management of network switches

(e.g., through OF-CONFIG or OVSDB protocols). Sec-

ond, the controller-to-controller plane, denoted as Ctr-

Ctr plane, permits the direct interaction among the con-

trollers through the controller’s “east-west” interface.

Indeed, the controllers exchange heart-beat messages to

ensure liveness and to support resilience mechanisms.

In addition, controllers also need to synchronize the

shared data structures to guarantee a consistent global

network view.

2.1. Data consistency models

The traffic on the Ctr-Ctr plane is crucial to achieve

a consistent shared view of the network state, which is

the required condition to correctly run network appli-

cations. The network state (e.g., topology graph, the

mapping between any switch to its master controller, the

list of installed flow rules) is stored in shared data struc-

tures, whose consistency across the SDN controllers can

be either strong or eventual. Strong consistency implies

that simultaneous reads of some data occurring in dif-

ferent controllers always lead to the same result. Even-

tual consistency implies that simultaneous reads may



2 DISTRIBUTED SDN CONTROLLERS 3

eventually lead to different results, for a transient pe-

riod. Different levels of data consistency heavily affect

the availability and resilience of the controller, as the

well-known CAP theorem highlights [3, 4]. In a nut-

shell, anytime a data structure is shared across the con-

trollers, they must synchronize through a consensus al-

gorithm that guarantees a consistent view of the data in

case of updates. In general, a consensus algorithm is

very complex, to deal with all possible failures and net-

work partitions, and it is tailored to a specific level of

data consistency. Each controller is required to inter-

act with the other controllers through the Ctr-Ctr plane,

introducing some latency to synchronize their internal

data structures.

In both OpenDaylight (ODL) [5] and Open Network

Operating System (ONOS) [6], two of the most relevant

SDN controllers, strong consistency for the shared data

structures is achieved by the recently proposed Raft con-

sensus algorithm [7]. Indeed, the most recent versions

of ODL (e.g., Beryllium) provide a clustering service

to support multiple instances of the controller, and the

clustering module can be built with a Raft implemen-

tation [8], whose code is available in [9]. ODL clus-

tering service organizes the data of different modules

into shards. Each shard is replicated to a configurable

odd number of ODL controllers. Similarly, the most re-

cent versions of ONOS (2015-17) adopt the Raft algo-

rithm for distributed data store creation and mastership

maintenance [10, 11], according to which data is shared

across different shards. Each shard is managed by an

independent instance of the Raft algorithm: this ensures

that operations on different shards can proceed indepen-

dently.

The Raft consensus algorithm is based on a logi-

cally centralized approach, since any data update is al-

ways forwarded to the controller defined as data struc-

ture leader, which is unique across the cluster of con-

trollers. Then, the leader propagates the update to all

the other controllers, defined as followers. The update

is considered committed whenever the majority of the

follower controllers acknowledge the update. Sec. 4.2.2

will describe in more detail the adopted protocol, based

on the description provided in [7]. Note that the role

of leader/follower controller for a data structure is in-

dependent of the role of master/slave controller for a

switch.

In ONOS data can also be synchronized accord-

ing to an eventual consistent model, in parallel to

strong-consistent data structures. Eventual consistency

is achieved through the so called “anti-entropy” algo-

rithm [11, 12], according to which updates are local in

the master controller and propagated periodically in the

background with a simple gossip approach: each con-

troller picks at random another controller, compares the

replica and eventual differences are reconciled based on

timestamps.

2.2. Data-ownership models and delays tradeoff

The controller reactivity as perceived by a switch de-

pends on the availability of the data necessary for the

controller. We can identity two distinct operative mod-

els.

In a single data-ownership (SDO) model, a single

controller (denoted as “data owner”) is responsible for

the actual update of the data structure. Any read/write

operation on the data structures performed by any con-

troller must be forwarded to the data owner. In this case,

the Ctr-Ctr plane plays a crucial role for the interactions

occurring in the Sw-Ctr plane, because some Sw-Ctr re-

quest messages (e.g., packet-in) trigger transactions

with the data owner on the Ctr-Ctr plane. Thus, the per-

ceived controller reactivity is also affected by the de-

lay in the Ctr-Ctr plane. As discussed in Sec. 2.1, the

SDO model is currently adopted in ODL and ONOS, for

all the strong-consistent data structures managed by the

Raft algorithm: a local copy of the main data structures

is stored at each controller, but any read/write operation

is always forwarded to the leader. With this centralized

approach, data consistency is easily managed and the

distributed nature of the data structures is exploited only

during failures.

In a multiple data-ownership (MDO) model, each

controller has a local copy of the data and can run

locally read/write operations. A consensus algorithm

distributes local updates to all other controllers. This

model has the advantage of decoupling the interaction

in the Sw-Ctr plane from the one occurring in the Ctr-

Ctr plane, thus improving the reactivity perceived by

the switch. The main disadvantage is the introduc-

tion of possible update conflicts that must be solved

with ad-hoc solutions, and of possible temporary data

state inconsistencies leading to network anomalies (e.g.,

forwarding loops) [4]. This model applies to generic

eventual-consistent data structures, such as the ones

adopted in ONOS.

We now focus on the delay tradeoff achievable in

the Sw-Ctr and in the Ctr-Ctr control planes. For the

MDO model, the two planes are decoupled. Thus, small

Sw-Ctr delays imply high reactivity of the controllers,

whereas small Ctr-Ctr delays imply lower probability

of network state inconsistency. For the SDO model,

also the Ctr-Ctr delays affect the perceived reactivity of

the controllers, as shown in Sec. 4.2. Thus, reducing



3 RELATED WORK 4

Ctr-Ctr delays is as important as reducing Sw-Ctr de-

lays. Due to topological constraints, reducing one kind

of delays implies maximizing the other one, and vice

versa. The effects of such delays are particularly exac-

erbated in large networks, where propagation delays are

not negligible. These observations motivate the explo-

ration of possible tradeoff, as investigated in Sec. 4.

3. Related work

The work in [13] emphasizes the importance of the

network state consistency, and indicates that inconsis-

tent network states degrade the performance of network

applications. Thus, [13] motivates our work, since we

devise the controller placement problem to target small

Ctr-Ctr delays in the MDO model, thus improving the

resilience of the network to possible state inconsisten-

cies between controllers.

Many works address the controller placement prob-

lem in SDN, but with slightly different objectives. The

works [14, 15, 16, 17, 18, 19, 20, 21, 22] target fault tol-

erance, whereas [23, 24, 25] aim at balancing the loads

on the controllers. [26] strives for network resource

minimization in mobile cellular networks. [27] ad-

dresses the energy-efficient controller placement prob-

lem. [28] investigates the optimal placement in the

case of switches and controllers being interconnected

through Wi-Fi links. [29] performs a methodological

analysis among four mainstream methods that are used

to solve the controller placement problem. [30] pro-

poses a low complexity algorithm to dynamically mini-

mize the number of provisioned controllers while satis-

fying the required Sw-Ctr delay in large scale networks.

The works [31, 32, 33, 34, 35] focus on the optimal

controller placement by considering only the minimiza-

tion of Sw-Ctr delays (average or maximum). Differ-

ently from us, they neglect completely the interaction

among controllers and thus the Ctr-Ctr delays. [36] for-

mulates a multi-objective optimization controller place-

ment problem with the goal of minimizing Sw-Ctr de-

lays, maximizing controller load balancing and network

reliability. In the case of SDO model, [31, 32, 33, 34,

35, 36] neglect the relevant role of the data owner. In

the case of MDO, we will show in Sec. 4.2.3 that by re-

laxing the minimum switch-to-controller delay target, it

is possible to significantly reduce the Ctr-Ctr delays and

improve the convergence to a consistent network state.

Interestingly, [37] aims at achieving minimal Sw-

Ctr delays, minimal Ctr-Ctr delays and controller load

balancing simultaneously, using an approach based on

Nash Bargaining game. [38] addresses the controller

placement problem considering a wide combination of

metrics: average/maximal Sw-Ctr and Ctr-Ctr delays,

the level of load balancing, and the number of isolated

switches in case of network partitioning. The latter met-

ric is tailored to a resilient controller placement. No-

tably, neither [38] or [39] consider the combined ef-

fect of Sw-Ctr and Ctr-Ctr delays in the reactivity per-

ceived at the switches as in our paper. From the algo-

rithmic point of view, [38] adopts exhaustive search to

find the optimal Pareto controller placements for small

size networks, exactly as the Exa-Place algorithm pre-

sented in Sec. 4.1.1, and proposes a simulated anneal-

ing approach for large networks. Differently from our

proposed Evo-Place (presented in Sec. 4.5.1), the algo-

rithm in [38] requires careful tuning of many parame-

ters and obtains the solution with a number of iterations

around 1-10% of the sample space, similar to the re-

sults obtained by our Evo-Place. Finally, [40] provides

a general mathematical framework to compute the opti-

mal controller placement, under generic cost functions,

but it neglects the role of Ctr-Ctr delays.

A preliminary version of this work appeared in [41],

which provides some preliminary results on the tradeoff

between Sw-Ctr and Ctr-Ctr delays (Sec. 4.1.2) and pro-

poses the reactivity models for the two data-ownership

models (Sec. 4.2).

4. The placement of distributed controllers

This section provides the main contributions of our

work. In Sec. 4.1 we describe the controller placement

problem and discuss the Pareto optimal solutions in real

ISP topologies. In Sec. 4.2 we propose two simple an-

alytical models to evaluate the reaction time based on

the adopted data-ownership model. Sec. 4.3 applies the

SDO model to a real reactive forwarding application

in OpenDaylight and provides an accurate experimen-

tal validation of the formula for the SDO model in an

operational SDWAN. In Sec. 4.4 we formalize the ILP

problem to minimize the reaction time and numerically

investigate its effects. To address the limited scalability

of the optimal ILP solvers considered in the previous

sections, we devote Sec. 4.5 to present evolutionary al-

gorithms to optimize the controller placement, and nu-

merically evaluate their performance in real ISP topolo-

gies.

4.1. The controller placement problem

Let N be the total number of switches in the network

and C be the total number of controllers to place in the

topology. The output of any placement algorithm can



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 5

be represented by the vector denoted as placement con-

figuration:

π = [πc]
C
c=1 (1)

where πc ∈ {1, . . . ,N} identifies the switch to which

controller c is physically connected. We assume in-band

control traffic and that all the controllers are connected

to distinct switches (equivalently, two controllers can-

not be connected to the same switch), i.e., πc , πc′ for

any c , c′. This is because controllers are connected

to distinct switches to maximize scalability and relia-

bility. Furthermore, for the scope of our paper many

controllers connected to the same switch are perfectly

equivalent in terms of delay tradeoff as placing just one

single controller to the same switch.

LetΩ be the set of all placement configurations; thus,

the total number of possible placements is

|Ω| =

(

N

C

)

(2)

The optimal controller placement problem consists of

finding π ∈ Ω such that some cost function (e.g., the

maximum or average Sw-Ctr delay) is minimized. It is

an NP-hard problem for a generic graph, as discussed

in [31].

The network topology is described by a weighted

graph with N nodes where each node represents a

switch; each edge represents the physical connection

between the corresponding switches and is associated

with a delay value. Each controller is directly connected

to a switch. We assume that the master controller of

a switch is the one with the minimum Sw-Ctr delay.

We also assume that all the communications are routed

along the shortest path.

4.1.1. Results on the placement of controllers in ISP

networks

To explore all the possible tradeoffs on the Sw-Ctr

and Ctr-Ctr planes, we adopt an optimal algorithm (de-

noted Exa-Place) to exhaustively enumerate all possible

controller placements and get all Pareto-optimal place-

ments1 and thus the corresponding Pareto-optimal fron-

tier. For small/moderate values of network nodes N and

number of controllers C, as considered in this section,

the number of possible placements, evaluated in (2), is

1When considering two performance metrics x and y to minimize,

a solution (xp, yp) is Pareto optimal if does not exist any other config-

uration (x′ , y′) dominating it, i.e., better in terms of both metrics; thus,

it cannot be that x′ ≤ xp and y′ ≤ yp. The set of all Pareto-optimal

solutions denotes the Pareto-optimal frontier.

Figure 1: Delay tradeoffs in HighWinds network with 3 controllers

Figure 2: Delay tradeoffs in HighWinds network with 4 controllers

not so large and thus Exa-Place is computationally fea-

sible. In Sec. 4.5.1 we will instead devise an approxi-

mated algorithm to find the Pareto frontier for large net-

works and/or large number of controllers.

Coherently with previous work [31], we considered

the topologies available in the Internet topology zoo

website [42]. This repository collects more than 200

network topologies of ISPs, at POP level. For each ISP,

the repository provides the network graph, with each

node (i.e., switch) labeled with its geographical coor-

dinates. From these, we compute the propagation delay

between the nodes and associate it as latency of the cor-

responding edge. For any given controller placement,

we evaluate both the Sw-Ctr delay (as the average de-

lay between a switch and its master controller, i.e., the

closest controller) and the Ctr-Ctr delay (as the average

delay among controllers).

4.1.2. Tradeoff between Sw-Ctr and Ctr-Ctr delay

We report here the results only for HighWinds ISP,

a world-wide network with 18 nodes. The prelimi-

nary version of our work [41] shows the detailed results

for some other ISPs, qualitatively coherent with High-

Winds.

Figs. 1-2 show the scatter plot with the Sw-Ctr and

Ctr-Ctr delays achievable by all possible placements of

3 and 4 controllers, respectively. In total, all the possi-

ble
(

18

3

)

= 816 and
(

18

4

)

= 3060 different placements are



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 6

Figure 3: Fraction of Pareto placements for deploying 3 and 4 con-

trollers in 114 ISP networks.

shown; the corresponding Pareto-optimal placements

are also highlighted. When comparing the two figures,

the delays for Pareto-optimal points are smaller for 4

controllers, thanks to the higher number of controllers.

The fraction of placements corresponding to Pareto

points is small, equal to 38/816 = 0.46% and

64/3060 = 0.21% for the two scenarios. This sug-

gests that identifying Pareto points is difficult if using

random sampling. To generalize our findings, Fig. 3

shows the fraction of Pareto placements for 114 dif-

ferent ISP topologies. When the number of controllers

increases, this fraction decreases because of the larger

solution space. For some networks, corresponding to

small ISPs, the fraction is quite large (around 10%). But

for most ISPs the fraction of Pareto placements becomes

very small (less than 1%, and, in some large networks,

less than 0.1-0.01%).

When considering the specific shape of the place-

ments in Figs. 1-2, high (or small) Sw-Ctr delays im-

ply small (or high) Ctr-Ctr delays, respectively. The

graphs show the large variety of Pareto-optimal place-

ments. We denote by P1 the Pareto point with the min-

imum Sw-Ctr delay (i.e., the most right-low point), and

by P2 the one with the minimum Ctr-Ctr delay (i.e., the

most left-high point). To understand the relative trade-

offs along the Pareto frontier from P1 to P2, we com-

pute the Sw-Ctr delay reduction, defined as the ratio be-

tween the Sw-Ctr delay in P2 and the one in P1. Simi-

larly, we define the Ctr-Ctr delay reduction as the ratio

between the Ctr-Ctr delay in P1 and the one in P2. Both

reductions are ≥ 1 by construction. According to Fig. 1,

the Sw-Ctr delay reduction is 6.0 whereas the Ctr-Ctr

delay reduction is 34.8. In other words, if we allow the

Sw-Ctr delay to increase by 6.0 times, then the Ctr-Ctr

delay will decrease by 34.8 times, with strong benefi-

cial effects on the time to reach consistency among the

controllers.

To generalize our findings, Fig. 4 shows the Sw-Ctr

and Ctr-Ctr delay reductions for 114 ISP topologies.

Figure 4: Sw-Ctr and Ctr-Ctr delay reductions for 3 and 4 controllers

in 114 ISP networks

Given the same topology, the Sw-Ctr delay reductions

for 3 and 4 controllers are quite similar; interestingly,

the Ctr-Ctr delay reductions are usually much higher

(also 3 order of magnitude) than Sw-Ctr delay reduc-

tions. Thus, we can claim that Ctr-Ctr delays corre-

sponding to Pareto points vary much more than Sw-Ctr

delays in a generic network. Indeed, Ctr-Ctr delays are

by construction between a minimum of 1-2 hops (when

all the controllers are at the closest distance) and the

maximum equal to the diameter of the network. The

gains for the Sw-Ctr delays are lower, since the avail-

ability of multiple controllers decreases the maximum

distance to reach the master controller from a switch.

We can conclude that larger Sw-Ctr delays with respect

to the minimum ones are much more compensated by

much smaller Ctr-Ctr delays. This highlights the rel-

evant role of the proper design of the Ctr-Ctr plane in

SDN networks.

4.2. Reaction time for the data-ownership models

After a global characterization of the Pareto-optimal

frontier in terms of Sw-Ctr and Ctr-Ctr delays, we now

specifically evaluate the reaction time of the controller,

defined as the latency perceived by the switch when a

new network event is generated. This time depends on

the specific data-ownership model adopted by the con-

trollers and on a specific combination of Sw-Ctr and

Ctr-Ctr delays.

4.2.1. Reactivity model for MDO model

In an MDO scenario, a generic event occurring at the

switch (e.g., a miss in the flow table) generates a mes-

sage (e.g., a packet-in) to its master controller, which

processes the message locally and eventually sends back

a control message to the switch (e.g., flow-mod or

packet-out message). In the meanwhile, in an asyn-

chronous way, the master controller advertises the up-

date to all the other controllers. Thus, we can claim:



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 7

!"##"$%&'!(

)%*+%&')

!"##"$%&'!,

-(

(

,

. .

/*01 &%23%41 )"5'&%6#78*17"9

/%46":4%'%;%:1

-$<=1&

#7:>4

?6+*1%'%;%:1

@ @

A A

)"5'&%6#B

)"5'8"9971

C

Figure 5: Control traffic due to SDO model for an update event at the

switch, coherent with Raft consensus algorithm.

Property 1. In an MDO scenario for distributed SDN

controllers, the reaction time T MDO
R

of the controller

perceived at the switch is:

T MDO
R = 2dsw-ctr (3)

being dsw-ctr the delay from the switch to its master con-

troller, i.e., to the switch where its master controller is

attached.

4.2.2. Reactivity model for SDO model

In an SDO scenario, we assume the exchange of mes-

sages coherent with the detailed description of the Raft

algorithm available in [7]. According to the Raft im-

plementation in ODL, the controller can operate as ei-

ther leader or as one of the followers, for a specific data

store (denoted “shard” in the following). As an exam-

ple, Fig. 5 shows a general message exchange sequence

in a cluster with 3 controllers (one leader and two fol-

lowers), when an update event (e.g., packet-in mes-

sage) for the shard is generated at some switch (S1 in

the figure), which receives a response message from its

controller due to the update (e.g., packet-out message).

The arrows show the exchange of messages in both Sw-

Ctr and Ctr-Ctr planes triggered by the update event; the

number associated to each arrow shows the temporal se-

quence of each packet. We have now two cases.

In the first case, S1’s master controller is a follower

for the shard (as depicted in Fig. 5). Thus, the switch

sends the update event (message 1) to the master con-

troller, which asks the leader to update the shard through

a “Raft request” (message 2). Now the leader sends a

“log replication” message to all its followers (message

3) and waits for the acknowledge from the majority of

them (“log reply” in messages 4). Only at this point,

the update is committed through a “log commit” (mes-

sage 5) sent to all the followers. Thus, after receiving

the commit message, S1’s master controller can process

the update on the shard and generate the response event

(message 6) to the switch.

In the second case, S1’s master controller is the leader

for the shard. This case is identical to the previous one

except for the “Raft request” message 2, which is now

missing.

For both cases, the controller’s reaction time per-

ceived by switch S1 is given by the time between the up-

date event and the response event messages. Let dsw-ctr

be the communication delay between the switch and its

master controller and dctr-leader the communication delay

from the master controller and the leader (being zero

whenever the master is also leader). Assume a cluster

of C controllers. Because of the majority-based selec-

tion, let dctr*-leader be the communication delay between

the leader and the farthest follower belonging to the ma-

jority (i.e., corresponding to the ⌊(C/2)⌋-th closest fol-

lower). Observing Fig. 5, the reaction time is obtained

by summing twice dsw-ctr, twice dctr-leader (only in the

first of the above cases) and twice dctr*-leader. Thus, we

can claim:

Property 2. In an SDO scenario (e.g., adopting Raft

consensus algorithm) for distributed SDN controllers,

the reaction time T S DO
R

of the controller perceived at

the switch is:

T S DO
R = 2dsw-ctr + 2dctr-leader + 2dctr*-leader (4)

Thus, the reaction time is identical to the one for MDO

model plus either 2 or 4 times the RTT between the

controllers, when the master controller is either leader

or follower of the shard, respectively. Notably, the de-

lays between controllers may be dominant for large net-

works such as SDWAN, as also shown experimentally

in Sec. 4.3. The model in (4), here obtained in a specu-

lative way, will be tailored to a specific ODL network

application and experimentally validated in an opera-

tional SDWAN running ODL, as described in detail in

Sec. 4.3. Thus, we can claim that the devised model is

very accurate.

4.2.3. Experimental results

We investigate the reaction times achievable for dif-

ferent data-ownership models, based on Properties 1

and 2. Given a controller placement, we study the ef-

fect of selecting the data owner among the controllers

on the perceived controller reactivity. We show the re-

sults just for HighWinds ISP, but the results for other

ISP networks are available in [41].

In Fig. 6, we report the scatter plots of the average re-

action times for the SDO and the MDO models when

considering all possible controller placements and all

possible selections for the data owner, in the case of

3 controllers. Each controller placement appears with



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 8

Figure 6: Average reaction times in HighWinds network for all the

placements. Optimal placements for the two data-ownership models

are highlighted.

Figure 7: Reaction time reduction in HighWinds network for the op-

timal selection of the data owner in the SDO model.

3 points aligned horizontally, one for each data owner,

since the data owner selection does not affect the MDO

reaction time. In the plots we have highlighted the

placements with the minimum reaction time according

to the SDO and MDO models. By construction, the

minimum reaction time for the MDO model is always

smaller than the one for the SDO model. From these

results, the optimal placements appear very different for

the two data-ownership models and this fact motivates

the need for a careful choice not only of the controller

placement, but also of the data owner, in the SDO case.

To highlight the role of the proper selection of the

data owner for the SDO model, in Fig. 7 we investi-

gate the benefit achievable when considering the best

data owner among the 3 available controllers, for the

three ISPs under consideration. Assume that a given

controller placement corresponds to three values of re-

action times: d1, d2 and d3, sorted in increasing order.

The minimum reduction factor is defined as d2/d1 and

the maximum reduction factor as d3/d1. We plot the de-

lay reduction factor due to the optimal choice of the data

owner, for any possible placement. For the sake of read-

ability, the placements have been sorted in decreasing

order of minimum reduction factor. Fig. 7 shows that

a careful choice of the data owner in the SDO model

decreases the reaction time by a factor around 2 and 4.

!"##"$%&'!(

)%*+%&')

!"##"$%&'!,

-$./01'-( -$./01'-2

2

345'

&%67%8/
4*9/'

&%67%8/

)":'

&%;#.0*/."<

5*0=%/>"7/'

9#"$>?"+

-$>@/&

#.<=8

5*0=%/>.<

A A

BC'D B

)":'

&%;#E
)":'0"??./'

;*0=%/>"7/

F"8/'F( F"8/'F,

G

AH
I

(ACAH (B
(J

AH
,H

,D

AH

,G

2A
22CAH

345'

&%;#E

@/&>@/&

#.<=8

(

,

2

Figure 8: The control traffic for l2-switch application in ODL. For the

sake of clarity, we report just some sequence numbers. The packets

sent with sequence 2-6 repeat as 9-13, 21-25, 28-32, 35-39. The pack-

ets sent with sequence 3-5 repeat as 16-18, since the master controller

of the third switch along the path is also the shard leader. Only the

messages between the controllers and the switches along the source-

destination path are shown.

These results show that the selection of the data

owner in the SDO model has the largest impact on the

perceived performance of the controller, and can be eas-

ily optimally solved by considering all the possible C

cases, after having fixed the controller placement.

4.3. Flow setup time for reactive forwarding in ODL

To validate and show the practical relevance of the

SDO model devised in Sec. 4.2.2, we apply Property 2

to compute the flow setup time for the specific layer-

2 forwarding application called “l2-switch” available in

ODL, deployed on a generic topology. Notably, even

if formula (4) is derived in a speculative way, in the

following section we will show that it is very accurate

from experimental point of view, and thus its relevance

is practical. The same methodology can be applied to

analyze other applications, given the knowledge of their

detailed behavior.

ODL l2-switch application provides the default re-

active forwarding capabilities and mimics the learn-

ing/forwarding mechanism at layer 2 of standard Eth-

ernet switches. Anytime a new flow enters the first

switch of the network, the corresponding ARP-request

is flooded to the destination, and only when the ARP-

reply is generated, the controller installs a forwarding

rule at the MAC layer in all the switches involved in the

path from the source to the destination, and vice versa.

The association of a MAC address with the switch port,

needed for the learning phase, is distributed to the other

controllers using the Raft algorithm.

Assume a generic topology as shown in Fig. 8 con-

necting source host H1 to destination host H2, with ev-



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 9

ery switch s attached to its master controller (denoted as

c(s)), which can be either a follower or a leader (denoted

as L) within the cluster. We assume initially empty

flow tables in all the switches. At the beginning, the

first ARP-request corresponding to a new flow from H1

is flooded in the whole network (loops are avoided by

precomputing a spanning tree on the topology). Any-

time the ARP packet is received at a switch, a packet-in

is generated and the association [MAC source address,

ingress port, switch identifier] is stored in the shared

data store, in order to mimic the standard learning pro-

cess. This means that at each switch, along the path

from the source to the destination, a latency is experi-

enced according to formula (4). When the ARP-request

reaches the destination, H2 sends back an ARP-reply,

which generates a packet-in from the last switch (de-

noted as s′) to the controller. This event generates an-

other update since the controller learns the port of s′ at

which H2 is connected. Only at this point, the controller

installs a flow rule across all the switches in the source-

destination path and then the ARP-reply is switched

back to the source. Thus the flow setup time can be

evaluated as ARP reaction time tr, ARP, defined as the

interval between the time when the H1’s switch sends

the packet-in message (due to the ARP-request) to its

controller and the time when H1’s switch receives the

packet-out/flow-mod messages (due to the ARP-reply).

Note that the flow setup time depends on the considered

application, which installs the flow rules across all the

switches involved in the path just after the ARP reply at

the destination host is generated.

Let di, j be the propagation delay between nodes i and

j, computed by summing all the contributions along the

shortest path from i to j. Let P be the list of all the

nodes involved in the routing path from H1 to H2, in

which the last switch s′ appears twice. Thus, the total

number of updates within a flow is |P|. We can claim:

Property 3. In OpenDaylight (ODL) running the l2-

switch application, the flow setup time can be computed

as

tr,ARP = 2dH1,H2 +
∑

s∈P

(2ds,c(s) + 2dc(s),L)+

2|P|dcnt*-follower + |P|tc (5)

Indeed, the first term in (5) represents the delay to send

the ARP request and reply along the routing path, the

second term represents the delay occurring for all the

switches along the path (the final switch s′ is double

counted) due to the packet-in and the packet-out/flow-

mod (2ds,c(s)) and due to the Raft-request and log com-

mit (2dc(s),L), the third term represents the delay to get

the acknowledgement from the majority for each of the

updates, and the fourth term represents the computation

time for each update at the controller (assuming to be

constant and equal to tc).

4.3.1. Experimental validation in a SDWAN

We validate Property 3 on a real and operational net-

work. Since (5) depends mainly on formula (4) obtained

for the SDO model, our results validate Property 2.

Specifically, we run a cluster of OpenDaylight (He-

lium SR3 release) controllers running the default “Sim-

ple Forwarding” application. We run our experiments

in the JOLNet, which is an experimental SDN network

deployed by Telecom Italia Mobile (the major telecom

operator in Italy). JOLNet is an Openflow-based SD-

WAN, with 7 nodes spread across the whole Italy, cov-

ering Turin, Milan, Trento, Venice, Pisa and Catania.

Each node is equipped with an OF switch and a com-

pute node. The compute node is a server deploying vir-

tual machines (VMs), orchestrated by OpenStack. Net-

work virtualization is achieved though FlowVisor [43]

and the logical topology among the OF switches is fully

connected.

Due to the limited number of nodes in the JOLNet

and the limited flexibility in terms of topology, we aug-

ment the topology with an emulated network running on

Mininet [44] in one available compute node. We adopt

the linear network topology of Fig. 9 with a variable

number of nodes (from 3 to 36) and with one host at-

tached at each switch. We generate ICMP traffic us-

ing the ping command among the different hosts. We

run a single controller cluster with multiple ODL in-

stances running in different nodes of the JOLNet, in

order to distribute geographically the controllers across

Italy. The controllers instances and Mininet run indi-

vidually on single VMs for a flexible placement across

the nodes. Thanks to the large physical extension of

the network, we experiment with a large variety of sce-

narios, e.g., with large Sw-Ctr delays (when the VM of

the master controller is located in a compute node far

from the switch node) and/or large Ctr-Ctr delays (when

the VMs of the controller instances are located in nodes

far one from each other). By selecting the master con-

troller of the switches, we change the data owner of the

shared data structure within the cluster. We consider a

cluster of 3 controllers and we measure the flow setup

time tr,ARP by comparing the timestamps of the packets

obtained by using Wireshark as network sniffer at the

Mininet interface towards the controllers.

As first step to validate Property 3, we evaluate the

RTT among each pair of nodes in JOLNet and then we

estimate the delay between any pair of nodes i and j



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 10

!" !# !$

%&$&$'()*%

+,-()" +,-()# +,-().

*% *% *%

/,00,1'2)/" /,00,1'2)/#3'45'2)3)

Figure 9: Network configuration for the validation of the SDO model

Table 1: Placement of the VMs for the experimented scenarios. “L”:

leader controller. “F1”, “F2”: follower controllers. “Net”: Mininet.

Scenario Turin Milan Pisa

VMs VMs VMs

TT Net, L, F1, F2 - -

TMC Net, F1 L, F2 -

TMF Net L, F1, F2 -

TPC Net, F1 - L, F2

TPF Net - L, F1, F2

as di j = RTTi j/2, required to apply formula (5). The

experiments reported in the following refer to the sce-

narios using 3 JOLNet nodes, namely Turin, Milan and

Pisa, to deploy the VMs. The measured RTT between

Turin and Milan is 4 ms, whereas the one between Turin

and Pisa is 132 ms.

As second step for the validation, we perform 100

measurements, by clearing the whole forwarding tables

and restarting the controllers at each run. According

to rigorous methodology, we evaluate the width I95 of

the 95% confidence interval for the measurements and

we compute the measurement accuracy as λ = I95/(2µ̄),

where µ̄ is the average measure. For each scenario and

topology, the relative error of the model is instead com-

puted as: δ = |Mi − Ti|/|Ti| where Mi is the average

flow setup time according to the experiments and Ti is

the flow setup time according to formula (5).

We consider different scenarios, depending on the

placement of the controllers and of Mininet across

the different JOLNet nodes. We refer to the physi-

cal distance between the network nodes (emulated with

Mininet) and the controllers (followers and leader) as

“close” when the corresponding VMs are running in the

same node, and “far” when on remote nodes. Table 1

lists all the experimented scenarios, discussed in the fol-

lowing Sec. 4.3.2. In our cluster of 3 ODL controllers,

the leader controller is denoted as “L” and the two fol-

lowers are denoted as “F1” and “F2”. Controller F1 is

set to be master controller for all the switches in the

Mininet network. “Net” represents the Mininet emu-

lated network.

Table 2: Input parameters for the model, accuracy of measurements

and relative error of the model

Scenario dsw-ctr dctr-ctr tc Experimental Model

accuracy (λ) error (δ)

TT 0.25 ms 0.25 ms 20 ms 1.2% - 2.7% 3.2%

TMC 0.25 ms 2.0 ms 20 ms 0.7% - 3.9% 5.2%

TMF 2.0 ms 0.25 ms 20 ms 0.6% - 3.6% 5.1%

TPC 0.25 ms 66 ms 20 ms 0.3% - 1.3% 9.2%

TPF 66 ms 0.25 ms 20 ms 0.6% - 2.3% 0.5%

✵�✁

✂✄☎

✆✝✞

✟✠✡

☛☞✌

✶✍✎

✏✑✒

✓✔✕

✖✗✘

✸ ✻ ✾ ✙✚ ✛✜ ✷✢ ✣✤ ✥✦❆
✧
★
✩✪
✫
✬
✭✮
✯
✰

✱
✲
✳✴
✹
✺✼
✽
✿
❀❁
❂

◆❃❄❅❇❈ ❉❊ ❋●❍■❏❑▲▼ ❖

❚P◗ ❘❙❯❱❲❳❨❩ ❬

❭❪❫ ❴❵❛❜❝❞❡

❢❣❤ ✐❥❦❧♠♥♦♣ q

rst ✉✈✇①②③④

Figure 10: Experimental results

with the VMs running either in

Turin or Milan

✥

�

✁

✂

✄

☎✆

✝✞

✟✠

✡☛

✸ ✻ ✾ ✶☞ ✌✍ ✷✎ ✏✑ ✒✓❆
✔
✕
✖✗
✘
✙
✚✛
✜
✢

✣
✤
✦✧
★
✩✪
✫
✬
✭✮
✯

◆✰✱✲✳✴ ✵✹ ✺✼✽✿❀❁❂❃ ❄

❚❅❇ ❈❉❊❋●❍■❏ ❑

▲▼❖ P◗❘❙❯❱❲

❳❨❩ ❬❭❪❫❴❵❛❜ ❝

❞❡❢ ❣❤✐❥❦❧♠

Figure 11: Experimental results

with the VMs running either in

Turin or Pisa

4.3.2. Experimental results

Table 2 summarizes the input parameters that have

been used for the analytical formula in (5), and shows

also the final experimental results in terms of measure-

ment accuracy and of model error. The input parameters

are obtained either by the RTT measurements when the

VMs are located in different nodes, or by the steps ex-

plained below. In more detail:

• Scenario TT (Turin-Turin): We run the VMs of

all the controllers and of Mininet in the same node,

in order to evaluate the baseline latency due to the

controller processing time and to the communication

overhead (through the local virtual interfaces). First,

we measure the communication delay between VMs,

due to the local hypervisor running the different VMs,

using ping command. We obtain 0.5 ms, thus we set

the delay between the network and the controller, as

well as between the controllers, equal to 0.25 ms.

By running Mininet and measuring the flow setup

time, we estimate an average processing latency of

20 ms, used as reference for all the other experiments.

We run many experiments varying nsw in the interval

[3, 36] and observe a relative error of the model equal

to 3.2%, so very small.

• Scenario TMC (Turin-Milan-Close): Leader L and

Follower F2 of the cluster are located in Milan,

whereas follower F1 is co-located with the network

in Turin node, thus all OF switches are close to their

master controllers. The dominant term in (5) is the

delay between controllers, equal to 4/2 = 2 ms.

Fig. 10 shows the average flow setup time computed



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 11

according to (5) and the one measured. According to

Table 1, the experimental results are quite stable for

the different values of nodes. The measured value is

quite close to the theoretical one, with a relative error

5.2%. Interestingly, the flow setup time in absolute

values is always larger than 100 ms and can reach

also 1.2 s when the network is quite large. Notably,

this is mainly due to the interaction between the mas-

ter controller and the leader controller.

• Scenario TMF (Turin-Milan-Far): All the con-

trollers are located in Milan, thus all OF switches are

far from their master controller. Thus, now the dom-

inant term in (5) is the delay from the switch to the

controller (2 ms). Fig. 10 compares the theoretical

flow setup time with the measured ones. Now the rel-

ative error of the model is 5.1%. As in the previous

case, the flow setup time can be very large, due to the

latency in the interaction between the network and its

master controller.

• Scenario TPC (Turin-Pisa-Close) All OF switches

and their master controller F1 are located in Turin,

whereas the leader controller and the other controller

are located in Pisa. The dominant term is the delay

between controllers (132/2 = 66 ms). As shown in

Fig. 11, the measured value approaches the theoreti-

cal value with a relative error of 9.2%. The measured

delays can range from 2 to 12 s as we vary the num-

ber of switches. These huge delays are due to the

interaction between leader L and follower F1, as well

explained by our model.

• Scenario TPF (Turin-Pisa-Far) All the controllers

are located in Pisa with the network still in Turin. Due

to the large delay between Turin and Pisa (66 ms), the

dominant term in (5) is the delay between follower F1

and the network. In all the results shown in Fig. 11,

the relative error (0.5%) of the model with respect to

the theoretical value is very small. Also in this case,

the flow setup time is huge in absolute terms (up to

6 s), due to the large delay between the network and

the controllers.

In summary, our experimental results show clearly

that the reactivity of controllers, as perceived by the net-

work nodes, is strongly affected by the inter-controller

communications. Furthermore, they validate our analyt-

ical models for the SDO model, which appear to be very

accurate for the Raft consensus algorithm.

4.4. Optimal placement for minimum reaction time

We present a mathematical ILP formulation of the op-

timal controller placement problem, in order to mini-

mize the reaction time at the switches (or equivalently,

maximizing the network reactivity), for the SDO and

the MDO models. Note that in our formulation we aim

at finding also the best master controller to allocate to

each switch. Indeed, differently from the results shown

so far, we do not assume that the master controller of

a switch is the closest controller to the switch. We will

show that connecting a switch to the closest controller is

not always optimal, when considering also the overhead

due to coordination traffic among the controllers.

4.4.1. Optimization model

We consider the network graph describing the physi-

cal interconnection among the switches. Let N denote

the set of switches; the number of switches is N = |N|.

As a reminder, dmn is defined as the delay between

switch m ∈ N and n ∈ N along the shortest path. Let

C denote the set of SDN controllers to be deployed; the

number of controllers is C = |C|.

We define the following binary decision variables, for

any controller i ∈ C and any switch n ∈ N:

• Xin = 1 iff controller i is placed at switch n;

• Yni = 1 iff controller i is the master controller of

switch n.

According to standard approach, we also define some

auxiliary decision variables, introduced to model the

product of two binary decision variables while main-

taining the problem linear.

• ǫi jmn = Xim×X jn, ∀i, j ∈ C,∀m, n ∈ N . Thus ǫi jmn = 1

only if controller i is placed at switch m and controller

j is placed at switch n. To avoid non-linearities, the

product can be equivalently defined as a set of linear

constraints:

ǫi jmn ≤ Xim, ǫi jmn ≤ X jn, ǫi jmn ≥ Xim + X jn − 1

• γnim = Xim × Yni, ∀i ∈ C, ∀n,m ∈ N . Thus γnim = 1

iff controller i is placed at switch m and is the master

controller of switch n. This is equivalent to:

γnim ≤ Yni, γnim ≤ Xim, γnim ≥ Yni + Xim − 1

We define the following constraints:

• each controller is placed at only one switch:
∑

n∈N

Xin = 1, ∀i ∈ C (6)

• each switch can host at most one controller:
∑

i∈C

Xin ≤ 1, ∀n ∈ N (7)



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 12

• each switch has exactly one master controller:

∑

i∈C

Yni = 1, ∀n ∈ N (8)

We aim at minimizing the average reaction time per-

ceived across the switches. We have two different lin-

ear formulations for the objective function, depending

of the considered data-ownership model.

According to the MDO model, (3) defines the reac-

tion time T MDO
R

(n) perceived at switch n as 2dsw-ctr(n).

If switch n is connected to controller i as master con-

troller, which is placed at switch m, then dsw-ctr is equal

to Xim × Yni × dmn. Now the average dsw-ctr across all the

switches can be computed as

1

N

∑

n∈N

dsw-ctr(n)

and thus, after neglecting constant factors, the objective

function for the MDO problem is:

min
∑

m∈N

∑

i∈C

∑

n∈N

γnim × dmn (9)

For the SDO model, we aim at minimizing the av-

erage reaction time T S DO
R

computed as (4). Note that,

as discussed in Sec. 4.2.3, the choice of the leader con-

troller, acting as data owner, affects the reaction time

strongly. In order to find the optimal choice of the

leader controller we assume, without loss of general-

ity, that controller 1 is also the leader. Observe now that

the reaction time T S DO
R

(n) perceived at switch n is com-

posed by three terms, according to (4). The first term,

dsw-ctr(n), is equal to the MDO case. The second term,

dctr-leader, can be computed setting that switch n has con-

troller i as master controller, which is placed at switch

m, and that the leader controller 1 is placed at switch s,

i.e., Yni×Xim×X1s×dms = γnim×ǫ1ism×dms; then, we av-

erage across all the switches. We compute the last term,

dctr*-leader, by approximating the median of the delay

between the leader controller and the other controllers

with its average value. If the leader controller is placed

at switch s and that controller i is placed at switch m,

then the delay among them is Xim×X1s×dms = ǫ1ism×dms

and the overall average is

1

C

∑

i∈C

∑

m∈N

∑

s∈N

ǫ1ism × dms

By combining all the above terms, the objective func-

tion for the SDO model can be formalized as follows:

min
1

N

∑

m∈N

∑

i∈C

∑

n∈N

γnim × dmn+

1

N

∑

n∈N

∑

i∈C

∑

m∈N

∑

s∈N

γnim × ǫ1ism × dms+

1

C

∑

i∈C

∑

m∈N

∑

s∈N

ǫ1ism × dms (10)

Note that the second term appears to be non-linear, but

actually it can be converted to a linear relation as we

showed at the beginning of Sec. 4.4.1 by defining a new

set of auxiliary variables. We omit the details for the

sake of space.

4.4.2. Numerical results

We implemented an optimal solver for the optimal

placement problem in (9) and in (10) through the Gurobi

solver [45].

Figs. 12-13 show the placement to minimize the re-

action times, by solving (9) and (10) for both data-

ownership models, when 3 controllers are deployed in

the Highwinds network. As expected, the results ob-

tained for the two models are completely different. For

the MDO case, one controller is placed in each conti-

nent, in order to minimize the average delay between the

switches and their master controllers. For the SDO case,

instead, all the controllers are placed close in the con-

tinent with the higher number of switches, and specifi-

cally the leader is chosen close to the continent (Europe)

with the second largest number of switches. This is in-

tuitively the best tradeoff between Sw-Ctr delays and

Ctr-Ctr delays.

Fig. 14 shows the minimum average reaction time for

both SDO and MDO considering 3 and 4 controllers,

for the smallest 89 ISP networks available in [46]. We

could not run our solver for the largest topologies, be-

cause of the limited scalability of the ILP approach. In

all the topologies, the optimal reactivity is mainly af-

fected by the adopted data-ownership model, and not

by the number of controllers. The MDO model achieves

reaction times that are 1-2 orders of magnitude smaller

than the SDO model, showing the non-negligible impact

of the Ctr-Ctr traffic on the perceived performance at the

switches for the SDO model.

Considering the actual master controller chosen for

each switch, based on our experiments, in the MDO

model all the switches are connected to the closest con-

troller, as expected. But for SDO model, each switch

is connected to the first controller along the its shortest

paths to the leader controller. Thus, for the SDO model



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 13

node

node leader

node follower

Figure 12: Placement for MDO in

HighWinds.

node

node leader

node follower

Figure 13: Placement for SDO in

HighWinds.

Figure 14: Optimal control plane reactivity obtained with the opti-

mization framework when deploying 3 and 4 controllers, in 89 ISP

networks.

the closest controller may not be the best solution. In-

deed, it may be convenient for a switch to connect di-

rectly to the leader controller, even if farther than the

closest controller, in order to reduce the impact of the

Ctr-Ctr traffic among the controllers. In the considered

89 topologies, on average 25% and 35% of the switches

were not connected to their closest controller for the 3

controllers and 4 controllers scenarios, respectively.

4.5. Evolutionary placement algorithms for large net-

works

When commenting on the numerical results in

Secs. 4.1 and 4.4, we noticed that for the largest ISP

topologies (in terms of number of switches and links)

we could not run the exhaustive search (i.e., Exa-Place

defined in Sec. 4.1.1) and the ILP solver (Sec. 4.4.2) to

get the optimal placements, due to the limited scalabil-

ity of the considered optimal approaches.

In the following, we present two evolutionary algo-

rithms suitable for large networks. The first one, de-

noted as Evo-Place and described in Sec. 4.5.1, finds

a set of Pareto controller placements. The second one,

denoted as Best-Reactivity and described in Sec. 4.5.2,

finds the final placement that minimizes the average re-

action time perceived at the switches.

4.5.1. An evolutionary algorithm for Pareto-optimal

placements

The basic idea of our algorithm is to discover new

non-dominated solutions by perturbing the current set

of Pareto solutions for the controller placement. Specif-

ically, starting from a given controller placement in the

network, we may get a new controller placement with

better Ctr-Ctr delay by putting the controllers closer,

and a new controller placement with better Sw-Ctr delay

by distributing the controllers more evenly in the net-

work. By continuously performing such perturbation,

we achieve a good approximation of the Pareto frontier

for the placement problem.

As term of comparison for our algorithm, we define a

basic randomized algorithm, denoted as Rnd-Place and

reported in Algorithm 1, to find a set of Pareto solutions

just using a random sampling. The input parameters are

the number of controllers C, the number of nodes N and

the number of iterations imax. We assume that function

Random-Permutation(N,C) (called in step 4) provides

the first C elements of a random permutation of size N,

with C ∈ [1,N]; its complexity is O(C) thanks to the

classical Knuth shuffle algorithm. Let P be the current

set of all Pareto (i.e., non-dominated) solutions. At each

iteration, a new placement is generated (step 4). Now

function Add-Prune eventually adds π to P. More pre-

cisely, if π is dominated by any Pareto solution in P,

then it not added to P since it is not Pareto (step 10).

Instead, if any current solution p ∈ P is dominated by

π, then it is removed (step 12) and then π is added as a

new Pareto solution (step 13). Add-Prune returns true if

π was added successfully, otherwise it returns false.

The set P returned by Rnd-Place at the end of imax

iterations collects all the Pareto placements found by

the procedure, and corresponds to an approximation of

the optimal Pareto frontier for the controller placement

problem. The randomized approach is simple but quite

inefficient in terms of complexity, since it takes around

|Ω| log |Ω|+ 0.58|Ω| iterations (thanks to the well known

results about the coupon collector problem), where |Ω|

is the total number of placements (see (2)), to approach

the exhaustive search and find the optimal Pareto place-

ments.

We modify Rnd-Place to exploit an evolutionary ap-

proach to boost the efficiency of the random sampling.

Algorithm 2 reports the pseudocode of our proposed

Evo-Place. At each iteration, the algorithm selects a

random placement π (step 4) and tries to add to P, as

in Rnd-Place. If the addition is successful (i.e., π is

Pareto), then π is perturbed (step 7) and the new place-

ment π′ is eventually added to P (step 8). The loop for



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 14

Algorithm 1 Random algorithm for finding Pareto con-

troller placements

1: procedure Rnd-Place(C,N, imax)

2: P = ∅ ⊲ Init the set of Pareto solutions

3: for i = 1→ imax do ⊲ For imax iterations

4: π =Random-Permutation(N,C)

5: Add-Prune(P, π)

6: return P

7: procedure Add-Prune(P, π)

8: for all p ∈ P do

9: if π is dominated by p then

10: return false ⊲ No addition of π

11: if p is dominated by π then

12: P = P \ {p} ⊲ Remove p

13: P = P ∪ {π} ⊲ Add π since not dominated

14: return true ⊲ Successful addition of π

the perturbation ends when the newly perturbed solution

cannot be added to P, since it is dominated by other so-

lutions (steps 6-9). The perturbation phase is described

by Decrease-Ctr-Ctr-delay, whose pseudocode is re-

ported in Algorithm 3.

Decrease-Ctr-Ctr-delay perturbs the given place-

ment solution π by decreasing the Ctr-Ctr delay. Its

main idea is to move the farthest controller closer to the

others. Indeed, in steps 2-3 the average distance is com-

puted for each controller to all the others (actually, we

omit the division by C − 1 since it is useless for the fol-

lowing steps). We define di j as the minimum delay from

node i to j, based on the propagation delays in the net-

work topology. Now we choose c′ as the controller with

the maximum average delay towards the others (step 4)

and find c′′ as the closest controller to c′ (step 5). Now

we move c′ one hop towards c′′ (steps 6) along the short-

est path from c′ to c′′; note that the check that c′′ is at

least 2 hops away from c′ guarantees that the movement

is possible. As a result, Decrease-Ctr-Ctr-delay de-

creases the average Ctr-Ctr distance most of the time.

4.5.2. An evolutionary algorithm to minimize the reac-

tion time

We adopt the same approach of Evo-Place to find the

best placement that minimizes the reaction time accord-

ing to the MDO and SDO models, computed accord-

ing to Property 1 and 2 respectively. The pseudocode

in Algorithm 4 describes the proposed evolutionary ap-

proach. At each iteration, a random placement (step 4)

is generated in order to possibly escape from local min-

ima. Another candidate placement is obtained (step 6)

by perturbing the optimal candidate solution πbest found

Algorithm 2 Evolutionary algorithm for finding Pareto

controller placements

1: procedure Evo-Place(C,N, imax)

2: P = ∅ ⊲ Init the set of Pareto solutions

3: for i = 1→ imax do ⊲ For imax iterations

4: π =Random-Permutation(N,C)

5: success flag=Add-Prune(P, π)

6: while (success flag=true) do

7: π′ =Decrease-Ctr-Ctr-delay(π)

8: success flag=Add-Prune(P, π′)

9: π = π′

10: return P

Algorithm 3 Perturb a given controller placement π to

decrease Ctr-Ctr delay

1: procedure Decrease-Ctr-Ctr-delay(π)

2: for c = 1→ C do

3: hc =
∑

k,c dπcπk
⊲ Total delay from c

4: c′ = arg maxc{hc} ⊲ Farthest controller

5: c′′ = arg min
c,c′
{dπcπc′

} ⊲ c′’s closest cnt.

6: n=find first node in the shortest path from c′ to

c′′

7: if n , πc′′ then

8: πc′ = n ⊲Move c′ into n

9: return π

adopting Decrease-Ctr-Ctr-delay. The reaction time

for each new candidate solution is evaluated in step 7

by calling Update-Best. This function (step 9) exploits

the analytical formulas to compute the reaction time to

check whether the given placement has a smaller reac-

tion time than the candidate optimal placement obtained

so far. As an example, the formula adopted in Property 3

of Sec. 4.3 can be adopted to compute the reactivity for

the standard reactive layer-2 forwarding application in

the ODL controller.

4.5.3. Performance of Evo-Place

We compare the performance of Exa-Place, Rnd-

Place and Evo-Place on different networks with vary-

ing number of controllers. For a fair comparison, we

run Evo-Place after having fixed imax and record the ac-

tual total number of analyzed placements. Then we use

this value to set the number of placements considered by

Rnd-Place. Thus, all the results comparing Evo-Place

with Rnd-Place are obtained with the same number of

analyzed placements.

In Fig. 15, we show the results for the Garr net-

work, a nation-wide Italian ISP, taken from [46], with



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 15

Algorithm 4 Evolutionary algorithm to find Placement

with minimum reaction time

1: procedure Best-Reactivity(C,N, imax)

2: πbest = {} ⊲ Init the best solution

3: for i = 1→ imax do ⊲ For imax iterations

4: π =Random-Permutation(N,C)

5: Update-Best(π, πbest)

6: π =Decrease-Ctr-Ctr-delay(πbest)

7: Update-Best(π, πbest)

8: return πbest

9: procedure Update-Best(π, πbest)

10: if Reaction-Time(π)<Reaction-Time(πbest) then

11: πbest = π ⊲ Found better placement

✶ � ✁

✂ ✄ ☎

✷ ✆ ✝

✞ ✟ ✠

✸ ✡ ☛

☞ ✌ ✍

✹ ✎ ✏

✑ ✒ ✓

✥ ✔ ✕ ✖ ✗ ✘ ✙ ✚ ✛

❆
✜
✢
✣✤
✦
✧
★
✩
✪✫
✬✭
✮
✯
✰✱
✲
✳✴
✵✺

✻ ✼ ✽ ✾ ✿ ❀ ❁ ❂ ❃ ❄ ❅ ❇ ❈ ❉ ❊ ❋ ● ❍ ■ ❏ ❑ ▲ ▼

◆ ❖ P ◗ ❘ ❙ ❚ ❯ ❱ ❲ ❳ ❨ ❩

❬ ❭ ❪ ❫ ❴ ❵ ❛ ❜ ❝

❞ ❡ ❢ ❣ ❤ ✐ ❥ ❦ ❧

♠ ♥ ♦ ♣ q r s t ✉

Figure 15: Optimal Pareto frontier (Exa-Place) and its approxima-

tions (Rnd-Place, Evo-Place with imax = 50) for the placement of 3

controllers in Garr network

❈�✁✦✂✄☎ ✆✝✞✟✠
❙
✡
☛
☞
✌✍
✎
✏✑
✒
✓

P✔✕✖✗✘ ✙✚✛✜✢✣✤ ✥✧★✩✪✫✬✭✮✯

✰✱✲✳✴✵ ✶✷✸✹♦✺✻✼✽✾✿ ❀❁❂❃❄❅❆
❇
❉
❊
❋●
❍
■
❏
❑
▲
▼
◆❖
◗
❘
❚❯
❱

❲❳❨❩❬❭❪ ❫❴❵❛❜❝❞ ❡❢❣❤✐

❥❦❧♠♥♣ qrst✉✈✇①

Figure 16: Definition of Ctr-Ctr error and of Sw-Ctr error with respect

to the optimal Pareto frontier

35 nodes, for the case of 3 controllers. Thus, N = 35,

C = 3 and thus |Ω| =
(

35
3

)

= 6, 545 are all the possible

placements evaluated by Exa-Place. The corresponding

Pareto points represent the optimal Pareto frontier, used

as a reference for the frontiers obtained with the other

algorithms. The graphs show the sub-optimal Pareto

points obtained by Rnd-Place and Evo-Place running

for imax = 50 iterations, corresponding to a sampling

fraction equal to 0.9% of all possible solutions. From

the figure, the Pareto placements computed by Evo-

Place appear to approximate much better the optimal

ones than Rnd-Place, given the same number of itera-

tions.

In order to evaluate in a quantitative way the “dis-

tance” between the optimal Pareto frontier computed

by Exa-Place and the approximated ones obtained by

Rnd-Place and Evo-Place, we define two error indexes,

as depicted in Fig. 16, derived from classical volume

based performance indexes for Pareto sets [47]: (i) the

average Sw-Ctr error, computed as the average verti-

cal distance between the optimal Pareto frontier and the

approximated Pareto frontier, (ii) the average Ctr-Ctr

error, computed as the average horizontal distance be-

tween the two frontiers.

Fig. 17a shows the behavior of the two errors as a

function of the number of iterations, in the same sce-

nario considered in Fig. 15. Each experiment, for a

given number of iterations, is repeated multiple times to

get an accurate estimation of the error. When increas-

ing the number of iterations, the Pareto errors decrease,

thanks to the larger space of considered solutions. As

already observed, we expect that the Ctr-Ctr delays are

larger than the Sw-Ctr delays in absolute terms, and thus

the corresponding errors are following the same behav-

ior. After 200 iterations both the Sw-Ctr error and the

Ctr-Ctr error are around 3 times smaller than the errors

obtained for 10 iterations, and in absolute terms very

small (less than 0.1 ms) for Evo-Place. The advan-

tage of Evo-Place with respect to Rnd-Place tends to

increase with the number of iterations, indeed the errors

for Evo-Place are between 1.5× (for low number of it-

erations) and 3× (for high number of iterations) smaller

than Rnd-Place. In general, an accurate estimation of

the Pareto frontier can be achieved with a sampling ra-

tio equal to 1-3% of the total solution space.

We extend our investigation to other larger topolo-

gies, for which Evo-Place is much faster than Exa-

Place. Figs. 17b and 17c show the errors in the

Pareto frontiers obtained for China-Telecom and ITC-

Deltacom networks, respectively, taken from [46]. In

China-Telecom (38 nodes), the Pareto errors decreases

by a factor 2.5 from 10 to 200 iterations, and the relative

gain of Evo-Place with respect to Rnd-Place is around

1.2-1.5, decreasing for larger sampling space. Also in

this case, around 1-2% of the sampling space is enough

to obtain an accurate estimation of the Pareto region.

Fig. 17c shows the errors for ITC-Deltacom network,

which is a large USA ISP with 100 nodes. Despite

the large size of the network, after 50 iterations (corre-

sponding to 0.03% of sampling ratio) all the errors tend

to stabilize for Evo-Place, showing a relative gain with

respect to Rnd-Place that is always more than 2.

The results obtained for the above 3 ISPs show the

effectiveness of the evolutionary approach with respect

to the simple random sampling. Notably, also in abso-

lute terms all the errors are small, even if their actual



4 THE PLACEMENT OF DISTRIBUTED CONTROLLERS 16

✵�✁

✂✄☎

✆✝✞

✟✠✡

☛☞✌

✍✎✏

✑✒✓

✔✕✖

✶✗ ✸✘ ✺✙ ✼✚ ✛✜✢ ✷✣✤

✥✦✧★ ✩✪✫✬ ✭✮✯✰ ✱✲✳✴ ✹✻✽✾ ✿❀❁❂

❆
❃
❄
❅❇
❈
❉
❊
❋
●❍
■❏
❑
▲▼
◆
❖
P◗
❘
❙

❚❯❱❲❳❨ ❩❬ ❭❪❫❴❵❛❜❝❞❡ ❢♠❣❤

✐❥❦❧♥♦♣q rst✉✈ ✇①②

③④⑤⑥⑦⑧⑨ ⑩❶❷❸❹❺❻❼❽

❾❿➀➁➂➃ ➄➅➆➇➈➉➊➋➌

➍➎➏➐➑➒➓ ➔→➣↔↕➙➛➜➝

➞➟➠➡➢➤ ➥➦➧➨➩➫➭➯➲

(a) Garr network

✵�✁

✂✄☎

✆✝✞

✟✠✡

☛☞✌

✶✍✎

✏✑✒

✓✔✕

✖✗ ✸✘ ✺✙ ✼✚ ✛✜✢ ✷✣✤

✥✦✧★ ✩✪✫✬ ✭✮✯✰ ✱✲✳✴ ✹✻✽✾ ✿❀❁❂

❆
❃
❄
❅❇
❈
❉
❊
❋
●❍
■❏
❑
▲▼
◆
❖
P◗
❘
❙

❚❯❱❲❳❨ ❩❬ ❭❪❫❴❵❛❜❝❞❡ ❢♠❣❤

✐❥❦❧♥♦♣q rst✉✈ ✇①②

③④⑤⑥⑦⑧⑨ ⑩❶❷❸❹❺❻❼❽

❾❿➀➁➂➃ ➄➅➆➇➈➉➊➋➌

➍➎➏➐➑➒➓ ➔→➣↔↕➙➛➜➝

➞➟➠➡➢➤ ➥➦➧➨➩➫➭➯➲

(b) Chinanet network

✵�✁✂

✄☎✆✝

✞✟✠✡

☛☞✌✍

✎✏✑✒

✓✔✕✖

✶✗ ✸✘ ✺✙ ✼✚ ✛✜✢ ✷✣✤

✥✦✧★✩✪✫✬✭✮ ✯✰✱✲ ✳✴✹✻✽ ✾✿❀❁ ❂❃❄❅

❆
❇
❈
❉❊
❋
●
❍
■
❏❑
▲▼
◆
❖P
◗
❘
❙❚
❯
❱

❲❳❨❩❬❭ ❪❫ ❴❵❛❜❝❞❡❢❣❤ ✐♠❥❦

❧♥♦♣qrst ✉✈✇①② ③④⑤

⑥⑦⑧⑨⑩❶❷ ❸❹❺❻❼❽❾❿➀

➁➂➃➄➅➆ ➇➈➉➊➋➌➍➎➏

➐➑➒➓➔→➣ ↔↕➙➛➜➝➞➟➠

➡➢➤➥➦➧ ➨➩➫➭➯➲➳➵➸

(c) Deltacom network

Figure 17: Pareto frontier error with 3 controllers.

values depend on the geographical area covered by each

network.

We have also evaluated the scenario with Colt-

Telecom from [46], an Europe-wide ISP covering 149

nodes, in the case of 10 controllers. In this scenario

Exa-Place cannot run since the total number of possi-

ble placements is larger than 1015 and thus we cannot

evaluate the average errors with respect to the optimal

Pareto points. We instead observe that Evo-Place is al-

ways outperforming Rnd-Place by reducing the average

Sw-Ctr and Ctr-Ctr delays of 0.25 − 1 ms.

In conclusion, for all the scenarios we investigated,

we have observed a better Pareto frontier obtained by

Evo-Place with respect to Rnd-Place, given the same

number of considered placements and thus the same

computation complexity. Thus, the evolutionary ap-

proach adopted in Evo-Place appears efficient in find-

ing the Pareto placements for a given network topology,

especially when the network is large and an exhaustive

approach is not anymore feasible.

4.5.4. Performance of Best-Reactivity

We evaluate the performance of Best-Reactivity al-

gorithm applied to the MDO and SDO models to find

the single optimal placement that minimizes the aver-

age reaction time. For the SDO model, we evaluate

the performance on 58 middle-size ISP networks, again

taken from [46], for 3 controllers. We compare Best-

Reactivity with a random sampling of the controller

placement. For the sake of space, we do not report the

detailed results. The ratio between the reaction time ob-

tained with Best-Reactivity is on average 2.1× (at most

4.4×) smaller than the random sampling, given the same

number of considered placements. Our results prove the

effectiveness of adopting Decrease-Ctr-Ctr-Delay to

decrease the reaction time of the candidate for the opti-

mal placement.

We also compare Best-Reactivity with the solution

Figure 18: Complexity for Best-Reactivity to achieve a reactivity ≤

30% larger than the minimum reaction time.

obtained through Gurobi [45] implementing the op-

timization model described in Sec. 4.4.1, under the

same 58 ISP topologies considered above. According

to standard methodology, we evaluated the approxima-

tion ratio with respect to the optimal algorithm, i.e.,

the ratio between the average reaction time obtained by

Best-Reactivity and the one obtained by Gurobi solver.

Fig. 18 shows the number of iterations, measured as

sampling ratio with respect to the exhaustive search, to

achieve 1.3 approximation ratio, i.e., to obtain a reaction

time which is ≤ 30% larger than the minimum one ob-

tained by Gurobi. We investigate both SDO and MDO

scenarios, for 3 and 4 controllers. Our results show

that the actual solution space to consider depends on

the actual topology, and a reasonable good solution (i.e.,

≤ 30% error with respect to the optimal one) can be ob-

tained by sampling around 1-10% of the solution space.

Interestingly, increasing the number of controllers im-

proves the efficiency of Best-Reactivity thus making us

more confident about the robustness of the proposed ap-

proach.



5 CONCLUSIONS 17

5. Conclusions

We consider a distributed architecture of SDN con-

trollers, with an in-band control plane. We investi-

gate the placement of the controllers across the net-

work nodes. Differently from previous work, we fo-

cus on the coordination traffic exchanged among con-

trollers, needed to synchronize their shared data struc-

tures. We distinguish two possible models for the

shared data structures: the single (SDO) and the mul-

tiple (MDO) data-ownership models, both currently im-

plemented in state-of-the-art controllers for strong con-

sistent and eventual consistent data structures.

First, we study the optimal controller placement

problem by considering all the communications occur-

ring in the control plane, with emphasis on the com-

munications between the controllers. We investigate

the Pareto frontier that characterizes all the possible

tradeoffs between Sw-Ctr delays and Ctr-Ctr delays.

Throughout the analysis of realistic ISP topologies, we

show that some limited increase in the Sw-Ctr delays

with respect to the minimum ones permits to experience

much lower Ctr-Ctr delays (up to some order of magni-

tude). Thus, a placement simply based on minimizing

the Sw-Ctr delays may not be optimal. To compute the

Pareto frontier for small topologies, we adopt an opti-

mal algorithm (Exa-Place), whose scalability is limited

by the adopted exhaustive search. To overcome such

limitation, we devise an evolutionary algorithm (Evo-

Place) able to approximate the optimal Pareto frontier

with a limited error.

Second, we focus on the reaction time as perceived

by the switches, which depends on the network appli-

cation running on the controller. We devise analytical

formulas for the two data-ownership models. In partic-

ular, the formula for the SDO model is obtained in a

speculative way, and we validate its accuracy in a op-

erational SDWAN. Thanks to these formulas, we define

an ILP problem to minimize the average reaction time,

under the SDO and MDO models, and we devise an ap-

proximated algorithm (named Best-Reactivity), able to

scale to large networks, whose performance is shown to

approximate the optimal ILP solver well.

Specifically regarding the SDO model, we provide

two results, which are not expected. First, we show

that an optimized choice of the controller acting as data

owner can improve the reaction time by 2-4 times. Sec-

ond, we show that choosing the master controller of a

switch as the closest controller does not always mini-

mize the reaction time perceived at the switches. This

suggests that also the selection of the master controller

of a switch must be coupled with the optimal placement

of the controllers.

We believe that our work opens a new perspective for

network designers, who can become aware of the impor-

tance of knowing the internal mechanisms by which the

data structures are shared across the SDN controllers,

and of the crucial role of the inter-controller communi-

cations. Furthermore, our investigation provides a solid

methodology not only to place the controllers but also to

design the network supporting the control plane in large

networks, as in the scenario of large SDN networks or

SDWANs.

References

[1] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothen-

berg, S. Azodolmolky, S. Uhlig, Software-defined network-

ing: A comprehensive survey, Proceedings of the IEEE 103 (1)

(2015) 14–76.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-

terson, J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling

innovation in campus networks, SIGCOMM Comput. Commun.

Rev. 38 (2) (2008) 69–74.

[3] E. Brewer, Pushing the CAP: Strategies for consistency and

availability, Computer 45 (2) (2012) 23–29.

[4] A. Panda, C. Scott, A. Ghodsi, T. Koponen, S. Shenker, CAP for

networks, in: HotSDN, New York, NY, USA, 2013.

[5] J. Medved, R. Varga, A. Tkacik, K. Gray, Opendaylight: To-

wards a model-driven SDN controller architecture, in: WoW-

MoM, 2014, pp. 1–6.

[6] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,

T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow,

G. Parulkar, ONOS: Towards an open, distributed SDN OS, in:

ACM HotSDN, New York, NY, USA, 2014.

[7] D. Ongaro, J. Ousterhout, In search of an understandable con-

sensus algorithm, in: Proc. USENIX Annual Technical Confer-

ence, Philadelphia, PA, 2014, pp. 305–320.

[8] OpenDaylight controller clustering.

URL https://wiki.opendaylight.org/view/OpenDaylight

Controller:MD-SAL:Architecture:Clustering

[9] OpenDaylight Raft consensus code review.

URL https://github.com/opendaylight/controller/tree/

master/opendaylight/md-sal/sal-akka-raft/src/main/java/

org/opendaylight/controller/cluster/raft

[10] J. Prajakta, ONOS Summit: ONOS Roadmap 2015 (Dec 2014).

[11] Distributed primitives.

URL https://wiki.onosproject.org/display/ONOS/Distributed+

Primitives

[12] A. Muqaddas, A. Bianco, P. Giaccone, G. Maier, Inter-controller

traffic in ONOS clusters for SDN networks, in: IEEE ICC,

Kuala Lumpur, Malaysia, 2016.

[13] D. Levin, A. Wundsam, B. Heller, N. Handigol, A. Feldmann,

Logically centralized?: State distribution trade-offs in software

defined networks, in: ACM HotSDN, New York, NY, USA,

2012.

[14] F. J. Ros, P. M. Ruiz, Five nines of southbound reliability in

software defined networks, in: ACM HotSDN, New York, NY,

USA, 2014.

[15] Y. Hu, W. Wang, X. Gong, X. Que, S. Cheng, On reliability-

optimized controller placement for software-defined networks,

China Communications 11 (2) (2014) 38–54.



5 CONCLUSIONS 18

[16] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, M. P.

Barcellos, Survivor: an enhanced controller placement strat-

egy for improving SDN survivability, in: GLOBECOM, IEEE,

2014, pp. 1909–1915.

[17] H. Li, R. E. De Grande, A. Boukerche, An efficient CPP so-

lution for resilience-oriented SDN controller deployment, in:

IPDPSW, IEEE, 2017, pp. 540–549.

[18] B. P. R. Killi, S. V. Rao, Capacitated next controller placement

in software defined networks, IEEE Transactions on Network

and Service Management (2017) 1–1.

[19] P. Vizarreta, C. M. Machuca, W. Kellerer, Controller placement

strategies for a resilient SDN control plane, in: RNDM, IEEE,

2016, pp. 253–259.

[20] Q. Zhong, Y. Wang, W. Li, X. Qiu, A min-cover based controller

placement approach to build reliable control network in SDN,

in: NOMS, IEEE/IFIP, 2016, pp. 481–487.

[21] G. Nencioni, B. E. Helvik, A. J. Gonzalez, P. E. Heegaard,

A. Kamisinski, Impact of SDN controllers deployment on net-

work availability, CoRR.

URL http://arxiv.org/abs/1703.05595

[22] M. Tanha, D. Sajjadi, J. Pan, Enduring node failures through

resilient controller placement for software defined networks, in:

GLOBECOM, IEEE, 2016, pp. 1–7.

[23] G. Yao, J. Bi, Y. Li, L. Guo, On the capacitated controller place-

ment problem in Software Defined Networks, IEEE Communi-

cations Letters 18 (8) (2014) 1339–1342.

[24] H. K. Rath, V. Revoori, S. Nadaf, A. Simha, Optimal controller

placement in Software Defined Networks (SDN) using a non-

zero-sum game, in: WoWMoM, IEEE, 2014, pp. 1–6.

[25] Y. Hu, T. Luo, W. Wang, C. Deng, On the load balanced con-

troller placement problem in software defined networks, in:

ICCC, IEEE, 2016, pp. 2430–2434.

[26] S. Auroux, H. Karl, Flow processing-aware controller place-

ment in wireless DenseNets, in: PIMRC, IEEE, 2014, pp. 1294–

1299.

[27] Y. Hu, T. Luo, N. C. Beaulieu, C. Deng, The energy-aware con-

troller placement problem in software defined networks, IEEE

Communications Letters 21 (4) (2017) 741–744.

[28] M. J. Abdel-Rahman, E. A. Mazied, A. MacKenzie, S. Midkiff,

M. R. Rizk, M. El-Nainay, On stochastic controller placement

in software-defined wireless networks, in: WCNC, IEEE, 2017,

pp. 1–6.

[29] J. Hollinghurst, A. Ganesh, T. Baugé, Controller placement

methods analysis, in: ICICM, IEEE, 2016, pp. 239–244.

[30] M. T. I. ul Huque, W. Si, G. Jourjon, V. Gramoli, Large-scale

dynamic controller placement, IEEE Transactions on Network

and Service Management 14 (1) (2017) 63–76.

[31] B. Heller, R. Sherwood, N. McKeown, The controller placement

problem, in: ACM HotSDN, 2012, pp. 7–12.

[32] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F.

Zhani, R. Ahmed, R. Boutaba, Dynamic controller provisioning

in Software Defined Networks, in: CNSM, Zurich, Switzerland,

2013, pp. 18–25.

[33] P. Xiao, W. Qu, H. Qi, Z. Li, Y. Xu, The SDN controller place-

ment problem for WAN, in: ICCC, IEEE, 2014, pp. 220–224.

[34] G. Wang, Y. Zhao, J. Huang, Q. Duan, J. Li, A k-means-based

network partition algorithm for controller placement in software

defined network, in: ICC, IEEE, 2016, pp. 1–6.

[35] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, T. Li, Density cluster

based approach for controller placement problem in large-scale

software defined networkings, Computer Networks 112 (2017)

24–35.

[36] B. Zhang, X. Wang, L. Ma, M. Huang, Optimal controller place-

ment problem in Internet-oriented software defined network, in:

CyberC, IEEE, 2016, pp. 481–488.

[37] A. Ksentini, M. Bagaa, T. Taleb, I. Balasingham, On using bar-

gaining game for optimal placement of SDN controllers, in:

ICC, IEEE, 2016, pp. 1–6.

[38] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock,

M. Jarschel, M. Hoffmann, Heuristic approaches to the con-

troller placement problem in large scale SDN networks, IEEE

Transactions on Network and Service Management 12 (1)

(2015) 4–17.

[39] A. Ksentini, M. Bagaa, T. Taleb, On using SDN in 5G: the con-

troller placement problem, in: GLOBECOM, IEEE, 2016, pp.

1–6.

[40] A. Sallahi, M. St-Hilaire, Optimal model for the controller

placement problem in software defined networks, IEEE Com-

munications Letters 19 (1) (2015) 30–33.

[41] A. Bianco, P. Giaccone, T. Zhang, The role of intercontroller

traffic in SDN controllers placement, in: IEEE NFV-SDN, Palo

Alto, CA, 2016.

[42] S. Knight, H. Nguyen, N. Falkner, R. Bowden, M. Roughan, The

Internet topology zoo, IEEE JSAC 29 (9) (2011) 1765 –1775.

[43] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,

N. McKeown, G. Parulkar, Flowvisor: A network virtualization

layer, Tech. rep., OpenFlow Switch Consortium (2009).

[44] Mininet: An instant virtual network on your laptop (or other

PC).

URL http://mininet.org

[45] Gurobi optimizer reference manual.

URL http://www.gurobi.com

[46] The Internet Topology Zoo.

URL http://www.topology-zoo.org/

[47] T. Okabe, Y. Jin, B. Sendhoff, A critical survey of performance

indices for multi-objective optimisation, in: Congress on Evolu-

tionary Computation (CEC), Vol. 2, 2003, pp. 878–885.


