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Throughput Optimal Random Medium Access
Control for Relay Networks with Time-Varying

Channels
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Abstract—The use of existing network devices as relays has

a potential to improve the overall network performance. In this

work, we consider a two-hop wireless relay setting, where the

channels between the source and relay nodes to the destination

node are time varying. The relay nodes are able to overhear

the transmissions of the source node which may have a weak

connection to the destination, and they help the source node by

forwarding its messages to the destination on its behalf, whenever

this is needed. We develop a distributed scheme for relay selection

and channel access that is suitable for time-varying channels,

and prove that this scheme is throughput optimal. We obtain the

achievable rate region of our proposed scheme analytically for

a relay network with a single source and a single relay node.

Meanwhile, for a more general network with more than one

relay nodes, we perform Monte-Carlo simulations to obtain the

achievable rate region. In both cases, we demonstrate that the

achievable rate region attained with our distributed scheme is

the same as the one attained with centralized optimal scheme.

Index Terms—Relay networks, throughput optimal, dis-

tributed.

I. INTRODUCTION

A. Motivation

In wireless networks, there is always a node which has the
worst channel quality (e.g., cell edge node) due to its location,
shadowing effects or physical radio capabilities. Wireless
channel quality for these nodes may become so weak that
in order to maintain a reliable communication, some relays
have to be employed on the path between the source and
the destination node to aid their communication [1]. Instead
of deploying separate devices solely used for relaying, it is
possible to utilize the existing wireless devices in the network
for the same purpose. It is expected that future wireless devices
are going to be highly adaptive and flexible, and thus, opening
up new paradigms where they can adapt themselves utilizing
any network resource, e.g., as other peer nodes in their vicinity,
to improve their communications.

One of such paradigms is relay networks where the aim
is to improve the network throughput by allowing wireless
nodes to participate in the transmission, when they are neither
the intended destination nor the source [2]. A widely used
wireless relay network model consists of two hops, i.e., there
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Fig. 1: Relay Network.

are a source, a destination, and multiple relay nodes [3] as in
Figure 1. The basic idea is that the relay nodes, overhearing
the message transmitted from the source node, forward the
same message to the destination node instead of treating it as
interference [4].

Fundamentally, this idea of relaying is very similar to
routing in multi-hop networks, and there is already a rich
literature on the subject. In particular, centralized throughput
optimal policies were developed for opportunistic multi-hop
relay networks in [5]–[7]. A policy is throughput optimal in
the sense of having an achievable rate region that coincides
with the network achievable rate region, and thus, a superset
of the achievable rate region of any other policy. However,
a centralized policy requires global information of the entire
network. The collection of this information is costly in terms
of power consumption and time. On the other hand, distributed
(decentralized) policies may alleviate these implementation
costs by running a loosely coordinated scheme at each network
node.

A common network setting is where the source and relay
nodes are located in such a way that the source is furthest
to the destination, while the relays are relatively closer. This
notion of distance includes both real distances in free-space
communication, or virtual distances that also include the
effects of fading and shadowing [8]. Hence, the source has the
worst channel quality in terms of probability of successfully
transmitting its packets to the destination.
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There is a number of works developing distributed policies
for two-hop wireless relay networks with the objective of
improving the transmission rate of the source node [9]–[12]. In
these works, the time-varying wireless channel is modeled as
an ON-OFF random process for analytical tractability, where
a packet is successfully decoded at the destination node when
the channel is ON or it is lost when the channel is OFF. Note
that modeling the channel as an ON-OFF random process is an
approximation of a more general time-varying channel model,
where the channel is a multi-state process, with each state
supporting a maximum transmission rate with which the data
can be reliably sent [13]. The authors then propose subopti-
mal channel access algorithms, and calculate the achievable
transmission rate of the source node by employing Loynes’
theorem [14].

Unlike prior works, we develop a throughput optimal
distributed policy called Relay Q-CSMA (RQ-CSMA), for
relay networks with time-varying channels, and show that
its achievable rate region coincides with the achievable rate
region of a centralized optimal policy. Our main contribution is
eliminating the need for global queue size information which
is crucial in centralized throughput optimal policies such as
MWS. Our policy achieves this without the knowledge of the
channel statistics, and it performs the scheduling of the source
and relay nodes by only utilizing local information without any
explicit message exchanges.

B. Related Work

The network setting used in this paper was previously stud-
ied under different contexts and assumptions in the literature.
In particular, for multi-hop opportunistic routing it is shown
that Maximum Weight Scheduling (MWS) algorithm, which
is a centralized scheme is throughput optimal [5]. MWS and
many of its variants exist in the literature addressing the op-
timal resource allocation under different network assumptions
and for different applications, e.g., cognitive networks [15],
relay networks [16], etc [13], [17], [18]. Unfortunately, MWS
is known to be NP-hard for general networks [19], [20] and
it is not amenable to a distributed implementation.

The high time complexity of the centralized algorithms
such as MWS was addressed in the literature by developing
low-complexity sub-optimal algorithms. In particular, maximal
scheduling is a low-complexity alternative to MWS that is
amenable to parallel and distributed implementation [21].
However, maximal scheduling may only achieve a fraction of
the achievable rate region [22]. Greedy Maximal Scheduling
(GMS), also known as Longest-Queue-First (LQF), is another
low-complexity alternative to MWS [23] with a complexity
that grows linearly with the total number of the links [24].
Its performance has been observed to be close to optimum in
a variety of wireless network scenarios [25]. Although these
algorithms reduce the complexity of MWS, they have two
main shortcomings. First, they require network wide queue
length information exchange, and second, they are mainly
suitable for links with time-invariant properties.

Another class of distributed scheduling policies, called
Queue-length-based Random Access Scheduling policies, use

local message exchanges to resolve the contention prob-
lem [26], [27]. By adjusting each link’s contention proba-
bility using the link’s local queue information, it provides
explicit tradeoffs between efficiency, complexity, and the
contention period. Carrier-Sensing-Multiple-Access (CSMA)-
based scheduling policies [28], [29], reduce the complexity
by simplifying the comparison process, by exploiting carrier-
sensing. Nonetheless, these results indicate that good through-
put performance may be attained for time invariant channels
using algorithms with very low complexity.

In practice, however, most wireless systems have time
varying characteristics. When link states vary over time, the
system throughput can be improved by scheduling those links
with better states. This is known as the opportunistic gain [30].
However, many of the low-complexity scheduling algorithms
in the literature do not exploit the opportunistic gain, and
their performance in time varying channels are shown to be
significantly lower [31], [32].

Recently, a few other low-complexity schemes have been
proposed that are provably efficient over time variable chan-
nels [31], [32]. However, these algorithms, depending on the
network structure, require either local or global queue length
and channel state information (CSI) exchange. In [33], backoff
and channel holding times were adjusted as some function
of the current channel capacity to maximize an upper bound
on the capacity of a single hop network without considering
the effect of the joint queue size and CSI on the actual
capacity of the network. In Opportunistic ALOHA [34], [35]
the transmission probability is allowed to be a function of
the channel state information and maximum throughput of
the system is achieved. Distributed Opportunistic Scheduling
(DOS) [36], [37] involves a process of joint channel probing
and distributed scheduling. The authors show that the optimal
scheme for DOS turns out to be a pure threshold policy, where
the rate threshold can be obtained by solving a fixed-point
equation. However both Opportunistic ALOHA and DOS are
designed under the assumption of saturated queues and their
performance have no guarantees for unsaturated queues.

The use of relay nodes has also been investigated in the
context of cellular networks. In [38] a throughput optimal
centralized downlink scheduling policy is developed for multi-
hop relaying in a cellular network. Note that the uplink
scheduling is more challenging, since the queue length in-
formation is not readily available at the base station. Conven-
tional cellular architecture treats the mobile users as simple
transceivers and due to this rigid client-server scheme, they
are fully commanded by cellular base stations. In future
cellular architectures, mobile users will be given more free-
dom, and thus, they will be treated as local micro-operators
to improve network coverage [39]. Device-to-Device (D2D)
communication is another paradigm which appears to be a
promising component in the next generation cellular networks
[40]. D2D communication was proposed in [41] to enable
multi-hop relaying in cellular networks. The potential of D2D
communications for improving spectral efficiency of cellular
networks was also identified in [42], [43]. There are numerous
distributed D2D policies [44]–[47], addressing the data relay
services enabled by existing devices in the network. However,
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Fig. 2: Relay Network. Channels between nodes and destina-
tion are ON-OFF whereas the channels between all pairs of
nodes are always ON.

most prior works in the literature ignore the network stability
and do not investigate throughput optimality.

C. Main results and organization

In this work, we take both channel state and queue length
information into account when scheduling the source and relay
nodes. We propose a distributed CSMA based scheduling
algorithm which is analytically shown to be the throughput
optimal. The time complexity of the algorithm is shown to
be linear in the number of nodes. The rest of the paper is
organized as follows. In Section II, we introduce the relay
network model. In Section III, we give a brief introduction
to MWS and later propose our scheduling and contention
resolution algorithms. In Section IV, we analytically prove
throughput optimality of our algorithm. We establish the
achievable rate region for a source and a single relay node in
Section V and finally, we evaluate the performance of different
scheduling algorithms via simulations in Section VI.

II. SYSTEM MODEL

In this section, we introduce the details of our system
model and the definitions of the main concepts that are
used in relation to this model. Throughout the paper, the
following notations are adopted. Upper case and lower case
bold symbols denote matrices and vectors, respectively. Upper
case calligraphic symbols denote sets.

A. Network Model

We consider a wireless relay network consisting of a source
node and N relay nodes all wishing to communicate with a
common destination node as shown in Figure 2. We consider
a time-slotted system where the time slot is the resource to
be shared among different nodes. We adopt a non-interference
model where only one node is transmitting at a given time1.

1This assumption is widely used in the literature, e.g., it is proposed that
the cellular spectrum is utilized for both D2D and cellular communications
(i.e., underlay inband D2D) [40].

The length of the time slot is equal to the transmission time
of a single packet.

We assume that the channels between N +1 nodes and the
destination node are time-varying ON-OFF channels, where
a packet is either successfully decoded at the destination
or lost with a certain probability. The nodes with better
channel conditions to the destination have higher successful
transmission probabilities. We will refer to the source node
as node 0 and N relay nodes as node i, i = 1, . . . , N . We
assume that relay nodes are in close proximity to node 0 so
that the channels between node 0 and nodes i = 1, . . . , N are
always ON and node 0 can always transmit successfully to any
node i = 1, . . . , N . This assumption is realistic in practical
scenarios (e.g., see [48]), due to proximity of source node and
relays.

Let s
i

(t) 2 {0, 1} be the channel state between node
i, i = 0, 1, . . . , N and the destination at time slot t. The
random channel states, s

i

(t), are assumed to be independent
and identically distributed (iid) across time and nodes. Let
⇢
i

be the probability that the channel between node i and
the destination is ON, i.e., s

i

(t) = 1. Note that, unlike the
traditional networks with abundant resources, acquisition of
the CSI using traditional methods in networks such as Internet
of things (IoT), wireless sensor networks (WSN) and energy
harvesting (EH) networks is not practical due to the large
number of energy limited devices. One way to mitigate this
problem is to use a 1-bit feedback mechanism to estimate the
CSI. In the 1-bit CSI feedback method, first introduced in [49],
if the channel gain is above a certain threshold, it is assumed
that the channel is ON and OFF, otherwise2.

Let A
i

(t) be the number of packets arriving to node i =

0, 1, . . . , N at time t. The arrival processes are assumed to
be iid across time and nodes. Let �

i

= E [A
i

(t)] be the rate
of arrival to node i. We also assume that A

i

(t)  A
max

and
E
⇥
A

i

(t)2
⇤

is finite for all i and t. The incoming packets are
stored in a queue until they are finally transmitted.

Let Q
i

(t) be the size of the queue storing the packets
of node i = 0, 1, . . . , N at time t. Meanwhile, each node
i = 1, . . . , N also keeps a separate queue for node 0 packets
that they are supposed to relay on its behalf. Let Q

0i

(t),
i = 1, 2, . . . , N be the size of this queue at time t.

Finally, we assume that the transmission rate of each node
is the same and equal to one unit sized packet per time slot.

B. The Relaying Scheme
At the beginning of time slot t, the channel is acquired by

one of the nodes according to the scheme to be explained
in the subsequent section. If node 0 acquires the channel,
it sends its packet to the destination if s

0

(t) = 1, i.e., the
channel between node 0 and destination is ON. Otherwise, it
forwards its packet to one of the nodes 1, . . . , N for future
delivery of the packet to the destination via the selected node
i, i = 1, 2, . . . , N . Node 0 forwards the packet to node i⇤,
where i⇤ = argmax

j

{Q
0

(t)�Q
0j

(t)}. Meanwhile, if a node

2
⇢

i

= Pr
h
|hi|2P
N0

> �

i
, where h

i

is the channel gain from node i to the
destination node, N0 is the noise power level at the destination and � is the
Signal-to-Noise Ratio (SNR) threshold required for correct decoding.
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other than node 0 acquires the channel in a time slot, it may
transmit either one of its own packets or a packet received
from node 0 in previous time slots. Node i, i = 1, . . . , N
transmits a packet from one of its two queues, i.e., Q

0i

(t)
or Q

i

(t), with the largest backlog. The destination sends an
Acknowledgment (ACK) message after the reception of the
packet. ACK message is perfectly received by both node 0

and the transmitting node i, i = 1, . . . , N , and thus, node
0 is cognizant of the delivery of its packet by the node i,
i = 1, 2, . . . , N . Note that the assumption of perfect reception
of ACK/NACK is not necessary. It can be shown in a similar
way as was done in [13] that as long as the queues are updated
periodically with period T > 1, our results still hold.

Let x(t) = I, 0, 1, . . . , N be the scalar denoting the sched-
uled node for transmission, where I denotes the Idle state
indicating no nodes are scheduled for transmission. Based
on the aforementioned relaying scheme, the queues evolve as
follows:

Q
0

(t+ 1) =max

⇥
Q

0

(t)� {x(t)=0}, 0
⇤
+A

0

(t), (1)
Q

i

(t+ 1) =max

⇥
Q

i

(t)� {x(t)=i} · {Qi(t)�Q0i(t)}, 0
⇤

+A
i

(t), 8i = 1, . . . , N (2)
Q

0i

⇤
(t+ 1) =max

⇥
Q

0i

⇤
(t)� {x(t)=i

⇤} · {Qi⇤ (t)<Q0i⇤ (t)}, 0
⇤

+ (1� s
0

(t)) {x(t)=0},

for i⇤ = argmax

j

{Q
0

(t)�Q
0j

(t)} , (3)
Q

0i

(t+ 1) =max

⇥
Q

0i

(t)� {x(t)=i} · {Qi(t)<Q0i(t)}, 0
⇤

8i 6= i⇤, (4)

where 1{·} is the indicator function, and its value is equal to
1 if the condition inside the bracket is true, and 0 otherwise.

III. DISTRIBUTED ALGORITHM

A. Background and Preliminaries
Before we proceed with the discussion of our proposed

distributed scheduling algorithm, we give a brief overview of
the well-known Maximum Weight Scheduling (MWS) [18]
and Q-CSMA algorithms [29] in the context of our relay
network.

Maximum Weight Scheduling: According to MWS algo-
rithm, each node is assigned a weight that is the product
of its differential queue length and the channel state. MWS
algorithm chooses the node with the maximum weight for
transmission at time slot t. The differential queue length of the
node is the difference of the queue lengths of the ingress and
egress nodes. Note that in our relay network, the destination
is the sink node, and thus, its queue length is always zero. Let
Q

r

(t) be the maximum differential backlog of node 0 with
respect to nodes 1, . . . , N at time slot t, which is defined as

Q
r

(t) = max

i=1,2,...,N

{Q
0

(t)�Q
0i

(t), 0} . (5)

In our network model, we assign weights to nodes in the
network, and aim to schedule the node (and the queue of that
node) with the highest weight at every slot. The weight of
node i at slot t, !

i

(t), is defined as follows:

!
0

(t) = f
0

(Q
0

(t))s
0

(t) + f
0

(Q
r

(t))(1� s
0

(t)), (6)
!
i

(t) = max {f
i

(Q
0i

(t)), f
i

(Q
i

(t))} s
i

(t) , 8i 6= 0, (7)

where f
i

: [0, 1] ! [0, 1], i = 0, 1, . . . , N are functions
that should satisfy the following conditions [13]:

1) f
i

(Q
i

) is a non decreasing, continuous function with
lim

Qi!1 f
i

(Q
i

) = 1.
2) Given any M

1

> 0, M
2

> 0 and 0 < ✏ < 1, there exists
a Q < 1, such that for all Q

i

> Q and 8i, we have

(1� ✏)f
i

(Q
i

)  f
i

(Q
i

�M
1

)  f
i

(Q
i

+M
2

)

 (1 + ✏)f
i

(Q
i

). (8)

It can be shown that for this system model, the centralized
MWS algorithm is throughput optimal using the Lyapunov
drift theorem [18]. However, note that MWS requires the
complete instantaneous queue length and channel state infor-
mation.

Queue based Carrier-Sensing-Multiple-Access (Q-CSMA):
Carrier-Sensing-Multiple-Access (CSMA)-based scheduling
policies [28], [29], reduce the complexity of MWS by sim-
plifying the comparison of the weights exploiting the carrier-
sensing mechanism. In Q-CSMA, each time slot t is divided
into a contention and a data slot. For any node i, let C(i)
be the set of conflicting nodes (called conflict set) of node i,
i.e., C(i) is the set of nodes such that if any one of them is
active, then node i cannot be active. In the contention slot, the
network first selects a set of nodes that do not conflict with
each other, denoted by D(t). Note that this set of nodes is also
a feasible schedule, but this is not the schedule to be used for
data transmission. D(t) is called the decision schedule at time
t.

The network selects a decision schedule according to a
randomized procedure, i.e., it selects D(t) 2 M with prob-
ability ↵D(t)

, where
P

D(t)2M ↵D(t)

= 1, and M is the
set of all possible feasible schedules of the network. Then,
the scheduling procedure proceeds as follows: Each node
within D(t) is checked to decide whether it will be included
in the transmission schedule x(t). For any i 2 D(t) if no
nodes in C(i) were active in the previous data slot, i.e.,
8j 2 C(i), x(t � 1) 6= j, then i chooses to be active with
probability p

i

and inactive with probability 1�p
i

in the current
data slot. If at least one node in C(i) was active in the previous
data slot, i.e., 9j 2 C(i), x(t� 1) = j, then i will be inactive
in the current data slot. Any node i /2 D(t) maintains its state
(active or inactive) from the previous data slot.

B. Relay Q-CSMA Algorithm (RQ-CSMA)
We propose RQ-CSMA algorithm to obtain a feasible

throughput optimal schedule, when the channels to the desti-
nation are randomly varying over time. In RQ-CSMA, a time
slot is divided into a contention and a transmission slot as in
Q-CSMA. Unlike Q-CSMA, the purpose of the contention slot
in RQ-CSMA is not only to generate a collision free schedule
to be used in the transmission slot but also to infer the channel
states of every node, i.e., s(t) = (s

0

(t), s
1

(t), . . . , s
N

(t)).
Let us denote by D#

(t), the decision schedule at time
slot t with s(t) = #, where # = {#

0

, #
1

, . . . , #
N

}, and
#
i

2 {0, 1} is a realization of randomly varying channel states.
Note that in the relay network considered, the cardinality of
set D#

(t) is always one, since only one node can be scheduled
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without conflicting with others. The network selects a decision
schedule D#

(t) randomly with probability ↵#
D#

(t)

, whereP
D#

(t)2M# ↵#
D#

(t)

= 1, and M# is the set of all possible
feasible schedules of the network when s(t) = #. Note that
in the relay network considered, a schedule is feasible, if only
one node is scheduled, and the scheduled node i = 0, 1, . . . , N
has its channel in ON state, i.e., s

i

(t) = 1. Meanwhile, it is
always feasible to schedule node 0, since links between node
0 and other nodes are always ON.

Unlike Q-CSMA, in RQ-CSMA, the transmission schedule
is determined according to the channel states. Let y#(t) be the
transmission schedule in the most recent data slot (before and
including time t) when s(t) = #. More specifically,

y#(t) = {x(⌧⇤) : ⌧⇤ = max {⌧ s.t. ⌧  t and s(⌧) = #}} .
(9)

y# is the transmission activity of the nodes in the last
instance of time, before and including t, where the channel
state vector realization was #. Consider the following example
to better illustrate the evolution of y#. Assume that only the
channel of node 0 is time varying. Since there is only one time
varying channel, there are only two variables defined by (9),
i.e., y1(t) and y0(t). The sample path evolution of y1(t), y0(t)
and x(t) are given in Fig. 3. Suppose that at time t = 8, RQ-
CSMA has chosen to schedule an idle slot. Note that since at
t = 8, the channel state is 0, y0(8) updates it value to the value
of x(8) while y1(8) maintains its value from t = 7, since it
is not allowed to change its value. Basically, when s

0

(t) = 0,
only y0(t) evolves, and y1(t) does not evolve. Note that in
scheduling the nodes, if s

0

(t) = 1 (s
0

(t) = 0), RQ-CSMA
uses y1(t) (y0(t)).

At time slot t, based on the realization of the channel
state vector s(t) = # a decision schedule, D#

(t) is randomly
determined. Then each node i searches for the corresponding
y to the channel state vector s(t) = #, i.e., y#. If node
i 2 D#

(t), and y#(t � 1) 6= j for all j 6= i, then node
i chooses to be active with probability p#

i

(t), and idle with
probability 1 � p#

i

(t). If y#(t � 1) = j for any j 6= i, then
i will be inactive in the current transmission slot. Any node
i not selected in D#

(t) will maintain its previous state, i.e.,
it will be inactive if y#(t� 1) 6= i and active otherwise. The
conditions on activation probabilities p#

i

(t) will be specified
in Section IV-C. Note that in Q-CSMA, transmission schedule
is determined based on the previous transmission schedule
x(t�1), whereas in RQ-CSMA we use y#(t�1) for each # to
determine the transmission schedule x(t). In Section IV-C, We
will show that defining y# as such, and using it to schedule
the transmissions, results in Markov chains with product-form
stationary distributions. This is then used to prove throughput
optimality of RQ-CSMA. The detailed description of RQ-
CSMA is given in Algorithm 1.

We illustrate the operation of RQ-CSMA with the following
simple example.

Example 1: Suppose that the network consists of a source
and a relay node with only node 0 having a time varying
channel, i.e., s(t) = s

0

(t). Note that whenever s
0

(t) = 1,
the network consists of two nodes willing to transmit to a
common destination as in Figure 4a. In this scenario, the

Algorithm 1 RQ-CSMA
At each time slot, each node i performs the following proce-
dure.

1: In control slot, randomly select a decision schedule
D#

(t) 2 M# with probability ↵#
D#

(t)

(node i contends
to be included in the decision schedule.),

2: if i 2 D#
(t) and y#(t� 1) 6= j for all j 6= i then

3: x(t) = i with probability p#
i

(t)
4: x(t) = I with probability 1� p#

i

(t)
5: else if i 2 D#

(t) and y#(t� 1) = j for some j 6= i then

6: node i does not transmit.
7: else if i 62 D#

(t) then

8: x(t) = i if y#(t� 1) = i,
9: x(t) 6= i if y#(t� 1) 6= i, (i.e., any node i 62 D#

(t),
maintains its previous state)

10: In the data slot, use x(t) as the transmission schedule

possible decision schedules are D1

=

�
I1
 

or {0} or {1},
which translates into two nodes being idle when s(t) = 1, or
direct transmission of node 0 to destination or transmission of
node 1 to destination, respectively. Meanwhile, if s

0

(t) = 0,
the network consists of a node 0 which forwards its packet to
the node 1 for eventual delivery to the destination as shown in
Figure 4b. In this scenario, the possible decision schedules are
D0

=

�
I0
 

or {0} or {1}, which translates into two nodes
being idle when s(t) = 0, or node 0 relaying a packet to node
1 or transmission of node 1 to destination, respectively.

Since there is only one time varying channel, we need to
define y1(t), the transmission schedule corresponding to the
last instance ⌧⇤ that s

0

(⌧⇤) = 1 and y0(t), the transmission
schedule corresponding to the last instance ⌧⇤ such that
s
0

(⌧⇤) = 0 according to (9). Note that y1(t) is associated
with Figure 4a and y0(t) is associated with Figure 4b.

First consider the case when s
0

(t) = 1, y1(t�1) = I1, i.e.,
in the most recent time slot, ⌧ , when s

0

(⌧) = 1, where ⌧ < t,
both nodes did not transmit. Then,

• if the decision schedule in the current slot is D1

(t) = {0},
then node 0 transmits to the destination with probability
p1
0

(t) and remains idle with probability 1� p1
0

(t).
• if the decision schedule is D1

(t) = {1}, then node 1

transmits to the destination with probability p1
1

(t), and it
remains idle with probability 1� p1

1

(t).

Now, consider the other possibility for the channel state of
node 0, i.e., when s

0

(t) = 0, we have y0(t � 1) = 1, which
means that in the most recent time slot, ⌧ , when s

0

(⌧) = 0,
node 0 was idle whereas node 1 transmitted. Then,

• if the decision schedule in the current slot is D0

(t) = {0},
then node 0 does not transmit, because the last time when
the node 0 to destination channel was OFF, node 1 was
active.

• if the decision schedule in the current slot is D0

(t) = {1},
then node 1 transmits to the destination with probability
p0
1

(t), and it remains idle with probability 1� p0
1

(t).
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Fig. 3: The evolution of y1(t), y0(t) and x(t). Numbers in black mean that the schedule is allowed to evolve, while the
numbers in blue mean that it remains the same.

node 0

D

node 1

(a) Network topology when s0(t) = 1

node 0

D

node  1

(b) Network topology when s0(t) = 0

Fig. 4: Different network topologies associated with s
0

(t)

C. Contention Resolution Scheme

In this section, we propose a contention resolution scheme
which satisfies two purposes: i) Randomly choosing a feasible
schedule, and ii) Inferring the channel state vector s(t) at each
node in a distributed manner. At the beginning of contention
slot, the destination node broadcasts a probe packet. Upon
successful detection of this packet, node i determines that its
channel to the destination node is ON at slot t, and otherwise,
it recognizes that its channel is OFF. We assume that the
contention slot is divided into N + 1 + W number of mini
slots. Each node is registered to one of the first N + 1 mini
slots, i.e., we assign ith, i = 0, . . . , N + 1, mini slot to ith

node. At ith mini slot, node i broadcasts a random signal,
and all other nodes attempt to detect the random message.
If they detect a message on ith mini-slot, they conclude that
s
i

(t) = 1, otherwise s
i

(t) = 0. Hence, at the end of N + 1

mini-slots, all nodes are aware of other nodes’ channel states
to the destination.

To randomly choose (i.e., with probability ↵#
D#

(t)

for any
# 2 S) a decision schedule D#

(t), node i (given that
s
i

(t) = 1) randomly selects a number T
i

uniformly distributed
in [N + 1, N + 1 +W ], and waits for T

i

mini slots. If node
i hears an INTENT message before T

i

+ 1, it will not be
included in D#

(t). Otherwise, node i broadcasts an INTENT
message at the beginning of the (T

i

+ 1)

th control mini-slot.
If there is no collision in (T

i

+ 1)

th control mini-slot, node i
will be included in D#

(t). Finally, if there is a collision, none

Fig. 5: DTMC with (x; s
0

) as states for Example 1.

of the nodes will be included in D#
(t) (i.e., D#

(t) =
�
I#
 

).
Note that the contention resolution scheme requires all

nodes to hear each other which may not be always feasible.
This is similar to the well-known hidden node problem in
wireless networks which can be resolved by Request-To-
Decide (RTD) and Clear-To-Decide (CTD) mechanism. The
INTENT message in our original scheme is split into RTD
and CTD pair transmitted and received, respectively, in two
successive sub-mini slots. In the first sub-mini slot, node i,
i = 1, . . . , N sends RTD to the destination node. If the
destination receives RTD without a collision (i.e., no other
nodes are transmitting in the same sub-mini slot), then the
destination replies with CTD to node i in the second sub-mini
slot. If node i receives the CTD from destination without a
collision, then node i is added to the decision schedule.

IV. THROUGHPUT OPTIMALITY OF RQ-CSMA
In this section, we first discuss why a direct application

of Q-CSMA is not possible for our relay network. Then, we
explain how we can modify the standard analysis of throughput
optimality according to the structure of our proposed RQ-
CSMA algorithm. Finally, we provide the proof of through-
put optimality of RQ-CSMA when the channel states are
determined correctly according to the contention algorithm
discussed earlier. The key notations used in this paper are
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TABLE I: SUMMARY OF NOTATION

Notation Description
s

i

(t) Channel state between node i and the destination at time t,
A

i

(t) Number of packets arriving to node i at time t,
Q

i

(t) Size of the queue, storing the packets of node i at time t,
Q0i(t) Relaying queue of node i at time t,
x(t) Scheduled node at time t,
D(t) The decision schedule,
D#(t) The decision schedule when s(t) = #,

y

#(t)
Transmission schedule in the most recent data slot
(before and including time t) when s(t) = #,

p

#

i

(t) Activation probability of node i when s(t) = #,
!

x

(t) Weight associated with scheduled node x at time t.
M The set of all feasible schedules of the network.
↵

D(t) The probability of selecting D(t) as the decision schedule.
⇢

i

The probability that the channel between node i and the destination is ON.
# Sample channel state vector.

listed in Table I. For simplicity, in the following, we may
drop t whenever it is implied that the system is at time slot t.

A. Drawback of Q-CSMA
Even though Q-CSMA is known to achieve a throughput-

optimal schedule in a distributed fashion for a wireless network
with non-time-varying links, it is not a suitable choice for
many other network models. A particular case was studied in
[50], where the authors investigated a random access scheme
for scheduling nodes in a cognitive radio network (CRN). The
authors in [50] demonstrated that Q-CSMA is not throughput
optimal in this network model, since the Discrete Time Markov
Chain (DTMC) with the transmission schedule x(t) chosen as
the state is not time-reversible, and thus, it does not have a
product-form solution.

Similarly, Q-CSMA is not a suitable choice for our system
model as well. Note that Q-CSMA is throughput optimal when
the activation probabilities for each node are chosen to be
a function of the node weights as defined in (6) and (7) of
[29]. It can be argued that the stationary distribution of DTMC
exists in steady state, if the activation probabilities change
slowly over time. Unfortunately, in our system model, the node
weights may vary abruptly depending on the channel state.
Specifically, in Example 1, whenever s

0

(t) = 1, the weight
of node 0 is f

0

(Q
0

(t)) and it becomes f
0

(Q
0

(t) � Q
01

(t))
otherwise. Consider the case where Q

0

(t) and Q
0i

(t) are both
very large and equal. In this case, the activation probability
of node 0 is approximately equal to 1 when s

0

(t) = 1 and
0 otherwise. This results in a transition probability jumping
from 1 to 0 from one slot to the next. This implies that the
distribution of DTMC cannot be assumed to be at steady state
at a given time3. Moreover, the DTMC in our system model
is not time-reversible either.

B. Modifying the DTMC with channel state information
Next, we demonstrate that associating the channel state

of the node 0 into the states cannot resolve this problem.
For this purpose, we again consider the network in Example
1. Let (x; s

0

) be the states of the new DTMC as shown

3Henceforth, Proposition 2 in [29] which assumes that the DTMC is in
steady state at any given time does not hold for our network model.

0

0

(a) DTMC0.

1

1

(b) DTMC1.

Fig. 6: Two different DTMCs associated with s
0

(t).

in Figure 54. Consider the highlighted states in Figure 5,
and let us check whether the DTMC is time reversible by
examining the transitions from (0; 0), (I; 0) to (I; 1) in the
clockwise and counter-clockwise directions. Let ↵

i

, i = 0, 1,
be the probability that node i is included in the decision
schedule and p0

i

(p1
i

) be the activation probability of node
i = 0, 1 when s(t) = 0 (s(t) = 1). The product of
clockwise transition probabilities is ⇢

0

(1 � ⇢
0

)

2↵2

0

p0
0

(1 �
p0
0

)

�
↵
1

(1� p
1

) + ↵
0

(1� p1
0

) + 1� ↵
0

� ↵
1

�
and the prod-

uct of counter-clockwise transition probabilities is ⇢
0

(1 �
⇢
0

)

2↵2

0

p0
0

(1� p0
0

)

�
↵
1

(1� p
1

) + ↵
0

(1� p0
0

) + 1� ↵
0

� ↵
1

�
.

Since, p1
0

6= p0
0

, these two probabilities are not equal and
therefore the DTMC is not time reversible by Kolmogorov0s
criterion [51].

Inspired by the approach of [50], we define a separate
DTMC# for each of the different realizations of channel state
vector # 2 S(t) to mitigate this problem. Let y# 2 M# be
the states of DTMC#. We denote the Idle state of DTMC#

by I#. Note that a transition from state y# to another state
ŷ# in DTMC# only depends on the current state y# given the
current channel state vector s(t) and the decision schedule.
Thus, DTMC# is Markovian for all # 2 S .

Figure 6 shows two different DTMCs associated with each
of two different states of s

0

for the network in Example 1.
The transition probabilities follow directly from the definition
of RQ-CSMA algorithm. Figure 6a represents DTMC0 where
a “Rectangle” corresponds to y0 and an oval corresponds to�
y0; s

0

�
. For example, consider (1; 0) in DTMC0; being in this

state means that the channel of the node 0 is OFF and only

4For the sake of simplicity, we only show the transition probabilities of the
node 0.
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Fig. 7: Transition probabilities of states in DTMC# for any
arbitrary y# 2 M#.

node 1 is transmitting, while (1; 1) means that the channel
of the node 0 is ON and the last time that channel was OFF
prior to the current time slot, node 1 was transmitting. This
follows from the definition of y# in (9). Similarly, Figure 6b
represents DTMC1 where a “Rectangle” corresponds to y1 and
an oval corresponds to

�
y1; s

0

�
. Note that according to RQ-

CSMA, any state, y0, (i.e., a rectangle) in DTMC0 at any time
t can make a transition into another state, ŷ0 (y0 6= ŷ0), if and
only if s

0

(t) = 0, and the state freezes otherwise. The same
argument follows for DTMC1.

Now consider y0 and y1 as states for DTMC0 and
DTMC1, respectively5. The stationary distribution of DTMC0

is ⇡(I0) = 1

Z

0 , ⇡(1) = 1

Z

0
p

0
1

1�p

0
1

and ⇡(0) = 1

Z

0
p

0
0

1�p

0
0

where

Z0

= 1+

p

0
0

1�p

0
0
+

p

0
1

1�p

0
1

. Similarly the stationary distribution of

DTMC1 is ⇡(I1) = 1

Z

1 , ⇡(1) = 1

Z

1
p

1
1

1�p

1
1

and ⇡(0) = 1

Z

1
p

1
0

1�p

1
0

where Z1

= 1+

p

1
0

1�p

1
0
+

p

1
1

1�p

1
1

. Both DTMC0 and DTMC1 are
time reversible and have product form stationary distributions.
Moreover, at any given time only one of the DTMCs evolve.
Also, the transition probabilities of DTMC0 only depend on
p0
0

and p0
1

, whereas the transition probabilities in DTMC1 only
depends on p1

0

and p1
1

. Hence, we can assume that at any time
the DTMCs are at steady state.

C. Proving the Throughput Optimality of RQ-CSMA

In the following, we consider the general network topology
with a source and N relay nodes, with all channels to the
destination being time varying ON-OFF channels, whereas
the channels from node 0 to all other nodes are always ON.
We show that DTMC# for all # 2 S is time reversible
with a product-form stationary distribution. Theorem 1 gives
the product-form of the stationary distribution, and finally,
Theorem 3 claims the throughput optimality of RQ-CSMA.

Theorem 1. DTMC# for any # 2 S is reversible and it has

5Note that Markov chains with
�
y

0; s0
�

and
�
y

1; s0
�

as states are not time
reversible. It is easy to verify this observation from Fig.6, where the outgoing
probabilities from

�
y

0; 0
�

and
�
y

0; 1
�

to
�
ŷ

0; 0
�

are the same whereas the
incoming probabilities from

�
ŷ

0; s0
�

to
�
y

0; 1
�

do not exist if y0 6= ŷ

0.

the following product-form stationary distribution:

⇡
�
y#
�
=

1

Z#

p#
y

#

1� p#
y

#

,

⇡
�
I#
�
=

1

Z#
, (10)

where Z#
= 1 +

X

y

#2M#

p#
y

#

1� p#
y

#

. (11)

Proof. Consider the state transitions of DTMC# as given in
Fig. 7. For any y# 2 M# we can write the following detailed
balance equation which follows from RQ-CSMA:

⇡
�
I#
�
Pr (s(t) = #)↵#

y

#p
#
y

#

= ⇡
�
y#
�
Pr (s(t) = #)↵#

y

#(1� p#
y

#), (12)

which simplifies to:

⇡
�
y#
�
= ⇡

�
I#
� p#

y

#

1� p#
y

#

, (13)

Next we have,

⇡
�
I#
�
+

X

y

#2M#

⇡
�
y#
�

= ⇡
�
I#
�
+

X

y

#2M#

⇡
�
I#
� p#

y

#

1� p#
y

#

= 1. (14)

If we define Z#
= 1 +

P
y

#2M#

p

#
y#

1�p

#
y#

, we have:

⇡
�
I#
�
=

1

Z#
(15)

Substituting (15) in (13) gives the stationary distribution of
DTMC#.

The product-form stationary distribution of DTMC#, sug-
gests that we can use the results established in [13] to prove
the throughput optimality of the algorithm. Let x(t) be the
schedule at time slot t. For the sake of simplicity, we drop
t and denote the weight associated with the scheduled node
x(t) by !

x

(t). Similarly, !
y

#(t) is the weight associated with
the y#(t).

Theorem 2. [13] Let !⇤
(t) := max

x2M(t)

!
x

(t), where
M(t) is the set of all feasible schedules at time t. A scheduling
algorithm is throughput optimal if there exists � > 0 such that
if !⇤

(t) > �, the algorithm chooses a schedule x(t) 2 M(t)
that satisfies

Pr {!
x

(t) � (1� ✏)!⇤
(t)} � 1� �, (16)

for any 0 < ✏, � < 1, where !
x

(t) is a function of the
lengths of queues defined in (6) and (7).
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If we choose p#
y

# =

exp(!y# (t))

1+exp(!y# (t))

, then the stationary
distribution of DTMC# becomes:

⇡
�
y#
�
=

exp(!
y

#(t))

Z#
,

⇡
�
I#
�
=

1

Z#
(17)

Z#
= 1 +

X

y

#2M#

exp(!
y

#(t)) (18)

By choosing f
i

’s in (6) and (7) wisely, p#
y

# changes slowly
over time and we can assume that DTMC# is in steady-state in
every time slot (time scale separation) [29]. In the following
we show that RQ-CSMA is throughput optimal by showing
that it is close enough to another throughput optimal algorithm
(i.e., MWS).

Theorem 3. For any # 2 S , suppose that
S

D#2M# D#
=

M#. Let p#
y

# =

exp(!y# (t))

1+exp(!y# (t))

, 8y# 2 M# when s(t) = #.
Then RQ-CSMA is throughput-optimal.

Proof. We define !#
(t) := max

x2M#
(t)

!
x

(t). Next define
the following states:

�#
=

��
y#;#

�
|s.t., !

y

#(t) < (1� ✏)!#
(t)
 
, (19)

 

#
=

[

#2S
�# (20)

'#
=

�
y#|s.t., !

y

#(t) < (1� ✏)!#
(t)
 
. (21)

Note that ⇡
�S

#2S
�
y#;#

��
= ⇡

�
y#
�

so ⇡( #
) = ⇡('#

).
We now calculate the probability of a state in set �#:

⇡(�#
) <⇡( #

) = ⇡('#
)

=

X

y

#2'

#

⇡
�
y#
�

=

X

y

#2'

#

exp(!
y

#
(t)

)

Z#


���#

��
(1� ✏)!#

(t)

Z#

<
N + 2

exp(✏!#
(t))

, (22)

where (22) is true because
���#

�� 
��M#

��  N + 2, and

Z# > exp( max

y

#2M#
!
y

#) > exp(!#
(t)). (23)

Therefore, if

!#
(t) >

1

✏

✓
log (N + 2) + log

1

�#

◆
, (24)

then ⇡(�#
) < �#. Then we have the following results:

Pr
�
!
y

#(t) � (1� ✏)!#
(t)|s(t) = #

 

= 1� Pr
�
!
y

#(t) < (1� ✏)!#
(t)|s(t) = #

 

� 1�
N+2

e

✏!#(t)

Pr (s(t) = #)
:= 1� �#. (25)

Let x be the node scheduled in slot t by RQ-CSMA. Using
the total probability law we have:

Pr {!
x

(t) � (1� ✏)!⇤
(t)}

=

X

#2S
{ Pr

�
!
y

#(t) � (1� ✏)!#
(t)|s(t) = #

 
(26)

⇥ Pr (s(t) = #) }
� (1� �)

X

#2S
Pr (s(t) = #) = 1� �, (27)

where � = max#2S �#. Note that (26) holds because x = y#

and !⇤
(t) = !#

(t) whenever s(t) = #. Hence, Algorithm 1
satisfies the condition of Theorem 2, and thus, it is throughput
optimal.

D. On the complexity of the RQ-CSMA

At time slot t, each node i first needs to find a decision
schedule, and the channel state vector s(t). Note that this re-
quires N+1+W mini slots which results in O(N) complexity.
Then in RQ-CSMA each node needs to find the appropriate
DTMC# scheduled for evolution which means that each node
needs to find a single element from a set with size 2

N+1. It
is well known that the simple binary search, has logarithmic
complexity [52]. Consequently, the total complexity of RQ-
CSMA is O(log(2

N+1

)) +O(N) = O(N).

V. ACHIEVABLE RATE REGION OF THE RELAY NETWORK

In order to validate the throughput optimality of RQ-CSMA,
we focus on a network consisting of a source and a relay
nodes. This helps us visualize the geometric representation
of the achievable rate region and simplify the performance
comparison of RQ-CSMA and Q-CSMA. Lemma 1 establishes
the achievable rate region for two nodes with node 0 having
arrival rate of �

0

and probability of ON channel state, ⇢
0

and
node 1 having arrival rate of �

1

and probability of ON channel
state, ⇢

1

:

Lemma 1. For two nodes, the achievable rate region of the
relay network, when ⇢

1

< 0.5, is

⇤

c

= {�|�
1

< ⇢
1

,�
0

+ �
1

< ⇢
0

+ ⇢
1

(1� ⇢
0

)} (28)

and for ⇢
1

� 0.5 is

⇤

c

= { �|�
1

< (1� ⇢
0

)(2⇢
1

� 1), 2�
0

+ �
1

< 1 + ⇢
0

;

(1� ⇢
0

)(2⇢
1

� 1)  �
1

< ⇢
1

,�
0

+ �
1

< ⇢
0

+ (1� ⇢
0

)⇢
1

}
(29)

Proof. The proof is given in Appendix.

The achievable rate region of the relay network, ⇤c, for the
case of two nodes with ⇢

1

� 0.5 and with ⇢
1

< 0.5 is depicted
in Figure 8 and 9, respectively. Note that in case of no relay
service, node 0 can only achieve a rate of ⇢

0

, whereas when
relaying is enabled, it can achieve an additional rate of 1�⇢0

2

for ⇢
2

� 0.5 and ⇢
1

(1� ⇢
0

) for ⇢
1

< 0.5.



10

0O

1O1U� � )12(1 10 �� UU

)1( 10 UU �

� �� �100 11 UUU ���

2
1 0U�

Fig. 8: Achievable rate region of the two node relay network
with ⇢

1

� 0.5.

0U
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Fig. 9: Achievable rate region of the two node relay network
with ⇢

1

< 0.5.

VI. NUMERICAL RESULTS

In this section, we numerically validate the throughput
optimality of RQ-CSMA and compare its achievable rate
region with those of Q-CSMA and a simple algorithm utilizing
uniform random back-off [29], [50]. The uniform back-off
(UB) algorithm is defined in Algorithm 2. Note that Q-CSMA
is not designed for time varying channels so in Q-CSMA if
a node is chosen to be activated when its channel is at OFF
state, it remains idle in that slot. Also, note that we choose
f
i

’s in (6) and (7) to be of the form f(x) = log(�x) with
� = 0.1.

Note that we do not employ the RTD/CTD mechanism in the
simulations, since it is required to be implemented by other
policies as well to solve the hidden node problem, and its
overhead will be similar in all. Hence, in the following we
assume that any pairs of nodes are able to hear each other.

Algorithm 2 Uniform Backoff (UB)
At each time slot,

1: Node i selects a random back-off time T
i

=

Uniform [1,W ] and waits for T
i

control mini slots.
2: If node i hears an INTENT message from any other node

before the (T
i

+ 1)-th control mini-slot, it will not be
included in the transmission schedule and will not transmit
an INTENT message.

3: If node i does not hear an INTENT message from any
other node before the (T

i

+ 1)-th control mini-slot, it
will send an INTENT message to all other nodes at the
beginning of (T

i

+ 1)-th control mini-slot.
• If there is a collision, node i will not be included in

transmission schedule, x(t).
• If there is no collision, node i will be included in the

transmission schedule, x(t).
4: If x(t) = i, then node i will transmit. (Links with empty

queues will keep silent in this time slot.)

A

B

C

Fig. 10: Contour plot of Q
avg

versus �
0

and �
1

evaluated by
RQ-CSMA.

A. Validating Throughput Optimality by Simulations

We consider a network consisting of two nodes. We eval-
uate the performance of RQ-CSMA according to the average
queue lengths of all queues in the network, i.e., Q

avg

=

1

t

P
t

⌧=0

(Q
0

(⌧) + Q
1

(⌧) + Q
01

(⌧)). To calculate Q
avg

, we
run the simulation for t = 10

4 slots, and over 10 different
sample paths. The channel statistics are chosen as ⇢

0

= 0.4,
⇢
1

= 0.7. The arrival rates, (�
1

,�
0

), are taken in the region
[0, ⇢

1

+ 0.1] ⇥
⇥
0, 1+⇢0

2

+ 0.1
⇤

where we evaluate Q
avg

for
each point in this region. Figure 10 shows the contour graph
of Q

avg

versus �
0

and �
1

, where the solid and thick black line
is the achievable rate region of the relay network. We observe
that the network under RQ-CSMA exhibits unstable behavior,
shown by the increase in the average queue lengths (lighter
colored contours) as we cross the boundary of the stability
region.

Next, to further investigate the stability region of the RQ-
CSMA, we plot the time evolution of the queues at certain
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(a) Time evolution of queues at A � ✏ =
(0.59, 0.19).
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(b) Time evolution of queues at A + ✏ =
(0.61, 0.21).

Fig. 11: Time evolution of queues for A� ✏ and A+ ✏ under
RQ-CSMA.

points in the achievable rate region. We choose points A =

(0.6, 0.2), B = (0.4, 0.4) and C = (0.12, 0.7) on the boundary
of the achievable rate region as depicted in Figure 10. Then,
we evaluate the time evolution of the queues at A� ✏, B � ✏
and C�✏, i.e., the points are inside the achievable rate region
and they are sufficiently close to the boundary where ✏ = 0.01.
Also we evaluate the time evolution of the queues for A+ ✏,
B+✏ and C+✏, i.e., the points are outside the achievable rate
region and they are sufficiently close to the boundary. Figures
11a, 12a and 13a show that whenever we take a point inside
the achievable rate region close to the boundary, RQ-CSMA is
able to stabilize the queues as we expect from the throughput
optimality of RQ-CSMA.

We repeat the same procedure for Q-CSMA and UB al-
gorithms. Figure 14 and 16 show the contour graphs of
Q

avg

versus �
0

and �
1

under Q-CSMA and UB, respectively.
We observe that the network under both Q-CSMA and UB
exhibit unstable behavior, shown by the increase in the average
queue lengths, even when the arrivals are far away from the
boundaries of the stability region. To investigate further, we
plot the time evolution of the queues under Q-CSMA and UB
at A � ✏. The results are depicted in Figure 15 and 17. It
can be seen that Q-CSMA and UB are unable to stabilize the
queues for arrival rates stabilized by RQ-CSMA.

B. The effect of the number of relay nodes

Next, we numerically compare the performance of RQ-
CSMA with UB, MWS and Q-CSMA algorithms when there
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(a) Time evolution of queues at B � ✏ =
(0.39, 0.41).
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(b) Time evolution of queues at B + ✏ =
(0.41, 0.43).

Fig. 12: Time evolution of queues for B� ✏ and B+ ✏ under
RQ-CSMA.
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Fig. 13: Time evolution of queues for C � ✏ and C + ✏ under
RQ-CSMA.
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Fig. 14: Contour plot of Q
avg

versus �
0

and �
1

evaluated by
Q-CSMA.
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Fig. 15: Time evolution of queues for A � ✏ = (0.59, 0.19)
under Q-CSMA.

Fig. 16: Contour plot of Q
avg

versus �
0

and �
1

evaluated by
UB.
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Fig. 17: Time evolution of queues for A � ✏ = (0.59, 0.19)
under UB.

is more than one relay node. For MWS algorithm, at each time
slot, we choose an action for each node which maximizes the
weights as defined in (6) and (7). We evaluated the average
queue lengths of all nodes for a given arrival rate vector as our
performance measure and illustrate 90% confidence intervals.

We consider a network with a source and three relay nodes.
We choose ⇢

0

= 0.4, ⇢
1

= 0.7, ⇢
2

= 0.8 and ⇢
3

= 0.7 for the
channel state statistics.

We compare the performance of the algorithms in terms of
average queue lengths of all nodes. We begin with an arrival
rate vector � = (0.4, 0.05, 0.05, 0.05) and linearly increase
arrival rate of node 0 from 0.4 to 0.4+�. For each algorithm,
for a fixed � we run 10 independent simulations and take the
average. The average queue lengths of nodes with respect to
� is shown in Figure 18, where the vertical bars represent
the 90% confidence interval. It can be seen that RQ-CSMA
outperforms UB which does not take into account the queue
length information and also Q-CSMA which does not take
channel state information into account.

Although the average queue length information gives us
an idea about the performance of these algorithms, it does
not say much about the stability of the queues. Hence in the
following, we compare the algorithms in terms of their queue
length evolution with respect to time for a given arrival rate
vector.

It can be seen from Figure 18 that for � = 0.2 (i.e., �
0

=

0.6) there is an increase in the average queue lengths of all
nodes in all algorithms suggesting that the network is operating
at a point close to the boundary of its achievable rate region.
We pick the arrival rate vector as � = (0.6, 0.05, 0.05, 0.05)
where the increase in average queue lengths of nodes is
apparent in MWS algorithm according to Figure 18, i.e., � is
close to the boundary of the stability region. We again run each
algorithm for arrival rate vector � for 10 random seeds and
then we take their average. The evolution of the queue lengths
of nodes (where the sizes of all queues are summed) versus
time is given in Figure 19, where the vertical bars represent
the 90% confidence interval. It can be seen that for the desired
arrival rate vector, the queue sizes with UB and Q-CSMA
rapidly increase as time evolves. On the contrary, the figure
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Fig. 18: The evolution of the average of the sum of queue
lengths vs. � over 10 random simulation runs and for an arrival
rate vector � = (0.4 + �, 0.05, 0.05, 0.05). The vertical
error bars represent the 90% confidence intervals.

Fig. 19: The evolution of the average of the sum of queue
lengths vs. time over 10 random simulation runs and for an
arrival rate vector � = (0.6, 0.05, 0.05, 0.05). The vertical
error bars represent the 90% confidence intervals.

seems to suggest that MWS and RQ-CSMA have the potential
of stabilizing the queues. It is worth mentioning that node 0,
without the relaying nodes, can at most support an arrival rate
of 0.4 packets per time slot. However, by enabling relaying
from other nodes, it can support an arrival rate of 0.6 packets
per time slot.

VII. CONCLUSION

In this paper, we addressed the problem of scheduling in
wireless relay networks with a source and multiple relay nodes

where all nodes transmit to a common destination node over
independent ON-OFF channels. In this relay network, N relay
nodes help a single node with bad channel quality by relaying
its packets. The scheduling is based on a variant of well known
Q-CSMA algorithm, and we prove the throughput optimality
of the developed algorithm. We proposed a new contention
resolution algorithm, which is used by the nodes to infer
which nodes have ON channels; an information required by
the scheduling algorithm for achieving throughput optimality.
RQ-CSMA is different from Q-CSMA in the sense that it
uses channel state information to schedule the nodes and it
actually benefits from time variability of the channel states.
The performance of the RQ-CSMA, Q-CSMA, MWS and
a simple random back-off based algorithms are compared
through simulations to demonstrate the efficacy of RQ-CSMA.

The need for the global CSI information, which is obtained
by 1-bit feedback, limits the application of the RQ-CSMA
for two hop relay networks for now. As a future work, we
will address this issue by considering the extension of RQ-
CSMA to multi-hop and multi source nodes relay networks.
The investigation of scheduling algorithms with partial and
incomplete channel state information is left as future work.
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APPENDIX

PROOF OF LEMMA 1

To simplify the proof, we assume that node 1 has a single
queue and stores the received packets from node 0 in its own
queue. Note that this does not change the stability region of the
network. Define µ

0

(t) and µ
1

(t) as the instantaneous service
rates of node 0 and node 1, respectively, and µ

01

(t) as the
instantaneous service rate of node 0 if it relays its packets to
node 1. Note that µ

0

(t), µ
1

(t) and µ
01

(t) take binary values
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0 or 1 and satisfy the following inequality µ
0

(t) + µ
1

(t) +
µ
01

(t)  1. Then, the evolution of the queues are given as:

Q
0

(t+ 1) = max [Q
0

(t)� µ
0

(t)� µ
01

(t), 0] +A
0

(t)

Q
1

(t+ 1) = max [Q
1

(t)� µ
1

(t), 0] +A
1

(t) + µ
01

(t) (30)

It is well known that when MWS is applied the resulting
service rates are throughput optimal. Thus, the expected ser-
vice rates can be calculated as follow:
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Denote Q(t) = (Q
0

(t), Q
1

(t)). The drift in the Lyapunov
function, L(Q(t)) = 1

2
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(t)), can be written as:
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Now define B as a bound on the summation of first and third
terms above as follows:
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Now let us assume that ⇢
1

< 0.5 so that the achievable rate
region is as in (28). First we focus on ⇢

0
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). For small positive value
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. We write the
conditional Lyapunov drift as follow:
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With a similar approach we can show that:
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Expectation over the Q(t) yields:
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The above holds for all t 2 {0, 1, 2, . . .} and with the same
analysis as above holds for all points inside the achievable
rate region defined by (28). Summing over t 2 {0, 1, 2, . . .}
for some integer T > 0 yields (by telescoping sums):

E(L(Q(T ))� L(Q(0)))  BT � ✏́

T�1X

t=0

1X

i=0

E(Q
i

(t)) (37)

Rearranging the terms and taking the limit yields:

lim

T!1

1

T

T�1X

t=0

1X

i=0

E(Q
i

(t))  B

✏́
(38)

Thus, all queues are strongly stable. The proof of the Lemma
for ⇢

1

� 0.5 is straightforward and can be done with a similar
analysis as above. For more information refer to [53].


