
Testing Implementation of FAMTAR: Adaptive Multipath Routing

Piotr Jurkiewicz∗, Robert Wójcik, Jerzy Domża l, Andrzej Kamisiński

Department of Telecommunications, AGH University of Science and Technology, Kraków, Poland

Abstract

Flow-Aware Multi-Topology Adaptive Routing (FAMTAR) is a new approach to multipath and adaptive routing in IP
networks which enables automatic use of alternative paths when the primary one becomes congested. It provides more
efficient network resource utilization and higher quality of transmission compared to standard IP routing. However, thus
far it has only been evaluated through simulations. In this paper we share our experiences from building a real-time
FAMTAR router and present results of its tests in a physical network. The results are in line with those obtained
previously through simulations and they open the way to implementation of a production grade FAMTAR router.

Keywords: router, multipath routing, adaptive routing, SDN, traffic engineering, Click Modular Router, testing

1. Introduction

FAMTAR (Flow-Aware Multi-Topology Adaptive Rout-
ing) is a new approach to routing in IP networks, which
provides multipath and adaptive capabilities. It is based
on flows, notion currently incorporated in many architec-
tures, including Software-Defined Networking (SDN). Un-
like many SDN solutions, FAMTAR is a fully distributed
mechanism and does not depend on a central entity. This
is a key characteristic, as it significantly improves scalabil-
ity and resilience.

Our aim was to test the efficiency of FAMTAR in real
network conditions and validate the results obtained ear-
lier through network simulations. In order to do that,
we needed to build a FAMTAR router. In this paper we
present our experiences in building a FAMTAR router. We
also show the results of performance evaluation of networks
built with FAMTAR routers. In particular:

• We explain how to build a FAMTAR router using
the Click Modular Router [1] framework, provide its
configuration and describe key components.

• We identify and solve several problems, which were
not noticed during simulations:

– The problem that a routing protocol may not
be able to update routing tables on time after a
link failure and flow entry deletion, which can
result in subsequent packets being routed to a
failed link.

– The problem with overwhelming generation of
ICMP Redirect messages.

∗Corresponding author
Email address: piotr.jurkiewicz@agh.edu.pl (Piotr

Jurkiewicz)

• We show that, with FAMTAR, the amount of suc-
cessfully transmitted data increases almost linearly
with the number of available parallel paths (also,
fewer packets are dropped in the network).

• We show that the average transmission delay in a
FAMTAR-enabled network decreases with the in-
creasing number of active parallel paths and is lower
than in a standard IP network.

• These results are valid both for artificially generated
traffic and real traffic from a BitTorrent network.

• We show that FAMTAR can effectively protect QoS
parameters of VoIP flows and eliminate network con-
gestions by redirecting excessive flows to alternative
paths.

• We confirm that the TTL-based loop resolution mech-
anism works as expected, i.e., it resolves permanent
loops which may appear in the network due to fail-
ures.

• Finally, we make the implementation publicly avail-
able as an open source software: https://github.

com/piotrjurkiewicz/famtar

2. Related work

2.1. Multipath routing

There are numerous approaches to providing multipath
transmissions in IP networks. Multipath solutions can also
operate at different layers. The most visible solutions were
surveyed in [2].

In the transport layer, Multipath TCP (MPTCP) is
the most popular multipath solution. It is implemented in
the Linux kernel, FreeBSD and Apple’s iOS. It is crucial,

Preprint submitted to Computer Communications November 5, 2019

ar
X

iv
:1

80
8.

03
20

9v
3

 [
cs

.N
I]

 1
 N

ov
 2

01
9

https://github.com/piotrjurkiewicz/famtar
https://github.com/piotrjurkiewicz/famtar

because transport layer multipath requires support from
both endpoints. MPTCP works by multiplexing a single
TCP connection over multiple IP interfaces. Assuming
that these interfaces provide disjoint paths to the other
endpoint, MPTCP can increase throughput to the sum of
available paths throughput. It also improves resilience, as
any of the subflows can be disrupted, without loosing the
main TCP connection (seamless takeover).

As mentioned, MPTCP requires existence of multi-
ple interfaces on both endpoints. It is most beneficial,
when these interfaces are connected to different upstream
providers (multihoming). This is an uncommon case, so
usage of MPTCP is rather limited. It is used in mobile
scenarios for applications requiring low latency (e.g. voice
assistant), when both cellular and WiFi connections are
available. Another use case is bulk data transfer between
datacenters. QUIC protocol, which is envisioned as future
HTTP transport protocol and already makes up signifi-
cant amount of Internet traffic, was also designed to sup-
port multipath. Details of this feature were postponed to
subsequent protocol versions (as of February 2019), but it
will probably face the same limitations as MPTCP.

Network layer multipath solutions do not require any
support from endpoints. They require, however, additional
features on routers, usage of specific protocols in the net-
work or manual configuration from a network operator.

Equal cost multi-path (ECMP) is a standard multi-
path load balancing technique. It is enabled by default
in many devices and can be used with majority of rout-
ing protocols. It utilizes the fact that routing protocol
may find multiple shortest paths (all with the same cost)
to a given destination. Traffic is then distributed equally
amongst multiple shortest path next hops in each router.
While existence of multiple shortest paths is common in
highly-symmetric datacenter networks, it is rare in wide-
area networks. For example in the nobel eu topology from
SNDLib (http://sndlib.zib.de), average number of dis-
joint shortest paths is 1.20, whereas average number of
disjoint paths (max-flow/min-cut) equals to 2.61. Lack of
multiple shortest paths significantly reduces benefits from
ECMP in wide-area networks.

Unequal cost multi-path (UCMP) assumes usage of ad-
ditional paths with cost higher than the shortest one’s
cost. This is not trivial, as it may lead to routing loops.
Loop-free UCMP requires specific metrics and constrains
in routing protocol. The only protocol currently in usage
supporting UCMP is EIGRP. Its conservative feasibility
conditions (the DUAL algorithm), however, significantly
limit the number of additional paths possible to use [3]. In
order to use all available disjoint paths and achieve max-
imum flow between selected nodes, other techniques have
to be used.

There are also many UCMP algorithms, which were
proposed in academia, but have not been implemented in
any routing protocol. This includes LFI-type algorithms:
MPDA and MDVA, both proposed by the DUAL algo-
rithm inventor [4], and OSPF extensions: OMP [5] and

AMP [6], which are limited by a similar conservative fea-
sibility conditions as DUAL.

2.2. Adaptive routing

Per-packet routing imposes significant limitations not
only on multipath capabilities (due to routing loop pre-
vention constrains, only a subset of existing alternative
paths in the network can be used), but also on adaptivity.
Adaptive (load-sensitive) routing is impossible in the per-
packet approach, as the dynamic alteration of link costs
leads to instability, which ultimately deteriorates network
performance. This has been shown by early ARPANET
attempts.

The original ARPANET routing algorithm used the
current link delay as a metric [7]. It consisted of propa-
gation and transmission times, which were constant, and
variable queuing delay, which depended exponentially on
the link usage. Its successor (The New ARPANET Routing
Algorithm), which was a link-state routing protocol, used
a 10-seconds average link delay as a metric [8]. This metric
was called Delay Shortest Path First (D-SPF). The new
algorithm allowed to avoid permanent routing loops and
was more stable. However, under high load, it still resulted
in route oscillations. In July 1987 the metric was normal-
ized in order to depend linearly on the link usage (Hop-
Normalized Shortest Path First (HN-SPF)). This resulted
in a more smooth handover of traffic from overloaded path,
but still did not eliminate the route flapping [9] [10].

These early ARPANET adaptive routing stability prob-
lems were analysed in [11]. It was proven in [12] that in
some cases adaptive routing can degrade the overall net-
work performance even below the non-adaptive routing.
Since that, approaches based on adaptive routing protocol
metric changes were abandoned. However, some remnants
of them are still present in the currently used routing pro-
tocols. For example, EIGRP can make use of link load in
metric calculation, but this option is turned off by default
[13].

Another approach was explored in an OSPF extension
called OMP [5]. The authors proposed to change load-
balancing weights instead of routing protocol metrics in
response to overload events. They suggested to dissemi-
nate load information along with LSA messages. AMP [6]
was a similar proposal. The difference was that the infor-
mation was exchanged directly between neighbor routers
using so-called backpressure messages. Both these exten-
sions have not been implemented yet and their stability
under a realistic traffic have not been evaluated.

In practice, multipath and adaptive routing is currently
achieved with the help of Multiprotocol Label Switching
(MPLS) [14]. MPLS allows operators to manually create
paths (tunnels) and assign certain flows/transmissions to
those paths. This approach is currently widely used, and
it works. However, there are several drawbacks. Firstly,
the operations are not automatic and require human in-
tervention. Secondly, in large and complex networks the
existence of multiple paths and many criteria, conditions,

2

http://sndlib.zib.de

parameters, etc., creates havoc. Currently, many major
operators have their MPLS nodes configured with such
complexity that they are almost afraid to change anything,
for fear of impairing the network’s operation.

There are proposals of automated systems, which pur-
pose is to modify MPLS tunnels in a response to the chang-
ing network load. Usually these systems assume usage
of a centralized controller, which makes them incompara-
ble with FAMTAR. However, distributed algorithms, like
MATE [15] or TeXCP [16], were also proposed. They col-
lect network load information using probe packets, but no
implementations are available.

Non-MPLS based mechanisms were also proposed, for
example REPLEX [17]. However, it is complicated and
introduces additional signaling protocol to the network.
Another similar solution is proposed in [18], but its draw-
back is that it makes routing decisions basing only on local
interfaces load, instead of the whole network state. A short
survey of adaptive routing approaches is presented in [19].

2.3. Flow-based routing

FAMTAR was developed to answer the aforementioned
problems of per-packet routing by making the use of flow-
based approach. It can overcome multipath and adaptivity
limitations of per-packet routing by maintaining separate
per-flow forwarding entries. As a result, flows between
the same endpoints can follow any number of alternative
paths without the risk of loops. Furthermore, paths for
subsequent flows can be chosen with the current or a pre-
dicted network load in mind, effectively resulting not only
in the multipath routing, but also in the adaptive routing.
Such an approach should also ensure a better stability, as
only new flows can be redirected to new paths during a
congestion, which can reduce route flapping.

Caspian Networks and, later, Anagran tried to provide
flow-based treatment. In [20], it is shown that keeping flow
state information is feasible. Moreover, Anagran created
FR-1000, a router which provided flow-based treatment
and could be used for high speed links. Anagran stores
packet forwarding information inside flow tables, but un-
like FAMTAR, this is not modified according to network
congestions. FAMTAR uses similar flow routing informa-
tion to that used in Anagran, and combines it with routing
adaptability to the current network congestion statuses.

A relatively new proposal for flow management was
presented in [21]. In this solution, flows are classified and
transmitted using multiple paths. A central manager de-
cides which paths should be used for each flow. This pro-
posal looks promising, however, it is complex and diffi-
cult to implement. Moreover, the existence of the central
manager may result in scalability and security problems in
large networks.

Central management is also the tendency of currently
sound Software-Defined Networks (SDN). There are hun-
dreds of papers proposing SDN flow-based traffic engineer-
ing and routing systems. Some of these systems are fairly

sophisticated, utilizing recent AI and machine learning ad-
vances [22]. All of them are (at least logically) centralized.
Therefore, we purposefully do not review and compare
them to FAMTAR, which is a fully distributed solution
and thus belongs to a completely another class of algo-
rithms.

2.4. FAMTAR origins and possible extensions

The development of FAMTAR was possible thanks to
the advances in flow-aware traffic handling, such as Flow-
Aware Networking (FAN) [23]. There were attempts to
increase the efficiency of routing with the use of FAN, as
presented, for example, in [24]. The technique of trunk
reservation borrowed from the telephone network is pro-
posed in this paper for route selection. It is assumed that
a path for a flow is chosen based on the bandwidth it
requires. Also, a simple intelligent routing for FAN is pre-
sented in [25], where it is assumed that only non-congested
links are considered when forwarding packets. However, it
is not specified how to inform all routers about the con-
gested links. FAMTAR provides a solution to that prob-
lem. Moreover, FAMTAR is a general idea, not specific to
FAN networks.

The basic implementation of FAMTAR can be extended
with other existing solutions, like admission [26] and con-
gestion control approaches or source-based routing. Here
we present some examples of mechanisms and algorithms
which can be considered for future research.

In the paper [27] a delay response BBR (Bottleneck
Bandwidth and Round-trip time) algorithm designated for
real time video transmission is proposed and analyzed.
The main assumption of the proposed algorithm is to re-
duce sending rate when the link delay exceeds predefined
threshold. The goal is to allow routers to maximize the
usage of bandwidth by control of buffer occupation. The
sending rates of flows are being observed and actively re-
duced when delay exceeds a predefined threshold. This
allows a router to drain queued buffers and, as a conse-
quence, to reduce packet delay and loss rate. The au-
thors proved by simulation experiments that the proposed
congestion control algorithm achieves lower frame delivery
delay in comparison to benchmark algorithms. The algo-
rithm can be implemented in any multipath architecture
to enable maximum bandwidth utilization and to ensure
quality of service at the assumed level for selected traf-
fic. This proposal can also be implemented in FAMTAR,
which originally has been proposed to serve traffic in a
best effort regime.

An approach similar to the described above has been
proposed in [28]. The authors present a model which com-
bines a Network Utility Maximization to control rate of
flows taking into account end-to-end queuing delays. How-
ever, in this solution, a Markovian Traffic Equilibrium is
used to decide on routing based on total expected delays.
The authors explain that the proposed method uses a rout-
ing strategy which is based on a decentralized stochastic
version of Wardrop’s model. Provided theoretical analysis

3

confirm that it is possible to establish decentralized mul-
tipath routing algorithm which control congestions. The
presented solution has been described only theoretically.
The authors did not show simulation or tests of hardware
implementation results. The proposed solution is more
complex than FAMTAR. It needs additional signaling to
distribute information about queuing delays in each outgo-
ing link of all network nodes. One of the main advantages
of FAMTAR is lack of any additional signalization in a
network.

Another congestion control approach for multipath im-
plementation has been proposed in [29]. The authors present
a rate-based, Multipath-aware Information-centric network-
ing Rate-based Congestion Control (MIRCC) approach.
The proposed solution is inspired by the Rate Control Pro-
tocol (RCP). MIRCC ensures an acceptable convergence
time with less overshoot and oscillation in comparison to
the RCP and a multipath transmission along all the avail-
able paths, maintaining fairness among active competing
flows regardless of number of paths that each flow has.

The MIRCC approach requires an implementation of
several algorithms and protocols, e.g. algorithm in each
forwarder calculating dual-class rates for each link, pro-
tocol mechanisms to communicate rates and path identi-
fiers to consumers in data messages, an algorithm to deter-
mine interest sending rates for each class and to determine
a sensible distribution of interests across available paths.
As one can see, the proposed mechanism is complex and
has been proposed for ICN (Information-Centric Network-
ing). Thus the implementation of the described approach
in FAMTAR is outside the scope of this paper.

Recently proposed by IETF, RFC 8354 [30], presents
use cases for IPv6 Source Packet Routing in Networking
(SPRING). SPRING is a networking architecture which
leverages the source routing paradigm. The main assump-
tion is that an ingress node steers a packet by including
a controlled set of instructions, called segments, in the
SPRING header. The mentioned architecture can be used
in e.g. small offices, access networks or data-center net-
works. Of course, it can also be implemented in core net-
works. The authors list that it can enable to e.g.:

• use selected high-bandwidth links for a specific type
(high priority) of traffic and thus avoid the need for
overdimensioning the links in the network,

• setup separate path for delay-sensitive flows,

• reach important servers through source-based opti-
mal path,

• use of disjoint paths.

Source-routing approaches are promising solutions for
multipath routing of flows. They, however, need additional
signaling comparing with FAMTAR. The architecture like
SPRING can be implemented in network with FAMTAR.
Both architectures can complement each other. However,

at this moment, we focus on basic FAMTAR implementa-
tion to show its effectiveness and simplicity.

3. Flow-Aware Multi-Topology Adaptive Routing

FAMTAR was introduced in [31]. It is a multipath
adaptive routing mechanism that works based on flows
[32]. FAMTAR is placed above the IGP (it does not in-
terfere with the routing protocol operation) and can work
with every protocol. A routing protocol is responsible for
finding the best path between two endpoints up to its ca-
pabilities. In an uncongested network, all transmissions
between those endpoints use this path. When a path be-
comes congested, all new flows are pushed to an alterna-
tive path, while flows which are already active remain on
their primary path. Therefore, FAMTAR uses the best
path provided by the routing protocol, and automatically
triggers finding new paths in case of congestion.

To achieve that, every FAMTAR router maintains a
Flow Forwarding Table (FFT) alongside the classic routing
table. FFT is an associative array in which the keys are
flow identifying fields. For each flow, the corresponding
FFT entry indicates the interface to which packets of this
flow are forwarded. This information is taken from the
current routing table when the flow is added to the FFT,
i.e., when its first packet appears. Entries in the FFT are
static and do not change alongside routing table changes.
FFT is used to realize most packet routing tasks, as for
flows that are present in the FFT, the routing table is not
consulted.

When a state close to congestion is noticed on one of
the links, the corresponding router sets the cost of this
link to a predefined high value. From this moment, this
link is perceived as congested. The new cost appears as
a change in the routing protocol, which disseminates this
information as a standard topology change message. Upon
receiving this information, routing protocols compute new
paths which are likely to avoid congested links. The newly
computed paths cause the related changes in the routing
tables. However, these changes affect only new flows. The
old flows, which were active before that event, are still
routed on their existing paths stored in the FFT entries.
Although the congested link still forwards all the flows
which were active before the congestion was noticed, new
transmissions do not appear. After a while, when the con-
gestion on this link stops, the original cost of the link is
restored. Note that FAMTAR requires a router to detect
congestion on one of its links. The method to determine
the congestion is not specified, although any congestion
indicator can be used (e.g., link load, queue occupancy,
packet queuing delay, and so on). The block diagram of
FAMTAR algorithm is presented in Figure 1.

The key idea of FAMTAR is keeping the system dis-
tributed by leveraging the IGP to perform route computa-
tions instead of communicating with a central controller.
Moreover, unlike traditional best-effort approaches, which
usually can utilize only multiple shortest paths (ECMP),

4

Arriving packet p
Identification of flow f
based on the header of

packet p

NO
Is ID of f in FFT?

YES

Get destination interface i
from routing table

Add f to FFT
(flow ID, interface i,
timestamp, TTL)

Get destination interface i
from FFT

Send packet p
to interface i Update timestamp of flow f

Figure 1: Block diagram of FAMTAR algorithm.

FAMTAR can use all available paths between transmitting
nodes. The Table 1 presents statistics of three real WAN
topologies from the SNDLib database (http://sndlib.
zib.de). The number of disjoint paths between nodes
is 2-3 times greater than the number of disjoint shortest
paths. Usage of these additional paths is impossible in
ECMP. Unequal cost multipath algorithms (UCMP), such
as EIGRP, allow to use some of these additional paths, but
their set is still very limited by a conservative feasibility
condition. FAMTAR’s flow-based approach makes it pos-
sible to overcome these constrains and utilize all existing
paths. This increases the efficiency of network resource uti-
lization and reduces the need for over-provisioning, since
it is possible to use all already available resources.

Another key factor, which distinguishes FAMTAR from
the other multipath approaches, is the usage of alternative
(and potentially suboptimal) paths only when necessary
and only to new transmissions. A path with a higher cost
is used only when paths with lowest costs are congested,
whereas EIGRP uses all paths regardless of their load,
which means that some packets are routed on worse paths
even when there is no congestion on the best path. In
FAMTAR, upon congestion, only new flows use alternative
paths, whereas the old ones remain on their primary paths.

Flow-based approach also improves stability and re-
duces route flapping, as only the new flows are forwarded
to new paths. Traditional adaptive routing approaches
(such as ARPANET routing algorithms) had stability is-
sues, because when the original path was becoming con-
gested, the whole traffic was switched to the alternative
path, which resulted in oscillations between these two paths.
Simulation results presented in [33] show that FAMTAR
is able to significantly increase the amount of traffic sent
in a network, while reducing packet delays.

4. Implementation environment

To implement FAMTAR, we had to find a router en-
vironment which would allow modifications in packet pro-
cessing. This environment had to be expanded by intro-
ducing FFT and all actions related to using this table.

Table 1: Statistics of selected SNDLib real WAN topologies

Topology name polska nobel eu germany50

Number of nodes 12 28 50

Number of edges 18 41 88

Graph density 0.27 0.11 0.07

Avg. vertex degree 3.00 2.93 3.52

Avg. num. of disjoint shortest paths 1.27 1.20 1.23

Avg. num. of all disjoint paths 2.67 2.61 3.19

Therefore, the implementation environment for an exper-
imental FAMTAR router must allow easy modifications
and debugging of the packet processing path. This re-
quirement led us to choose the Click Modular Router suite
(Click) as a data plane provider.

Click is a suite for building flexible software packet pro-
cessors, designed with research and experimental applica-
tions in mind. It was developed by Kohler [34] in his Ph.D.
dissertation. Click is widely used for building experimental
software routers and switches. Its advantages include con-
siderable flexibility, clear and scalable architecture, ease of
adding new features, and high performance.

Click achieves flexibility due to its modular and object-
oriented architecture. Routers are assembled from fine-
grained packet processing modules called elements, which
are C++ classes. Each individual element performs a sim-
ple operation on a packet, like queuing or decrementing a
packet’s time to live (TTL) field. Each element has input
and output ports, which serve as the endpoints of con-
nections between them. A user builds a complete router
configuration by connecting individual elements into a di-
rected graph. During router operation, packets are pro-
cessed sequentially by individual elements.

Click can run as a user-level application or as a Linux
kernel module. In the kernel mode, the Click module re-
places the operating system (OS) networking stack, and
packet processing is done only by Click. In the user-level
mode, Click uses the system to receive packets.

Choosing Click as the data plane platform determined
another router components including the routing daemon.
Since Click does not implement dynamic routing protocols,
its routing table must be populated by an external routing
daemon. The only daemon that cooperates with Click is
XORP (eXtensible Open Router Platform) [35]. XORP
is an open source IP routing software suite originally de-
signed at the International Computer Science Institute in
Berkeley, California. It supports various routing proto-
cols, including OSPF, BGP and RIP. Click combined with
XORP provide all the required functions that each router
supports, and this was the point in which our FAMTAR
implementation started.

5. Router components

Figure 2 presents the FAMTAR prototype router build
on top of Linux Debian. The system runs Click and XORP

5

http://sndlib.zib.de
http://sndlib.zib.de

with our extensions as well as auxiliary scripts written
in Python. Click is responsible for forwarding packets
and realizing FFT functions. Its routing table is updated
by XORP which runs an OSPF protocol. Any link cost
change in a network triggers XORP functions which re-
sults in routing table updates in Click.

Router configurator

Network
monitor link cost

changes
XORP routing daemon

C
on

tr
ol

pl
an

e

routing table
updates

link utilization
updates

Fo
rw

ar
di

ng
pl

an
e Click Modular Router

packets

Network interfaces

Figure 2: FAMTAR router architecture on the Linux OS.

The network monitor collects load information from
physical interfaces. The monitor changes link costs in
XORP for links whose traffic load exceeds the congestion
threshold. The analysis of link loads is performed only a
few times per second. Therefore, the implementation of
this mechanism does not need to be extremely effective,
so we implemented it in an external script.

The FAMTAR router configurator, which is a graphical
front-end for configuration of the XORP daemon and the
monitor, allows configuring the IP addresses of interfaces,
congestion thresholds, and other router parameters.

The most important element, however, is the extension
of Click. To implement FAMTAR in Click, it was neces-
sary to add a few additional elements to the standard IP
router. The block diagram of the FAMTAR router in Click
is presented in Figure 3. This graph is an extension of the
standard IP router graph, presented in [1]. The blocks
related to FAMTAR are marked in blue shading. New
elements: CheckFFT, AddFFT, RouteFFT, and auxiliary
element FFT are not part of the Click library. They are
written by us and grouped in the Click package famtar

[36]. This package may be downloaded and imported to
Click as a shared library without Click modification or re-
compilation.

The first FAMTAR-related element is CheckFFT. It is
placed before the LookupIPRoute block, where routing is
executed. The aim of the CheckFFT element is to check
whether the FFT contains an entry for the flow related
to the incoming packet. If the FFT does not contain the
flow entry (i.e., it is a new flow), the incoming packet is
sent to the first outgoing port of the CheckFFT element.
Next, this packet is served in the LookupIPRoute element
and sent to the correct outgoing port based on the current
routing table. After this operation, the new entry for the

FromDevice(eth0) FromDevice(eth1)

Classifier(...) Classifier(...)
ARP

queries
ARP

responses IP
ARP

queries
ARP

responses IP

ARPResponder ARPResponder
(1.0.0.1...) (2.0.0.1...)

to Queue to ARPQuerier to Queue to ARPQuerier

Paint(1) Paint(2)

Strip(14)

CheckIPHeader(...)

CheckFFT(fft) fft::FFT

LookupIPRoute(...) RouteFFT(fft)

AddFFT
(fft,0)

AddFFT
(fft,1)

DropBroadcasts DropBroadcasts

PaintTee(1) PaintTee(2)
Discard Discard

IPGWOptions(1.0.0.1) IPGWOptions(2.0.0.1)
ICMPError
bad param

ICMPError
bad param

FixIPSrc(1.0.0.1) FixIPSrc(2.0.0.1)

DecIPTTL DecIPTTL
ICMPError
TTL expired

ICMPError
TTL expired

IPFragmenter(1500) IPFragmenter(1500)
ICMPError
must frag

ICMPError
must frag

from Classifier from Classifier

ARPQuerier(1.0.0.1,...) ARPQuerier(2.0.0.1,...)

ToDevice(eth0) ToDevice(eth1)

Figure 3: Block diagram of FAMTAR implementation in Click Mod-
ular Router. Blocks marked in blue are related to FAMTAR and
were added to Click.

particular flow is added to the FFT in the AddFFT ele-
ment. The entry includes the incoming time of the packet,
its TTL value, the identifier of the outgoing port and the
IP address of next router on the path.

When the active flow entry exists, the timestamp in
this flow is updated and the incoming packet is sent to the
second outgoing port of the CheckFFT element. Then, the
packet is processed by the RouteFFT element. This ele-
ment operates similarly to LookupIPRoute and is respon-
sible for packet routing. However, the packet is directed
based on the outgoing port number stored in the FFT en-
try, instead of the one from the current routing table.

Additional operation is executed in the AddFFT ele-
ment, when a failure occurs in the network. When a router
detects lack of carrier on the outgoing link, the AddFFT
element blocks for a fixed period (we assumed 5 s) a pos-
sibility to add new flows for that particular link. This op-
eration is necessary for the correct implementation of the
loop-resolution mechanism proposed in [37]. This mecha-
nism assumes that after a link failure, all flow entries for
this link are deleted from FFT. However, it takes some

6

time to calculate new paths by the routing protocol. In
this period, new flows outgoing via the recently-failed in-
terface cannot be accepted to FFT. This means that dur-
ing this period, these flows are being routed using solely
the current routing table.

Moreover, it was necessary to switch off the mecha-
nism implemented in the standard IP router, which sends
error ICMP Redirect messages to the source node when a
packet is rerouted to the same interface it arrived from.
This mechanism generates traffic which is not necessary in
FAMTAR network, because possible loops are solved by
the TTL-based mechanism. To switch off this mechanism
in Click, we changed the ICMPError element with Discard
element presented in Figure 3.

All described elements: CheckFFT, AddFFT and Rout-
eFFT operate on the same FFT, which is implemented in
the auxiliary element known as FFT. This element is not
placed directly on the packet processing path. However,
it offers the other elements some functions to modify the
FFT. The structure of key for FFT is as follows:

struct FlowKey

{

uint32_t srcaddr;

uint32_t dstaddr;

uint16_t srcport;

uint16_t dstport;

uint8_t ip_prot;

}

FFT stores time of last packet of a flow, routing infor-
mation and TTL value of the first packet of the flow. The
structure of values stored in the flow forwarding table is
presented below:

struct FlowValue

{

uint32_t ts;

uint8_t port;

IPAddress gateway;

uint8_t ttl;

}

Each flow key contains 104 bits (13 bytes) in which
flow identification fields are stored: IPv4 source and desti-
nation addresses (2 ·32 bits), source and destination trans-
port layer port numbers (2 · 16 bits), and transport layer
protocol number (8 bits). Each flow entry contains the
following information: the time of last packet (32 bits),
forwarding interface (8 bits), IP address of the next hop
router (32 bits), and the TTL value of the first packet
of the flow (8 bits). The timestamp is used to determine
whether the particular flow entry expired or not. If no
packets arrive for a predefined period of time, the flow en-
try is deleted. The number of the outgoing interface and
the IP address of the next router on the path are necessary
to perform routing in the RouteFFT element. The TTL
value is required by the loop resolution mechanism. The
total size of a flow entry is 80 bits (10 bytes). The total
amount of information required to store each flow is there-
fore 104 bits for a key plus 80 bits for data, which gives
184 bits or 23 bytes. This means that to process 1 million

simultaneous flows, a router needs 23 MB of memory for
FFT, which is acceptable.

The HashTable<> container from the standard Click li-
brary is used to implement this associative array as a hash
chain array. This make it possible to ensure low comput-
ing complexity – O(1) – for operations made on packets.
When a flow finishes transmission, its identifier should be
removed from FFT. While routers are not aware explicitly
when flows finish transmission, we had to implement an
additional mechanism – garbage collection. The content
of buckets is analyzed when new flow entries are added to
them and these entries, whose timestamp is older than a
predefined timeout, are removed from FFT

6. Tests of the FAMTAR router

So far, the functionality of FAMTAR has been tested
and the results have been presented only basing on simu-
lation experiments conducted in the ns-3 simulator. They
showed advantages of the FAMTAR routing over the stan-
dard IP routing. However, we have to note that the sim-
ulation analysis is usually provided with limitations. For
example, not all factors from real networks can be taken
into account in simulations.

The most valuable results can be obtained when a
router is tested in a network where real users generate traf-
fic. We can assume that a device which passes such tests
works properly and is scalable. Unfortunately, it is diffi-
cult and risky to test a prototype in a production network.
That is why we conducted our tests in a laboratory envi-
ronment, using either real of artificially generated traffic.
We prepared a small network, as presented in Figures 4, 7,
10, 11 and 13. All links in our network were bidirectional
with capacity equal to 10 Mbit/s. Only links between bor-
der routers and hosts had 100 Mbit/s capacity. We have
chosen such a low capacities in order to make sure that re-
sults will not be influenced by insufficient computing power
of PCs we were using as routers.

Congestion thresholds were set to Thmin = 0.7 and
Thmax = 0.9, as previous simulation papers showed that
these values provide the best compromise between stabil-
ity and performance. Link usage counters were refreshed
every 200 milliseconds and the exponential moving aver-
age with α = 0.2 was used to smooth out the readings.
Moreover, frequency of route table recalculations was also
limited by OSPF hold timer (similar to BGP’s route damp-
ening), which in the case of XORP daemon used by us was
equal to 1 second. The default routing protocol cost of all
links was equal to 1 (with the exception of scenario II).
When a congestion on a link was detected, its cost was
being raised to 100.

Traffic was generated in H1, which was a PC computer.
We used the D-ITG [38] application to generate traffic and
to collect statistical data. In scenario II and III, we did
not use the D-ITG traffic generator. Instead, in scenario
II, an UDP packet generator was used in order to achieve
realistic flow length and size distributions. In scenario

7

III, R1 was connected to the Internet and we observed
traffic in the network in the case when the destination
host was downloading a file from the Internet through the
P2P protocol. We repeated each experiment five times to
collect statistically credible results. In most scenarios we
observed four cases, with one, two, three and four possible
paths between edge routers R1 and R4. Each time, we
compared the results obtained for routers with turned on
FAMTAR mechanism with the results obtained for routers
doing classic IP routing.

The following sections present the ideas and results
from four scenarios that we analyzed.

Scenario I

To verify the performance of FAMTAR with regard to
its multipath capabilities, 500 UDP flows were transmit-
ted between nodes H1 and H2 (Figure 4). Packet size
was set to 1000 B, whereas the flow size was selected ac-
cording to the Pareto distribution (average: 1 MB, shape:
1.25). Each flow was transmitting data at a constant rate
of 100 kB/s and the time between flow starts was given
by the exponential distribution, with the average value of
0.5 s. We collected the results between the 20th and 230th
seconds of each experiment.

10

10

10

10

10

10

10

10

100 100

R2

R5

H1
R1 R4

H2
R6

R3

Figure 4: Scenario I – Testing topology.

We conducted this experiment in networks with 1, 2, 3,
and 4 parallel paths available. We assesed the performance
basing on the following metrics:

• number of bytes received at node H2,

• dropped packets ratio,

• average packet delay,

• minimum packet delay,

• maximum packet delay.

The results are presented in Figure 6. In the case when
only one path is available, the results for the FAMTAR-
enabled network are similar to the results for the standard
IP network. This is in line with our expectations, since if
no additional paths are available, FAMTAR cannot pro-
vide multipath transmissions and there is no gain.

In the case of a standard IP network, the results do
not change with increasing number of additional paths.
At the same time, in the case of the FAMTAR-enabled
network, we note that the amount of successfully trans-
mitted data increases linearly with the number of parallel
paths. In addition, fewer packets are dropped in the net-
work. This observation confirms one of the most significant
advantages of FAMTAR, which is the ability to efficiently
provide parallel multipath transmissions.

We also note that the average transmission delay in
a FAMTAR-enabled network decreases with the increasing
number of active parallel paths and is lower than in the
case of a standard IP network.

Additionally, we compare our results with the simula-
tion results presented in [33]. The comparison is shown in
Figure 5. Because the traffic workload used in simulations
was different than one in our tests, we compare a relative
improvement rather than the absolute amount of received
data. The dotted black line shows an ideal linear-scaling.
It can be seen, that our FAMTAR implementation achieves
even a slightly higher multipath throughput improvement
than the simulation, but still slightly below the ideal linear
scaling.

1 2 3 4

Number of active paths

1

2

3

4

R
ec

ei
ve

d
d

at
a

(x
)

Figure 5: Scenario I – Relative improvement in the amount of re-
ceived data (blue line – Click implementation, magenta line – ns-2
simulation [33], black dotted line – linear scaling (for reference)).

8

200
300
400
500
600
700
800
900

1 2 3 4

R
ec

ei
ve

d
d
at

a
[M

B
]

Number of active paths

(a)

10
20
30
40
50
60
70
80

1 2 3 4P
ac

k
et

s
d
ro

p
p

ed
(%

)

Number of active paths

(b)

28

32

36

40

44

48

1 2 3 4

A
ve

ra
ge

d
el

ay
[m

s]

Number of active paths

(c)

0

10

20

30

40

50

1 2 3 4M
in

im
u
m

d
el

ay
[m

s]

Number of active paths

(d)

0
100
200
300
400
500
600
700
800

1 2 3 4M
a
x
im

u
m

d
el

ay
[m

s]

Number of active paths

(e)

Figure 6: Scenario I – Relations between the number of active paths
and (a) the amount of received data, (b) the percentage of pack-
ets dropped, (c) the average transmission delay, (d) the minimum
transmission delay, and (e) the maximum transmission delay in the
standard IP and FAMTAR-enabled networks (red and blue lines,
respectively).

Scenario II

This scenario was focused on the verification of FAM-
TAR under a realistic traffic. The key factor affecting
FAMTAR’s performance and stability is flow length and
size distribution. In the edge case, when all flows in the
network are single-packet long, flow caching in FFT be-
comes meaningless and FAMTAR degrades to a traditional
adaptive routing known from ARPANET (which had sta-
bility issues).

In order to investigate FAMTAR performance and sta-
bility under realistic traffic, we used an UDP flow-based
packet generator. The traffic was generated using realistic
flow length and size distribution models presented in [39].
These are the most accurate models currently available in
the literature. The flow interarrival rate was set to match
30 Mbit/s of generated traffic in the steady state.

Moreover, to verify FAMTAR’s UCMP capabilities, in
this scenario each of three available paths has a differ-
ent length/cost (Figure 7). In such a scenario, traditional
ECMP approaches would be able to use only a single path
(the shortest one through the R2). FAMTAR should be
able to use all the available paths, starting from the short-
est one.

R2

10 10

100 10 10 100

H1
R1 10 R3 R4 10 R8

H2

R5 R7

R6

Figure 7: Scenario II – Testing topology.

The Figure 8 contains a stackplot of bitrates of all three
paths. Red, green and blue plots correspond to one-, two-
and three-hops paths respectively. The black solid line
presents the total bitrate of generated traffic.

0 2000 4000 6000

Time [s]

0

10

20

30

B
it

ra
te

[M
b

it
/s

]

Figure 8: Scenario II – Stackplot of UCMP links utilization. The
black solid line shows the generated traffic.

First of all, it can be seen that it takes more than one
hour to reach the steady state by the generator. This

9

is due to the heavy-tailed nature of IP flows. The total
throughput of all three paths confirms FAMTAR’s UCMP
capabilities. FAMTAR can load-balance traffic on the all
available paths, even when costs of these paths are differ-
ent. Moreover, it can be seen that paths with higher cost
are started to being used only when all paths with lower
costs are congested.

In terms of stability, in the steady state FAMTAR’s
total throughput varies between 24 and 30 Mbit/s (the
dotted horizontal lines on the plot). This is in line with
the theory, as 24 Mbit/s corresponds to 0.8 of all links
throughput and 0.8 is the midpoint value between used
congestion thresholds. Simulations presented in previous
papers showed a similar results.

In Figure 9 we present a zoomed-in part of the Figure 8
(between 4500 and 5500 second). In this case plots are
not stacked, but presented as separate lines. It can be
seen, that traffic oscillations in FAMTAR are significantly
reduced thanks to the usage of FFT, which caches routes
for existing flows. When congestion occurs, only new flows
are routed to the new path, whereas the old ones remain
on their existing paths. This introduces an inertia, which
reduces both oscillations frequency and their depth. It
can be seen that during this 1000-second period, only 25
routing changes happened. The depth of oscillations was
limited to 0.7 of each link throughput, which is the value
of Thmin.

4600 4800 5000 5200 5400

Time [s]

0

10

20

30

B
it

ra
te

[M
b

it
/
s]

Figure 9: Scenario II – Link loads between 4500 and 5500 second of
the experiment, plotted as separate lines. The black solid line shows
the generated load.

Scenario III

The goal of the second scenario was to verify the ca-
pability of FAMTAR to provide multipath transmission in
a real computer network. A large file (Ubuntu ISO CD
image, 1 GiB) was downloaded through the network using

the BitTorrent protocol. During the experiment, router
R1 was connected to the Internet, whereas host H2 was
downloading the file from external peers (see Figure 10).
Connections with peers were established using the TCP
and UDP protocols.

10

10

10

10

10

10

10

10

100

100

R2

R5

R1 R4

R6

R3

Internet BitTorrent

Figure 10: Scenario III – Testing topology.

We compared a standard IP network to a FAMTAR-
enabled network with 2 and 4 parallel paths. The perfor-
mance was evaluated based on the following metrics:

• average download time,

• average download rate,

• the relative gain in throughput.

The results are presented in Table 2. According to the
results, the FAMTAR-enabled network was able to provide
much higher transmission speeds (thus shorter download
time) than the standard IP network in all considered cases.
This means that the FAMTAR-enabled network performed
better than the standard IP network with respect to all
three considered metrics.

Scenario IV

The goal of this scenario was to verify the capability of
FAMTAR to provide a load-adaptive routing. One impor-
tant issue related to the presence of congestions in a net-
work is the effect of background traffic on the Quality of
Service (QoS) experienced by certain flows, such as for
example related to the Voice-over-IP (VoIP) service. To
evaluate the performance of FAMTAR in this context, we
started one VoIP flow (G.711.1 RTP) between nodes H1
and H2 (Figure 11), and then the following background
flows were scheduled and launched one after another every

Table 2: Scenario III – BitTorrent download statistics of the file (Ubuntu ISO CD image, 1 028 653 056 B)

Without FAMTAR With FAMTAR

2 active paths 4 active paths

Average download time [s] 944.3 ± 8.72 492.7 ± 15.18 313.0 ± 22.36

Average download rate [Mbit/s] 8.7 ± 0.08 16.7 ± 0.52 26.3 ± 1.88

Relative gain in throughput 0% 92% 202%

10

200 ms to gradually consume the available resources on
the VoIP flow path:

• 50 UDP flows (100 kbit/s, beginning at the 6th sec-
ond),

• 150 UDP flows (100 kbit/s, beginning at the 25th
second).

background traffic

VoIP

10

10

10

10

10

10

10

10

100 100

R2

R5

H1
R1 R4

H2
R6

R3

Figure 11: Scenario IV – Testing topology.

The background flows from the second group were ter-
minated in the same order, with a 200 ms interval, starting
at the 70th second. The remaining flows were active un-
til the end of the measurement period. The total amount
of generated background traffic during the experiment is
presented in Figure 12(d).

Figure 12 show three different QoS-related metrics for
the VoIP flow during its activity. We can see that in the
case of a standard IP network, packet losses occur in the
VoIP flow, starting from the 30th second when the back-
ground traffic begins to exceed 10 Mbit/s. This observa-
tion is in line with our expectations, since the classic IP
routing can utilize only one 10 Mbit/s link. When the of-
fered traffic starts to exceed this level, a portion of packets
needs to be dropped in the router’s output queue.

In the FAMTAR-enabled network, the VoIP flow re-
mained almost unaffected by the background traffic. The
results have proven that FAMTAR eliminates network con-
gestions by redirecting the excessive flows (which would
otherwise overload the link) to alternative paths. In the
standard IP network, the VoIP stream was mixed with
the background traffic forwarded along the same path, and
suffered from increased delay, decreased bitrate, and high
packet loss rate. We can see it in Figure 12(b). Until
the 30th second, the delay in the FAMTAR-enabled net-
work rised in a similar way as in the standard IP network.
This is because the active link was being gradually loaded
with the background traffic, so the VoIP packets had to
statistically wait longer in the router’s queue. However,
in the 30th second, delay stopped increasing in a FAM-
TAR network. This was caused by the FAMTAR adaptive
mechanism which started to use an alternative path for
new flows in order to avoid congestion. Consequently, the
observed delay remained constant. It started to decrease

from the 70th second when the background flows assigned
to the first path started to terminate.

Table 3: Scenario IV – Effect of traffic congestions on a VoIP flow

Without FAMTAR With FAMTAR

Min. bitrate [kbit/s] 23.04 ± 2.95 49.97 ± 0.57

Max. delay [µs] 44 ± 0.50 9 ± 7.10

Max. packet loss rate [pkt/s] 54.0 ± 3.62 0.6 ± 1.67

20
25
30
35
40
45
50
55

0 20 40 60 80 100 120

B
it

ra
te

[k
b
it

/s
]

Time [s]

(a)

0

10

20

30

40

50

0 20 40 60 80 100 120

D
el

ay
[µ

s]

Time [s]

(b)

0

10

20

30

40

50

60

0 20 40 60 80 100 120

P
ac

k
et

lo
ss

ra
te

[p
ac

ke
ts

/s
]

Time [s]

(c)

0

5

10

15

20

25

0 20 40 60 80 100 120

B
ac

k
gr

ou
n
d

tr
affi

c
[M

b
it

/s
]

Time [s]

(d)

Figure 12: Scenario IV – (a) Bitrate, (b) delay, and (c) packet loss
rate of the VoIP flow in the congested standard IP and FAMTAR-
enabled networks (red and blue solid lines, respectively). The dotted
lines reflect the minimum and maximum values acquired in all trials,
whereas the solid lines correspond to a single trial. The amount of
generated background traffic during the experiment is shown in (d).

11

Scenario V

Transient loops can occur in routing protocols during
link cost updates. In traditional approach, such loops are
resolved as soon as the state of the routing protocol tables
converges on all routers. However, in FAMTAR, routes
are being frozen in the FFT when the first packet of a flow
passes through the network, which can result in such a
transient loop becoming permanent. Such transient loops
are resolved immediately by the mechanism presented in
[37].

The same mechanism can also resolve permanent loops,
which can occur due to link failures. Such loops are, how-
ever, not being resolved immediately. Thus, the goal of the
last experiment was to verify the performance and delay
of the loop resolution mechanism during a real failure.

In this scenario, only one flow (constant bitrate of 2.84
Mbit/s, 64 B packets) was transmitted via a single path
between nodes H1 and H2 (Figure 13). This corresponds
to approximately 55k packets per second. This means that
the amount of traffic did not trigger the multipath mecha-
nism of FAMTAR. We selected a relatively low bitrate to
ensure that the results could be compared to the standard
IP network.

10

10

10

10

10

10

10

10

100 100

R2

R5

H1
R1 R4

H2
R6

R3

Figure 13: Scenario V – Testing topology

A failure of the active link was simulated in the network
by physically unplugging the network cable from the inter-
face of router R2. It was expected that the network will
move the existing flow on a new path. We compared the
number of dropped packets during the restoration phase
for both the standard IP and FAMTAR-enabled networks.
Traffic generation and measurements were done using the
D-ITG software tool. We summarized the results in Ta-
ble 4.

Table 4: Scenario V – Number of packets dropped before the traffic
was moved on a new path

Without FAMTAR With FAMTAR Avg. difference Relative gain

3841.9 ± 631.5 4656.2 ± 48.1 −814.3 −21.2%

Based on the results, we admit that the deployment
of FAMTAR may increase the number of dropped pack-
ets during the path restoration phase, which also means

that the total restoration time may be longer than in the
case of a standard IP network. However, the difference is
not large. Having in mind that the generated traffic was 55
kpps, this corresponds to 15 milliseconds of additional out-
age comparing to classic OSPF routing. Thus, we believe
that FAMTAR still demonstrates reasonable performance
in the presence of failures. Moreover, the experiment has
confirmed that the TTL-based loop resolution mechanism
works as expected, i.e., it resolves permanent loops which
may appear in the network due to failures.

7. Conclusion

FAMTAR is a promising concept for multipath routing
in IP networks. So far, the approach was presented and
evaluated through simulations. Now, we have a prototype
which we tested in physical networks.

We presented the practical aspects of a prototype im-
plementation. We also documented and solved challenges
and problems encountered during the implementation pro-
cess, which were not noticed during simulations. After
basic tests verifying the proper operation of each compo-
nent, we benchmarked physical networks built with the
FAMTAR routers under real traffic conditions. The re-
sults show significant advantages of FAMTAR compared
to standard IP routing. Most importantly, the test results
are in line with simulation analysis published earlier.

We believe that the implementation and test results
presented in this paper will accelerate further development
of FAMTAR. Now, FAMTAR is a robust solution which is
also easy to implement.

Acknowledgment

The research was carried out with the support of the project
”Flow-Aware Multi-Topology Adaptive Routing” funded
by the National Centre for Research and Development in
Poland under the LIDER programme.

References

[1] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F. Kaashoek,
The Click modular router, ACM Transactions on Computer Sys-
tems (TOCS) 18 (2000) 263–297 (August 2000). doi:10.1145/

354871.354874.
[2] J. Domża l, Z. Duliński, M. Kantor, J. Rzasa, R. Stankiewicz,

K. Wajda, R. Wójcik, A survey on methods to provide mul-
tipath transmission in wired packet networks, Computer Net-
works 77 (2015) 18–41 (2015). doi:10.1016/j.comnet.2014.

12.001.
[3] J. J. Garcia-Lunes-Aceves, Loop-free routing using diffusing

computations, IEEE/ACM Transactions on Networking (TON)
1 (1) (1993) 130–141 (1993). doi:10.1109/90.222913.

[4] S. Vutukury, Multipath routing mechanisms for traffic engineer-
ing and quality of service in the internet, Ph.D. thesis, Univer-
sity of California, Santa Cruz (2001).
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.24.1725

[5] C. Villamizar, OSPF Optimized Multipath (OSPF-OMP),
Internet-Draft draft-ietf-ospf-omp-02.
URL http://tools.ietf.org/html/draft-ietf-ospf-omp-02

12

https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/354871.354874
https://doi.org/10.1016/j.comnet.2014.12.001
https://doi.org/10.1016/j.comnet.2014.12.001
https://doi.org/10.1109/90.222913
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.1725
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.1725
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.1725
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.1725
http://tools.ietf.org/html/draft-ietf-ospf-omp-02
http://tools.ietf.org/html/draft-ietf-ospf-omp-02

[6] I. Gojmerac, Adaptive multi-path routing for Internet traffic
engineering, Ph.D. thesis, TU Wien (2007).
URL http://www.gojmerac.com/Gojmerac_PhD-Thesis.pdf

[7] J. M. McQuillan, G. Falk, I. Richer, A Review of the Develop-
ment and Performance of the ARPANET Routing Algorithm,
IEEE Transactions on Communications 26 (12) (1978) 1802–
1811 (1978). doi:10.1109/TCOM.1978.1094040.

[8] J. M. McQuillan, I. Richer, E. Rosen, The New Routing Algo-
rithm for the ARPANET, IEEE Transactions on Communica-
tions (1980). doi:10.1109/TCOM.1980.1094721.

[9] A. Khanna, J. Zinky, The Revised ARPANET Routing Met-
ric, ACM SIGCOMM Computer Communication Review 19 (4)
(1989) 45–56 (1989). doi:10.1145/75247.75252.

[10] J. Zinky, G. Vichniac, A. Khanna, Performance of the revised
routing metric in the ARPANET and MILNET, in: IEEE MIL-
COM ’89, 1989, pp. 219–224 (1989). doi:10.1109/MILCOM.

1989.103929.
[11] D. Bertsekas, Dynamic behavior of shortest path routing al-

gorithms for communication networks, IEEE Transactions on
Automatic Control 27 (1) (1982) 60–74 (Feb 1982). doi:

10.1109/TAC.1982.1102884.
[12] Z. Wang, J. Crowcroft, Analysis of Shortest-Path Routing Algo-

rithms in a Dynamic Network Environment, ACM SIGCOMM
Computer Communication Review 22 (2) (1992) 63–71 (1992).
doi:10.1145/141800.141805.

[13] S. Low, P. Varaiya, Stability of a class of dynamic routing proto-
cols (IGRP), in: IEEE INFOCOM ’93, 1993, pp. 610–616 vol.2
(1993). doi:10.1109/INFCOM.1993.253311.

[14] E. Rosen, A. Viswanathan, R. Callon, Multiprotocol label
switching architecture, RFC 3031 (2001).
URL http://tools.ietf.org/html/rfc3031

[15] A. Elwalid, C. Jin, S. Low, I. Widjaja, MATE: MPLS Adaptive
Traffic Engineering, in: IEEE INFOCOM 2001, Vol. 3, 2001,
pp. 1300–1309 (2001). doi:10.1109/INFCOM.2001.916625.

[16] S. Kandula, D. Katabi, B. Davie, A. Charny, Walking the
Tightrope: Responsive Yet Stable Traffic Engineering, ACM
SIGCOMM Computer Communication Review 35 (4) (2005)
253–264 (2005). doi:10.1145/1090191.1080122.

[17] S. Fischer, N. Kammenhuber, A. Feldmann, REPLEX: Dy-
namic Traffic Engineering Based on Wardrop Routing Poli-
cies, in: ACM CoNEXT ’06, 2006, pp. 6–17 (2006). doi:

10.1145/1368436.1368438.
[18] A. Kvalbein, C. Dovrolis, C. Muthu, Multipath load-adaptive

routing: Putting the emphasis on robustness and simplicity,
in: IEEE ICNP 2009, 2009, pp. 203–212 (2009). doi:10.1109/

ICNP.2009.5339682.
[19] N. Skrypnyuk, Load-sensitive routing, Master’s thesis, TU

München (2006).
URL http://www.net.t-labs.tu-berlin.de/papers/

S-LSR-06.pdf

[20] L. G. Roberts, The Next Generation of IP - Flow Routing, in:
Proc. SSGRR 2003S International Conference, L‘Aquila, Italy,
2003 (July 2003).

[21] I. Rubin, R. Zhang, Max–min utility fair flow management for
networks with route diversity, International Journal of Network
Management 20 (6) (2010) 361–381 (2010). doi:10.1002/nem.

740.
[22] J. Xu, K. Wu, Living with artificial intelligence: A paradigm

shift toward future network traffic control, IEEE Network 32
(2018) 92–99 (11 2018). doi:10.1109/MNET.2018.1800119.

[23] J. Roberts, S. S. Oueslati, Quality of Service by Flow Aware
Networking, Philosophical Transactions of The Royal Society
of London 358 (2000) 2197–2207 (September 2000). doi:10.

1098/rsta.2000.0641.
[24] S. Oueslati, J. Roberts, Comparing Flow-Aware and Flow-

Oblivious Adaptive Routing, in: Proc. 41st Annual Confer-
ence on Information Sciences and Systems, CISS 2007, Balti-
more, MD, USA, 2007 (March 2007). doi:10.1109/CISS.2006.
286549.

[25] J. Domża l, Intelligent routing in congested Approximate Flow-
Aware Networks, in: IEEE GLOBECOM, 2012 (2012). doi:

10.1109/GLOCOM.2012.6503368.
[26] J. Domża l, R. Wójcik, D. Kowalczyk, P. Gaw lowicz, P. Ju-

rkiewicz, A. Kamisiński, Admission Control in Flow-Aware
Multi-Topology Adaptive Routing, in: IEEE ICNC 2015, Gar-
den Grove, CA, USA, 2015 (Feb 2015). doi:10.1109/ICCNC.

2015.7069352.
[27] S. Zhang, W. Lei, An Optimized BBR for Multipath Real Time

Video Streaming, arXiv:1901.09177 (2019).
URL http://arxiv.org/abs/1901.09177

[28] R. Cominetti, C. Guzmán, Network congestion control
with markovian multipath routing, Mathematical Program-
ming 147 (1) (2014) 231–251 (Oct 2014). doi:10.1007/

s10107-013-0719-z.
[29] M. Mahdian, S. Arianfar, J. Gibson, D. Oran, Mircc:

Multipath-aware icn rate-based congestion control, in: Proceed-
ings of the 3rd ACM Conference on Information-Centric Net-
working, ACM-ICN ’16, ACM, New York, NY, USA, 2016, pp.
1–10 (2016). doi:10.1145/2984356.2984365.

[30] J. J. Brzozowski, J. Leddy, C. Filsfils, R. Maglione, M. Towns-
ley, Use Cases for IPv6 Source Packet Routing in Networking
(SPRING), RFC 8354 (March 2018).
URL http://tools.ietf.org/html/rfc8354

[31] R. Wójcik, J. Domża l, Z. Duliński, Flow-Aware Multi-Topology
Adaptive Routing, IEEE Communications Letters 18 (9) (2014)
1539–1542 (Sep 2014). doi:10.1109/LCOMM.2014.2334314.

[32] R. Wójcik, A. Jajszczyk, Flow Oriented Approaches to QoS As-
surance, ACM Computing Surveys 44 (1) (2012) 5:1–5:37 (Jan-
uary 2012). doi:10.1145/2071389.2071394.

[33] R. Wójcik, J. Domżal, Z. Duliński, P. Gaw lowicz, D. Kowalczyk,
Performance evaluation of Flow-Aware Multi-Topology Adap-
tive Routing, in: IEEE CQR 2014 International Workshop, Tuc-
son, USA, 2014 (May 2014). doi:10.1109/CQR.2014.7152450.

[34] E. Kohler, The click modular router, Ph.D. thesis, MIT
(November 2000).
URL http://pdos.csail.mit.edu/papers/click:kohler-phd/

thesis.pdf

[35] M. Handley, E. Kohler, A. Ghosh, O. Hodson, P. Radoslavov,
Designing Extensible IP Router Software, in: Proc. Sympo-
sium on Networked Systems Design & Implementation, 2005,
pp. 189–202 (2005).

[36] P. Jurkiewicz, FAMTAR: An adaptive multipath software IP
router implementation.
URL https://github.com/piotrjurkiewicz/famtar

[37] R. Wójcik, J. Domża l, Z. Duliński, P. Gaw lowicz, P. Jurkiewicz,
Loop resolution mechanism for Flow-Aware Multi-Topology
Adaptive Routing, IEEE Communications Letters (Jun 2015).
doi:10.1109/LCOMM.2015.2439679.

[38] A. Botta, A. Dainotti, A. Pescapè, A tool for the generation of
realistic network workload for emerging networking scenarios,
Computer Networks 56 (15) (2012) 3531–3547 (2012). doi:

10.1016/j.comnet.2012.02.019.
[39] P. Jurkiewicz, G. Rzym, P. Bory lo, How Many Mice Make an

Elephant? Modelling Flow Length and Size Distribution of In-
ternet Traffic, arXiv:1809.03486 (2018).
URL http://arxiv.org/abs/1809.03486

13

http://www.gojmerac.com/Gojmerac_PhD-Thesis.pdf
http://www.gojmerac.com/Gojmerac_PhD-Thesis.pdf
http://www.gojmerac.com/Gojmerac_PhD-Thesis.pdf
https://doi.org/10.1109/TCOM.1978.1094040
https://doi.org/10.1109/TCOM.1980.1094721
https://doi.org/10.1145/75247.75252
https://doi.org/10.1109/MILCOM.1989.103929
https://doi.org/10.1109/MILCOM.1989.103929
https://doi.org/10.1109/TAC.1982.1102884
https://doi.org/10.1109/TAC.1982.1102884
https://doi.org/10.1145/141800.141805
https://doi.org/10.1109/INFCOM.1993.253311
http://tools.ietf.org/html/rfc3031
http://tools.ietf.org/html/rfc3031
http://tools.ietf.org/html/rfc3031
https://doi.org/10.1109/INFCOM.2001.916625
https://doi.org/10.1145/1090191.1080122
https://doi.org/10.1145/1368436.1368438
https://doi.org/10.1145/1368436.1368438
https://doi.org/10.1109/ICNP.2009.5339682
https://doi.org/10.1109/ICNP.2009.5339682
http://www.net.t-labs.tu-berlin.de/papers/S-LSR-06.pdf
http://www.net.t-labs.tu-berlin.de/papers/S-LSR-06.pdf
http://www.net.t-labs.tu-berlin.de/papers/S-LSR-06.pdf
https://doi.org/10.1002/nem.740
https://doi.org/10.1002/nem.740
https://doi.org/10.1109/MNET.2018.1800119
https://doi.org/10.1098/rsta.2000.0641
https://doi.org/10.1098/rsta.2000.0641
https://doi.org/10.1109/CISS.2006.286549
https://doi.org/10.1109/CISS.2006.286549
https://doi.org/10.1109/GLOCOM.2012.6503368
https://doi.org/10.1109/GLOCOM.2012.6503368
https://doi.org/10.1109/ICCNC.2015.7069352
https://doi.org/10.1109/ICCNC.2015.7069352
http://arxiv.org/abs/1901.09177
http://arxiv.org/abs/1901.09177
http://arxiv.org/abs/1901.09177
https://doi.org/10.1007/s10107-013-0719-z
https://doi.org/10.1007/s10107-013-0719-z
https://doi.org/10.1145/2984356.2984365
http://tools.ietf.org/html/rfc8354
http://tools.ietf.org/html/rfc8354
http://tools.ietf.org/html/rfc8354
https://doi.org/10.1109/LCOMM.2014.2334314
https://doi.org/10.1145/2071389.2071394
https://doi.org/10.1109/CQR.2014.7152450
http://pdos.csail.mit.edu/papers/click:kohler-phd/thesis.pdf
http://pdos.csail.mit.edu/papers/click:kohler-phd/thesis.pdf
http://pdos.csail.mit.edu/papers/click:kohler-phd/thesis.pdf
https://github.com/piotrjurkiewicz/famtar
https://github.com/piotrjurkiewicz/famtar
https://github.com/piotrjurkiewicz/famtar
https://doi.org/10.1109/LCOMM.2015.2439679
https://doi.org/10.1016/j.comnet.2012.02.019
https://doi.org/10.1016/j.comnet.2012.02.019
http://arxiv.org/abs/1809.03486
http://arxiv.org/abs/1809.03486
http://arxiv.org/abs/1809.03486
http://arxiv.org/abs/1809.03486

	1 Introduction
	2 Related work
	2.1 Multipath routing
	2.2 Adaptive routing
	2.3 Flow-based routing
	2.4 FAMTAR origins and possible extensions

	3 Flow-Aware Multi-Topology Adaptive Routing
	4 Implementation environment
	5 Router components
	6 Tests of the FAMTAR router
	7 Conclusion

