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Abstract—The independent operation of mobile and fixed network segments is one of the main barriers that prevents 

improving network performance while reducing capital expenditures coming from overprovisioning. In particular, a 

coordinated dynamic network operation of both network segments is essential to guarantee end-to-end Key Performance 

Indicators (KPI), on which new network services rely on. To achieve such dynamic operation, accurate estimation of end-

to-end KPIs is needed to trigger network reconfiguration before performance degrades. In this paper, we present a 

methodology to achieve an accurate, scalable, and predictive estimation of end-to-end KPIs with sub-second granularity 

near real-time in converged fixed-mobile networks. Specifically, we extend our CURSA-SQ methodology for mobile 

network traffic analysis, to enable converged fixed-mobile network operation. CURSA-SQ combines simulation and 

machine learning fueled with real network monitoring data. Numerical results validate the accuracy, robustness, and 

usability of the proposed CURSA-SQ methodology for converged fixed-mobile network scenarios. 
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I. INTRODUCTION 

Fixed-mobile networks have been traditionally operated as two separated network segments, where the Evolved 

Packet Core (EPC) in the Radio Access Network (RAN) facilitates the mobility of User Equipment (UE) and 

provides Quality of Service (QoS) looking at meeting the needs of services and users with diverse characteristics, 

whereas the fixed network provides connectivity services among Evolved NodeB (eNB) / Next Generation NodeB 

stations and with the mobile core [1], [2]. Although this separation simplifies network operation as the RAN 

assumes that enough resources (i.e., connections with fixed capacity) are allocated in the fixed network, it imposes 

resource overprovisioning to the fixed network; enough resources need to be allocated in the fixed network trying to 

avoid network congestion that would degrade the QoS perceived by the end-users (i.e., increased end-to-end delay 

and reduced throughput). Note that overprovisioning increases network capital expenditures (CAPEX). However, 

since the fixed networks have been traditionally able to easily meet the requirements of 2G/3G/4G mobile networks, 

network operators have not paid much attention to such overprovisioning. 

Nonetheless, large traffic variations can be expected not only in the RAN but also in the fixed network as a result of 

the increment of the bitrate available in the RAN, the different type of services (e.g., video streaming, P2P, gaming, 

and so on), and the mobility of UEs. Note that: i) the number of active UEs in a given cell fluctuates not only at 

macroscopic scale (daily) but also at microscopic one (second) according to complex behavioral aspects [3]; ii) the 

traffic generated by the different services is not constant, as non-deterministic on/off patterns are commonly 

observed [4]; and iii) UEs’ mobility, including within the same cell and among neighboring cells, impacts on the 

end-to-end latency and throughput in both upstream and downstream directions [5]. Such traffic variations push the 

amount of resources to be overprovisioned in the fixed network. 

In addition, the stringent requirements imposed by 5G is making that fixed networks need to be redesigned while 

fostering the convergence of mobile and fixed networks, where the optical transport network is extended toward the 

edge [6]. In this regard, operators are attending with significalt interest to the definition of the next-generation cell 

site Gateway (CSGw) connecting current and upcoming 5G mobile cell sites, to the transport network [7]; the 

CSGw includes, among others, Multiprotocol Label Switching (MPLS) capabilities, so traffic engineering 

techniques can be applied to packet flows. Note that MPLS improves the routing and increases the traffic 

engineering possibilities and it can be used to implement the data plane, e.g., to support the S1 interface [8]. 
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In this context, looking at limiting CAPEX derived from the required overprovisioning, the convergence of mobile 

and fixed networks needs to be complemented with some level of coordination at the control plane. In fixed 

networks the Software-defined Network (SDN) is already consolidated and it is able to control the network not only 

for connectivity provisioning but also to re-configure the allocated resources in response to network conditions. In 

contrast, the separation of control and user planes in the RAN is currently under research looking at controlling 

eNBs and enabling the deployment of specific policies on top of a centralized SDN controller (see, e.g., [8]-[11]). 

Although an SDN controller could be in charge of the RAN, for the sake of simplicity from the overall network 

orchestration perspective (which it is currently under definition [12]), in this paper, we assume that an SDN 

controller is in charge of the fixed network, whereas the EPC in the mobile core provides policy control in the RAN. 

The SDN controller can re-configure the allocated connectivity resources in the fixed network as a function of the 

needs of the cells in the RAN, targeting at ensuring the desired QoS, while avoiding resource overprovisioning. To 

this end, real-time Key Performance Indicators (KPI) and resource utilization monitoring are needed to evaluate the 

QoS and detect bottlenecks in the converged network [13]. Those KPIs (latency and throughput) measured end-to-

end, i.e., from UEs to the mobile core, and vice versa, in addition to packet loss measured in the access-metro nodes 

in the fixed network, can be of paramount importance for an optimal operation oriented to guarantee QoS, as defined 

by those end-to-end KPIs, with efficient resource usage. In the case some degradation is detected, the SDN 

controller could re-configure the fixed network to adapt resources to current network conditions. 

The above approach is purely reactive as it consists in following the changes in the network conditions, so it would 

be desirable to anticipate (near) future conditions, so that the adaptation can be performed in a proactive manner. In 

that regard, Machine Learning (ML) techniques [14] can be used to make predictions about future traffic and 

position of UEs [15]. In fact, specialized monitoring and data analytics (MDA) architectures that include a MDA 

controller running besides the SDN controller have been proposed to collect monitoring data from the network 

devices, analyze such data by means of ML-based algorithms, and issue recommendations to the SDN controller in 

the case of detecting some degradation (see, e.g., [16]-[18]). In addition, ML algorithms have been proposed to 

reconfigure the virtual network topology (VNT) based on predicted traffic [19], to detect packet traffic anomalies 

[20], and to compose aggregated traffic models based on a set of models for individual traffic flows [21]. However, 

such mobility and traffic predictions are not enough to identify bottlenecks in the network and predict the QoS 

perceived by the users. Although such analysis can be currently performed using discrete-event based network 

simulation (e.g., the well-known ns-3 open source network simulator [22]), its use for network operation can be 

discarded due to scalability issues. 

Given this, we propose a tool that uses traffic prediction and UEs’ mobility as inputs to compute future network 

conditions and estimate QoS-related end-to-end KPIs for the current network configuration. In this respect, in our 

previous work in [23], we proposed a methodology named CURSA-SQ to analyze traffic flows in a fixed network 

by modelling service traffic and the behavior of the queues in packet nodes. CURSA-SQ enables near real-time 

traffic analysis (with sub-second granularity) due to its better performance and scalability compared to traditional 

discrete-event based simulations. Starting from the general CURSA-SQ methodology, in this paper, we present the 

needed extensions to enable its application in converged fixed-mobile network scenarios, where each cell in the 

RAN is modeled as a shared medium controlled by the cell’s scheduler. Specifically, the contributions are: 

• Section II introduces the converged fixed-mobile network scenario and motivates the need of end-to-end KPI’s 

estimation as the key to verify the performance of services from UEs to applications running in datacenters 

connected to the access-metro and core fixed network, as well as to the Internet. Our proposal for CURSA-SQ 

as the tool able to produce such estimation is overviewed, where its output can be used by a performance 

analysis module to issue recommendations that can help to proactively reconfigure resources in the network. 

However, for such estimation to be useful for the network operation, it needs to be near real-time, and therefore, 

the considered estimation window should not be larger than some (few) minutes and be ready in a shorter time, 

which imposes stringent requirements. 

• Our proposal to extend the general CURSA-SQ for shared medium and mobility is presented in Section III, 

together with the computation of end-to-end KPIs in networking scenarios. Once KPIs are estimated, a 

performance analyzer module can determine whether the required QoS will be met, identify bottlenecks and 

issue recommendations to the SDN controller or the mobile core to anticipate any degradation. Finally, the 

SDN controller could properly re-configure the available resources to ensure that those requirements are met.  
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• Section IV focuses on the configuration of CURSA-SQ that needs to be carried out before every simulation. 

Among others, traffic disaggregation and projection are key elements that produce the needed input traffic for 

the simulation. In the output, the results of CURSA-SQ need to be evaluated against real measurements to 

detect significant deviations. 

The discussion is supported by the simulation results presented in Section V, where the results from CURSA-SQ are 

validated against those of the ns-3 network simulator for a pure mobile network scenario. In addition, a sensitivity 

study is carried out to analyze the dependence of the CURSA-SQ simulation against errors in the traffic prediction 

and configuration of the simulation. Three interesting scenarios are eventually configured on a realistic converged 

fixed-mobile network to illustrate the usefulness of the proposed approach to simulate network conditions that can 

be used afterward by a performance analysis module to anticipate performance degradation and identify bottlenecks 

in the network. 

II. ESTIMATING END-TO-END KPIS IN A FIXED-MOBILE NETWORK  

In this section, we overview our proposal to extend CURSA-SQ, as well as various other modules needed to 

evaluate end-to-end KPIs in converged fixed-mobile network scenarios. 

Fig. 1a illustrates the considered fixed-mobile network scenario, where eNBs in the RAN are connected to packet 

nodes in the fixed access-metro network through CSGws. In the control plane, we assume an SDN controller in 

charge of the access-metro network that includes CSGws and packet nodes, as well as an MDA controller collecting 

monitoring data from the access-metro nodes. To support the S1 interface between eNBs and the mobile core, MPLS 

tunnels can be set-up in the access-metro network to facilitate traffic flow management (see [8]). 

Core Network

Access / Metro Network

CSGw-2

CSGw-1
Mobile 

Core

Metro-2

Metro-1

Access/Metro 
SDN controller

MDA
controller

cell-3

cell-2

cell-1

Mobile Network

(a)

Access/Metro 
SDN controller

MDA
controller

Mobile 
Core

M

M

(b)

f2

cell-1
u1

u2
cell-2

M

M

f1

M

 

M

KPIs

Estimation window

KPI Computation

Monitoring data

MDA controller
(c)

Access / Metro 
Traffic Monitoring

Monitoring 
DB

Performance 
Analysis 

CURSA-SQ

Dynamic 
Configuration

e2e KPI
estimation

Simulation

Recommendations

Evaluation 
and Tuning

Cell 
Monitoring

 
Fig. 1 Converged fixed-mobile network (a), mobility use case (b), and near real-time KPI estimation workflow (c). 

Aiming at enabling near real-time access-metro and mobile KPI estimation, monitoring data collected continuously 

from network devices can be used for analysis purposes. However, variations in the input traffic to the access-metro 

network due to users’ activity and mobility requires data that is available in the EPC with a full view of the cells. In 
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addition, the evaluation of mobile services requires analyzing the behavior of the access-metro network. ML models 

can be fed with these data to forecast relevant variables, e.g., the number of active UEs, their position, and their 

mobility among cells within the next short time window (e.g., next 1-2 minutes). With such prediction, as well as 

with some known deterministic network parameters, CURSA-SQ can be used to simulate network conditions in a 

future time window and evaluate KPIs in every networking device, as well as end-to-end. Such evaluation, together 

with some recommendations, can be of paramount importance for the fixed and the mobile network operation. 

For illustrative purposes, a case of mobility is represented in Fig. 1b. Let us consider that a group of UEs in cell-1 

(labeled u1) moves towards the neighboring cell-2 where, among others, a second group of UEs (u2) is located. For 

the sake of simplicity, let us assume that users in both groups consume the same service, e.g., a P2P service 

generating large symmetric traffic between both groups. Two traffic flows are highlighted (f1 and f2) connecting the 

CSGws to the mobile core. In the example, u1 throughput would decrease and latency would increase as a 

consequence of cell handover. In addition, u2 would also experience such an effect in case u1 mobility would cause 

congestion in cell-2. Analyzing traffic flows, an increase in traffic flow f2 would produce congestion and thus traffic 

loss if the capacity allocated to the MPLS tunnels supporting that flow is reached. CURSA-SQ produces outputs to 

the performance analysis module, which can issue recommendations to the SDN controller and the mobile core to 

manage resource allocation and traffic engineering policies. As an example, in view of the predicted congestion and 

traffic loss, the performance analysis module can issue a recommendation to the access-metro SDN controller 

advising to increase capacity allocated to MPLS tunnels. 

Our proposal for near real-time KPI estimation is presented in Fig. 1c. Monitoring data collected from the 

access/metro SDN controller, as well as the UEs’ cell assignment and throughput from the mobile core is stored in 

the MDA controller repository. Such data is used to estimate KPIs in the access/metro network for the next time 

window. Note the overlap between the computation period needed to estimate the KPIs for the next time window 

and the period of validity of the previous window. 

Although measurements of the amount of bitrate entering every interface of a node in the access-metro network can 

be provided (in particular, those connecting the eNBs in the RAN), they are not enough to compute per-service and 

per-UE KPIs with enough accuracy. In fact, as such measurements would entail installing expensive deep packet 

inspection (DPI) devices to examine the contents of every packet entering the access-metro network, we assume that 

no DPI devices are installed. To overcome the lack of per-service and per-UE real-time measurements, CURSA-SQ 

includes a dynamic configuration module that, among other tasks, finds a feasible traffic disaggregation given the 

aggregated measured traffic and the information related to the UEs in the RAN; specifically, likely per-service flows 

are estimated, so that their summation produces an aggregated estimated flow that statistically behaves similar to the 

aggregated measured one. With such estimated traffic disaggregation, the dynamic configuration module prepares 

the scenario to run a simulation phase for the next short time window, and an end-to-end KPI estimation module 

computes the KPIs based on the results of the simulation phase that are sent to the performance analysis module in 

the MDA controller; the latter can carry out some evaluation on the estimated end-to-end KPIs and send timely 

recommendations to the SDN controller and mobile core. Last but not least, an evaluation and tuning module waits 

until real aggregated monitoring data measured from the network is available, compares them to the results 

estimated by the simulation module for the same time period, and uses the results to tune specific parameters in the 

dynamic configuration module. 

The next two sections are devoted to defining the extensions to CURSA-SQ to evaluate the KPIs in a fixed-mobile 

network and to define the rest of the modules and their iteration within the CURSA-SQ architecture.  

III. COMPUTING KPIS ON A FIXED-MOBILE NETWORK 

For the sake of clarity and completeness, in this section we first summarize the general CURSA-SQ queue model 

from [23]. The CURSA-SQ queue model is a continuous G/G/1/k queue model with a First-In-First-Out (FIFO) 

discipline [24] based on the logistic function. Next, we extend the CURSA-SQ queue model to include shared 

medium and mobility, and finally, we focus on end-to-end KPI computation to enable analyzing the performance 

from UEs to the mobile core. 

A. The general CURSA-SQ queue model 

Fig. 2 presents the CURSA-SQ queuing module, where a number n of continuous input traffic flows are aggregated 
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into a single input flow X(t) that is queued in the capacitated queuing system and finally leaves the queue as output 

traffic flow Y(t). As the queue has a limited capacity k, traffic loss l(t) can appear if the input traffic flow exceeds the 

available capacity in the queue at time t; the available capacity depends on the amount of data in the queue, named 

queue state q(t). Therefore, we define X̂(q(t),t) as the amount of input flow actually stored in the queue at time t. The 

queued data remains for a time d(t) in the queue until the server in the queue module processes them at a constant 

rate μ. The server rate can be selected according to the throughput of the element that the queue system models (e.g., 

a 10Gb/s network interface). The used notation is summarized in Table I. 
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Fig. 2 General CURSA-SQ queuing module. 

Table I Notation 

Var/param Description 

X(t) Input flow (b/s) at time t 

k Capacity of the queue (bytes) 

q(t) Bytes in queue at time t 

X̂(q(t), t) Input flow (b/s) actually stored in the queue at time t 

l(t) Traffic loss in the queue at time t 

d(t) delay in the queue at time t 

Y(t) Output flow (b/s) at time t 

μ Server bitrate (b/s) 

Equation (1) reproduces the differential equation from [23] defining the capacitated logistic queue model proposed 

in the general CURSA-SQ methodology. The model can be solved in the time interval [t0, tmax] by initializing the 

queue with an initial value Q0 at the starting time t0. 

( ) ( ) ( )   ( )
( )

8

0 max 0 0

1 ˆ ˆ'( ) ( ), min , ( ), e , ,
8

q t

q t X q t t X q t t t t t where q t q


  
−    

  =  − + −   =
   

.

 

(1) 

The CURSA-SQ methodology allows measuring the performance of each queue. Specifically, two KPIs can be 

measured: i) flow loss is defined as the difference between the input flow and the flow actually stored in the queue, 

given the state of the queue at time t. For convenience, let us define the relative loss l(t) as the percentage of flow 

lost (see eq. (2)); ii) the delay in a queue at time t, d(t), is defined as the time needed to empty the queue given the 

queue’s server rate (see eq. (3)). 

 
ˆ ( )

( ) 1 0,1
( )

X t
l t

X t
= −  , (2) 

( )
( ) 8

q t
d t


=  .

 
(3) 

A statistics block in the queuing module (Fig. 2) collects the input and output traffic flow and measures the queue’s 

KPIs. Note that the disaggregated output traffic flows can be easily computed assuming that loss distributes 

uniformly among the input traffic flows.  
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B. Extension for Shared Medium with Mobility 

Let us consider a scenario with a single cell and several UEs connected; all the traffic between UEs and the base 

station shares the same physical medium, and thus, its capacity. It is clear that the capacity of the shared medium is 

not evenly distributed among the UEs in the cell, as the capacity that every UE perceives depends on the signal-to-

interference-plus-noise ratio (SINR) and thus, on its specific geo-localization. In this regard and aiming to reduce 

the size of the problem and thus its computation time, UEs can be aggregated into groups following a similarity 

criterion in terms of e.g., their perceived capacity or their perceived signal quality. Note that the similarity criterion 

should be considered together with the cell’s scheduler in order to achieve the most accurate results. In this paper, 

we assume the proportionally fair (PF) policy [25] and group UEs by the similarity in their perceived capacity. The 

size of the groups varies with time as UEs move, so mobility is modeled by updating the size of two or more groups. 

According to the general CURSA-SQ methodology [23], traffic generation can be fairly aggregated in mobile 

entities with similar characteristics, including those related to packet/flow traffic, service, and infrastructure. Under 

this assumption, a shared medium of capacity C can be modeled as a system of queues, where we define a different 

queue for each group of UEs consuming the same service (see Fig. 3a-b). Then, given a set S of services and a set Nc 

of groups of UEs, a cell c is modeled as a set Ec of |Nc|×|S| mobile entities, each with a traffic generator and a queue. 

Let us now define the traffic generated by a mobile entity e=<n, s>, which can be characterized by the number of 

UEs u(t) in group n and the traffic profile defining service s. In particular, two random variables are used to model 

the traffic of every single UE related to a given service s: i) the inter-arrival burst rate, and ii) the burst size. Then, 

the expectation and variance of both random variables are conveniently scaled using u(t) to generate aggregated 

traffic traces (see [23] for more details). 

As for mobility, as introduced above, it is modeled by updating the value of u(t) of two or more entities in a 

correlated manner. Note that by updating u(t), both intra- and inter- cell mobility can be implemented, depending on 

whether the entities are in the same or in different cells. 
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Fig. 3 Example of cell modeling of two UEs in a group (a-b). CURSA-SQ queuing model for a mobile entity (c). 

Regarding queues, they are characterized by their capacity and their server rate. The capacity of the queue in an 

entity e is given by the buffer size (k) typically allocated by the Radio Link Control (RLC) protocol [25] times the 

number of UEs u(t) in the entity. As for the server rate μ, we redefine that in the original CURSA-SQ model as 

being a function of time (μ(t)), which converts the system into a non-autonomous Ordinary Differential Equation 

(ODE). In the cell model in Fig. 3b, all the queues are connected to an element that aggregates and disaggregates the 

traffic of the cell and emulates the shared medium of the cell, while implementing the PF scheduler; specifically the 
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aggregator implements flow control by tuning the value of the server rate μe(t) for each mobile entity e in the cell c. 

Then, μe(t) can be modeled as: 

( )( ) ( ) ( ), ( ) (1 ( ))e c c e c et C t g q t q t t f   =   + −   , (4) 

where: i) αc(t) is a weighting factor in [0,1]; ii) g(∙) models the cell’s scheduler policy with qe(t) being the current 

state of the local queue and q(t) that of all queues in the cell; and iii) fe is the fixed proportion of the capacity of the 

cell that mobile entity e will perceive, computed as SINRe / ∑e’∈Ec SINRe’. The scheduler can manage the capacity 

sharing among the different mobile entities as a function of every request. 

We implement the PF scheduler by solving the problem for every single cell for every time t in the given time 

window in two stages: i) the initial stage (stage 0) assumes αc=0, i.e., μe(t) is proportional to the SINR perceived by 

entity e. This stage returns a value for qe(t), denoted q0
e(t); ii) the second stage uses a value of αc that balances the 

server bitrate assigned to each entity in order to introduce fairness. αc can be estimated as eq. (5): 

01
( ) ( )c e

c e Ec

t q t
N S k




= 
 

 .

 
(5) 

As evaluating αc for every time t in the given time window would heavily impact on the performance of the 

proposed method, we run stage 0 for longer periods where αc is kept constant, and transform eq. (5) by computing 

the maximum for the period. Note that eqs. (4) and (5) focus on providing fairness among the entities in the cell; the 

resulting μe(t) value is evenly shared by all the UEs in the entity, and hence to preserve fairness among UEs, size of 

the entities should be balanced as much as possible. 

Fig. 3c shows the details of the queue for mobile entities, where, similarly to the general CURSA-SQ queue module 

in Fig. 2, it stores the incoming flow traffic in a queue of capacity k, where the flow remains until it leaves at the 

programmed server rate μe(t). 

By solving the model in eq. (1) with the shared medium extension in eq. (4) for a time interval, per-entity 

throughput, delay, packet loss and others KPIs can be obtained; per-UE KPIs are computed proportionally from per-

entity ones. Regarding KPI computation, equations (2) and (3) can also be applied to compute the traffic loss and the 

delay in the queue for mobile entities. Note that the server rate in eq. (3) becomes μe(t) now. 

C. End-to-end KPI computation 

Once the queue models are defined, we can use them to simulate complex network scenarios consisting of a set of 

flows F, each combining fixed and mobile network segments, in order to analyze the evolution of the KPIs queue by 

queue, as well as flow by flow. For the latter, we still need to define how end-to-end KPIs are computed. To this 

end, we made use of the queue models defined above, which will be used here with the index of a particular queue q. 

The throughput of a flow f, Tf(t), can be computed as a function of the input flow and the accumulative loss along 

the route followed by the flow. Let us define the route followed by a flow as a set H of consecutive route segments, 

H = {h1, h2, …hn}, where each segment h consists of a set P of parallel paths, each conveying a proportion βfhp of the 

flow. As flow loss l(t) was defined above as a percentage, we can easily compute the accumulated loss as a function 

of the loss in every segment h, lh(t) (eq. (6)). In turn, lh(t) can be computed as the sum of the weighted loss along 

each path in the segment, which are finally computed as the product of the loss in every queue of the path (eq. (7)). 

Note that the traffic of a given flow distributes among all the paths in every segment of its route, and so the sum of 

proportions βfhp for all the paths of every segment equals 1 (eq. (8)). 

( )
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( ) ( ) 1 ( )f f h
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T t X t l t f F

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( ) ( )
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l t l t h H
 

− =  −   
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p P h

h H f f F
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(8) 
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Similarly, the end-to-end delay of a flow f, Df(t), can be computed as the sum of the delay of every segment of the 

route of the flow (eq. (9)), where the delay of a segment is defined as the maximum delay of the paths of the 

segment; the delay of a path is defined as the summation of the delay in every queue along such path (eq. (10)). 

( )

( ) ( )f h

h H f

D t d t f F

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(9) 

( )
( )

( ) max ( )h q
p P h

q Q p

d t d t h H




  
=   

  
  (10) 

IV. NEAR REAL-TIME KPI ESTIMATION 

Once the extensions to the general CURSA-SQ model for shared medium and mobility and end-to-end KPIs 

computation for fixed-mobile network scenarios have been presented, in this section, we focus on the rest of 

CURSA-SQ modules that are needed to produce accurate KPI estimation for the next time window. Fig. 4 presents a 

more detailed architecture of the CURSA-SQ module running inside the MDA controller; in particular, the queue 

models presented in Section III are implemented in the Simulation module, whereas end-to-end KPI estimation is 

performed in the related module. For illustrative purposes, Fig. 5 partially shows the simulation set-up configured 

for the scenario considered in Fig. 1, where three cells, each serving several entities, are considered. 
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Fig. 4 Inputs and outputs and CURSA-SQ building blocks. 
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Fig. 5 CURSA-SQ simulation and statistics utilization. 

In the architecture, the dynamic configuration module includes three submodules. The entities configuration 

submodule is in charge of the definition of the mobile entities set (Ec = {<n, s>}) in every cell c, where every entity 

e represents a set of UEs under similar perceived SINR consuming one service (see Section III.B). However, for that 
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module to provide a proper configuration, especially for the traffic to be generated and consumed by every entity, a 

per-entity traffic estimation is needed. Let us assume that we are given the total cell throughput, as well as an initial 

discretization Mc, where every m specifies the number of UEs perceiving similar SINR. Then, two modules are 

involved in the prediction of the future traffic disaggregated by service and such given discretization: first, the 

disaggregated traffic estimation submodule finds a likely disaggregation of the cell’s throughput into the set of pairs 

<m, s>, and next, the traffic projection submodule forecasts future traffic for each pair <m, s>. The entities 

configuration submodule creates the final mobile entity set by finding the optimal grouping of pairs <m, s> into each 

entity e=<n, s>. The last module is that of evaluation and tuning, which evaluates the accuracy of the estimation by 

comparing it against the real traffic conditions measured from the network. These modules are detailed next. 

A. Disaggregated Traffic Estimation 

This module deals with solving an optimization problem for every cell c, which can be stated as follows: 

Given: 

• the measured throughput of the cell c defined as a set of statistics (Wc), including mean, max, min, variance, 95th 

percentile, and so forth, 

• the total number of UEs in a cell and an initial discretization Mc of the cell in terms of the perceived SINR, 

• a set of services S and their traffic characteristics, 

• an initial percentage (vcs) of traffic volume for every service s. This initial percentage can be used to consider 

smooth evolutionary solution when coming from the previous time interval, as well as serve as a way to bias the 

optimization problem, 

• weights γ1 and γ2. 

Output: the percentage of traffic volume for every pair <m, s> for the cell c, denoted as θcsm. 

Objective: minimize the difference between the given throughput and the estimated one in terms of the defined 

statistics, weighted by γ1, as well as the difference between the initial per-service traffic percentages and the 

estimated ones, weighted by γ2. Note that the first term ensures that the results are as close as possible to the 

observed throughput, whereas the second one forces the results to follow a smooth evolution as introduced above. 

The objective function Φc is defined for every cell c: 

( )( )
2

2

1 2, , ( )c w c c cs csm

w Wc s S m M

f M S W w v c C   
  

 
 =  − +  −   

 
   ,

 

(11) 

where, specific functions fw(∙) are defined to compute the average for every traffic statistic given the unknown 

percentages of traffic volume, the initial discretization, and the characteristics of the services. It is worth noting that 

by properly tuning weights, optimization emphasis can range from a smooth or static (γ1=0, γ2=1) evolution to a 

more dynamic (γ1=1, γ2=0) one. 

The disaggregated traffic estimation optimization problem can be solved using the gradient descent algorithm [27] 

and the results, together with the set of statistics for the measured throughput, are stored in a database. 

B. Traffic Projection 

The traffic projection module applies interpolation to the estimated historical disaggregated traffic and measured cell 

throughput to forecast per <m, s> pair traffic and cell throughput in the next time window. The size of the historical 

data considered for interpolation is defined by parameter hw. 

This module uses structural models based on the state-space models that allow using more than one correlated time 

series [26]. In particular, the accuracy of interpolations of per <m, s> pair estimated traffic increases when the 

measured cell throughput is considered since the aggregation of all pairs <m, s> is naturally correlated to the overall 

cell throughput. In addition, the method can potentially identify the structural components of the considered time 

series (e.g., trend or seasonality), making it possible to deal with very different behaviors with just one single 

modeling approach. 

C. Entities Configuration 

Finally, the entities configuration reduces the number of possible generators to configure for the simulation step by 
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grouping <m, s> pairs with similar characteristics to create mobile entities. The problem can be stated as follows: 

Given: 

• the number |S| of considered services, 

• the set of pairs <m, s> and the projected traffic for every pair, 

• a number |Nc| of entities to be created by grouping <m, s> pairs with similar perceived SINR. 

Output: the |Nc|×|S| mobile entities, including its assigned SINR and its projected traffic. 

Objective: minimize the error between the SINR assigned to each entity and the SINR of each <m, s> pair weighted 

by the number of the pair. As a secondary objective, we are interested in obtaining entities representing a balanced 

number of UEs to achieve fairness among UEs in the cell. 

The entities configuration optimization problem can be solved using the k-means clustering algorithm [14] 

complemented with a final phase for balancing focused on the secondary optimization objective. 

D. Evaluation and tuning 

Once the network scenario has been simulated and the KPIs have been estimated for the next time window, the 

results are temporally stored and can be used to evaluate their precision by comparing them against the real traffic 

conditions measured from the network. Note that the dynamic configuration module requires different configuration 

parameters that need to be tuned according to the specific scenario under study. Specifically: i) the disaggregated 

traffic estimation submodule includes parameters γ1, γ2, and vcs. Note that the value of parameter vcs can be equal to 

the values of the θcsm from the previous estimation window, so the values selected for γ1 and γ2 can result into more 

dynamic or more persistent models; ii) in the traffic projection submodule, the parameter to evaluate and tune is the 

size of the historical time window, hw; using large historical time windows, more importance will be given to the 

trend in the model, whereas with small sizes the model will detect changes in the injected traffic to the network; and 

iii) the |Nc| parameter can be adjusted in the entities configuration submodule; note that the higher the number of 

entities, the higher the accuracy of the simulated traffic characteristics. In addition, |Nc| can be dimensioned to 

facilitate the balancing of UEs among entities, which is a key aspect for the sake of system fairness. 

In order to evaluate the current value of the above configuration parameters, an optimization problem is solved to 

find the optimal value of the configuration parameters, Params*, for the estimation window corresponding to the 

monitoring data. The optimization problem is based on comparing the traffic measured at different points during the 

CURSA-SQ simulation and KPI estimation against the traffic that is measured from the network. Specifically, we 

assume the availability of measurements at the input of the access/metro network corresponding to the traffic 

from/to the RAN, as well as some type of measurements of aggregated traffic per service that can be obtained, e.g., 

at the output of the mobile core. In addition, other monitoring points can be considered as well. We consider that 

these monitoring data has a coarser granularity than that from the mobile network, which uses fine grained data for 

near real-time management. 

Then, the optimization problem for evaluation can be stated as follows: 

Given for time period T: 

• the measured traffic at the interconnection between the RAN and the access/metro network,  

• the aggregated traffic per service monitored at the output of the access/metro network,  

• the traffic measurements from the CURSA-SQ simulation module. 

Output: the set of optimal CURSA-SQ configuration parameters, Params*=<γ1
*, γ2

*, vcs
*, hw

*, |Nc|*>. 

Objective: minimize the distance between the characteristics of the traffic observed in the real network and those of 

the traffic generated during the simulation. 

Once solved the evaluation problem, tuning of the configuration parameters can be performed for the next 

estimation window. As the optimal values for the configuration parameters correspond to a historical time period T, 

the tuning module stores the optimal values just obtained and predicts the values of the parameters to the next time 

window based on their historical evolution. Then, considering a confidence interval for such predictions, parameters 

are updated only if their current value is outside the corresponding confidence interval. 



11 

 

V. SIMULATION RESULTS 

In this section, we numerically study and validate the proposed CURSA-SQ methodology for end-to-end 

performance estimation in converged fixed-mobile networks. To this aim, we firstly focus on evaluating the 

performance of the proposed extension for shared medium proposed in Section III.B by means of the ns-3 network 

simulator. Second, we carry out a sensitivity analysis of the dynamic configuration module in Section IV as a 

function of the reliability and precision of its submodules. Finally, we present a set of use cases to illustrate the use 

of CURSA-SQ for near real-time fixed-mobile network analysis. 

A. Validation of the mobile network simulation 

To validate CURSA-SQ extension for shared medium, we run several simulations to compare the performance of 

our Matlab implementation against that of the ns-3 network simulator implementing the LTE module [28] modeling 

the full LTE Radio Protocol and the EPC, including the core network interfaces, protocols, and entities. Both 

CURSA-SQ and ns-3 run on an i7-8700 server with 16GB RAM and Ubuntu 18.04. 

For this comparative study, a scenario with one single cell was simulated consisting of a base station with a three-

sectored antenna, an EPC, and several UEs receiving the traffic (UDP packets) injected by a random bursty traffic 

generator. Each sector was modeled as a parabolic antenna with a 3dB beam width of 70 degrees and a maximal 

attenuation of 20dB. For the sake of simplicity, we considered interference-free radio links with line of sight 

between the base station and the UEs. The ns-3 scenario was configured with the PF scheduler, 1ms transmission 

time interval, and 5MHz downlink bandwidth. According to the adaptive modulation and coding model in [29], the 

simulator finds the best modulation and coding scheme for a given channel condition. For the sake of a fair 

comparative analysis, components fe and g(∙) in eq. (4) have been modeled to match the abovementioned 

configuration. In addition, packet traces generated and used in ns-3 simulation were aggregated in flows with a 

granularity of 250 ms and used in the CURSA-SQ simulation. 

Th
ro

u
gh

p
u

t 
(M

b
/s

)

D
el

ay
 (

m
s)

Distance to the antenna (m) Distance to the antenna (m)

(a) (b)

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

ns-3 - mean

ns-3 - max

CURSA-SQ - mean

CURSA-SQ - max

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 50 100 150 200 250 300

ns-3 - min

ns-3 - mean

CURSA-SQ - min

CURSA-SQ - mean

 
Fig. 6 Throughput (a) and latency (b) in the radio segment vs. distance to the antenna. 

Table II Relative difference between CURSA-SQ and ns-3 

 
Peak-average ratio 

[1, 1.2) [1.2, 1.4) [1.4, 1.7) 

Throughput–min 3.5% 6.8% 10.0% 

Throughput–mean 1.5% 3.7% 5.3% 

Delay–mean 13.2% 14.1% 17.4% 

Delay–max 20.5% 15.3% 12.9% 
 

Fig. 6 shows the results of the simulation of 15 UEs located between 10 and 290 m from the antenna; CURSA-SQ 

was configured with one single UE per entity, i.e., 15 entities. The obtained minimum and average throughput, and 

the average and maximum delay per-UE are presented in Fig. 6a and Fig. 6b, respectively, where similar values for 

both simulation environments can be observed. The larger deviations are for the estimation of the delay for medium 

distances (100-200m), where CURSA-SQ overestimates the delay as a consequence of the intrinsic nature of the 

continuous queue model. However, the impact of such overestimation is minor as they could lead to conservative 

decisions for the performance analysis module. 
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Table II provides an extended comparison of the previous results in terms of the relative difference for quantifying 

relevant KPIs. Several repetitions with different random traffic traces and mobility patterns were simulated. The 

results in Table II are segmented by different peak/average traffic ratios of the traces; the higher ratio the more 

bursty the injected traffic. Note that throughput errors typically remain below 10%, whereas higher delay estimation 

errors are caused by the CURSA-SQ overestimation illustrated in Fig. 6. 
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Fig. 7 CURSA-SQ time-to-solve vs. granularity (a), and vs. the number of mobile entities in the cell (b) 

Let us now evaluate CURSA-SQ in terms of scalability and its applicability for near real-time KPI estimation. To 

this aim, let us consider that, in order to make and implement operational decisions, simulations of 2-minute time 

windows need to be carried out. Fig. 7a shows the time-to-solve one-entity queue system model as a function of the 

granularity configured in CURSA-SQ. The impact of reducing the granularity is two-fold: while the precision of 

KPI estimation and the amount of information for performance analysis and decision-making increases, the time-to-

solve also increases, which can impact negatively for near real-time operation. As it can be observed, sub-second 

granularities can be achieved with low time-to-solve times. Specifically, by selecting 250ms granularity, just 12.5 

seconds were needed; this is remarkably lower than the simulated 2-minute time-window (10% of the simulated 

time), which enables its use for near real-time operation. Note that the ns-3 simulation required ~15 min, i.e., 7.5 

times the simulated time. Assuming such granularity, Fig. 7b shows the CURSA-SQ time-to-solve when the number 

of mobile entities in a cell increases; the results show a clear linear trend that is related to the number of calls to the 

ODE solver, which confirm the applicability of CURSA-SQ for a wide range of realistic scenarios.  

B. Evaluation of the dynamic configuration module 

Once the extension of CURSA-SQ for shared medium has been validated in the mobile network segment to compute 

KPIs assuming a perfect configuration of the system, let us now evaluate the dynamic configuration module, which 

in case of inaccuracy could introduce some error in the KPI estimation. Recall that the dynamic configuration 

module finds the best configuration of entities based on the estimation of the disaggregated traffic estimation and the 

traffic projection submodules. To this aim, we conduct a sensitivity analysis of the dynamic configuration module in 

the case of errors in the entities’ configuration and traffic estimation. Without loss of generality, we focus on the 

impact of dynamic configuration errors in the estimation of the KPIs on the mobile segment using the configuration 

of the cell and UEs from the previous section. For the sake of clarity, we analyze both types of errors separately. 

Let us first concentrate on analyzing traffic estimation errors. To this end, we configured one entity per UE and 

assumed the traffic flow traces generated from the ns-3 simulator as the real traffic while added an unbiased 

Gaussian error to emulate an overall prediction error from the disaggregated traffic estimation and traffic projection 

submodules. Fig. 8a presents the evolution of the error of the estimation for the minimum throughput and the 

maximum delay as a function of the normalized error introduced. A close-to-linear relation is observed between the 

error introduced in the traffic estimation and the error introduced in KPIs estimation when the former is below 30%; 

above that value, traffic estimation is too poor to be used for KPI estimation. Note that the 30% limit is not stringent, 

as it is expected that the traffic estimation can remain largely below this threshold. Under such assumption, the 

results illustrate two very positive properties of the CURSA-SQ methodology: i) the estimation of the error 

introduced by the disaggregated traffic estimation and traffic projection submodules provides a likely estimation of 

the error in the KPI estimation; ii) improving the quality of these submodules with the help of the evaluation and 

tuning module, will proportionally improve the quality of the KPI estimation. 
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Fig. 8 Error in throughput and delay estimation vs. error in traffic estimation (a) and entities configuration error (b). 

Let us now focus on evaluating the entities configuration submodule, assuming perfect traffic projection. Assuming 

that one entity per UE (15 entities) is the optimal configuration for the current scenario, we introduced error by 

reducing the number of entities, thus aggregating several UEs per entity. We computed a relative error as the ratio 

between the number of entities configured over the optimum one. Fig. 8b plots minimum throughput and maximum 

delay errors as a function of the error introduced by an inaccurate entities’ configuration. A linear evolution of KPI 

estimation error is again observed with configuration error below 40%, which leads to similar conclusions than those 

for the traffic estimation error. 

In view of the results, we conclude that the errors introduced by the dynamic configuration module have a moderate 

impact on KPI estimation. Moreover, by evaluating the differences between simulated and real traffic 

measurements, a rough but likely estimation of the error between estimated and real KPIs could be obtained. 

C. Performance of End-to-End KPI Estimation 

Once CURSA-SQ has been validated for the mobile network segment model, let us now focus on analyzing its 

performance for end-to-end KPI estimation. To this aim, we configured a more complex network scenario that 

considers mobile and fixed network segments; specifically, we configured the topology depicted in Fig. 5 that 

includes three cells, two CSGws, one metro router, and the mobile core. Every cell has been scaled up to a capacity 

of 1 Gb/s, whereas 10 Gb/s links have been considered for the fixed access-metro segment. We split every cell into 5 

SINR zones, where every zone includes users consuming three types of services namely, Video-On-Demand (VoD), 

Gaming, and Internet; thus, every cell has been configured with 5 x 3 = 15 entities. The statistical characteristics of 

the services are in line with those in [23]. 

Three scenarios are considered for the evaluation, where each scenario is defined by the number of UEs in every 

entity and their mobility during the simulation time. The first and simplest scenario (S1 - Normal) reproduces the 

case where both the number of UEs and the background traffic remains constant along the simulation. The second 

scenario (S2 - Cell congestion), represents the case of UEs mobility between cells 1 and 2. Finally, the third scenario 

(S3 - Metro congestion) represents the case where the background traffic experiences a remarkable increment due to 

some external cause out of the analyzed RAN. 

Let us assume that the initial time of the simulation (t0) corresponds to the current time, whereas the final time (tw) 

represents the end of the forecasted time window; then, tw = t0 + 2min. To properly configure entities for the whole 

duration of the simulation, the evolution of the number of UEs per cell and service is received from some external 

system; with this, linear traffic forecast from t0 to tw is considered. Finally, a realistic scenario is emulated by 

configuring an extra entity injecting background Internet traffic at every CSGw. Indeed, although for the sake of 

simplicity only three cells are simulated in detail, a denser RAN is considered where the access-metro segment 

supports such traffic. Table III and Table IV report the total number and the mobility of UEs per cell and the 

evolution of background traffic per CSGw, respectively, for the three considered scenarios at t0 and tw. 
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Table III Number and mobility of UEs per scenario and cell (t0 → tw) 

Cell S1 - Normal S2 - Cell Congestion 
S3 - Metro 

Congestion 

1 72 → 72 18 → 126 72 → 72 

2 72 → 72 126 → 18 72 → 72 

3 72 → 72 72 → 72 72 → 72 

Table IV Evolution of background traffic (Gb/s) per scenario and cell (t0 → tw) 

CSGw S1 - Normal 
S2 - Cell 

Congestion 

S3 - Metro 

Congestion 

1 2.2 → 2.2 2.2 → 2.2 2.2 → 2.2 

2 2.3 → 2.3 2.3 → 2.3 2.3 → 7.9 
 

Fig. 9 plots the evolution of the normalized load (computed as the ratio between the effective throughput and the 

bitrate) as a function of the time during the simulation window for all the three scenarios and the defined observation 

points (Fig. 5) in the cells, whereas Fig. 10 plots those for CSGws and metro nodes. As expected from the 

characteristics of scenario S1, steady behavior is observed in Fig. 9a and Fig. 10a, where the load is moderately low 

in every cell, as well as in the interfaces in the nodes of the fixed network. In scenario S2, the impact of mobility on 

cells’ normalized load is clearly visible (Fig. 9b and Fig. 10b); while normalized load stays steady for cell 3 as in 

scenario 1, it largely increases in cell 1 as soon as decreases in cell 2, as a result of UEs moving from one cell to the 

other. In fact, the normalized load occasionally exceeds 0.8, which could lead to significant latency as a result of 

large traffic queuing. Although variations in the normalized load are observed in the CSGws, they are negligible 

compared to those in the cells as a result of traffic aggregation. Finally in scenario S3, cells’ normalized load remain 

constant, while that in the observation point in CSGw2 increases causing metro congestion at the end of the 

simulated time window (Fig. 9c and Fig. 10c); this allows to conclude that the cause of congestion is not located in 

the RAN. 

The above analysis was based on the traffic resulting from CURSA-SQ simulation in specific observation points. 

Other powerful results from CURSA-SQ simulation are end-to-end KPIs that allow evaluating whether future 

network conditions will actually impact the performance experienced by the end users. Fig. 11 plots end-to-end 

delay measured for the UEs in cell 1 under the considered scenarios; minimum, average, and maximum delay per-

UE is plotted as a function of time. Let us also assume that analysis is carried out to detect whether end-to-end delay 

will exceed a threshold value set at 200 ms. 

In scenario S1, users will experience delay below the threshold although some user will occasionally experience 

delay higher than the threshold. Given this, the performance analysis module would not issue any recommendation 

to the SDN controller, so the current network configuration is kept invariant. The analysis of scenario S2 would 

clearly identify increasing maximum delay, which eventually will violate the threshold by far. Note however, that 

average delay stays well under the threshold. In this case, the analysis of the normalized load at the observation 

points (Fig. 9b and Fig. 10b) would allow to clearly identify that the cause of such end-to-end delay violation is 

congestion in cell 1; this conclusion can be notified to the mobile core. Finally, in scenario S3 average and minimum 

delay follow the evolution of the maximum delay and exceed the threshold at the end of the simulation window. 

This fact (i.e., all users being equally affected), jointly with the analysis of traffic in the observation points (Fig. 9c 

and Fig. 10c), clearly identify congestion in the metro segment. The conclusion of this analysis can be notified to the 

SDN controller. 
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Fig. 9 Normalized load in the RAN as a function of time for every scenario 
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Fig. 10 Normalized load in the fixed network as a function of time for every scenario 
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Fig. 11 End-to-end delay experienced by users in cell 1 in every scenario 

A finer analysis can be carried out at the mobile entity level. Fig. 12a-b show the evolution of the throughput and 

delay vs. time, respectively, for the two mobile entities with the highest and the lowest SINR in cell 1 under scenario 

S2. It can be easily observed in Fig. 12a that the throughput experienced by both entities under low load conditions 

(for time < 70 approximately) is similar independently of the signal quality and shows the fairness of the cell 

scheduler. As soon as the load of the cell increases (for time > 70), the throughput of the entity with the lowest SINR 

is limited by the quality of the signal. Even though, the observed delay (Fig. 12b) is similar for both entities. 

Finally, Fig. 13 proposes an alternative analysis of the end-to-end delay, where 10s intervals are averaged to study 

the maximum delay introduced by every element; it follows eq. (9) and plots the accumulative evolution of the 

maximum delay at every observation point. This representation allows an even more clear identification of the 

element partially responsible for large end-to-end delay. In particular, cell congestion can be identified as the cause 

of the large end-to-end delay observed in scenario S2, whereas metro congestion is identified in scenario S3. 
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Fig. 12 Throughput (a) and delay (b) vs. time for the mobile entities with the highest and the lowest SINR. 
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Fig. 13 Components of end-to-end delay 

VI. CONCLUDING REMARKS 

There is a clear need to estimate end-to-end KPI’s in scenarios of converged fixed-mobile networks as the key to 

verify the performance of services. In this context, an extension to the general CURSA-SQ methodology for shared 

medium and mobility features has been presented, where UEs are grouped into entities as a function of the SINR 

that they perceive and the service that users consume. Entities are modeled as queue systems, where the service rate 

varies with time and depends on the actual SINR and the cell’s scheduler policy. 

The extension to CURSA-SQ and the end-to-end KPI estimation were complemented with additional modules 

aiming at enabling end-to-end KPIs estimation based on the simulation of network conditions. Specifically: a) the 

dynamic configuration module that configures the scenario before simulating every time window. This module 

consists of three submodules to: i) find a probable disaggregation of the cell’s throughput into flows; ii) forecast 

future traffic for every flow; and iii) create the mobile entity set; and b) the evaluation and tuning module that 

evaluates the accuracy of the estimation by comparing it against the real traffic conditions measured from the 

network. Once the scenario is simulated for the next time window and KPIs estimation are computed, they can be 

used by a performance analysis module to detect performance degradation, identify their causes and issue 

recommendations that can help the SDN controller and the mobile core to proactively reconfigure resources in their 

domains. 

CURSA-SQ was validated against the ns-3 network simulator for a pure mobile network scenario. CURSA-SQ 

estimations probed to be accurate while simulating 120s with granularity 250ms in just 12.5s. These results highlight 

the outstanding scalability of the proposed method for near real-time computation. 

Once validated, a sensitivity study was carried out to analyze the dependence of the CURSA-SQ simulation against 

errors in the traffic prediction and configuration of the simulation. Interestingly, KPI estimation showed a linear 

relation with the error in the traffic estimation, as well as with the error in the entities’ configuration, which can be 

corrected by the evaluation and tuning module by comparing the differences between simulated and real traffic 
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measurements and tuning parameters in the dynamic configuration module. 

Three scenarios were eventually configured on a realistic converged fixed-mobile network to illustrate the 

usefulness of the proposed approach to simulate network conditions and estimate end-to-end KPIs. Scenario S1 

reproduces a normal case where both the number of UEs and the background traffic remains constant, scenario S2 

represents the case of UEs mobility, and scenario S3 represents the case where the background traffic experiences a 

remarkable increment due to some external cause. The results of the three use cases illustrate the type of analysis 

that should be carried out to anticipate performance degradation and precisely identify bottlenecks in the network.  

In light of the obtained results, we can conclude that CURSA-SQ offers a precise and scalable methodology to 

simulate traffic conditions and to estimate end-to-end KPI with sub-second granularity near real-time in converged 

fixed-mobile networks. Posterior analysis can be carried out to identify the components that have more impact on 

the overall end-to-end figures, so that congestion or other effects in different parts of the network can be easily 

identified and localized. 
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