
 
 

Delft University of Technology

SPARK
Secure Pseudorandom Key-based Encryption for Deduplicated Storage
Dave, Jay; Faruki, Parvez; Laxmi, Vijay; Zemmari, Akka; Gaur, Manoj; Conti, Mauro

DOI
10.1016/j.comcom.2020.02.037
Publication date
2020
Document Version
Final published version
Published in
Computer Communications

Citation (APA)
Dave, J., Faruki, P., Laxmi, V., Zemmari, A., Gaur, M., & Conti, M. (2020). SPARK: Secure Pseudorandom
Key-based Encryption for Deduplicated Storage. Computer Communications, 154, 148-159.
https://doi.org/10.1016/j.comcom.2020.02.037

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.comcom.2020.02.037
https://doi.org/10.1016/j.comcom.2020.02.037


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Computer Communications 154 (2020) 148–159

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

SPARK: Secure Pseudorandom Key-based Encryption for Deduplicated
Storage
Jay Dave a,∗, Parvez Faruki b, Vijay Laxmi a, Akka Zemmari c, Manoj Gaur d, Mauro Conti e,f

a Malaviya National Institute of Technology Jaipur, India
b Government MCA College, Ahmedabad, India
c University of Bordeaux, Talence, France
d Indian Institute of Technology Jammu, India
e University of Padua, Italy
f Delft University of Technology, Netherlands
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A B S T R A C T

Deduplication is a widely used technology to reduce the storage and communication cost for cloud storage
services. For any cloud infrastructure, data confidentiality is one of the primary concerns. Data confidentiality
can be achieved via user-side encryption. However, conventional encryption mechanism is at odds with
deduplication. Developing a user-side encryption mechanism with deduplication is a vital research topic.
Existing state-of-the-art solutions in security of deduplication are vulnerable to dictionary attacks and tag
inconsistency anomaly.

In this paper, we present SPARK, a novel approach for secure pseudorandom key-based encryption for
deduplicated storage. SPARK achieves semantic security along with deduplication. Security analysis proves
that SPARK is secure against dictionary attacks and tag inconsistency anomaly. As a proof of concept, we
implement SPARK in realistic environment and demonstrate its efficiency and effectiveness.

1. Introduction

Cloud Storage has become an essential part of various network
applications due to its location independent, low-cost, and scalable
online storage services. Cisco Global Cloud Index foresights that the size
of digital data on cloud storage will increase up to 19.5 Zettabytes in
2021 [1]. Such explosive growth of data on cloud storage promotes the
demand for an approach that reduces the storage cost. Deduplication
is an approach to optimize the utilization of storage resources. In the
following, we discuss the process of deduplication approach.

Deduplication: In this approach, when a user requests data upload,
storage server checks whether this data exists on its storage. Storage
server stores the data only if it is not present. In this way, deduplication
avoids storing multiple copies of the same data. The advantage of
deduplication is measured by space reduction ratio [2]. Space reduction
ratio is ( 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑡𝑜 𝑏𝑒 𝑠𝑡𝑜𝑟𝑒𝑑 ), the size of input data divided by size of

data to be stored. Hence, deduplication advantage percentage is {1 −
( 1
𝑠𝑝𝑎𝑐𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 )} × 100.

Deduplication can be categorized on the basis of (1) Granularity, (2)
Intra-Inter user, (3) Locality, and (4) Architecture as discussed in [3].
Based on granularity, deduplication is further categorized into File
level and Block level deduplication. (i) File level: Storage is scanned
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E-mail address: jaydaveadms@gmail.com (J. Dave).

filewise to detect the existence of identical file. (ii) Block level: File
is divided into blocks. Storage is scanned block by block. In block
level deduplication, block size can be either fixed size or variable size.
In terms of user levels, deduplication is categorized into Intra user-
Inter user deduplication. (iii) Intra User : Deduplication is applied in
context of the user’s individual data only. (iv) Inter User : Deduplication
is applicable to the data of all users of the storage server. Based on
locality, deduplication is further classified into Client side and Server
side deduplication. (v) Client side: User first sends some tag of data
(i.e., data’s hash value) to the storage server for detecting redundancy.
User sends the data only if it is not present at storage. (vi) Server side:
User is not aware of whether deduplication will take place to her data.
She just outsources the data, and the storage server further executes
deduplication on received data. Communication overhead is higher
in server side deduplication as compared to client side deduplication
because the user needs to send the data in server side deduplication
even if it is present on storage. And finally, based on architecture,
deduplication can be categorized into (vii) Single cloud deduplication
architecture in which a single cloud service provider is considered
as many commercial cloud service provider do, and (viii) multi-cloud
deduplication architecture in which multiple cloud service providers are
considered, and users’ data is split and dispersed across these service
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providers. In this paper, we consider file level, client side, intra-inter
user, single cloud deduplication for our proposal.

From a security perspective, shared access to users’ data in dedupli-
cation system unfolds data confidentiality vulnerabilities. For preserv-
ing data confidentiality, user encrypts the data before outsourcing it on
cloud storage. However, conventional encryption is at odds with dedu-
plication. Deduplication exploits data similarity to detect redundancy.
On the other hand, conventional encryption achieves indistinguisha-
bility between two ciphertext through randomization. In other words,
encryption of identical data by different users generates different ci-
phertext. For instance, user A encrypts the data  with secret key 𝑘𝐴
and uploads ciphertext  to the storage. Subsequent uploader, user B
encrypts same data  with secret key 𝑘𝐵 and requests to store .

This unfolds two queries: (i) how will the storage server be able
to identify that  and  are ciphertext of same data , (ii) even if
it detects this successfully, how can it allow both users to access the
stored ciphertext ( or ). One simple solution is: encrypt the data
with public key of storage server. In this way, storage server will be
able to decrypt ciphertext with its private key and detect redundancy.
However, this solution breaches data confidentiality by revealing users’
data to storage server.

As a solution to aforementioned problem, Douceur et al. proposed
Convergent Encryption (CE) that provides confidentiality along with
deduplication [4]. In CE, users encrypt data with the convergent key,
i.e., hash value of data. Users upload ciphertext to storage server and
keep key with them. Since CE is deterministic, it outputs same cipher-
text for identical data. Thus, storage server can perform deduplication
on ciphertext. Variants of Convergent Encryption [5–11] were proposed
in different state-of-the-art for secure deduplicated storage. However,
CE is vulnerable to dictionary attacks on predictable data [12], since
it is a deterministic encryption approach. In the following, we briefly
discuss the dictionary attacks.

Dictionary attack: An adversary who has infinite access to users’
outsourced data (e.g., Storage server) can carry out offline dictionary
attack. This adversary may have certain knowledge about the data.
And, she tries to predict the unknown portion within finite attempts.
In this way, adversary constructs the possible versions of data, encrypts
them with convergent key and identifies the encrypted version which
is matching with stored ciphertext. On the other hand, a malicious
user of storage server executes online dictionary attack. She may have
knowledge about certain portion of data. And, she guesses the unknown
portion within finite attempts. In this way, adversary constructs the
predicted versions, encrypts them with convergent keys, uploads ci-
phertext versions to storage server, and identifies the version which
causes deduplication.

In [10], authors proposed randomized CE as a solution to this prob-
lem. In this approach, data is encrypted with a random key for securing
it against dictionary attacks. However, this random key is encrypted
with the convergent key and outsourced with ciphertext of data. Hence,
encrypted random key is still vulnerable to offline dictionary attack. On
the other hand, an adversary can perform online dictionary attack by
computing and uploading deduplication tag (e.g., Hash(Hash(data))) of
predicted versions. Some solutions for deduplication security [9,11–15]
recommend employing the additional independent key server(s) which
is a cost-inefficient assumption. It conflicts with the idea of outsourcing
data to cloud for cost reduction. In the following, we briefly discuss the
tag inconsistency anomaly.

Tag inconsistency anomaly : In randomized encryption, an adversary
can disrupt the deduplication process by uploading false combination of
deduplication tag and ciphertext. Since deduplication tag is generated
from plaintext, storage server is not able to detect such inconsistency
between deduplication tag and ciphertext. In this case, when a genuine
subsequent uploader requests for data upload with same deduplication
tag, storage server permits access to false data and sends successful
upload confirmation. After receiving the confirmation, most of users
deletes the data from their local site. As a consequence, a genuine user
gets false content when she downloads her uploaded data.

In this paper, we propose a novel approach ‘‘SPARK’’, Secure Pseu-
dorandom Key-based Encryption for Deduplicated Storage which pro-
vides security against online-offline dictionary attacks and also tag
inconsistency anomaly. SPARK computes a random encryption key
using a secure key generation mechanism which is combination of a
random 𝑠𝑒𝑒𝑑 value, cryptographic hash function and secure pseudoran-
dom generator. Moreover, SPARK is equipped with semantically secure
encryption mechanism. Since SPARK leverages a random encryption
key and semantically secure encryption mechanism, it is computation-
ally hard to perform successful offline dictionary attack on outsourced
ciphertext. On the other hand, adversary tries to launch online-offline
dictionary attacks by guessing deduplication tags of data. Since SPARK
uses a trimmed hash value as deduplication tag, multiple files will be
linked with same deduplication tag. Hence, indistinguishability of a file
on the basis of the tag ensures that the adversary is not able to perform
dictionary attacks using deduplication tags.

In addition, SPARK prevents adversary who is having knowledge
about 𝑠𝑒𝑒𝑑 value, from learning the key for unpredictable files. SPARK
key generation mechanism requires entire file along with 𝑠𝑒𝑒𝑑 value
to generate the key. Thus, adversary cannot learn the key without
knowledge of entire file. Moreover, SPARK adopts rate limiting strategy
per user to slow down the flooding attack. For security against tag
inconsistency anomaly, storage server asks hash value of ciphertext
before giving access to existing data. If received hash value differs
from hash value of existing data, then storage server asks the user to
upload data. In this way, tag inconsistency anomaly will not disturb the
deduplication process of SPARK.

Our contributions. This paper makes the following contributions.

• We propose a novel approach of secure pseudorandom key-based
encryption mechanism to achieve semantic security along with
deduplication.

• Security analysis theoretically proves that our approach is secure
against online-offline dictionary attacks and tag inconsistency
anomaly.

• We implement SPARK considering four basic storage services:
Upload, Download, Delete, and Update file. Performance eval-
uation shows that SPARK incurs minimal overhead in realistic
environment.

2. Preliminaries

In the following, we briefly discuss the cryptographic notions,
i.e., Symmetric Encryption and Pseudorandom Generator, which are
used in SPARK.

Symmetric encryption. Symmetric Encryption leverages same key 𝐾
for both encryption and decryption procedures. The symmetric encryp-
tion mechanism comprises following primitive algorithms:

• 𝐾𝑒𝑦𝐺𝑒𝑛(𝑠𝑒𝑒𝑑) → 𝐾: It generates a symmetric key 𝐾 based on seed
value.

• 𝐸𝑛𝑐(𝐾,𝐹 𝑖𝑙𝑒) → 𝐶𝐹 𝑖𝑙𝑒: It takes symmetric key 𝐾 and plaintext 𝐹 𝑖𝑙𝑒
as input and outputs ciphertext 𝐶𝐹 𝑖𝑙𝑒.

• Dec(𝐾, 𝐶𝐹 𝑖𝑙𝑒) → File: It takes symmetric key 𝐾 and ciphertext
𝐶𝐹 𝑖𝑙𝑒 as input and yields plaintext 𝐹 𝑖𝑙𝑒.

Pseudorandom generator . Security of an encryption mechanism de-
pends on randomness of its encryption key. Pseudorandom Generator
(PRG) produces an unpredictable string that can be used as encryption
key. PRG appears as random string generator, however it follows a
deterministic pattern to generate the output string.

PRG is a polynomial time deterministic function, PRG: {0, 1}𝑙 →

{0, 1}𝑙′ , where 𝑙′ ≥ 𝑙 and 𝑙′ − 𝑙 is stretch of PRG. A PRG is se-
cure if no efficient adversary can distinguish between pseudorandom
value generated by PRG and pure random value with non-negligible
advantage.
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Fig. 1. System model.

3. Problem statement

This section discusses the architecture of SPARK system. Subse-
quently, we illustrate adversaries and their capabilities. And finally, we
describe security assumptions, and security goals of our proposal.

3.1. System model

Fig. 1 illustrates the model of our proposal SPARK, which comprises
following entities:

1. User( ): User is referred to as the client of storage server.
 is the owner of data and stores it on the storage server. 
invites deduplication process to reduce the storage and commu-
nication cost. For confidentiality of data,  encrypts data before
outsourcing it to storage server.

2. Storage Server():  provides following storage services:

(a) Upload:  computes deduplication tag (i.e., trimmed
hash value of file F) and sends it to .  checks
whether deduplication tag is present or not. If not, then
 asks  to upload the file.  generates a random key,
encrypt the file using it and uploads the ciphertext to .
Otherwise,  allows  to learn the random key from
existing file owners. Further,  permits  to access the
file.

(b) Download:  sends download request with deduplication
tag and file tag (i.e., hash value of ciphertext).  verifies
whether  is the owner of the file. If yes, then  sends
ciphertext file. Further,  decrypts it with the secret key.

(c) Delete:  requests to delete a file.  verifies whether
 is the owner of the file.  removes entry of  from
owners’ list. In case, if owners’ list is empty,  erases
ciphertext and associated metadata.

(d) Update: Update consists of following operations: (i)
‘‘Delete’’ operation on existing version of file, and (ii)
‘‘Upload’’ operation on updated version of file.

3. Storage: It is a physical storage system that provides Read,
Write, Re-write, and Erase operations.

3.2. Threat model and assumptions

In this paper, we deal with following malicious entities: (i) honest-
but-curious ; (ii) malicious  .

• Honest-but-curious : We assume  as honest-but-
curious entity. That means,  honestly executes the operations
requested by  s. But, it is curious to learn about plaintext from
outsourced content (ciphertext, deduplication tags, and file tags).
Secondly,  may perform offline dictionary attack since it has
infinite access to outsourced ciphertext, deduplication tags, and
file tags. In addition,  may also be aware of a portion of the

plaintext file.  constructs the versions of deduplication tag,
file tag, or ciphertext by guessing unknown portion of file. Next,
it compares them with stored content and identifies the version
which gets matched.
For unpredictable file,  may be aware of seed value (discussed
in Section 4), hash of plaintext, and a portion of the file along
with outsourced content.  tries to compute the encryption key
using this knowledge.

• Malicious User: Malicious  may have knowledge about
deduplication tag, file tag, and ciphertext of particular file. She
attempts to learn about plaintext from this knowledge.
Secondly,  may perform online dictionary attack. In particular,
she may be aware of a fraction of the file. She constructs the
versions of file by predicting unknown portion of file. She uploads
them to  and observes the deduplication. Alternately, she
may compromise  and perform offline dictionary attack as
discussed above. For unpredictable file,  may know seed value,
hash value, and a fraction of the plaintext file.  tries to generate
the encryption key using this knowledge.
Thirdly, malicious  may launch tag inconsistency attack. For ex-
ample, she uploads ciphertext of file B (𝐶𝐹 𝑖𝑙𝑒𝐵) with deduplication
tag of File A. If deduplication tag is not computed from ciphertext,
then  fails to detect inconsistency between uploaded ciphertext
and deduplication tag. As result, when a genuine  sends upload
request with deduplication tag of File A,  will permit access
to 𝐶𝐹 𝑖𝑙𝑒𝐵 . Furthermore, when she requests for File A, she gets
𝐶𝐹 𝑖𝑙𝑒𝐵− her File A is lost.
And lastly, a malicious  may flood large number of messages to
disrupt working of  s or .

3.2.1. Assumptions
1.  s and  have pairs of public key and secret key.
2.  is always online and has significantly high storage and

computational capacity.
3. The communication channels in SPARK are secure.
4.  is capable of generating a secure pseudo random key value.
5.  keeps the secret key and file encryption keys in protected local

storage.
6. There is no direct communication among  s. They interact with

one another via .

3.3. Security goals

1. Confidentiality: The primary goal of SPARK is to deliver
confidentiality of outsourced files. For that,  encrypts the file
using a semantically secure encryption and a random key. As a
result, the adversary cannot successfully perform online-offline
dictionary attacks on ciphertext. Moreover, SPARK leverages
trimmed hash value as deduplication tag of file for protection
against online-offline dictionary attacks via deduplication tag.

2. Security against tag inconsistency: In SPARK, 
asks for file tag (hash of ciphertext) at time of subsequent
upload. If it does not match with existing file tags, then 
requests  to upload the file. In this way,  will get access to
correct file, even if tag inconsistency is there.

4. Proposed method

In this section, we discuss our approach ‘‘SPARK’’. It consists of
following basic storage operations (1) Upload; (2) Download; (3) Delete;
and (4) Update File.

1. File Upload: For file upload,  computes DedupTag, i.e., a
trimmed hash value containing first 𝑡 bits of Hash(File), where
𝑏 is size of Hash digest and 𝑡 tends to 𝑏 − 1. Therefore, it is
possible that more than one file has same DedupTag implying
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that DedupTag is not collision resistant. The maximum number
of files that can be linked with DedupTag is 2𝑏−𝑡. After computing
DedupTag,  will send it to . Here, there are two possibilities:
(a) DedupTag is not present on , or (b) DedupTag is present
on .

(a) If DedupTag is not present on ,  generates a random
𝑠𝑒𝑒𝑑 value. Then, she computes an encryption key ‘‘Key ’’
by executing KeyGen procedure (as discussed in Algo-
rithm 2). Using this ‘‘Key ’’,  encrypts the file. Next, she
generates ‘‘FileTag ’’, i.e., hash of ciphertext.  uploads
(DedupTag, FileTag, 𝐶𝐹 𝑖𝑙𝑒) as described in Algorithm 1. 
keeps Key and 𝑠𝑒𝑒𝑑 secret in local storage.  verifies the
integrity of received file by checking hash of 𝐶𝐹 𝑖𝑙𝑒 with
𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔 and stores (DedupTag, FileTag, 𝐶𝐹 𝑖𝑙𝑒) to storage
(as discussed in Algorithm 1: server_fupload).

(b) If DedupTag is present on , then  asks  to learn
the secret 𝑠𝑒𝑒𝑑 from existing file owners. After learning
𝑠𝑒𝑒𝑑,  computes ‘‘Key ’’ using KeyGen as discussed in
Algorithm 2 and encrypts the file.  computes ‘‘FileTag ’’
and sends it to .  gives access to such 𝐶𝐹 𝑖𝑙𝑒 whose
𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔 and 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔 are matching with received
𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔 and 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔. In case, if  finds it different
than existing filetags, then it asks  to upload the file.

Algorithm 1 File Upload
1: procedure User: User_Upload(𝐹 𝑖𝑙𝑒)
2: 𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔 ← Extract(Hash(𝐹 𝑖𝑙𝑒),𝑡)
3: if VerifyDedup(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔) = TRUE then
4: 𝑠𝑒𝑒𝑑 ← LearnKey(𝑃𝐾s, Hash(𝐹 𝑖𝑙𝑒))
5: 𝐾𝑒𝑦 ← KeyGen(𝑠𝑒𝑒𝑑, 𝐹 𝑖𝑙𝑒)
6: 𝐶𝐹 𝑖𝑙𝑒 ← Enc(𝐾𝑒𝑦, 𝐹 𝑖𝑙𝑒)
7: 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔 ← Hash(𝐶𝐹 𝑖𝑙𝑒)
8: if Server_SUpload(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔, 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔) = TRUE then
9: Return

10: else
11: goto step 13
12: else
13: 𝑠𝑒𝑒𝑑

$
← {0, 1}𝑏

14: 𝐾𝑒𝑦 ← KeyGen(𝑠𝑒𝑒𝑑, 𝐹 𝑖𝑙𝑒)
15: 𝐶𝐹 𝑖𝑙𝑒 ← Enc(𝐾𝑒𝑦, 𝐹 𝑖𝑙𝑒)
16: 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔 ← Hash(𝐶𝐹 𝑖𝑙𝑒)
17: Server_FUpload(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔, 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔, 𝐶𝐹 𝑖𝑙𝑒)
18: procedure Storage Server: VerifyDedup(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔)
19: if 𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔 ∈ DedupTagList then
20: Return ‘‘True’’
21: else
22: Return ‘‘False’’
23: procedure Storage Server: Server_FUpload(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔, 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔,

𝐶𝐹 𝑖𝑙𝑒)
24: if Hash(𝐶𝐹 𝑖𝑙𝑒) ≠ 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔 then
25: Return
26: else
27: Files(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔) ← Files(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔) ∪ 𝐶𝐹 𝑖𝑙𝑒
28: FileTags(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔) ← FileTags(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔) ∪ 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔
29: Owners(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔, 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔) ← Owners(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔,

𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔) ∪ 
30: procedure Storage Server: Server_SUpload(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔, 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔)
31: if 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔 ∈ FileTags(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔) then
32: Owners(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔, 𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔) ← Owners(𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔,

𝐹 𝑖𝑙𝑒𝑇 𝑎𝑔) ∪ 
33: Return ‘‘True’’
34: else
35: Return ‘‘False’’

KeyGen: In this process,  splits the file into 512 bits blocks. 
extracts 𝑛2 blocks from them, where 𝑛 =

⌊
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.

A matrix 𝑀𝐹 𝑖𝑙𝑒 of size 𝑛 × 𝑛 is formed from these blocks.
 computes hash of each row of 𝑀𝐹 𝑖𝑙𝑒, i.e., for 𝑖th row: B𝑖 =
Hash(𝑀𝐹 𝑖𝑙𝑒[𝑖][1] ∥ 𝑀𝐹 𝑖𝑙𝑒[𝑖][2]... ∥ 𝑀𝐹 𝑖𝑙𝑒[𝑖][𝑛]), |𝐵𝑖| = b. 
generates a set of pseudorandom values, 𝑌𝑖 = PRG((𝑃𝑖−1 ⊕𝑄𝑖−1)
∥ 𝐵𝑖), where |𝑌𝑖| = 2𝑏 + 𝑥, 𝑃0 = 𝑠𝑒𝑒𝑑, 𝑄0 = {0}𝑏, and |𝑠𝑒𝑒𝑑| = 𝑏.
Here, PRG takes input of 2b bits and outputs 𝑌𝑖s of 2b + x bits.
We consider first 𝑏 left most bits of 𝑌𝑖 as 𝑃𝑖, following 𝑏 bits as 𝑄𝑖,
and remaining 𝑥 bits as 𝑋𝑖. KeyGen discards 𝑋𝑖 and leverages 𝑃𝑖
and 𝑄𝑖 for 𝑠𝑒𝑒𝑑 value to generate next pseudorandom value. In
this way, key generation process outputs (𝑃𝑛 ⊕ 𝑄𝑛) as random
encryption key as shown in Fig. 2. Here, we can say that only
a  who owns complete file, is able to compute the correct
encryption key.

Algorithm 2 KeyGen: User
1: procedure User: KeyGen(𝑠𝑒𝑒𝑑, 𝐹 𝑖𝑙𝑒)
2: {Blocks} ← Split(𝐹 𝑖𝑙𝑒)
3: 𝑛 ←

⌊
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4: 𝑀𝐹 𝑖𝑙𝑒 ← 𝑀𝑎𝑡𝑟𝑖𝑥({𝐵𝑙𝑜𝑐𝑘𝑠}𝑛×𝑛)
5: for 𝑖=1 to 𝑛 do
6: B𝑖 ← Hash(𝑀𝐹 𝑖𝑙𝑒[𝑖][1] ... || 𝑀𝐹 𝑖𝑙𝑒[𝑖][𝑛])
7: P0 ← 𝑠𝑒𝑒𝑑, Q0 ← {0}𝑏

8: for 𝑖=1 to 𝑛 do
9: Y𝑖 ← PRG((P𝑖−1 ⊕ Q𝑖−1) || B𝑖)

10: P𝑖 || Q𝑖 || X𝑖 ← Y𝑖
11: Discard(X𝑖)
12: Return(P𝑛 ⊕ Q𝑛)

Learn Key: When DedupTag is present on storage,  needs
to learn 𝑠𝑒𝑒𝑑 value of keys corresponding to this DedupTag as
mentioned in Algorithm 3.

Algorithm 3 LearnKey: User
1: procedure Requesting User: LearnKey(𝑃𝐾s, Hash(𝐹 𝑖𝑙𝑒))
2: 𝑟

$
← {0, 1}𝜆

3: 𝑥𝑖 ← 𝐻𝑎𝑠ℎ(𝐹 𝑖𝑙𝑒)𝑃𝐾 || 𝑟𝑃𝐾

4: Send(𝑃𝐾s,𝑥𝑖)
5: 𝑦𝑖 ← Receive()
6: 𝑧𝑖 ← 𝑦𝑆𝐾𝑖
7: if 𝑧𝑖[2] = 𝑟 then
8: 𝑠𝑒𝑒𝑑 ← 𝑧𝑖[1]
9: else

10: 𝑠𝑒𝑒𝑑 ← NULL
11: Return 𝑠𝑒𝑒𝑑
12: procedure Owner: LearnKey(𝑠𝑒𝑒𝑑,Hash(𝐹 𝑖𝑙𝑒),𝑃𝐾)
13: 𝑥𝑖 ← Receive()
14: 𝑤𝑖 ← 𝑥𝑆𝐾𝑖

𝑖
15: if 𝑤𝑖[1] = Hash(File) then
16: 𝑦𝑖 ← 𝑠𝑒𝑒𝑑𝑃𝐾 || 𝑤𝑖[2]𝑃𝐾

17: else
18: 𝑦𝑖 ← NULL || 𝑤𝑖[2]𝑃𝐾

19: Return 𝑦𝑖

As stated earlier, a DedupTag can be linked with multiple files.
So,  may need to communicate with a large number of file
owners and it incurs high communication overhead.
To minimize the communication overhead, SPARK classifies the
owners per file.  sends public keys 𝑃𝐾s of one owner per file
to the requesting  . In this way,  needs to communicate with
maximum 2𝑏−𝑡 number of file owners, where 𝑡 → 𝑏 − 1. Further,
 generates a random nonce 𝑟. She encrypts the Hash(𝐹 𝑖𝑙𝑒) and
𝑟 using 𝑃𝐾 and sends it to corresponding owners via SS. Each
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Fig. 2. KeyGen.

owner decrypts the received message using secret key 𝑆𝐾𝑖. If
she possesses same Hash(File) as in received message, then she
encrypts 𝑠𝑒𝑒𝑑 and 𝑟 using 𝑃𝐾 and sends it  . Otherwise, owner
returns NULL value with 𝑟. Next,  decrypts the received mes-
sage, verifies the correctness of 𝑟 and learns 𝑠𝑒𝑒𝑑. Nevertheless,
adversary can exploit this procedure for flooding attack against
 or . We adopt rate limiting strategy [12] to avoid flooding
attack.

2. File Download:  sends DedupTag and FileTag of a file to .
 checks whether requesting  resides in owners’ list or not.
If  is an owner of the file, then  sends 𝐶𝐹 𝑖𝑙𝑒 along with
Hash(𝐶𝐹 𝑖𝑙𝑒).  verifies integrity of received data and decrypts
𝐶𝐹 𝑖𝑙𝑒 using secret key.

3. File Delete:  sends DedupTag and FileTag of a file to . 
checks whether requesting  is owner of file or not. If  is an
owner, then  removes entry of  from owners’ list. If owners’
list is empty, then  erases 𝐶𝐹 𝑖𝑙𝑒 and corresponding meta-data
from storage.

4. File Update: When  requests to update a file, SPARK exe-
cutes Delete operation on existing file and Upload operation on
updated file.

5. Security analysis

This section presents the security of SPARK in terms of ‘‘Confiden-
tiality’’ and ‘‘Tag consistency’’.

5.1. Confidentiality

In SPARK, we assume  and  as untrusted entities. Additionally,
we contemplate  and  having partial knowledge of file. They
launch online-offline dictionary attacks as discussed in Threat model.

Fig. 3. Mapping between files and DedupTags.

To achieve data confidentiality, SPARK encrypts the data with a
random key during initial upload. Moreover, SPARK leverages semanti-
cally secure encryption algorithm. Hence, it is computationally hard to
perform successful offline dictionary attack on ciphertext. In particular,
malicious  cannot compute ciphertext versions of predicted plaintext
versions, since it is unable to guess random encryption key. Hence,
a malicious  is not able to launch successful offline dictionary
attack with non-negligible advantage. Similarly, a malicious  who
compromise  for a while, is also not successfully able to launch
offline dictionary attack.

Online-offline dictionary attacks can be performed by guessing the
DedupTags of files. We describe the mapping between files and Dedup-
Tags stored at cloud storage in Fig. 3. If DedupTag is generated using a
collision resistant hash function, then each distinct file has a unique
DedupTag. In other words, 𝑣 = 𝑢. Therefore, an adversary who has
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Fig. 4. Security game for online-offline dictionary attacks using DedupTag.

partial information about the file, will predict the dictionary versions,
compute the DedupTag of each version, upload them, and observes
the deduplication process. She identifies the version which causes
deduplication.

For protection against this security threat, SPARK leverages
trimmed hash value as DedupTag. In particular, DedupTag is first t
bits of hash value, which is not collision resistant. In this case, 𝑣 =

𝑢
2(𝑏−𝑡) , where 𝑏 = |hash value|hash value and 𝑡 = |trimmed hash value|
trimmed hash value |. That means, it is possible that multiple files will
have the same DedupTag. As a result, an adversary will get confused
with multiple files while executing the online-offline dictionary attacks.

In the following, we discuss the security game for the adversary
who mounts the online-offline dictionary attacks using DedupTags of
predicted versions of a file, as described in Fig. 4. In the security
game, the challenger provides security parameter 𝜆 to the adversary.
The adversary predicts the versions {𝐹1, . . . , 𝐹𝑉 } of a file 𝐹 using her
knowledge 𝐹 ′ about the file 𝐹 . Then she computes DedupTags of every
versions and sends them to the challenger. Challenger executes Veri-
fyDedupTag procedure (as discussed in Algorithm 2) for each query.
If a DedupTag is present on storage, then it returns ‘‘True’’, otherwise
‘‘False’’. Now, the adversary decides which of the predicted versions is
correct based on the received responses of the queries. The advantage
of the adversary to successfully predict the file is

𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔𝐴𝑑𝑣 = 1
2(𝑏−𝑡)

(1)

Let us assume that 𝐹𝑃 is the correct guess among {𝐹1, . . . , 𝐹𝑉 }.
In other words, 𝐹𝑃 = 𝐹 . If Tag is a collision resistant hash function,
then each distinct file has a unique DedupTag. Here, since 𝐹𝑃 (= 𝐹 )
is present on cloud storage, DedupTag of 𝐹𝑃 will get matched to
DedupTag of 𝐹 . And, since other predicted versions are not matching,
challenger returns ‘‘False’’ for their queries. In this way, 𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔𝐴𝑑𝑣 =

1
2(𝑏−𝑡) =

1
2(𝑏−𝑏) = 1, when Tag is a collision resistant hash function. On the

other hand, in SPARK, Tag is not a collision resistant hash function. As a
result, it is possible that multiple files will have the same DedupTag. In
this case, 𝑣 < 𝑢 as described in Fig. 3, and hence DedupTags of predicted
versions including 𝐹𝑃 may get matched with DedupTags of other files
on storage. Therefore, 𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔𝐴𝑑𝑣 = 1

2(𝑏−𝑡) , where 𝑡 < 𝑏.
For unpredictable files, adversary is aware of DedupTag, FileTag

and some portion of plaintext and unable to predict unknown portion.
Further, she may learn Hash(𝐹 𝑖𝑙𝑒) and 𝑠𝑒𝑒𝑑 by compromising a file
owner. Still, it is computationally difficult to learn the encryption key,
since SPARK key generation procedure requires knowledge of complete
file. In particular, KeyGen procedure takes complete plaintext file and
𝑠𝑒𝑒𝑑 as input and outputs an encryption key using combination of
secure pseudorandom generator and cryptographic hash function. Thus,
we can say that, the knowledge of DedupTag, FileTag, portion of file,
Hash(𝐹 𝑖𝑙𝑒) and 𝑠𝑒𝑒𝑑 will not be advantageous for adversary to learn
the encryption key.

Fig. 5. Security game against pseudorandom generator.

The adversary can try to disturb the working of  s and  by
flooding large number of messages to them. For protection against
such attacks on  s, SPARK allows all communication among  s via
 only. Furthermore, we limit the number of attempts by adversary
using rate limiting strategy [12]. This strategy slows down the message
flooding attack on .

Moreover, we assume that an adversary may be aware of DedupTag-
FileTag. With knowledge of DedupTag-FileTag, adversary can learn
ciphertext file. However, adversary is not able to learn anything about
plaintext from ciphertext since file is encoded using semantically secure
encryption and secure random key. Next, we prove that SPARK KeyGen
is having indistinguishability from random string generator with un-
derlying secure PRG. In Fig. 5, we discuss security game for adversary
mounting attack against pseudorandom generator as discussed in [16,
17].

Advantage of the adversary to win in the experiment is as follows:

𝑃𝑅𝐺𝐴𝑑𝑣 = |𝑃𝑟[𝐸1] − 𝑃𝑟[𝐸0]| , (2)

where 𝐸0 = Event that adversary yields 𝑤’ = 1 when 𝑤 = 0, and 𝐸1 =
Event that adversary yields 𝑤’ = 1 when 𝑤 = 1.

Definition 1. A pseudorandom generator is secure if no efficient
adversary wins the security game with negligible advantage.

Theorem 1. If PRG is a secure pseudorandom generator, then KeyGen is
also a secure pseudorandom generator.

Proof. SPARK KeyGen is composed with secure pseudorandom gen-
erator, PRG. In this theorem, we will prove that if PRG is secure then
KeyGen is also secure.

We denote 𝐴𝑑𝑣1 as the adversary that plays security game with
respect to KeyGen. At first, we define 𝑛+ 1 number of intermediate se-
curity games, 𝑖𝑛𝑡𝑒𝑟0, 𝑖𝑛𝑡𝑒𝑟1, . . . , 𝑖𝑛𝑡𝑒𝑟𝑛, where 𝑛 =

⌊
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as discussed in Section 4.
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For j = 0, 1, . . . , 𝑛, 𝑖𝑛𝑡𝑒𝑟𝑗 is a security game played between 𝐴𝑑𝑣1
and challenger. In each game, challenger forms a set of 𝑗 random values
preceded by 𝑛−𝑗 pseudorandom values which are described as follows.

• 𝑌1
$
← {0, 1}2𝑏+𝑥, . . . , 𝑌𝑗

$
← {0, 1}2𝑏+𝑥,

• 𝑌𝑗+1←𝑃𝑅𝐺((𝑃𝑗 ⊕𝑄𝑗 ) ∥ 𝐵𝑗+1), . . . , 𝑌𝑛←𝑃𝑅𝐺((𝑃𝑛−1 ⊕𝑄𝑛−1) ∥ 𝐵𝑛).

Challenger sends following sets of values to 𝐴𝑑𝑣1 in the intermedi-
ate games.

𝐼𝑛𝑡𝑒𝑟0 ∶ 𝑌1←𝑃𝑅𝐺(𝑠𝑒𝑒𝑑 ∥ 𝐵1),… , 𝑌𝑛←𝑃𝑅𝐺((𝑃𝑛−1 ⊕𝑄𝑛−1) ∥ 𝐵𝑛)

𝐼𝑛𝑡𝑒𝑟1 ∶ 𝑌1
$
← {0, 1}2𝑏+𝑥..., 𝑌𝑛←𝑃𝑅𝐺((𝑃𝑛−1 ⊕𝑄𝑛−1) ∥ 𝐵𝑛)

...

𝐼𝑛𝑡𝑒𝑟𝑛 ∶ 𝑌1
$
← {0, 1}2𝑏+𝑥..., 𝑌𝑛

$
← {0, 1}2𝑏+𝑥.

We denote 𝑃𝑟𝑗 as probability of event that 𝐴𝑑𝑣1 outputs 1 in 𝐼𝑛𝑡𝑒𝑟𝑗
security game. Moreover, 𝑃𝑟0 is equal to probability of event where
𝐴𝑑𝑣1 outputs 1 in security game with 𝑤 = 0. Similarly, 𝑃𝑟𝑛 is equal to
probability of event where 𝐴𝑑𝑣1 outputs 1 in security game with 𝑤 =
1. Thus, advantage of 𝐴𝑑𝑣1 is 𝑃𝑅𝐺𝑎𝑑𝑣[𝐴𝑑𝑣1, 𝐾𝑒𝑦𝐺𝑒𝑛] = |𝑃𝑟𝑛 − 𝑃𝑟0|.

Now, we denote 𝐴𝑑𝑣2 as the adversary which plays security game
with PRG. When 𝐴𝑑𝑣2 receives a value y, 𝐴𝑑𝑣2 plays role of 𝐴𝑑𝑣′2s
challenger as follows.

Security game between 𝐴𝑑𝑣2 and challenger

𝑧
$
← {1,… , 𝑛}

𝑌1
$
← {0, 1}2𝑏+𝑥,… , 𝑌𝑧−1

$
← {0, 1}2𝑏+𝑥,

𝑌𝑧←𝑦,
𝑌𝑧+1←𝑃𝑅𝐺((𝑃𝑧 ⊕𝑄𝑧) ∥ 𝐵𝑧+1),… , 𝑌𝑛←𝑃𝑅𝐺((𝑃𝑛−1 ⊕𝑄𝑛−1) ∥ 𝐵𝑛)
Send (𝑌1,… , 𝑌𝑛) to 𝐴𝑑𝑣1

Here, 𝐴𝑑𝑣2 outputs whatever 𝐴𝑑𝑣1 yields.
We define an event 𝐸0 is that 𝐴𝑑𝑣2 outputs 1 in security game with

𝑤 = 0. Similarly, event 𝐸1 is that 𝐴𝑑𝑣2 outputs 1 in security game with
𝑤 = 1.

Here, for 𝑧 = 𝑗 and 𝑤 = 0, security game between 𝐴𝑑𝑣2 and
challenger is identical to intermediate security game 𝐼𝑛𝑡𝑒𝑟𝑗−1 where
𝑗 − 1 random values and 𝑛 − 𝑗 + 1 pseudorandom values are sent to
adversary.

Similarly, for 𝑧 = 𝑗 and 𝑤 = 1, security game between 𝐴𝑑𝑣2
and challenger is identical to intermediate security game 𝐼𝑛𝑡𝑒𝑟𝑗 with
𝑗 random values and 𝑛 − 𝑗 pseudorandom values.

Hence, probability of event 𝐸0 occurs when 𝑧 = 𝑗 is

𝑃𝑟[𝐸0|𝑧 = 𝑗] =
𝑛
∑

𝑗=1
𝑃𝑟[𝐸0|𝑧 = 𝑗] × 𝑃𝑟[𝑧 = 𝑗]

= 1
𝑛

𝑛
∑

𝑗=1
𝑃𝑟[𝐸0|𝑧 = 𝑗] = 1

𝑛

𝑛
∑

𝑗=1
𝑃𝑟𝑗−1. (3)

Similarly, probability of event 𝐸1 occurs when 𝑧 = 𝑗 is

𝑃𝑟[𝐸1|𝑧 = 𝑗] =
𝑛
∑

𝑗=1
𝑃𝑟[𝐸1|𝑧 = 𝑗] × 𝑃𝑟[𝑧 = 𝑗]

= 1
𝑛

𝑛
∑

𝑗=1
𝑃𝑟[𝐸1|𝑧 = 𝑗] = 1

𝑛

𝑛
∑

𝑗=1
𝑃𝑟𝑗 . (4)

Advantage of 𝐴𝑑𝑣2 is

𝑃𝑅𝐺𝑎𝑑𝑣[𝐴𝑑𝑣2, 𝑃𝑅𝐺] = |𝑃𝑟[𝐸1] − 𝑃𝑟[𝐸0]|

= |

1
𝑛
×

𝑛
∑

𝑗=1
𝑃𝑟𝑗 −

1
𝑛
×

𝑛
∑

𝑗=1
𝑃𝑟𝑗−1|

= 1
𝑛
|

𝑛
∑

𝑗=1
𝑃𝑟𝑗 −

𝑛
∑

𝑗=1
𝑃𝑟𝑗−1|

= 1
𝑛
|𝑃𝑟𝑛 − 𝑃𝑟0|. (5)

In this way,

𝑃𝑅𝐺𝑎𝑑𝑣[𝐴𝑑𝑣2, 𝑃𝑅𝐺] = 1
𝑛
× 𝑃𝑅𝐺𝑎𝑑𝑣[𝐴𝑑𝑣1, 𝐾𝑒𝑦𝐺𝑒𝑛]

⇒ 𝑃𝑅𝐺𝑎𝑑𝑣[𝐴𝑑𝑣1, 𝐾𝑒𝑦𝐺𝑒𝑛] = 𝑛 × 𝑃𝑅𝐺𝑎𝑑𝑣[𝐴𝑑𝑣2, 𝑃𝑅𝐺]. (6)

Since PRG is a secure pseudorandom generator, 𝑃𝑅𝐺𝑎𝑑𝑣[𝐴𝑑𝑣2,
𝑃𝑅𝐺] is negligible. In addition, n is poly-bounded value. Hence,
𝑃𝑅𝐺𝑎𝑑𝑣[𝐴𝑑𝑣1, 𝐾𝑒𝑦𝐺𝑒𝑛] is also negligible.

In other words, ‘‘If PRG is a secure pseudorandom generator, then
KeyGen is also a secure pseudorandom generator’’. □

Let us now examine the security of SPARK against dictionary attacks
via Theorem 2. In SPARK system, KeyGen plays pivotal role for security
against dictionary attacks. Hence, we prove security of SPARK in terms
of security of KeyGen.

Theorem 2. If KeyGen is secure against online-offline dictionary attacks,
then SPARK is secure against online-offline dictionary attacks.

Proof. We prove this theorem by contrapositive method. Contrapos-
itive statement of the theorem is as follows: ‘‘If SPARK is not secure
against online-offline dictionary attacks, then KeyGen is not secure
against online-offline dictionary attacks’’.

In other words, if there exist a Probabilistic Polynomial Time (PPT)
adversary A which breaks security of SPARK, then we can construct
PPT adversary B which breaks KeyGen. We discuss security game of A
and B as follows.

As shown in Fig. 6, B is PPT adversary of KeyGen mechanism.
Challenger of B provides security parameter 𝜆. B simulates challenger
for A. B forwards security parameter 𝜆 to A. A is PPT adversary of
SPARK. A sends two files 𝐹0 and 𝐹1. B selects value of w randomly
over 0 and 1 and forwards 𝐹𝑤 to her challenger. By querying KeyGen
oracle, challenger of B generates 𝐾𝑤 for 𝐹𝑤. Challenger also generates
random string 𝑅𝑤 of same length as |𝐾𝑤|. Challenger randomly chooses
over 𝐾𝑤 and 𝑅𝑤 and returns 𝐾 ′

𝑤. B encrypts 𝐹𝑤 by 𝐾 ′
𝑤 and forwards

ciphertext 𝐶𝑤. A receives 𝐶𝑤 and she already knows 𝐹0 and 𝐹1. Based
on such knowledge, she tries to learn 𝐶𝑤 is ciphertext of 𝐹0 or 𝐹1. A
returns 𝑤′ = 0 if she believes 𝐶𝑤 is ciphertext of 𝐹0, otherwise 𝑤′ = 1.
If 𝑤′ ≠ w, then A is not able to learn any information from 𝐶𝑤. The
reason is that file may be encrypted with a pure random key which is
not related to plaintext file. In this case, B replies R to her challenger.
On the other hand, if 𝑤′ = 𝑤, then A is able to learn information from
𝐶𝑤. That means file may be encrypted with a key which is generated
from the plaintext file. In this case, B returns K to her challenger.

Fig. 6. Construction of PPT adversary B.
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Lemma 1. If A is PPT algorithm, then B is also PPT algorithm.

Proof. We can also state the lemma as follows: ‘‘If A make polynomi-
ally many queries, then B also makes polynomially many queries’’. B’s
running time = Time for p(n) queries + A’s running time + other.

Suppose, B executes p(n) queries to her challenger. Each query
takes constant time for execution. i.e. O(1). Secondly, B executes A
inherently. Running time of A is q(n) is considered in time to execute
B. For all p(n) queries, B selects w randomly, encrypts 𝐹𝑤 and checks
whether 𝑤′ = 𝑤. These operations consumes r(n) polynomial time. B
consumes 1 unit time for forwarding security parameter and 1 unit time
for forwarding result to the challenger. Hence, B’s running time is

𝐵𝑡𝑖𝑚𝑒 = (𝑝(𝑛) × 𝑂(1)) + 𝑞(𝑛) + 𝑟(𝑛) + 2

= 𝑂(𝑚𝑎𝑥(𝑛𝑎, 𝑛𝑏, 𝑛𝑐 )) = 𝑂(𝑛𝑑 )

= 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 (7)

Here 𝑝, 𝑞 and 𝑟 are polynomial functions, 𝑝(𝑛) = 𝑂(𝑛𝑎), 𝑞(𝑛) = 𝑂(𝑛𝑏),
𝑟(𝑛) = 𝑂(𝑛𝑐 ), 𝑑 = 𝑚𝑎𝑥(𝑎, 𝑏, 𝑐).

It implies that B is PPT algorithm. □

Lemma 2. B is indistinguishable from real challenger of A.

Proof. B provides security parameter 𝜆 to A. Subsequently, B accepts
{𝐹0, 𝐹1} from B. For each query {𝐹0, 𝐹1}, B responses 𝐶𝑤 and accepts
guess 𝑤′ of A. Challenger of A works same as B. Hence, we can say that
B is indistinguishable from real challenger of A. □

Lemma 3. If A wins with non negligible probability, then B wins with non
negligible probability.

Proof. If A wins with non negligible probability, then

𝑃𝑟[𝑤′ = 𝑤] = 1
2
+ 𝜖(𝑛), 𝑤ℎ𝑒𝑟𝑒 𝜖(𝑛) 𝑖𝑠 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒. (8)

If B wins with non negligible probability, then

𝑃𝑟[𝐾 ′
𝑤 ← 𝐾𝑤|𝐾

′
𝑤 = 𝐾] = 𝑃𝑟[𝐾 ′

𝑤 ← 𝐾𝑤|𝐾
′
𝑤 = 𝑅] + 𝜖(𝑛)

, 𝑤ℎ𝑒𝑟𝑒 𝜖(𝑛) 𝑖𝑠 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 (9)

Hence, as per Eq. (2), A’s winning probability is 1
2 + negligi-

ble. It implies that winning probability of A is negligible. It proves
contrapositive statement of Lemma 3.

¬ (𝑃𝑟[𝐵𝑤𝑖𝑛𝑠] > 𝑛𝑒𝑔𝑙(𝑛)) ⇒ ¬ (𝑃𝑟[𝐴𝑤𝑖𝑛𝑠] > 𝑛𝑒𝑔𝑙(𝑛)) □ (10)

These lemmas imply that ‘‘If KeyGen is secure against online-offline
dictionary attacks, then SPARK is secure against online-offline dictio-
nary attacks’’. □

5.2. Security against tag inconsistency

An adversary can try to deviate the deduplication process via insert-
ing tag inconsistency anomaly. Adversary uploads DedupTag of File P
with ciphertext of File Q (𝐶𝐹 𝑖𝑙𝑒𝑄). Since SPARK leverages randomized
encryption,  is unable to detect the inconsistency between DedupTag
and ciphertext of file. For protection against this anomaly, SPARK
 asks for file tag(hash of ciphertext) during subsequent upload.
Therefore, when a genuine subsequent uploader wants to upload File P,
she submits DedupTag of File P. Now, she communicates with adversary
owner and gets secret 𝑠𝑒𝑒𝑑. She generates encryption key using 𝑠𝑒𝑒𝑑
and plaintext. She encrypts the file and computes Hash(𝐶𝐹 𝑖𝑙𝑒𝑃 ). Next,
she uploads it to . However,  finds Hash(𝐶𝐹 𝑖𝑙𝑒𝑃 ) and Hash(𝐶𝐹 𝑖𝑙𝑒𝑄)
not matching. It asks genuine user to upload 𝐶𝐹 𝑖𝑙𝑒𝑃 and make a separate
entry for DedupTag and FileTag of 𝐶𝐹 𝑖𝑙𝑒𝑃 in its lookup table. As result,
when genuine user requests to download 𝐶𝐹 𝑖𝑙𝑒𝑃 in future, she will get
the correct file. In this way, tag inconsistency anomaly will not disturb
the deduplication process in SPARK.

6. Performance analysis

We have implemented SPARK system and evaluated performance of
it. In the following, we discuss performance analysis of SPARK system
in realistic environment.

6.1. Experimental setup

We have implemented SPARK User’s code in C# Microsoft visual
studio with ASP .NET web services on Intel i5 machine with 2.40 GHz
and 4 GB RAM. We have developed SPARK Storage Server’s code in C#
Microsoft visual studio with Microsoft SQL Database services on Intel
i5 machine with 3.19 GHz, 8 GB RAM, and 1 TB HDD. We have used
collision resistant SHA-256 as cryptographic hash function and AES as
symmetric cipher. We execute SPARK system over files of size 10 kB,
20 kB, 50 kB, 100 kB, and 200 kB, respectively. We observe upload,
download, delete, and update time for these files. We consider size of
DedupTag is 254 bits for our experiments.

6.2. Evaluation

• Upload time: For file upload,  first sends DedupTag to . If
DedupTag is not present, then  asks to upload the file. To
preserve the file confidentiality,  encrypts the file before out-
sourcing it.  generates a random encryption key using SPARK
key generation mechanism. Next,  encrypts the file and sends
it to . In brief, we can say that execution time of first upload
is summation of time taken by key generation, encryption, and
upload procedure.
In Fig. 7, we compare execution time of first upload in SPARK
with two generic secure deduplication schemes, Convergent En-
cryption (CE) [4] and Randomized Convergent Encryption (RCE)
[10]. We observe that the execution time of first upload in these
schemes is approximately equal to one another. KeyGen is a
secure pseudorandom generator as it is composed with secure
𝑠𝑒𝑒𝑑 value, cryptographic Hash function and secure PRG. It im-
plies that B wins with negligible probability. Therefore, 𝜖(𝑛) is
negligible.
At time of subsequent upload,  asks  to communicate with
file owners for retrieving 𝑠𝑒𝑒𝑑 value as discussed in Algorithm 3.
Next,  computes the key using Algorithm 2.  encrypts the file
using key and sends DedupTag and FileTag to . In this way,

Fig. 7. First upload time.
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Fig. 8. Subsequent upload time.

the execution time of subsequent upload is summation of time
taken by random key retrieval, key generation, and encryption
procedure.
In CE [4],  encrypts the file using convergent key, computes
DedupTag which is Hash(ciphertext file) and sends it to . 
replies ‘‘True’’ and allows  to ciphertext file. The execution
time of CE’s subsequent upload is lesser than SPARK’s subsequent
upload as shown in Fig. 8. The reason behind such a difference in
execution time is that CE’s deterministic key generation process
takes lesser time than SPARK’s random key exchange and key
generation process. However, CE is vulnerable to online-offline
dictionary attacks due to deterministic key generation process.
On the other hand, SPARK is secure against the online-offline
dictionary attacks, as discussed in Section 5.
In RCE [10],  computes DedupTag, which is Hash(File), and
sends it to .  replies ‘‘True’’ and allows  to access ci-
phertext of file and ciphertext of key. Execution time of RCE’s
subsequent upload is lesser than CE’s and SPARK’s subsequent
upload. The reason behind such a difference in execution time is
that  does not need to encrypt the file for checking duplication.
However, RCE is vulnerable to tag inconsistency anomaly because
 is not able to verify the consistency between DedupTag and

Fig. 10. Update time.

ciphertext during first and subsequent upload. On the other hand,
SPARK provides security against tag inconsistency anomaly as
discussed in Section 5.

• Download time:  sends DedupTag and FileTag to download a
file.  verifies  ’s ownership of the file and sends ciphertext
file.  decrypts the ciphertext using encryption key. In download
process of CE [4] and RCE [10] ciphertext is retrieved from 
and decrypted using encryption key, same as SPARK. In Fig. 9,
we discuss analyzed execution time of file download for various
file sizes.

• Delete time:  sends DedupTag and FileTag to delete a file. 
verifies  ’s ownership of the file and removes her record from
file’s ownership list. In CE [4] and RCE [10], delete operation
is executed same as SPARK. Fig. 9 shows the execution time of
delete procedure in our experiments.

• Update time: In SPARK, file update procedure is combination
of delete and upload procedure. When  requests to update a
file,  removes her access from old version of file and executes
upload operation for new version of file. In Fig. 10, we describe
the execution time of update operation on various sized files. The
difference in execution times of update procedure in CE, RCE and
SPARK is because of difference in execution times of subsequent
upload procedure in these schemes.

Fig. 9. Download time, delete time.
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6.3. Minimizing communication overhead

SPARK classifies the owners per file to minimize the communication
overhead incurred by key learning process. In particular,  creates
and maintains a lookup table ‘‘DedupTag-FileTag-Owners-File pointer’’.
When a  requests for subsequent upload,  extracts FileTags corre-
sponding to requested DedupTag. Next,  selects one of the owners
for each FileTag and sends their public keys 𝑃𝐾s to  . In this way,
 needs to communicate with only 𝑥 number of owners, where 𝑥 is
number of FileTags corresponding to requested DedupTag. Maximum
number of FileTags corresponding to requested DedupTag can be 2𝑏−𝑡,
where 𝑡 is |𝐷𝑒𝑑𝑢𝑝𝑇 𝑎𝑔| and 𝑡 tends to 𝑏 − 1.

7. Related work

We reviewed various existing approaches which addresses the con-
fidentiality and tag inconsistency anomaly in deduplication system.
We observe that many of existing proposals leverages CE or assis-
tance of additional server. Whereas SPARK provides security against
online-offline dictionary attacks and tag inconsistency anomaly without
additional servers. Table 1 describes the comparison of SPARK with the
recent state-of-the-art secure deduplication schemes.

For confidentiality of deduplication system, Douceur et al. [4] pro-
posed the first encryption mechanism ‘‘Convergent Encryption’’ (CE). In
CE, file is encrypted with a convergent key which is the hash value of
file. CE is adopted by various state-of-the-art as follows. Storer et al. [5]
proposed Authenticated Model and Anonymous Model based on CE.
However, Authenticated model reveals the information about owners
of particular file to server. And anonymous model allows a user to
leverage the storage services as Content Distribution Network. In [6],
authors proposed CE based efficient chunking for deduplication. In this
scheme, they leveraged Two Threshold, Two Divisors (TTTD) algorithm
for chunking and B + Tree for searching.

Puzio et al. [7] proposed ‘‘CloudDedup’’, an encryption scheme
which equips additional deterministic encryption layer followed by CE.
In this proposal, user encrypts the data with CE and sends to additional
server. The server further encrypts received data with own secret
deterministic key. Hence, data is vulnerable to dictionary attacks until
additional server re-encrypts it. Xu et al. [18] proposed a deduplication
scheme in which file is encrypted with random key. And random key
is encrypted with output of keyed hash function. This scheme detects
poisoned entry of file and tag at server.

Bellare et al. [10] proposed three formal models of CE. Authors
proposed Random CE (RCE) in which file is encrypted with random
key. And random key is encrypted with convergent key. In [19], Bellare
et al. extended MLE theory to interactive MLE with upload and down-
load protocols. In [20], authors presented a new term ‘‘deduplication
consistency’’ which allows servers to verify whether ciphertext is well-
formed for deduplication or not. The scheme uses non-interactive zero
knowledge proof for verifiability.

Rongmao et al. [8] extended the concept MLE to block level MLE.
The updatable block level MLE is proposed in [25]. In these schemes,
block level convergent encryption generates large number of conver-
gent keys. Hence, key management is a critical issue for users. In [9],
authors proposed efficient and reliable key management scheme. In this
scheme, a key is split into key shares and distributed across multiple key
servers using Ramp secret sharing scheme. In [11], authors proposed
server side deduplication with additional key management server. In
this scheme, user sends hash of file blocks and key management server
responds encryption keys for them. Authors assumed that key manage-
ment server is fully trusted and communication links between users and
key management server are secure.

In [26], Harnik et al. outlined following weaknesses of convergent
encryption: (i) Adversary is able to find the presence of particular file
on storage server. (ii) Adversary can perform dictionary attacks on
predictable files. (iii) Adversary can establish a covert channel in CE

based deduplication system. As a solution to these weaknesses, authors
proposed threshold based deduplication. In the following, we discuss
various proposals that overcome the weaknesses of CE. Bellare et al.
proposed DupLESS [12] which allows users to compute the encryption
key by executing oblivious PRF with key server. Oblivious PRF allows
users to compute keys without revealing information about plaintext
file. For security against dictionary attacks, DupLESS consists of per-
user request limit. Each user can send particular number of requests
in a time-slot. In this scheme, if storage server and key server are
compromised, then security of scheme reduces to simple CE’s security.
Puzio et al. [15] proposed PerfectDedup approach. In this approach,
file is initially encrypted with random keys. Index server maintains
popularity index for each file. When a file reaches popularity index,
stored ciphertext is replaced by CE based ciphertext.

Jian et al. [21] proposed random encryption mechanism to defend
the brute-force attacks. In this scheme, subsequent user retrieves the
encryption key from former uploader of file by PAKE protocol. This
scheme incurs communication overhead at user side. In particular, key
exchange protocol incurs significant communication overhead, since
user needs to communicate with all existing owners of a file. Secondly,
an adversary having hash(file) is able to learn encryption key from
file owners. In [27], authors proposed a formal security model for
the aforementioned PAKE based approach. To protect the popularity
information of the file from Storage Server, Stanek et al. [23] pro-
posed a multilayer encryption scheme(inner layer = CE, outer layer =
semantically secure encryption scheme) with aid of additional index
repository service provider. Ramp secret sharing (RSSS) [13] allows
high reliability of storage.

In [28], authors proposed secure random encryption mechanism for
deduplicated storage. Target of the proposal is to protect the dedupli-
cated storage against dictionary attacks on ciphertext. To achieve the
goal, authors propose random key based encryption mechanism. In the
proposal, first uploader selects a random key, encrypts the file with it
and uploads to Storage Server. Moreover, first uploader encrypts the
random key using set of hash values generated from the file as follows:
𝐶𝐾𝑒𝑦 = Key ⊕ 𝐵1 ⊕ 𝐵2... ⊕ 𝐵𝑛. First uploader uploads the ciphertext of
key along with ciphertext of file. As result, a subsequent uploader who
possesses the same file is able to generate hash values 𝐵1, 𝐵2, . . . , 𝐵𝑛
using the file and learn the encryption key as follows: Key = 𝐶𝐾𝑒𝑦 ⊕ 𝐵1
⊕ 𝐵2... ⊕ 𝐵𝑛.

We find security limitations in this approach as follows. This ap-
proach is vulnerable to tag inconsistency anomaly. First uploader
can upload an inconsistent combination of {deduplication tag(𝐹 𝑖𝑙𝑒𝐴),
Ciphertext(𝐹 𝑖𝑙𝑒𝐵)}, since deduplication tag is not derived from cipher-
text. Secondly, XOR operation is used for encryption/decryption of the
key. Suppose, adversary has knowledge about 𝑥% of file blocks in 𝑀𝐹 𝑖𝑙𝑒.
Hence, she is able to compute n × 𝑥% hash values using known blocks.
If the remaining (100 − 𝑥)% of file blocks have identical data, then
generated hash values will also be identical. XOR operation among such
identical values cancels themselves and results 0s. Thirdly, adversary
can launch online dictionary attack by uploading deduplication tags of
predicted versions of file and observing deduplication.

CDStore scheme [24] provides security of deduplication using Con-
vergent Dispersal, a secret sharing scheme, on multiple servers.
Armknecht et al. proposed ClearBox [29], a transparent deduplication
mechanism which advantages users by transparent storage cost reduc-
tion. Zheng et al. [22] proposed secure deduplication scheme for big
data in Cloud. In this scheme, data is encrypted with random key and
random key is encrypted with public key of trusted third party. When
a user requests to upload same data, trusted party decrypts the random
encryption key and sends to requesting user after challenge-response
process. In [14], authors introduced hybrid architecture having public
and private cloud for privileges based deduplication.

Convergent encryption is unable to provide forward and backward
secrecy. Forward secrecy prevents access of user to file after deletion
or modification of file. Backward secrecy prevents access of user who
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Table 1
Comparison with recent state-of-the-art secure deduplication schemes.

State-of-the-art CE Additional server Other limitations

Secure data deduplication [5] ✓ ✗ –
A secure data deduplication framework [6] ✓ ✗ –
ClouDedup [7] ✓ ✓ –
Weak leakage-resilient client-side deduplication
[18]

✗ ✗ Key is encrypted by Hash(File)

Message-locked encryption and secure
deduplication [10]

✓ ✗ –

BL-MLE [8] ✓ ✗ –
Lamassu [11] ✓ ✓ Server side deduplication
PerfectDedup [15] ✓ ✓ When popularity reaches threshold value, data is

encrypted by only CE
Secure deduplication of encrypted data without
additional independent servers [21]

✗ ✗ Key exchange incurs high communication overhead

A hybrid cloud approach for secure authorized
deduplication [14]

✗ ✓ Priori knowledge about privileges and keys is
required.

DupLESS [12] ✗ ✓ If storage server and key server are compromised,
then security of scheme is reduced to CE’s security.

Secure deduplication with efficient and reliable
convergent key management [9]

✓ ✓ –

Deduplication on encrypted big data in cloud [22] ✗ ✓ Assumption: third party consisting all encryption
keys is fully trusted

Enhanced secure thresholded data deduplication
[23]

✓ ✓ –

CDStore [24] ✗ ✓ –
SPARK ✗ ✗ None

has not requested file upload yet. Hur et al. [30] proposed dynamic key
management. In this scheme, server provides the forward and backward
secrecy using dynamic group key based re-encryption. SecCloud [31]
encrypts the file with random key and shares the key using RSSS.
SecCloud+ [32] introduces additional auditing authority with SecCloud
to maintain integrity of stored data.

8. Conclusion and future work

In this paper, we address two important security threats on in-
ter user client side deduplication system: dictionary attacks and tag
inconsistency anomaly. We propose a novel approach Secure Pseudo-
random Key-based Encryption for Deduplicated Storage, ‘‘SPARK’’. This
approach encrypts the data using semantically secure cipher and the
secure random key. We prove that SPARK is secure against the online-
offline dictionary attacks. SPARK also guarantees security against tag
inconsistency. For that, SPARK storage server asks for hash value of
ciphertext before allowing access to outsourced ciphertext. If received
hash value does not match with hash of existing ciphertext, then
storage server asks user to upload the ciphertext. In this way, user
will get access to correct the file even if tag inconsistency exists. We
implement SPARK and analyze the efficiency of our approach in a
realistic environment.

As a future work, SPARK can be extended with block level dedu-
plication. We plan to develop a secure pseudorandom key-based en-
cryption for block level deduplication along with key management
policies.
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